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Abstract. We investigate three-dimensional devices made up of a ferroelectric layer that is fully em-

bedded in a paraelectric environment, by modeling based on the Ginzburg-Landau formalism as well as

on the Electrostatics equations, and boundary conditions that are suitable for applications. From finite

element approximations and inexact Newton techniques for solving numerically the resulting nonlinear

system, we develop two numerical protocols. The first protocol concerns a determination of states re-

lated to the system and incorporates a process of heating as well as of cooling of devices, in terms of the

temperature, whereas the second one is devoted to the existence study of hysteresis loops. The efficiency

of these protocols is particularly emphasized from numerical simulations.
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1 Introduction

In the frame of the development of new memory concepts, the main desired qualities are the non-volatility
of the stored information, the low power consumption and the low writing/reading times. Among the emerging
concepts, the ferroelectric memory (FeRAM) has a significant lead over its competitors (see, e.g., [22]). The
FeRAM is based on ferroelectric devices which have a hysteretic behavior and thus allow to store bits. The
miniaturization required for associated applications led to the discovery of new nanoscopic properties of devices,
due to long-range Coulomb interactions which are no longer negligible (see, e.g., [14]). A notable property is
that the ferroelectric body can be organized into a finite number of distinct regions, the domains, separated by
domain walls, in which the electric polarization field is in opposite directions. A pertinent numerical investigation
of such devices requires thus a description of the polarization texture as accurate as possible, in terms of the
physical and geometrical parameters.

Usually, two numerical approaches are considered for studying such devices: the approach based on first-
principia simulations (see, e.g., [13, 24]), related to a good accuracy but having the particularity to be however
subject to expensive CPU costs, and the approach that consists of solving Partial Differential Equations, namely
very suited to a description of the parameters dependence as regards the results.

Two phases are in association with a ferroelectric body. At high-temperature, we have the paraelectric phase,
in which the polarization field depends linearly on the electric field. Below a certain temperature, called the
Curie temperature (see, e.g., [14]), this dependence becomes nonlinear: it is the ferroelectric phase. In the 1940s,
V.L. Ginzburg applied the Landau phase transition theory to ferroelectricity (see, e.g., [11]). E.V. Chenskii and
V.V. Tarasenko [6] had the idea, in the 1980s, to complete the original model in order to take into account the
long-range Coulomb interactions, in particular by making also use of the Electrostatics equations.

Recently, I.A. Luk’yanchuck et al. [15] have established the universal properties of ferroelectric domains
from this model together with periodic conditions, for the context of 2D devices made up of a ferroelectric
film partly embedded in a paraelectric environment. In this work, we are concerned with 3D devices made
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up of a ferroelectric layer that is fully embedded in a paraelectric environment, and where the geometrical
configurations of nanofilms, nanorods or nanodots can be considered. We are namely interested in an extended
frame of investigations in the sense that the considerations of the physical and geometrical parameters can be
also the ones that are not systematically in correspondence with particular concrete situations, in contrast with
[16] where the considerations of the parameters are essentially related to applications by involving furthermore
the geometrical context of nanodots.

This paper is subdivided in six sections. We start by describing a model based on the Ginzburg-Landau
formalism and Electrostatics equations, together with boundary conditions that are suitable for applications,
for studying such 3D devices. In Section 3, we associate a weak formulation with the nonlinear system that
represents this model, and establish the existence of weak solutions. We are concerned, in Section 4, with
a numerical approach using Finite Elements for the discretization of the formulation and inexact Newton
techniques for solving the associated discrete nonlinear system. In Section 5, we develop two numerical protocols
and present the obtained results. The first protocol is devoted to the determination of states, and incorporates
also a process of heating as well as of cooling of devices, in terms of the temperature. The second one aims
at investigating the existence of hysteresis loops. The performed numerical simulations deal with various
considerations of geometrical and physical parameters. We report in Section 6 the concluding remarks.

2 The ferroelectric model

We are here interested in a model for the study of 3D devices made up of a ferroelectric layer that is fully
embedded in a paraelectric environment. Let us represent geometrically such a device by an open bounded
subset Ω of R3, and its fully embedded layer by an open subset Ωf , Ωf ⊂ Ω, as well as its paraelectric
environment by Ωp = Ω \ Ωf . Also, let us denote by S, S = ∂Ω, the boundary of Ω, and by Sf , Sf = Ωf ∩ Ωp,
the interface between Ωf and Ωp. The region Ω is also such that two subparts of its boundary are included
in two planes, (z = −γ) and (z = γ), so it is possible to affix there electrodes, in order to prescribe a voltage
potential (see, e.g., Figure 1). It is assumed that the ferroelectric body is uniaxial, namely that the dependence
of the polarization field, P, on the electric field is nonlinear through only one of its components (here, the third
one). More precisely, if we represent by E = (Ex, Ey, Ez)

T the electric field, where Ex, Ey, Ez are of course
scalar fields, and the superscript ”T” denotes here as well as in the next sections the transpose, we then have
(see, e.g., [14]) that:

P =
1

4π
(εE−E) +

0
0
P

 in Ωf , (1)

with P a scalar field, P : Ωf −→ R, and ε the electric permittivity.

Ωf
Ω

Ωp

Sf

S

}
-ϕ0

+ϕ0

2ϕ0=U

: electric field
: polarization field

Figure 1: An example of geometrical configuration of the device.

By making use of the general theory presented in [14] or of the same arguments as those described in [15],
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we have here that the generating functional energy, E , is such that:

E(P,E) =

∫
Ω

F̃(P,E)dx, (2)

where F̃(P,E) is expressed as follows,
F̃(P,E) = F(P, 0)− EzP −

E · (εE)

8π
in Ωf ,

F̃(P,E) = −E · (εE)

8π
in Ωp,

with F(P, 0) the Ginzburg-Landau potential. The term ”−
∫

Ωf
EzPdx” penalizes the energy if Ez and P are

of opposed signs, and thus traduces the effect of depolarizing field. The energy ”− 1
8π

∫
Ω
E · (εE)dx” represents

the effect of the domain walls. Thanks to the Ginzburg-Landau theory of phase transitions (cf., e.g., [14, 15]),
the term F(P, 0) can be written with respect to powers of P ,

F(P, 0) =
4π

κ‖

(
t

2
P 2 +

1

4

1

P 2
0

P 4 +
1

2
∇P · (ξ∇P )

)
,

with

• t, the reduced temperature, which can be expressed via the Curie temperature T0 and the temperature T
of the device as: t = T/T0 − 1;

• κ‖, the displacive parameter (namely positive);

• P0, P0 6= 0, the spontaneous polarization at low temperatures;

• ξ, the coherence length tensor.

In this expansion, the odd powers of P do not occur because of symmetry reasons. The term “∇P · (ξ∇P )”
penalizes spatial inhomogeneities: it becomes important when ferroelectric domains are considered.

Furthermore, if Ω is simply connected, the electric field E can be expressed with the help of a scalar electric
potential, ϕ, as: E = −∇ϕ.

Finally, the energy of the device can be written from (2), with the help of P and ϕ, also with κ‖ > 0, as
follows,

E(P,E) =

∫
Ωf

4π

κ‖

(
t

2
P (x)2 +

1

4

1

P 2
0

P (x)4 +
1

2
∇P (x) · (ξ(x)∇P (x))

)
dx

+

∫
Ωf

∂zϕ(x)P (x)dx−
∫

Ω

1

8π
∇ϕ(x) · (ε(x)∇ϕ(x)) dx.

It arises from the Euler-Lagrange variation of the energy, δE = 0, that:

tP +

(
P

P0

)2

P −∇ · (ξ∇P ) +
κ‖
4π
∂zϕ = 0 in Ωf , (3)

and {
−∇ · (ε∇ϕ) + 4π∂zP = 0 in Ωf ,

−∇ · (ε∇ϕ) = 0 in Ωp,
(4)

as also reported with details in [17]. The relations in (3) and (4) involve the Ginzburg-Landau formalism and
Electrostatics equations. In particular, ∇ ·D = 0 in Ωf and Ωp, where D is the electric displacement field,

D =

 εE +

 0
0

4πP

 in Ωf ,

εE in Ωp.

These equations must be completed by conditions at the interface Sf = Ωf ∩Ωp and on the boundary S = ∂Ω.
Namely, at the ferroelectric/paraelectric interface, the scalar field ϕ satisfies the continuity condition,

ϕ|Ωf
= ϕ|Ωp

on Sf , (5)
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and the electric displacement field is such that:

ν · (D|Ωf
−D|Ωp

) = 0 on Sf ,

where ν = (νx, νy, νz)
T is the outward unit normal to Ωf , defined on Sf . It follows that:

ν · ((ε∇ϕ)|Ωf
− (ε∇ϕ)|Ωp

)− 4πνzP = 0 on Sf . (6)

Also, the scalar field P is subject to the condition:

ν · (ξ∇P ) = 0 on Sf . (7)

Finally, the electrodes affixed on the device require the potentials ∓φ0 on the planes (z = ±γ), γ > 0, generating
a voltage potential U = 2φ0 (see Figure 1); that can be expressed through a boundary condition as follows,

ϕ = ϕS on S, (8)

with ϕS a given function, taking the values ∓φ0 on (z = ±γ) in particular.
Throughout the paper, the set of equations in (3)-(8),

(EGL)



tP +

(
P

P0

)2

P −∇ · (ξ∇P ) +
κ‖
4π
∂zϕ = 0 in Ωf ,

−∇ · (ε∇ϕ) + 4π∂zP = 0 in Ωf ,

−∇ · (ε∇ϕ) = 0 in Ωp,

ϕ|Ωf
= ϕ|Ωp

on Sf ,

ν · ((ε∇ϕ)|Ωf
− (ε∇ϕ)|Ωp

)− 4πνzP = 0 on Sf ,

ν · (ξ∇P ) = 0 on Sf ,

ϕ = ϕS on S,

is called the Electrostatics Ginzburg-Landau (EGL) system.
Although, in the applications, the temperature T must be considered in such a way that the reduced

temperature t takes values in [−1, 0), we will be interested in a more large context of values for this parameter,
namely by investigating with t ∈ (−∞, 0]. Also, we will take into account the extended consideration where
κ‖ ≥ 0 in the (EGL) system.

Let us mention furthermore that the volume of any considered ferroelectric layer Ωf , in order to avoid to
disturb the emergent fringing field (see, e.g., [16]), will be of course sufficiently more small than the one of
the medium Ω, but not too small. In particular also, the related considerations will not then be subject to
numerical instabilities in experiments, although the asymptotic framework developed by H. Ammari et al. in
[1] may remedy this issue.

Of course, in the frame of the study of ferroelectric materials or devices, modeling approaches deal also with
the contexts of ferroelectric layers that are not embedded or that are only partly embedded, and involve the
time dependence (see, e.g., [2, 17, 22, 23] and the references therein). In particular in [2], H. Ammari and K.
Hamdache develop a theoretical analysis for studying a model where the electric polarization is time dependent
and a ferroelectric material represents alone the 3D physical region of interest.

3 Weak formulation and existence of solutions

We associate a weak formulation with the (EGL) system, and study the existence of solutions of this
formulation.

3.1 Weak formulation
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Let t ≤ 0, κ‖ ≥ 0 and P0 6= 0 the parameters considered as previously. We assume that each of the bounded
open subsets of R3 that are Ωf and Ω has a Lipschitz-continuous boundary. Also, we consider the tensors ξ
and ε, where ξ = (ξi,j)1≤i,j≤3, ε = (εi,j)1≤i,j≤3, in such a way that:

ξi,j ∈ L∞(Ωf ), ∀ 1 ≤ i, j ≤ 3, (9)

∃ ξ0 > 0; ∀ d = (d1, d2, d3)T ∈ R3,

3∑
i,j=1

ξi,jdjdi ≥ ξ0|d|2 a.e. in Ωf , (10)

εi,j ∈ L∞(Ω), ∀ 1 ≤ i, j ≤ 3, (11)

∃ ε0 > 0; ∀ d = (d1, d2, d3)T ∈ R3,

3∑
i,j=1

εi,jdjdi ≥ ε0|d|2 a.e. in Ω, (12)

with | · | denoting here the euclidian norm on R3.
We set:

W = H1(Ωf )×H1
0 (Ω),

and represent by (·, ·)W the scalar product defined on W ×W , where for (P,ϕ), (Q,ψ) ∈W ,

((P,ϕ), (Q,ψ))W =

∫
Ωf

PQdx +

∫
Ωf

∇P · ∇Qdx +

∫
Ω

∇ϕ · ∇ψdx.

The associated norm is denoted by ‖ · ‖W , where for (P,ϕ) ∈W ,

‖(P,ϕ)‖W =
(
‖P‖2H1(Ωf ) + |ϕ|2H1(Ω)

)1/2

.

Assume that we have (P, ϕ̃) ∈ H2(Ωf ) ×H2(Ω) satisfying (EGL) with ξ, ε and ϕS sufficiently regular, by
defining ϕ = ϕ̃−w, where w is a scalar field sufficiently regular and such that w|S = ϕS ; namely, in particular,
ϕ|S = 0. Let (Q,ψ) ∈W . From (3) and with (7), it results thus that:∫

Ωf

tPQdx +

∫
Ωf

P 3

P 2
0

Qdx +

∫
Ωf

(ξ∇P ) · ∇Qdx +

∫
Ωf

κ‖
4π

(∂zϕ)Qdx = −
∫

Ωf

κ‖
4π

(∂zw)Qdx.

By only considering P such that P ∈ H1(Ωf ), it derives in particular (see, e.g., [12]) that P ∈ L6(Ωf ), and
therefore the term

∫
Ωf

1
P 2

0
P 3Qdx is also well defined.

With the same assumptions as above, it follows from (4), and by making use of the transmission condition
(6), that: ∫

Ω

(ε∇ϕ) · ∇ψdx−
∫
Sf

4πνzPψdσ +

∫
Ωf

4π(∂zP )ψdx = −
∫

Ω

(ε∇w) · ∇ψdx.

Finally, the weak formulation associated with (EGL) consists of finding (P,ϕ) ∈W such that, for (Q,ψ) ∈W ,
∫

Ωf

tPQdx +

∫
Ωf

P 3

P 2
0

Qdx +

∫
Ωf

(ξ∇P ) · ∇Qdx +

∫
Ωf

κ‖
4π

(∂zϕ)Qdx = −
∫

Ωf

κ‖
4π

(∂zw)Qdx,∫
Ω

(ε∇ϕ) · ∇ψdx−
∫
Sf

4πνzPψdσ +

∫
Ωf

4π(∂zP )ψdx = −
∫

Ω

(ε∇w) · ∇ψdx,

(13)

(14)

with ξ and ε satisfying (9)-(12), w considered in such a way that w ∈ H1(Ω) and w|S = ϕS , where ϕS ,
ϕS ∈ H1/2(S), is given.
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3.2 Existence of weak solutions

In order to prove the existence of solutions of the weak formulation, we proceed in two stages, by making
use also of an idea of [8]. We first consider a sequence of weak problems, also related to (13)-(14), but in which
a truncation of certain terms at ”the n-level” (made explicit below) is done. We show, with the help of the
Schauder Theorem (see, e.g., [10]), that each of these problems has a solution (see Propositions 1 and 2). Next,
we extract from this sequence of solutions a subsequence (see Theorem 1) for which we prove, by using the
Vitali Theorem (see, e.g., [9]), the convergence to a solution of the formulation (13)-(14).

For all n, n ∈ N, we define the n-level truncation function, Tn, as follows: x ∈ R 7−→ max{min{x, n},−n} ∈
R, also expressed as

Tn(x) =

 −n if x ≤ −n,
x if −n ≤ x ≤ n,
n if x ≥ n.

The relations below derive then from this definition,
|Tn(x)| ≤ n, ∀ (n, x) ∈ N×R,

|Tn(x)| ≤ |x|, ∀ (n, x) ∈ N×R,

∀x ∈ R, ∃Nx ∈ N ; ∀n ≥ Nx, Tn(x) = x.

(15)

(16)

(17)

Moreover, Tn satisfies the property expressed in the following lemma.

Lemma 1. Let f : R −→ R a continuously differentiable function, satisfying lim
x→−∞

f(x) = +∞ and lim
x→+∞

f(x) =

−∞. Then, for n ∈ N, Tn ◦ f is a continuous Lipschitzian function.

This other property of Tn, considering such a function f , can be established as done in [17] from some explicit
calculations or by noting directly that the derivative of Tn ◦ f in R \ {−n, n} is bounded.

Let us introduce the two preliminary statements (see Propositions 1 and 2) of the present study of the
existence of weak solutions. Also, in order to simplify the notation hereafter, let us denote by g the function
defined as follows,

g : x ∈ R 7−→ (1− t)x− x3

P 2
0

∈ R,

with of course t and P0 considered as previously.

Proposition 1. Let n ∈ N and (Pn, ϕn) ∈W . Furthermore, let κ‖ > 0 and g be defined as aforementioned, as
well as w, by assuming also that ξ and ε satisfy (9)-(12). Then, there exists a unique (Pn, ϕn) ∈W satisfying,
for all (Q,ψ) ∈W , 

∫
Ωf

PnQdx +

∫
Ωf

(ξ∇Pn) · ∇Qdx +

∫
Ωf

κ‖
4π

(∂zϕn)Qdx

=

∫
Ωf

(
Tn ◦ g ◦ Pn

)
Qdx−

∫
Ωf

κ‖
4π

(∂zw)Qdx,∫
Ω

(ε∇ϕn) · ∇ψdx−
∫
Sf

4πνzPnψdσ +

∫
Ωf

4π(∂zPn)ψdx

= −
∫

Ω

(ε∇w) · ∇ψdx.

(18)

Proof. If of course there exists (Pn, ϕn) satisfying (18), then by adding the first relation of (18) to the second
one multiplied by

κ‖
16π2 , we obtain:

a ((Pn, ϕn), (Q,ψ)) = L (Q,ψ) ∀ (Q,ψ) ∈W, (19)

where,

a ((Pn, ϕn), (Q,ψ)) =

∫
Ωf

PnQdx +

∫
Ωf

(ξ∇Pn) · ∇Qdx +

∫
Ω

κ‖
16π2

(ε∇ϕn) · ∇ψdx

+

∫
Ωf

κ‖
4π

(∂zϕn)Qdx−
∫
Sf

κ‖
4π
νzPnψdσ +

∫
Ωf

κ‖
4π

(∂zPn)ψdx,
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and

L(Q,ψ) =

∫
Ωf

(
Tn ◦ g ◦ Pn

)
Qdx−

∫
Ωf

κ‖
4π

(∂zw)Qdx−
∫

Ω

κ‖
16π2

(ε∇w) · ∇ψdx.

The bilinear map a(·, ·) and the linear map L(·) satisfy the Lax-Milgram Theorem hypotheses. In fact, we have,
for (P,ϕ), (Q,ψ) ∈W ,

|a((P,ϕ), (Q,ψ))| ≤

∣∣∣∣∣
∫

Ωf

PQdx

∣∣∣∣∣+

∣∣∣∣∣
∫

Ωf

(ξ∇P ) · ∇Qdx

∣∣∣∣∣+

∣∣∣∣∫
Ω

κ‖
16π2

(ε∇ϕ) · ∇ψdx

∣∣∣∣
+

∣∣∣∣∣
∫

Ωf

κ‖
4π

(∂zϕ)Qdx

∣∣∣∣∣+

∣∣∣∣∣
∫

Ωf

κ‖
4π
P (∂zψ)dx

∣∣∣∣∣
≤ C‖(P,ϕ)‖W ‖(Q,ψ)‖W ,

where C = 1 + 9 max1≤i,j≤3 ‖ξi,j‖L∞(Ωf ) +
9κ‖
16π2 max1≤i,j≤3 ‖εi,j‖L∞(Ω) +

κ‖
2π . Also, we note with (P,ϕ) ∈ W

that:

a ((P,ϕ), (P,ϕ)) ≥ ‖P‖2L2(Ωf ) + ξ0|P |2H1(Ωf ) +
κ‖

16π2
ε0|ϕ|2H1(Ω)

≥ min
{

1, ξ0,
κ‖

16π2
ε0

}
‖(P,ϕ)‖2W .

Furthermore, for (Q,ϕ) ∈W , we have, thanks to (15),∣∣∣∣∣
∫

Ωf

(Tn ◦ g ◦ Pn)Qdx

∣∣∣∣∣ ≤ n
∫

Ωf

|Q|dx ≤ n
√
|Ωf |‖Q‖L2(Ωf ) ≤ n

√
|Ωf |‖(Q,ψ)‖W .

Thus,

|L(Q,ψ)| ≤
(
n
√
|Ωf |+

κ‖
4π
‖∂zw‖L2(Ωf ) +

9κ‖
16π2

max
1≤i,j≤3

‖εi,j‖L∞(Ω)|w|H1(Ω)

)
‖(Q,ψ)‖W .

Finally, we obtain from the Lax-Milgram Theorem that there exists a unique (Pn, ϕn) ∈W satisfying (19), for
all (Q,ψ) ∈ W . The first equation of (18) can be obtained from (19) by taking ψ = 0, and the second one by
taking Q = 0 also from (19).

Proposition 2. Let n ∈ N. Furthermore, let κ‖ > 0 and g be defined as aforementioned, as well as w, by
assuming also that ξ and ε satisfy (9)-(12). Then, there exists (Pn, ϕn) ∈W such that, for all (Q,ψ) ∈W ,

∫
Ωf

PnQdx−
∫

Ωf

(Tn ◦ g ◦ Pn)Qdx +

∫
Ωf

(ξ∇Pn) · ∇Qdx

+

∫
Ωf

κ‖
4π

(∂zϕn)Qdx = −
∫

Ωf

κ‖
4π

(∂zw)Qdx,∫
Ω

(ε∇ϕn) · ∇ψdx−
∫
Sf

4πνzPnψdσ +

∫
Ωf

4π(∂zPn)ψdx

= −
∫

Ω

(ε∇w) · ∇ψdx.

(20)

Proof. For each (Pn, ϕn) ∈ W , we denote by (Pn, ϕn), where (Pn, ϕn) ∈ W , the solution of (18), which allows
us to introduce fn : (Pn, ϕn) ∈ W 7−→ (Pn, ϕn) ∈ W . The idea of the proof is to check that fn satisfies the
hypotheses of the Schauder fixed point Theorem. Each fixed point of fn will be a solution of (20). We organize
the proof into three parts. Firstly, we establish that fn is bounded and so maps a closed ball B into itself. Next,
we prove that fn(B) is relatively compact in W , and finally that fn is continuous. Thus,

• let us start by showing that the image of fn is bounded. Let (Pn, ϕn) ∈ fn(W ). There exists (Pn, ϕn) ∈
W such that fn(Pn, ϕn) = (Pn, ϕn). We have, by choosing (Pn, ϕn) as a test-function in (18), that:
‖(Pn, ϕn)‖W ≤ CL

α , where CL is a continuity constant of the linear map L(·) and α is an ellipticity
constant of the bilinear map a(·, ·), resulting from the proof of Proposition 1. Then, fn(W ) is bounded
and, if B ⊂ W is the ball of center 0W and radius CL/α, it follows that fn|B : B −→ B is correctly
defined;
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• let us now note that fn(B) is relatively compact in W . We consider (P
(m)
n , ϕ

(m)
n )m∈N a sequence of

elements of fn(B). For all m ∈ N, there exists (P
(m)

n , ϕ
(m)
n ) ∈ B satisfying fn(P

(m)

n , ϕ
(m)
n ) = (P

(m)
n , ϕ

(m)
n ).

Since (P
(m)

n , ϕ
(m)
n )m∈N is bounded, we can extract a weakly convergent subsequence in W , represented

by (P
(mk)

n , ϕ
(mk)
n )k∈N. We denote by (Pn, ϕn) its limit. Let (Pn, ϕn) = fn(Pn, ϕn). For k ∈ N, let us set

αmk
= P

(mk)
n − Pn and βmk

= ϕ
(mk)
n − ϕn. By choosing (αmk

, βmk
) as a test-function in (18), we get:∫

Ωf

α2
mk

dx +

∫
Ωf

(ξ∇αmk
) · ∇αmk

dx +

∫
Ω

κ‖
16π2

(ε∇βmk
) · ∇βmk

dx

+

∫
Ωf

κ‖
4π

(∂zβmk
)αmk

dx +

∫
Ωf

κ‖
4π

(∂zαmk
)βmk

dx−
∫
Sf

κ‖
4π
νzαmk

βmk
dσ

=

∫
Ωf

(
Tn ◦ g ◦ P

(mk)

n − Tn ◦ g ◦ Pn
)
αmk

dx.

We deduce, by using Lemma 1, that: ‖(αmk
, βmk

)‖2W ≤
Kn

α ‖P
(mk)

n − Pn‖L2(Ωf )‖(αmk
, βmk

)‖W , where

Kn is a Lipschitz constant of Tn ◦ g. Thus, ‖(αmk
, βmk

)‖W ≤ Kn

α ‖P
(mk)

n − Pn‖L2(Ωf ). As the injection

of H1(Ωf ) in L2(Ωf ) is compact and since (P
(mk)

n )k∈N converges weakly to Pn in H1(Ωf ), we have

that (P
(mk)

n )k∈N converges to Pn in L2(Ωf ) and the previous inequality leads to the convergence of

(P
(mk)
n , ϕ

(mk)
n )k∈N to (Pn, ϕn) in W . So fn(B) is relatively compact in W ;

• it remains to establish the continuity of fn. Let (P
(m)

n , ϕ
(m)
n )m∈N be a sequence which converges to

(Pn, ϕn) in W . By repeating the above calculation and similar notations, we note that:

‖(αm, βm)‖W ≤
Kn

α
‖P (m)

n − Pn‖L2(Ωf ) ≤
Kn

α
‖(P (m)

n − Pn, ϕ(m)
n − ϕn)‖W .

Thus, (fn(P
(m)

n , ϕ
(m)
n ))m∈N converges to fn(Pn, ϕn), and the continuity of fn is established.

Finally, we can apply the Schauder Theorem and deduce that fn has a fixed point; there exists (Pn, ϕn) ∈ W
subject to (20).

We have now all ingredients to establish the main result here, namely the following statement.

Theorem 1. Let us consider t ≤ 0, P0 6= 0, κ‖ ≥ 0, by assuming also that ξ and ε satisfy (9)-(12). Furthermore,

let ϕS ∈ H1/2(S) and w ∈ H1(Ω) such that w|S = ϕS. Then, there exists a solution of the formulation (13)-(14).

Proof. The case where κ‖ = 0 is immediate; it is even related to a determination of (P,ϕ) satisfying (13)-(14),
where P can be expressed explicitly (as for instance in the frame of Remark 1 below). Let us set κ‖ > 0 in
the sequel. Let (Pn, ϕn)n∈N ∈ WN a sequence of solutions of (20), built from Proposition 2. We organize this
proof in three parts. Firstly, we show that a subsequence (Pnk

, ϕnk
)k∈N converges weakly in W and almost

everywhere in Ωf ×Ω to an element (P,ϕ) of W . Next, we establish that (Tnk
◦g ◦Pnk

)k∈N converges in L1(Ωf )
to g ◦ P . Finally, we show that (P,ϕ) is a solution of (13)-(14).

Before starting, let us note that, for all (Q,ψ) ∈ W , by adding the first equation of (20) to the second one
multiplied by

κ‖
16π2 , it follows that:∫

Ωf

PnQdx−
∫

Ωf

(Tn ◦ g ◦ Pn)Qdx +

∫
Ωf

(ξ∇Pn) · ∇Qdx

+

∫
Ω

κ‖
16π2

(ε∇ϕn) · ∇ψdx +

∫
Ωf

κ‖
4π

(∂zϕn)Qdx +

∫
Ωf

κ‖
4π

(∂zPn)ψdx

−
∫
Sf

κ‖
4π
νzPnψdσ = −

∫
Ωf

κ‖
4π

(∂zw)Qdx−
∫

Ω

κ‖
16π2

(ε∇w) · ∇ψdx.

(21)

Then,

• since g(x) → ∓∞, when x → ±∞, there exists β > 0 such that g(x) ≤ 0 for all x ≥ β and g(x) ≥ 0 for
all x ≤ −β. Let n ∈ N. By choosing (Pn, ϕn) as a test-function in (21), we have, thanks to the Green

8



formula, that: ∫
Ωf

P 2
ndx−

∫
Ωf

(Tn ◦ g ◦ Pn)Pnχ{|Pn|>β}dx +

∫
Ωf

(ξ∇Pn) · ∇Pndx

+

∫
Ω

κ‖
16π2

(ε∇ϕn) · ∇ϕndx =

∫
Ωf

(Tn ◦ g ◦ Pn)Pnχ{|Pn|≤β}dx

−
∫

Ωf

κ‖
4π

(∂zw)Pndx−
∫

Ω

κ‖
16π2

(ε∇w) · ∇ϕndx.

(22)

In (22), the left hand-side terms are all positive. Furthermore, with (16),∣∣∣∣∣
∫

Ωf

(Tn ◦ g ◦ Pn)Pnχ{|Pn|≤β}dx

∣∣∣∣∣ ≤
(
|Ωf | sup

x∈[−β,β]

(g(x)2)

)1/2

‖Pn‖L2(Ωf ).

We deduce:

‖(Pn, ϕn)‖2W ≤ C

α
‖(Pn, ϕn)‖W , (23)

with C =
(
|Ωf | supx∈[−β,β](g(x)2)

)1/2

+
κ‖
4π ‖∂zw‖L2(Ωf ) +

9κ‖
16π2 max1≤i,j≤3 ‖εi,j‖L∞(Ω)|w|H1(Ω), where

α is an ellipticity constant of the bilinear map a(·, ·) resulting from the proof of Proposition 1. Thus
(Pn, ϕn)n∈N is bounded in W and we can extract a subsequence (Pnm , ϕnm)m∈N which converges weakly
to (P,ϕ) in W . In particular, (Pnm)m∈N converges weakly to P in H1(Ωf ). Furthermore, as the injection
of H1(Ωf ) in L2(Ωf ) is compact, the sequence (Pnm

)m∈N converges to P in L2(Ωf ). Thus, there exists
(cf., e.g., [5]) a subsequence (Pnmp

)p∈N which converges almost everywhere to P in Ωf . In the same way,

we can show that (ϕnmp
)p∈N converges to ϕ in L2(Ω). It follows that there is a subsequence (ϕnmpq

)q∈N
which converges to ϕ almost everywhere in Ω. To simplify the notation, we will denote by (Pnk

, ϕnk
)k∈N

the built subsequence;

• we show now that the sequence (Tnk
◦ g ◦ Pnk

)k∈N converges in L1(Ωf ) to g◦P . Since (Pnk
)k∈N converges

to P a.e. in Ωf , we deduce, by continuity of g and thanks to (17), that (Tnk
◦ g ◦ Pnk

)k∈N converges to
g(P ) a.e. in Ωf . If we establish that (Tnk

◦ g ◦ Pnk
)k∈N is uniformly integrable, we can conclude with the

help of the Vitali convergence Theorem. Let us start by noting that ((Tnk
◦ g ◦ Pnk

)Pnk
)k∈N is bounded

in L1(Ωf ). By reproducing the previous calculations, we obtain from (22) that, for k ∈ N,

−
∫

Ωf

(Tnk
◦ g ◦ Pnk

)Pnk
χ{|Pnk

|>β}dx ≤ C‖(Pnk
, ϕnk

)‖W .

Thus, with (23), it derives that:

−
∫

Ωf

(Tnk
◦ g ◦ Pnk

)Pnk
χ{|Pnk

|>β}dx ≤ C2

α
.

Furthermore, with (16), it follows that:∫
Ωf

|(Tnk
◦ g ◦ Pnk

)Pnk
|χ{|Pnk

|≤β}dx ≤ |Ωf | sup
x∈[−β,β]

|g(x)x| .

Therefore, the sequence ((Tnk
◦ g ◦ Pnk

)Pnk
)k∈N is bounded in L1(Ωf ), by the constant C ′, C ′ = C2

α +
|Ωf | supx∈[−β,β] |g(x)x|. Let η > 0, E ⊂ Ωf and M > 0. We have:∫

E

|Tnk
◦ g ◦ Pnk

|dx =

∫
E∩{|Pnk

|>M}
|Tnk

◦ g ◦ Pnk
|dx +

∫
E∩{|Pnk

|≤M}
|Tnk

◦ g ◦ Pnk
|dx.

On the one hand,∫
E∩{|Pnk

|>M}
|Tnk

◦ g ◦ Pnk
|dx ≤ 1

M

∫
E∩{|Pnk

|>M}
|(Tnk

◦ g ◦ Pnk
)Pnk

|dx ≤ C ′

M
,
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and, by choosing in particular M = 2C′

η , we obtain:∫
E∩{|Pnk

|>M}
|Tnk

◦ g ◦ Pnk
|dx <

η

2
.

On the other hand, we have, by using (16), that:∫
E∩{|Pnk

|≤M}
|Tnk

◦ g ◦ Pnk
|dx ≤

∫
E∩{|Pnk

|≤M}
|g ◦ Pnk

|dx ≤ |E| sup
|x|≤M

|g(x)| .

So, for all E ⊂ Ωf satisfying |E| ≤ η
2 sup|x|≤M |g(x)| , it follows that:∫

E

|Tnk
◦ g ◦ Pnk

|dx < η.

Thus, (Tnk
◦ g ◦ Pnk

)k∈N is uniformly integrable and the Vitali convergence Theorem allows to show that
(Tnk

◦ g ◦ Pnk
)k∈N converges in L1(Ωf ) to g ◦ P ;

• in order to conclude, let us note that (P,ϕ) satisfies (13)-(14). Let (Q,ψ) ∈ C∞(Ωf )×D(Ω). At first, by
using the Green formula, we have that:∣∣∣∣∣

∫
Ωf

∂a(Pnk
− P )∂bQdx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Ωf

(Pnk
− P )∂a∂bQdx

∣∣∣∣∣+

∣∣∣∣∣
∫
Sf

νa(Pnk
− P )∂bQdσ

∣∣∣∣∣
≤ ‖Pnk

− P‖L2(Ωf )‖∂a∂bQ‖L2(Ωf ) + ‖Pnk
− P‖L2(Sf )‖νa∂bQ‖L2(Sf ),

where a, b ∈ J1, 3K, (∂1, ∂2, ∂3) := (∂x, ∂y, ∂z), (ν1, ν2, ν3)T := (νx, νy, νz)
T . Since (Pnk

, ϕnk
)k∈N converges

weakly to (P,ϕ) in W , we obtain that (Pnk
)k∈N is bounded in H1(Ωf ) by a constant K1, K1 > 0.

Furthermore, as Sf is the Lipschitz-continuous boundary of Ωf , there exists (cf., e.g., [4]) a constant K2,
K2 > 0, such that:

‖Pnk
− P‖L2(Sf ) ≤ K2‖Pnk

− P‖1/2H1(Ωf )‖Pnk
− P‖1/2L2(Ωf ).

Thus, ‖Pnk
− P‖L2(Sf ) ≤ K2

√
K1 + ‖P‖H1(Ωf )‖Pnk

− P‖1/2L2(Ωf ), and (Pnk
|Sf

)k∈N converges to P |Sf
in

L2(Sf ). We deduce that:
∣∣∣∫Ωf

∂a(Pnk
− P )∂bQdx

∣∣∣→ 0, when k → +∞, and therefore,∣∣∣∣∣
∫

Ωf

(ξ∇(Pnk
− P )) · ∇Qdx

∣∣∣∣∣ −→ 0, when k −→ +∞.

Similarly, we get that: ∣∣∣∣∫
Ω

(ε∇(ϕnk
− ϕ)) · ∇ψdx

∣∣∣∣ −→ 0, when k −→ +∞.

Furthermore, with the Green formula, we have,∣∣∣∣∣
∫

Ωf

(∂z(ϕnk
− ϕ))Qdx

∣∣∣∣∣ ≤ ‖ϕnk
− ϕ‖L2(Ωf )‖∂zQ‖L2(Ωf ) + ‖ϕnk

− ϕ‖L2(Sf )‖νzQ‖L2(Sf ).

With the similar arguments as before, it follows that:∣∣∣∣∣
∫

Ωf

(∂z(ϕnk
− ϕ))Qdx

∣∣∣∣∣ −→ 0, when k −→ +∞.

Moreover, with the Green formula, we get:∣∣∣∣∣
∫

Ωf

(∂z(Pnk
− P ))ψdx−

∫
Sf

νz(Pnk
− P )ψdσ

∣∣∣∣∣ ≤ ‖Pnk
− P‖L2(Ωf )‖∂zψ‖L2(Ωf ),
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and therefore, ∣∣∣∣∣
∫

Ωf

(∂z(Pnk
− P ))ψdx−

∫
Sf

νz(Pnk
− P )ψdσ

∣∣∣∣∣ −→ 0, when k −→ +∞.

In the same way, we note that:∣∣∣∣∣
∫

Ωf

(Pnk
− P )Qdx

∣∣∣∣∣ −→ 0, when k −→ +∞.

Finally, with the Hölder inequality, we obtain that:∣∣∣∣∣
∫

Ωf

(Tnk
◦ g ◦ Pnk

− g ◦ P )Qdx

∣∣∣∣∣ ≤ ‖Tnk
◦ g ◦ Pnk

− g ◦ P‖L1(Ωf )‖Q‖L∞(Ωf ).

Since it has been established that (Tnk
◦ g ◦ Pnk

)k∈N converges to g ◦ P in L1(Ωf ), it follows that:∣∣∣∣∣
∫

Ωf

(Tnk
◦ g ◦ Pnk

− g ◦ P )Qdx

∣∣∣∣∣ −→ 0, when k −→ +∞.

By taking the limit in each term of the weak formulation (21), which is namely satisfied by each element
of the sequence (Pnk

, ϕnk
)k∈N, we get, for all (Q,ψ) ∈ C∞(Ωf )×D(Ω),∫

Ωf

PQdx−
∫

Ωf

(g ◦ P )Qdx +

∫
Ωf

(ξ∇P ) · ∇Qdx +

∫
Ω

κ‖
16π2

(ε∇ϕ) · ∇ψdx +

∫
Ωf

κ‖
4π

(∂zϕ)Qdx

+

∫
Ωf

κ‖
4π

(∂zP )ψdx−
∫
Sf

κ‖
4π
νzPψdσ = −

∫
Ωf

κ‖
4π

(∂zw)Qdx−
∫

Ω

κ‖
16π2

(ε∇w) · ∇ψdx.

In particular, by choosing ψ = 0 and Q = 0 successively, in the above relation, we deduce that:
∫

Ωf

tPQdx +

∫
Ωf

P 3

P 2
0

Qdx +

∫
Ωf

(ξ∇P ) · ∇Qdx +

∫
Ωf

κ‖
4π

(∂zϕ)Qdx = −
∫

Ωf

κ‖
4π

(∂zw)Qdx,∫
Ω

(ε∇ϕ) · ∇ψdx−
∫
Sf

4πνzPψdσ +

∫
Ωf

4π(∂zP )ψdx = −
∫

Ω

(ε∇w) · ∇ψdx.

Finally, the relations of the obtained system are valid for (Q,ψ) ∈ W , due to the density of C∞(Ωf ) in
H1(Ωf ) and to the one of D(Ω) in H1

0 (Ω). Then, (P,ϕ) is a solution of (13)-(14).

Let us note that if (P,ϕ) verifies the weak formulation (13)-(14), then it follows that (P,ϕ + w) is a weak
solution of (EGL), and the (weak) electric polarization P is determined from (1), wherein E = −∇(ϕ+ w).

As indicates the following remark, the uniqueness of solution of the weak formulation is not ensured for any
choice of the parameters.

Remark 1. Let us mention that there is not a unique solution for any choice of parameters of the system
(EGL). For instance, if t < 0, P0 6= 0, κ‖ = 0, and ϕS = 0 (as well as w = 0), then there are two distinct pairs

(P,ϕ), (−P,−ϕ), with P :=
√
|t||P0|, satisfying the weak formulation (13)-(14).

4 Finite Element approximations and discrete nonlinear system

We discretize the formulation (13)-(14) by making use of a mesh of Ω and of the Lagrange finite elements.
Such a mesh consists of a collection of tetrahedra, Th, obtained from a usual process of triangulation, and
is fine enough near the boundaries of Ωf and Ω that are here polyhedral. In a correlative way, the discrete
region associated with the boundary of Ωf is entirely made up of faces of tetrahedra. Each of these faces is
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common both to a tetrahedron of the discrete region associated with Ωf and to another one of the discrete
region associated with Ωp.

Let us introduce the discrete space Wh,

Wh = Xh × Yh,

where,

Xh = {Ph ∈ C0(Ωf ) ; Ph|T ∈ P1,T ∀T ∈ Th, T ⊂ Ωf}, Yh = {ϕh ∈ C0(Ω) ; ϕh|T ∈ P1,T ∀T ∈ Th, ϕh|S = 0},

and P1,T is the space of polynomials of degree less than or equal to 1, defined on T .
The discrete formulation associated with (13)-(14) consists of finding (Ph, ϕh) ∈ Wh such that, for all

(Qh, ψh) ∈Wh, 

∫
Ωf

tPhQhdx +

∫
Ωf

P 3
h

P 2
0

Qhdx +

∫
Ωf

(ξ∇Ph) · ∇Qhdx +

∫
Ωf

κ‖
4π

(∂zϕh)Qhdx

= −
∫

Ωf

κ‖
4π

(∂zw)Qhdx,∫
Ω

(ε∇ϕh) · ∇ψhdx−
∫
Sf

4πνzPhψhdσ +

∫
Ωf

4π(∂zPh)ψhdx

= −
∫

Ω

(ε∇w) · ∇ψhdx.

(24)

We are thus in particular concerned here with conforming discretizations of the regions Ωf , Ω, as well as with
a conforming discretization of the space W ; namely, Wh ⊂ W . By considering the data as in the assumptions
of Theorem 1, it derives the existence of solutions of the discrete formulation. We already mention that each
solution (Ph, ϕh) of this formulation leads to the determination of a discrete electric polarization associated
with P, by using (1), wherein P is replaced by Ph and E by −∇(ϕh + w).

Let us denote by {xj , 1 ≤ j ≤ N} the set of vertices of Th, numbered in such a way that x1, ..., xNf
∈ Ωf

and x1, ..., xN0 ∈ Ω, where Nf , N0 and N are respectively the number of vertices in Ωf , Ω and Ω; namely,
Nf < N0 < N . Let vj be the shape function associated with xj , for j ∈ J1, NK. We have thus, for (Ph, ϕh) ∈Wh,

Ph =

Nf∑
j=1

Pjvj , ϕh =

N0∑
j=1

ϕjvj ,

where Pj ∈ R for all j ∈ J1, Nf K and ϕj ∈ R for all j ∈
q
1, N0

y
. The discrete formulation (24) can then be

written as a nonlinear matrix system having two vector unknowns. It consists of finding P = (P1, ..., PNf
)T ∈

RNf and Φ = (ϕ1, ..., ϕN0)T ∈ RN0

satisfying :{
AP +N(P) +BΦ = F1,

CP +DΦ = F2,
(25)

where,

A =

(∫
Ωf

(tvjvi + (ξ∇vj) · ∇vi)dx

)
(i,j)∈J1,Nf K2

,

B =

(∫
Ωf

κ‖
4π

(∂zvj)vidx

)
(i,j)∈J1,Nf K×J1,N0K

,

C =

(
−
∫
Sf

4πνzvjvidσ +

∫
Ωf

4π(∂zvj)vidx

)
(i,j)∈J1,N0K×J1,Nf K

,

D =

(∫
Ω

(ε∇vj) · ∇vidx

)
(i,j)∈J1,N0K2

,

N(P) =

∫
Ωf

1

P 2
0

Nf∑
j=1

Pjvj

3

vidx


i∈J1,Nf K

,
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F1 =

(
−
∫

Ωf

κ‖
4π

(∂zw)vidx

)
i∈J1,Nf K

, F2 =

(
−
∫

Ω

(ε∇w) · ∇vidx

)
i∈J1,N0K

.

The terms of these blocks are computed with a 5-order quadrature formula (that can be found for instance in
[26]). Note that, when the tensors ε and ξ are constant in the geometrical elements and if w is in particular a
polynomial of degree 1 (it will always be the case from the consideration of ϕS explicitly done hereafter), this
formula is exact regarding the computation of these terms.

In order to solve the nonlinear matrix system, we deal with an iterative algorithm (see [17] for more details)
from the combination of two inexact Newton methods: the first one is globalized with a linesearch technique
(see, e.g., [17, 19]), and converges slowly, for a large choice of initializations, whereas the second one is classical
(see, e.g., [7]), converges faster but for a restricted choice of initializations. The GMRES algorithm (see [21]),
using a preconditioner based on an incomplete LU factorization, was incorporated into each iteration.

5 Numerical simulations

5.1 Computational configurations

We consider three computational configurations. The meshes of Ω associated with these configurations

are achieved in accordance with the previous section, and represented here by T (i)
h , 1 ≤ i ≤ 3. On the one

hand, geometrically, Ωf and Ω are polyhedral and shaped like cylinders; they share the same center, namely
the origin, and the same axis, represented by (Oz). We denote by Rf the radius and Hf the height of the
“cylinder” represented by Ωf . In a similar way, the radius and the height of the “cylinder” represented by Ω
are denoted by R and H. On the other hand, the context where Ωf and Ω are parallelepipedal is considered,
in particular for the last configuration. Namely,

• for T (1)
h , the corresponding values are fixed such that (Rf , Hf ) = (0.4, 0.1) and (R,H) = (1.2, 1.7);

• and for T (2)
h , the associated values are such that (Rf , Hf ) = (4, 1) and (R,H) = (12, 17);

• whereas for T (3)
h , we set Ωf = [−4, 4]× [−4, 4]× [−0.5, 0.5] and Ω = [−12, 12]× [−12, 12]× [−8.5, 8.5].

Let us already mention that, for each computational configuration, several values have been associated with
the mesh size h in the numerical simulations. Most of the results that will be presented in the next subsections

derive from simulations based on T (1)
h with h = 0.0479, as well on T (2)

h with h = 0.37, as on T (3)
h with h = 0.36,

involving 1 499 982 degrees of freedom about T (1)
h , 1 865 401 in the frame of T (2)

h and 2 541 899 in the context of

T (3)
h ; the associated mesh size, as regards Ωf , being equal to 0.0228 about T (1)

h , 0.31 in the frame of T (2)
h and

0.34 in the context of T (3)
h . More particularly, when we will be concerned with a description of results related

to other choices for h, the values used there will be specified.
Regarding the physical parameters, different values are in particular associated with the coefficients of ξ and

ε defined respectively in Ωf and Ω. In these considerations, the tensor I3 denotes the 3× 3 identity and ε|Ωf
is

represented as below,

ε|Ωf
=

ε⊥x 0 0
0 ε⊥y 0
0 0 ε‖z

 ,

where ε⊥x > 0, ε⊥y > 0, ε‖z > 0. Namely,

• for T (1)
h , the corresponding values are fixed such that ε⊥x = ε⊥y = 10, ε‖z = 0.1, ξ = 0.1I3;

• and for T (2)
h , the associated values are such that ε⊥x = 10, ε⊥y = 5, ε‖z = 1, ξ = I3;

• whereas for T (3)
h , the same values as in the context of T (2)

h are used for ε⊥x, ε⊥y, ε‖z and ξ.

Furthermore, we set: P0 = 1, κ‖ = 11.5, ε|Ωp = I3, for each computational configuration.
We define ϕs as below,

(x, y, z) ∈ S 7−→ ϕS(x, y, z) =
γ − z
γ

φ0 − φ0 ∈ R,
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in such a way that ϕS(x, y,−γ) = φ0 and ϕS(x, y, γ) = −φ0, by recalling that the lower and upper faces of Ω

are subparts of the planes (z = −γ) and (z = γ) respectively. Namely, γ = 0.85 in the frame of T (1)
h , and 8.5

in the context of T (2)
h as well as of T (3)

h . Let us denote by U the voltage potential applied to the device,

U = 2φ0,

in association with the use in (13)-(14) and (24) of the function w such that w(x, y, z) =
γ − z
γ φ0 − φ0, for

(x, y, z)T ∈ Ω. Namely, w|S = ϕS .
In the next subsections, we will describe the numerical results, in each configuration, in particular through

the behavior of the discrete ”average polarization”, which is represented by Ph,

Ph =
1

|Ωf |

∫
Ωf

Phdx,

in correspondence with (Ph, ϕh); any state (P,ϕ), subject to (EGL), having a finite element approximation
denoted here by (Ph, ϕh) in accordance with Section 4.

As it was indicated in Section 2, although, in the applications, the reduced temperature t must take values
in [−1, 0), we will be interested in a more large context of values for this parameter, namely by investigating
with t ∈ (−∞, 0].

Let us already mention that other values for P0 and κ‖ were considered and the numerical results, obtained
with these, were qualitatively similar to the ones that will be described hereafter. We also indicate that com-
parisons with analytic solutions including the case of data mentioned in Remark 1 were done from simulations,
by retrieving successfully also numerical convergences to these solutions.

5.2 Numerical investigations of states

We deal here with a protocol devoted to the determination of non obvious states, and which incorporates
also a process of heating as well as of cooling of the device. Several challenges face us. At first, we need to get
different non obvious ferroelectric states, and this leads us to study how to initialize the iterative algorithm.
Although having a globalization step, this algorithm however remains sensitive to the consideration of initial
data. The second difficulty is that we must find a way to ”heat up” as to “cool down” numerically these different
states. We initialize our iterative algorithm with random vectors of size Nf +N0, distributed according to the

uniform law of [−1, 1]Nf+N0

, as well as with deterministic vectors.
We obtain several profiles; each one allowing us to identify the (discrete) states (Ph, ϕh) subject to (EGL)

for which the polarization structures are similar. Figure 2 presents some of these profiles, resulting from T (2)
h

and T (3)
h , with t = −10, U = 0, and distinguished by the shape and the number of polarization domains:

• the Monodomain Profile (see, e.g., (MP) in Figure 2(a)-(b)), case of a unique domain of polarization;

• the Concentric-cylindrical Profile (see, e.g., (CP) in Figures 2(c)-(d)), context of a central domain shaped
like a cylinder or distorted cylinder, surrounded by another domain;

• the Band Profiles (see, e.g., (4BP) and (3BP) in Figures 2(e) and (f)), case of several domains, organized
into bands.

These profiles arise also from simulations based on T (1)
h , namely for instance with t = −20. In addition to these,

the Obvious Profile, denoted by (OP) and corresponding to the case where Ph ≡ 0, occurs from simulations
performed here. Some of the obtained profiles have already been observed in other works (see, e.g., [16, 25]);
for instance, a profile analogous to (3BP) as well as to (4BP), namely the 2-bands profile, has been found
experimentally in the case of a nanofilm of Lead Titanate (see [25]).

Now, we specify how to achieve numerically the heating or cooling of the device. Let (P (0), ϕ(0)) be a non

obvious state at the reduced temperature t0, associated with the discrete representation (P(0),Φ(0))T ∈ RNf+N0

resulting from the nonlinear system (25). At the reduced temperature t = t0 + δt (where δt > 0 for heating
and δt < 0 for cooling), we initialize with this vector our algorithm for solving (25), and obtain a new solution,
(P(1),Φ(1))T , of this system. By proceeding in this way, step by step, we get a sequence ((P (k), ϕ(k)))k of states,
namely a sequence ((P(k),Φ(k))T )k of discrete representations, where the solution (P(k),Φ(k))T is provided at
the reduced temperature t = t0 + kδt.
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(a) (MP)

(b) (MP)
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(c) (CP)
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(d) (CP)

(e) (4BP)

-0.8

-0.4

0

0.4

0.8
Pz
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Figure 2: Profiles obtained from T (2)
h (see (a),(c),(e)) and T (3)

h (see (b),(d),(f)), with t = −10. At left, a
cross-section of Ph following (z = 0) is represented, whereas at middle and at right, the cross-sections of the
discrete electric polarization, associated with P, following (y = 0) and (z = 0) are respectively represented.
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Figure 3: Variations of Ph with respect to the reduced temperature, from T (1)
h (see (a)), as well as from T (2)

h

(see (b)) and T (3)
h (see (c)).
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Figure 3(a) presents from T (1)
h the variations of the discrete “average polarization” marked by solid lines,

when we “heat up” (with δt = 0.1) or “cool down” (with δt = −0.1) several states, for U = 0; namely for
instance (3BP). While Ph depends continuously on t, the distributions of the polarization stay similar. A
discontinuity corresponds to a change of profile. For instance, (3BP) exists for a range of small values taken by
the reduced temperature and, through heating, it jumps to the obvious profile at t = −16.9.

This behavior is characteristic of the ferroelectric devices (see, e.g., [18]), and appears also in the case of

simulations from T (2)
h , as indicates Figure 3(b). For instance, the jumps schematized as below occur from T (2)

h :

(MP) −→
t=−13.5

(CP) −→
t=−6.4

(OP) , (4BP) −→
t=−4.8

(OP).

As indicates Figure 3(c), the behavior of Ph with respect to the reduced temperature, in the context of T (3)
h ,

is similar to the one observed from the cylindrical configurations. In particular, similar jumps, schematized as
below,

(MP) −→
t=−13.7

(CP) −→
t=−7.6

(4BP) −→
t=−5.1

(OP),

occur from T (3)
h .

The most enduring profile with nonzero polarization is for T (1)
h distinguished by (3BP), whereas for T (2)

h , as

well as for T (3)
h , it is the one corresponding to (4BP). Each of the states associated with (4BP) has a constant

“average polarization”; namely, Ph ≡ 0.
At each temperature, we identified the most stable state by evaluating the energy E for each of the obtained

states. For instance in the context of T (3)
h , the states related to (4BP) remain the most stable on cooling,

namely till t = −7.7 and then, the avail in energy passes to the ones involving the concentric-cylindrical profile
(CP). This temperature value is slightly lower than the one of superheating presented above and in correlation
with (CP), namely t = −7.6. Finally, the states related to (CP) remain the most stable for the considerations
of t such that −15 ≤ t ≤ −7.8.

Let us specify, as mentioned otherwise in Section 2, that the ferroelectric layer must be, in real applications,
sufficiently small when compared to the medium Ω, in order to avoid to disturb the emergent fringing field (see,
e.g., [16] and the references therein). It is then particularly suited to deal with devices that take into account
this aspect; moreover, numerical instabilities will not be involved as long as the volume of the ferroelectric
layer does not appear as too small (although the asymptotic framework developed in [1] may remedy the
contrary situation). We already mention that we deal with such a device with a ferroelectric layer for which
the volume does not appear as too small, in each of the three computational configurations considered here.

For instance in the context of T (3)
h , as for an inspection, let us embed successively the associated ferroelectric

layer in two larger paraelectric environments, by defining thus: Ω(1) ≡ Ω = [−12, 12] × [−12, 12] × [−8.5, 8.5],
Ω(2) = [−15, 15]×[−15, 15]×[−11, 11], Ω(3) = [−18, 18]×[−18, 18]×[−13.5, 13.5]. Let us consider, in accordance
with the previous section also, three meshes corresponding to triangulations of Ω(1), Ω(2) and Ω(3) respectively,
and having similar sizes approximately equal to 0.69, with correlatively, as regards the ferroelectric layer, similar
mesh sizes approximately equal to 0.60. A unique ferroelectric/paraelectric interface is here involved of course.

Let us represent by {x(i)
k }1≤k≤N0(i) the set of internal vertices of the mesh of Ω(i), where i is fixed, 1 ≤ i ≤ 3. For

u : Ω −→ R and 1 ≤ i ≤ 3, let ‖u‖(i)2 =
(

1
N0(i)

∑N0(i)

k=1 |u(x
(i)
k )|2

)1/2

. For a state (P (i), ϕ(i)) subject to (EGL)

and obtained by involving Ω(i), with ϕS = 0, we consider the following error, err
(i)
2 =

‖ϕ(3)−ϕ(i)‖(i)2

‖ϕ(3)‖(i)2

, evaluated

relatively with respect to the state (P (3), ϕ(3)) which is a priori the more accurate one. By inspecting the
behavior of the profile (MP), with respect to the reduced temperature, namely from t = −15 and with δt = 0.1,
it follows that the jumps to (CP), (4BP) and (OP) occur again at t = −13.7, −7.6 and −5.1 respectively, for

each of these meshes. The errors err
(i)
2 (i = 1, 2) associated with the profile related to (MP), or to (CP), or again

to (4BP), as well to (OP), are, in percent, less than 6%. The similar evaluations of errors about P (i) provide
values which, in percent, remain also smaller than 6%. So the paraelectric environment related to Ω appears
numerically as sufficiently large when compared to the ferroelectric layer; the influence of its extension being
not particularly significant. Let us mention that the CPU time corresponding to one simulation (computation
of (P (i), ϕ(i)) obtained from Ω(i), 1 ≤ i ≤ 3) is approximately equal to 15mn, 1h30 or 3h on an “Intel Xeon
Processor E5520 with a frequency of 2.27 GHz”, in the frame of Ω(1), Ω(2) or Ω(3) respectively.
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Figure 4: Variations of β(Ph) with respect to U .

5.3 Numerical investigations of hysteresis loops

The protocol we adopt for the numerical study of the existence of hysteresis loops is similar to the one that was
defined earlier when we investigated the behavior of the polarization with respect to the reduced temperature
t. Suppose that (P(0),Φ(0))T is the discrete representation of the state (P (0), ϕ(0)) subject to (EGL) and
associated with the voltage potential U = U (0). For each fixed value k (k ∈ N), we denote by (P(k+1),Φ(k+1))T

the discrete representation that derives from (25) and corresponds to the voltage potential U = U (0) +(k+1)δU ,
δU ∈ R?, after initializing our iterative algorithm with (P(k),Φ(k))T , the discrete representation of the state
(P (k), ϕ(k)) subject to (EGL). In this way, we deal with a sequence ((P(k),Φ(k))T )k of discrete representations
of states (P (k), ϕ(k))k subject to (EGL). Namely, when U (0) = 0, each of the discrete representations of the
states discovered in the previous subsection can be used to initialize our iterative algorithm. Another alternative
for the consideration of U (0) consists of choosing U (0) sufficiently large in order to deal with only one state;
namely, based on physical arguments (see, e.g., [20]), this state must be quasi-uniform. Hence, we introduce a
new parameter β,

β(Ph) =

1

|Ωf |

∫
Ωf

P 4
hdx(

1

|Ωf |

∫
Ωf

P 2
hdx

)2 ,

which reports in fact that β(Ph) ≈ 1 when the state is quasi-uniform. For instance, as indicates Figure 4, from

simulations based on T (1)
h , with t = −20, we obtain |β(Ph) − 1| < 10−1 for |U | ≥ 150 and so we can consider

U (0) = 150 as the starting voltage potential for an investigation of hysteresis loops. Typically, the variation of
states is inspected by increasing (δU > 0) the voltage potential and by decreasing it (δU < 0).

Figure 5 presents the numerical results of such an investigation based on each of the three computational
configurations and involving different considerations of the reduced temperature. These results correspond to

hysteresis loops. In the context of T (1)
h , it has been considered t = −20 and δU = ±0.1. For U = −20, there

exists a unique profile, namely (CP). By increasing the voltage potential, (CP) jumps to (3BP) abruptly when
U = −1.3. Then, (3BP) jumps for U = 14.9 to another profile, (CP), where the polarization domains are
inverted. These two transitions allow to describe a branch of the hysteresis loop resulting here. The other
branch of this loop occurs in a symmetric way, with the jumps schematized as below,

(CP) −→
U=1.3

(3BP) −→
U=−14.9

(CP).
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Figure 5: Hysteresis loops from T (1)
h with t = −20 (see (a)), from T (2)

h with t = −15 (—) and t = −10 (- - -)

(see (b)), as well as from T (3)
h with t = −10 (see (c)).
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These abrupt switchings are irreversible: for instance, in the previous case, the profile (3BP) does not jump to
(CP) by a decrease of the voltage potential from U = −1.3. This leads, in particular, to the existence of several
distinct states when U = 0; a phenomenon suggesting the applications for which the multibit storage would
represent the main tool. Also, let us mention that each jump, here and in the following results, corresponds to
a decrease of the energy (2), which is expected from Physics (see, e.g., [17]).

Let us indicate that the numerical results obtained here do not deteriorate from the considerations of some
larger mesh sizes. As for an inspection, let us deal for instance with the context of the first computational

configuration for which the corresponding mesh, T (1)
h , is also denoted here by T (1)

h3
, with h3 ≡ h = 0.0479,

recalling that the mesh size of the embedded layer was, correlatively, equal to 0.0228. By making use of two
other meshes, that are coarser, we thus distinguish here three meshes of the same polyhedral region Ω, containing

the same embedded polyhedral layer, also shaped like a cylinder. Namely, in addition to T (1)
h3

, we have a coarser

discretization of Ω, denoted by T (1)
h2

, where the mesh size is h2 = 0.0872 while for the embedded layer, the

mesh size is, correlatively, equal to 0.0444. We also have a more coarser discretization of Ω, denoted by T (1)
h1

,
where the mesh size is h1 = 0.166, while for the embedded layer, the mesh size is, correlatively, equal to 0.0731.
A unique ferroelectric/paraelectric interface is here involved of course. For 1 ≤ i ≤ 3 and u : Ω −→ R, let

us set: ‖u‖(i)2 =
(

1
N0(i)

∑N0(i)

k=1 |u(x
(i)
k )|2

)1/2

, where N0(i) is the number of internal vertices of T (1)
hi

, which are

represented here by x
(i)
k , 1 ≤ k ≤ N0(i). For a state (P (i), ϕ(i)), subject to (EGL) and resulting from T (1)

hi
,

1 ≤ i ≤ 3, let us consider the following error, err
(i)
2 =

‖ϕ(3)−ϕ(i)‖(i)2

‖ϕ(3)‖(i)2

, for i = 1, 2, evaluated relatively with

respect to the state (P (3), ϕ(3)). Figure 6 shows the behavior of err
(i)
2 , with respect to the voltage potential

from U = −20, with δU = 1 and for t = −15, i = 1, 2. These relative errors are, in percent, less than 2%. The
similar evaluations of relative errors about P (i) provide values which, in percent, remain also smaller than 2%.
The switchings of states that occur here arise from the same values of U . Similar observations arise from the

same inspection based on the two other computational configurations T (2)
h and T (3)

h .

As indicates Figure 5(b), in the context of T (2)
h , by considering t = −15, with δU = 1, the jumps, schematized

as below, occur for instance,
(MP) −→

U=26
(CP) −→

U=49
(MP),

and for t = −10, with δU = 1, we obtain abrupt transitions again, represented as below,

(MP) −→
U=−39

(CP) −→
U=27

(3BP) −→
U=32

(MP).
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As it can be observed from Figure 5(c), in the context of T (3)
h , by considering t = −10, with δU = 1, we

obtain a very similar behavior of the states, with particular jumps schematized below,

(MP) −→
U=−30

(CP) −→
U=16

(3BP) −→
U=35

(CP) −→
U=61

(MP).

6 Concluding remarks

We have introduced a model based on the Ginzburg-Landau formalism and Electrostatics equations for the
study of 3D devices made up of a ferroelectric layer fully embedded in a paraelectric environment, and involving
a prescription of boundary voltage potentials. The existence of weak solutions of the model has been established
from a weak formulation for which the unknowns are related to the polarization field and to the electric field.

In view of numerical simulations, we have discretized the formulation with the help of finite elements and
dealt with inexact Newton techniques for solving the associated discrete nonlinear system. More specifically,
we have developed two numerical protocols for our investigations. The first one has been devoted to the
determination of non obvious states related to the system, by incorporating also a heating/cooling process of
devices, in terms of the temperature, while the second one has been devoted to the study of the existence of
hysteresis loops.

We have been interested in three computational configurations, with various considerations of geometrical
and physical parameters. In particular, the contexts of devices having a cylindrical or parallelepipedic geometry,
as the fully embedded ferroelectric layer, have been considered. In each computational configuration, similar
polarization profiles have been obtained; namely, a monodomain profile, a concentric-cylindrical profile and
several bands profiles. The same behavior of the states, with respect to the temperature, was founded; each
state jumps into another at a certain temperature. Moreover, in each configuration, hysteresis loops, with abrupt
transitions of states, occur. Remarkably, the same types of transitions have been obtained, as for instance the
one reported by the transition of the concentric-cylindrical profile to the 3-bands profile.

As an extension of this work, we will be concerned with investigations in the context of 3D devices subject
again to a prescription of boundary voltage potentials, but made up of a ferroelectric layer which is only partly
embedded in a paraelectric environment. This context, also related to applications, requires of course a different
model but which can be introduced as the present one from the Ginzburg-Landau formalism and Electrostatics
equations. Beyond the investigations of non obvious states to perform in this context, one of the aims shall
concern the numerical study of the so-called effective permittivity (cf, e.g., [3]), by associating also concrete
values with parameters in the simulations.

References

[1] H. Ammari, L. Halpern and K. Hamdache, Asymptotic behaviour of thin ferromagnetic films, Asymptot.
Anal., 24 (2000), 277-294.

[2] H. Ammari and K. Hamdache, Global existence and regularity of solutions to a system of nonlinear Maxwell
equations, J. Math. Anal. Appl., 286 (2003), 51-63.

[3] A.M. Bratkovsky and A.P. Levanyuk, Depolarizing field and “real” hysteresis loops in nanometer-scale
ferroelectric films, App. Phys. Lett., 89 (2006), 253108.

[4] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Springer-Verlag, New
York, 2nd edition, 2002.
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[23] A. Sené, Théorie des domaines et des textures non uniformes dans les ferroélectriques, Ph.D. Thesis,
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