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A Class of Generalized Mixed

Variational-Hemivariational Inequalities I:

Existence and Uniqueness Results ∗

Yunru Bai †, Stanis law Migórski ‡ and Shengda Zeng §

Abstract. We investigate a generalized Lagrange multiplier system in a Banach
space, called a mixed variational-hemivariational inequality (MVHVI, for short),
which contains a hemivariational inequality and a variational inequality. First, we
employ the Minty technique and a monotonicity argument to establish an equivalence
theorem, which provides three different equivalent formulations of the inequality prob-
lem. Without compactness for one of operators in the problem, a general existence
theorem for (MVHVI) is proved by using the Fan-Knaster-Kuratowski-Mazurkiewicz
principle combined with methods of nonsmooth analysis. Furthermore, we demon-
strate several crucial properties of the solution set to (MVHVI) which include bound-
edness, convexity, weak closedness, and continuity. Finally, a uniqueness result with
respect to the first component of the solution for the inequality problem is proved by
using the Ladyzhenskaya-Babuška-Brezzi (LBB) condition. All results are obtained
in a general functional framework in reflexive Banach spaces.
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1 Introduction and problem statement

In many complicated physical processes and engineering applications, mathematical
models based on variational inequality formulations and their generalizations play
an important role. Recently, a new class of systems with Lagrange multipliers which
consists of a variational inequality has drawn a great attention. The reason is that such
systems are a powerful mathematical tool to model and solve a variety of problems
in engineering areas such as dynamic vehicle routing problems, contact problems
in mechanics, the behavior of Navier-Stokes fluids, the penetration phenomenon of
magnetic field, etc.

The most representative recent results in this area are the following: Cojocaru-
Matei [5] who have discussed the unique solvability for a class of frictional con-
tact problems governed by the p-Laplace operator, which can be formulated as a
mixed variational inequality; Matei et al. [19] have employed the Lagrange multipliers
method to consider a deformable body in frictionless unilateral contact with a moving
rigid obstacle, and explored an efficient algorithm approximating the weak solution for
a more general case of a two-body contact problem including friction; Han-Reddy [10]
who have analyzed the finite element method for a class of mixed variational inequali-
ties of the second kind which arises in elastoplastic problems; Sofonea-Matei [32] who
have considered a new class of mixed variational problems, and proved existence,
uniqueness as well as continuous dependence results by applying generalized saddle
point formulations and various estimates, combined with a fixed point argument. We
refer the reader to [13, 14, 15, 16, 17, 18, 19, 20, 30, 31] and the references therein for
a more detailed discussion of this topic.

On the other hand, the notion of a hemivariational inequality was first intro-
duced and studied by P.D. Panagiotopoulos [27, 28, 29] in the early 1980s who used
this mathematical tool to describe and solve complicated problems modeling various
physical phenomena. After that, more and more researchers are attracted to boost
the development of the theory and applications of hemivariational inequalities, since
they can be applied to a wide range of engineering problems involving nonmonotone
and possibly multivalued constitutive and interface laws for deformable bodies, see
e.g. [1, 2, 3, 11, 12, 22, 21, 23, 24, 25, 26, 33]. Very recently, Matei [17] has studied an
abstract system with Lagrange multipliers, called a mixed variational-hemivariational
inequality, which consists of a hemivariational inequality and a variational inequal-
ity, and then demonstrated three existence theorems which are illustrated by two
applications. However, in paper [17], some problems concerning mixed variational-
hemivariational inequalities, such as uniqueness, are left open. Based on this mo-
tivation, in this paper, we will develop a new class of abstract mixed variational-
hemivariational inequalities in a general functional framework.

Let V and E be reflexive Banach spaces, and Λ be a nonempty subset of E. We
denote by 〈·, ·〉 the duality pairing between V and its dual V ∗. Let X be another Ba-
nach space. Given an operator A : V → V ∗, a function J : X → R, a bilinear function
b : V × E → R, an operator γ : V → X and an element f ∈ V ∗, the purpose of this
paper is to study the following abstract generalized mixed variational-hemivariational
inequality.
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Problem 1. Find (u, λ) ∈ V × Λ such that the following two inequalities hold

〈A(u), v − u〉 + b(v − u, λ) + J0(γu; γv − γu) ≥ 〈f, v − u〉 for all v ∈ V, (1)

b(u, ρ− λ) ≤ 0 for all ρ ∈ Λ. (2)

To highlight the motivation to study Problem 1, we mention below its particular
cases.

(i) Let j : Rd → R be a Lipschitz continuous function and Ω ⊂ R
d (d ≥ 2) be

a bounded domain with smooth boundary Γ = ∂Ω. If γ : V → Lp(Γ;Rr) is a linear,
bounded and compact operator with 2 ≤ p < ∞ and r ≥ 1, and J is defined by

J(v) =

∫

Γ1

j(γv(x)) dΓ for all v ∈ V,

where Γ1 ⊂ Γ is such that meas(Γ1) > 0, then Problem 1 reduces to

〈A(u), v − u〉 + b(v − u, λ) +

∫

Γ1

j0(u(x); v(x) − u(x)) dΓ ≥ 〈f, v − u〉 for all v ∈ V,

b(u, ρ− λ) ≤ 0 for all ρ ∈ Λ,

which has been recently studied by Matei [17].

(ii) If J ≡ 0, then Problem 1 becomes

{
〈A(u), v〉 + b(v, λ) = 〈f, v〉 for all v ∈ V,

b(u, ρ− λ) ≤ 0 for all ρ ∈ Λ.

This mixed variational inequality has been investigated by Cojocaru-Matei [5].

The aim of this paper is to extend the theoretical results from [17] to a genera-
lized mixed variational-hemivariational inequality in a general functional framework,
Problem 1, and provide positive answers to open problems remained in [17]. The main
novelties of the paper are described as follows.

First, in the study of Problem 1, we do not require that function J is Lipschitz
continuous and the operator γ : V → X is compact. This extends the scope of ap-
plications for mixed variational-hemivariational inequality. Besides, the main core of
the proof is completely different from the one carried out in [17], here we employ the
well-known Fan-Knaster-Kuratowski-Mazurkiewicz theorem, not a fixed point princi-
ple.

Second, our results can be applied to a special case of Problem 1 in which b ≡ 0,
and the problem reduces to the following “pure” hemivariational inequality

〈A(u), v − u〉 + J0(γu; γv − γu) ≥ 〈f, v − u〉 for all v ∈ V.

In fact, the above inequality has been explored by many scholars from the mathe-
matical and application points of view under the crucial hypothesis that operator γ is
compact, see e.g. [6, 34, 35]. However, in our results, we will overcome this assumption.
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Third, for the first time, we provide the uniqueness theorem to Problem 1 with
respect to the first component u ∈ V of solution. In the meanwhile, we develop several
important properties of the solution set to Problem 1, which include boundedness,
convexity, weak closedness, continuity, etc. We believe that those results will be found
useful in a number of complex problems involving a mixed variational-hemivariational
inequality as a subsystem, for instance, in optimal control problems driven by mixed
variational-hemivariational inequalities.

The outline of the paper is as follows. Basic notation and preliminary material
needed in the sequel are recalled in Section 2. In Section 3, we deliver our main
results concerning Problem 1 which include a Minty type equivalence result, a general
existence theorem, several significant properties of the solution set, and a uniqueness
result.

2 Background material

In this section, we briefly review basic notation and some results which are needed in
the sequel. For more details, we refer to monographs [4, 7, 8, 36].

Throughout the paper, we denote by 〈·, ·〉Y ∗×Y the duality pairing between a
Banach space Y and its dual Y ∗. The norm in a normed space Y is denoted by ‖ · ‖Y .
Given a subset D of Y , we write ‖D‖Y = sup{‖v‖Y | v ∈ Y }. If no confusion arises,
we often drop the subscripts. Besides, we denote by L(Y1, Y2) the space of linear and
bounded operators from a normed space Y1 to a normed space Y2 endowed with the
usual norm ‖ · ‖L(Y1,Y2).

We begin with definitions and properties of semicontinuous multivalued mappings.

Definition 2. Let X and Y be topological spaces, and F : X → 2Y be a multivalued
mapping. We say that F is

(i) upper semicontinuous (u.s.c., for short) at x ∈ X if, for every open set O ⊂ Y
with F (x) ⊂ O there exists a neighborhood N(x) of x such that F (N(x)) :=
∪y∈N(x)F (y) ⊂ O. If this holds for every x ∈ X, then F is called upper semi-
continuous.

(ii) closed at x0 ∈ X, if for every sequence {(xn, yn)} ⊂ Gr(F ) such that (xn, yn) →
(x0, y0) in X × Y , we have (x0, y0) ∈ Gr(F ), where Gr(F ) is the graph of the
multivalued mapping F defined by

Gr(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}.

We say that F is closed (or F has a closed graph), if it is closed at every
x0 ∈ X.

The following theorem gives a criterium for upper semicontinuity.

Proposition 3. [22, Proposition 3.8] Let X and Y be two topological spaces, and
F : X → 2Y . The following statements are equivalent:

(i) F is u.s.c..
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(ii) for every closed set C ⊂ Y , the set

F−(C) := {x ∈ X | F (x) ∩ C 6= ∅},

is closed in X.

Theorem 4. [7, Proposition 4.1.9] Let X be a topological space, Y be a regular
topological space, and F : X → 2Y be an upper semicontinuous multivalued mapping
with closed values. Then F is closed.

Let (V, ‖ · ‖V ) be a Banach space. A function J : V → R is called to be locally
Lipschitz continuous at u ∈ V , if there exist a neighborhood N(u) of u and a constant
Lu > 0 such that

|J(w) − J(v)| ≤ Lu‖w − v‖V for all w, v ∈ N(u).

Definition 5. Given a locally Lipschitz function J : V → R, we denote by J0(u; v)
the generalized (Clarke) directional derivative of J at the point u ∈ V in the direction
v ∈ V defined by

J0(u; v) = lim sup
λ→0+, w→u

J(w + λv) − J(w)

λ
.

The generalized gradient of J : V → R at u ∈ V is given by

∂J(u) = { ξ ∈ V ∗ | J0(u; v) ≥ 〈ξ, v〉 for all v ∈ V }.

The generalized gradient and generalized directional derivative of a locally Lips-
chitz function enjoy many nice properties and rich calculus. Here we just collect below
some basic and crucial results, see e.g. [22, Proposition 3.23].

Proposition 6. Let J : V → R be a locally Lipschitz continuous function. Then

(i) for each u ∈ V , the function V ∋ v 7→ J0(u; v) ∈ R is positively homogeneous,
subadditive, and satisfies |J0(u; v)| ≤ Lu‖v‖V for all v ∈ V , where Lu > 0 is
the Lipschitz constant of J near u.

(ii) the function V × V ∋ (u, v) 7→ J0(u; v) ∈ R is upper semicontinuous.

(iii) for each v ∈ V , we have J0(u; v) = max
{
〈u∗, v〉 | u∗ ∈ ∂J(u)

}
.

We conclude this section with the following Fan-Knaster-Kuratowski-Mazurkiewicz
theorem (F-KKM theorem, for short) which will play an important role in the proof
of existence of solutions to the inequality problems in Section 3. Its proof can be
found in Ky Fan [9].

Theorem 7. [9] Let K be a nonempty subset of a Hausdorff topological vector space
E and G : K → 2E be a multivalued mapping with the following properties:

(a) G is a KKM mapping, that is, for any {v1, v2, . . . , vN} ⊂ K, one has that
its convex hull co{v1, v2, . . . , vn} is contained in

⋃n
i=1G(vi),

(b) for every v ∈ K, G(v) is closed in E,
(c) for some v0 ∈ K, G(v0) is compact in E.

Then, we have
⋂

v∈K G(v) 6= ∅.
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3 Existence and uniqueness results

The section is devoted to deliver the main results of this paper, which contain five
theorems and two corollaries. More precisely, the first theorem, Theorem 9, provides
three various equivalent formulations for Problem 1 by using the Minty approach and a
monotone argument. In the second theorem, Theorem 10, we employ the Fan-Knaster-
Kuratowski-Mazurkiewicz theorem and the theory of nonsmooth analysis to establish
an existence result to Problem 1, in which we do not require that the operator γ is
compact. Next result, Theorem 11 is devoted to explore some important properties
of solution set of Problem 1, which include boundedness, convexity, weak closedness,
and continuity. Subsequently, a uniqueness theorem, Theorem 15, for Problem 1 is
established by using the Ladyzhenskaya-Babuška-Brezzi (LBB) condition. The last
result, Theorem 16, presents a continuity result (or stability result) for the solution
mapping.

To establish main results on Problem 1, we now impose the following assumptions
on its data. Let (V, ‖ · ‖V ) and (E, ‖ · ‖E) be two reflexive Banach spaces.

H(h): h : V → R is such that h(0V ) = 0 and

(i) lim supt→0+
h(tv)

t
≥ 0 for all v ∈ V .

(ii) for all {vn} ⊂ V with vn → v weakly in V , we have h(v) ≤ lim supn→∞ h(vn).

(iii) for all v ∈ V \{0V }, we have h(v) > 0.

H(J): J : X → R is such that

(i) J is locally Lipschitz continuous.

(ii) there exist θ ≥ 0, αJ ≥ 0 and βJ > 0 such that

J0(v;−v) ≤ αJ + βJ‖v‖
θ
X for all v ∈ X.

(iii) the multivalued mapping X ∋ v 7→ ∂J(v) ⊂ X∗ is bounded, i.e., ∂J maps
bounded subsets of X into bounded subsets of X∗.

H(A): A : V → V ∗ is such that

(i) for any w, v ∈ V fixed, it holds

lim sup
t→0+

〈A(tw + (1 − t)v), w − v〉 ≤ 〈A(v), w − v〉.

(ii) the mapping A · +γ∗∂J(γ·) : V → 2V ∗

is h-relaxed monotone on V , i.e.,

〈A(u) + γ∗ξu −A(v) − γ∗ξv, u− v〉 ≥ h(u− v)

for all ξu ∈ ∂J(γu), ξv ∈ ∂J(γv) and u, v ∈ V .

(iii) A is coercive in the following sense

lim
v∈V, ‖v‖V →+∞

〈Av, v〉

‖v‖
max{θ,1}
V

= +∞,
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where θ ≥ 0 is given in hypothesis H(J)(ii).

(iv) A is a bounded operator.

H(b): The bilinear function b : V × E → R is bounded and satisfies the following
inequality

inf
ρ∈E\{0E}

sup
v∈V \{0V }

b
(
v, ρ

)

‖v‖V ‖ρ‖E
≥ αb (3)

for some αb > 0.

H(γ): γ : V → X is a linear and continuous operator.

In the following we comment on the above hypotheses.

Remark 8. Various kinds of monotonicity of operator A ·+γ∗∂J(γ·) can be obtained
by choosing a suitable function h. It is worth to mention that if hypotheses H(h)(i)
and (iii) are specified by h(tv) = tτh(v) for all v ∈ V and t > 0 with τ > 1,
and h(v) ≥ ch ‖v‖

q
V for all v ∈ V with some ch > 0 and q > 1, respectively, then

hypotheses H(h) reduces to the one considered by Cojocaru-Matei [5]. In particular,
function h(v) = mA‖v‖

τ for v ∈ V with mA > 0 and τ ≥ 1 enjoys H(h), and then
H(A)(ii) means that A ·+γ∗∂J(γ·) is τ -strongly monotone. Note also that hypothesis
H(A)(i) is weaker then the hemicontinuity of operator A, see [22, Definition 3.68].

Let us turn to the hypotheses H(J). If the generalized gradient ∂J has a sublinear
growth, namely,

‖∂J(v)‖X∗ ≤ cJ + dJ‖v‖X for all v ∈ X

for some cJ ≥ 0 and dJ > 0, then hypothesis H(J)(iii) is clearly satisfied.
The inequality (3) is usually called the Ladyzhenskaya-Babuška-Brezzi (LBB) con-

dition which widely appears in the literature.

The first result of the paper provides three different equivalent formulations of
Problem 1 by applying the Minty approach, in which V and Λ are replaced by the
nonempty, closed and convex subsets of V and E, respectively.

Theorem 9. Let K and Y be nonempty, closed and convex subsets of V and E,
respectively. Assume that hypotheses H(A)(i)–(ii), H(J)(i), H(h)(i), and H(γ) hold.
If b : V ×E → R is a bilinear and bounded function, then (u, λ) ∈ K×Y is a solution
to the following mixed variational-hemivariational inequality

〈A(u), v − u〉 + b(v − u, λ) + J0(γu; γv − γu) ≥ 〈f, v − u〉 for all v ∈ K, (4)

b(u, ρ− λ) ≤ 0 for all ρ ∈ Y, (5)

if and only if it solves one of the following problems

(i) (u, λ) ∈ K × Y is such that

{
〈Av, v − u〉 + b(v − u, λ) + J0(γv; γv − γu)

≥ 〈f, v − u〉 + h(v − u) for all v ∈ K,
(6)

b(u, ρ− λ) ≤ 0 for all ρ ∈ Y. (7)
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(ii) (u, λ) ∈ K × Y is such that
{

〈Au, v − u〉 + b(v, λ) − b(u, ρ) + J0(γu; γv − γu)

≥ 〈f, v − u〉 for all v ∈ K and all ρ ∈ Y.
(8)

(iii) (u, λ) ∈ K × Y is such that
{

〈Av, v − u〉 + b(v, λ) − b(u, ρ) + J0(γv; γv − γu)

≥ 〈f, v − u〉 + h(v − u) for all v ∈ K and all ρ ∈ Y.
(9)

Proof. (i) Let (u, λ) ∈ K×Y be a solution to problem (4) and (5). It is obvious that
inequality (5) coincides with (7). Moreover, the h-relaxed monotonicity of operator
A · +γ∗∂J(γ·) leads to

〈Av, v − u〉 + 〈ξv, γ(v − u)〉X∗×X ≥ 〈Au, v − u〉 + 〈ξu, γ(v − u)〉X∗×X + h(v − u)

for all ξu ∈ ∂J(γu), ξv ∈ ∂J(γv) and all u, v ∈ V . Taking into account the above
inequality, the property

J0(γu; γv − γu) = max
ξu∈∂J(γu)

〈ξu, γ(v − u)〉X∗×X = 〈ξ̃u, γ(v − u)〉X∗×X

for some ξ̃u ∈ ∂J(γu), and inequality (4), we obtain

h(v − u) + 〈f, v − u〉

≤ 〈Au, v − u〉 + J0(γu; γv − γu) + b(v − u, λ) + h(v − u)

= 〈Au, v − u〉 + 〈ξ̃u, γ(v − u)〉X∗×X + b(v − u, λ) + h(v − u)

≤ 〈Av, v − u〉 + 〈ξv, γ(v − u)〉X∗×X + b(v − u, λ) (for all ξv ∈ ∂J(γv))

≤ 〈Av, v − u〉 + J0(γv; γv − γu) + b(v − u, λ)

for all v ∈ K. So, (u, λ) ∈ K × Y is also a solution to problem (6) and (7).
Conversely, let (u, λ) ∈ K × Y be a solution to problem (6) and (7). Then, (5)

holds due to (7). It is enough to obtain (4). Let w ∈ K, and t ∈ (0, 1) be arbitrary.
Taking v = vt := tw + (1 − t)u in (6), we employ hypotheses H(b), H(J)(i), H(γ),
and Proposition 6 to get

h(t(w − u)) + t〈f, w − u〉

≤ t〈Avt, w − u〉 + tb(w − u, λ) + J0(γu; t(γw − γu))

= t
[
〈Avt, w − u〉 + b(w − u, λ) + J0(γu; γw − γu)

]
,

and hence

〈Avt, w − u〉 + b(w − u, λ) + J0(γu; γw − γu)

≥ 〈f, w − u〉 +
h(t(w − u))

t
.
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Passing to the upper limit as t → 0+, we now apply conditions H(A)(i) and H(h)(i)
to obtain inequality (4). This means that (u, λ) ∈ K × Y also solves problem (4) and
(5).

(ii) Assume that (u, λ) ∈ K×Y is a solution to problem (4) and (5). The inequality
(8) can be obtained readily by multiplying inequality (5) by −1 and then summing
it up with (4).

Conversely, if (u, λ) ∈ K×Y is a solution to problem (8), then inequalities (4) and
(5) are a direct consequence of (8) via inserting ρ = λ and v = u into (8), respectively.

(iii) From assertion (i), it remains to show that (u, λ) ∈ K × Y is a solution to
problem (6) and (7) if and only if it solves problem (9). Indeed, if (u, λ) ∈ K × Y is
a solution to (6) and (7), then the inequality (9) is obtained easily via multiplying
inequality (7) by −1 and by summing up the resulting inequality with (6).

For the converse, we put ρ = λ and v = u in (9), respectively, to obtain inequalities
(6) and (7). �

The following theorem delivers a crucial existence result for Problem 1 without
any compactness hypothesis on operator γ.

Theorem 10. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ. If
hypotheses H(A), H(b), H(J), H(h)(i)–(ii), and H(γ) are satisfied, then Problem 1
has at least one solution (u, λ) ∈ V × Λ.

Proof. It follows from Theorem 9 that it is enough to prove that problem (8) admits
a solution with K = V and Y = Λ. The proof will be carried out in three steps.

Let r, s ∈ N. We define sets K(r) and Y (s) by

K(r) := BV (r) ⊂ V and Y (s) := BE(s) ∩ Λ ⊂ Λ,

where BH(r) stands for a closed ball with centre 0H and radius r > 0 in a space H .

Step 1. For all r, s ∈ N fixed, the following problem admits a solution (ur, λs) ∈
K(r) × Y (s) such that

{
〈Aur, v − ur〉 + b(v, λs) − b(ur, ρ) + J0(γur; γv − γur)

≥ 〈f, v − ur〉 for all v ∈ K(r) and all ρ ∈ Y (s).
(10)

We consider a multivalued mapping G : K(r) × Y (s) → 2K(r)×Y (s) given by

G(v, ρ) :=
{

(u, λ) ∈ K(r) × Y (s) | 〈Av, v − u〉 + b(v, λ) − b(u, ρ)

+ inf
ξv∈∂J(γv)

〈ξv, γ(v − u)〉X∗×X ≥ 〈f, v − u〉 + h(v − u)
}
. (11)

It is obvious that for each (v, ρ) ∈ K(r) × Y (s), the set G(v, ρ) is nonempty, since
(v, ρ) ∈ G(v, ρ). We now demonstrate that for each (v, ρ) ∈ K(r) × Y (s) fixed, the
set G(v, ρ) is weakly closed. Let {(un, λn)} ⊂ G(v, ρ) be a sequence such that un → u
weakly in V and λn → λ weakly in E. We have

〈Av, v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X

≥ 〈f, v − un〉 + h(v − un)
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for all ξv ∈ ∂J(γv). Passing to the upper limit, as n → ∞, in the above inequality,
from H(h)(ii), one has

〈f, v − u〉 + h(v − u)

≤ lim
n→∞

〈f, v − un〉 + lim sup
n→∞

h(v − un)

= lim sup
n→∞

[
〈f, v − un〉 + h(v − un)

]

≤ lim sup
n→∞

[
〈Av, v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X

]

= 〈Av, v − u〉 + b(v, λ) − b(u, ρ) + 〈ξv, γ(v − u)〉X∗×X

for all ξv ∈ ∂J(γv). Hence,

〈f, v − u〉 + h(v − u)

≤ 〈Av, v − u〉 + b(v, λ) − b(u, ρ) + inf
ξv∈∂J(γv)

〈ξv, γ(v − u)〉X∗×X .

This means that (u, λ) ∈ G(v, ρ), therefore, the set G(v, ρ) is weakly closed. Note that
K(r)× Y (s) is a nonempty, bounded, closed, and convex subset of V ×E. Moreover,
from the reflexivity of V × E, it follows that the set K(r) × Y (s) is weakly compact
and convex. This ensures that G(v, ρ) is relatively weakly compact in V × E for all
(v, ρ) ∈ V ×E. Thus, we conclude that for all (v, ρ) ∈ V ×E, the set G(v, ρ) is weakly
compact, owning to the weak closedness of G(v, ρ).

Now, we can distinguish two cases: (a) G is a KKM mapping, and (b) G is not a
KKM mapping.

If case (a) occurs, then via invoking the F-KKM principle, Theorem 7, we are able
to find (ur, λs) ∈ K(r) × Y (s) such that

(ur, λs) ∈
⋂

(v,ρ)∈K(r)×Y (s)

G(v, ρ) 6= ∅,

that is,

〈Av, v − ur〉 + b(v, λs) − b(ur, ρ) + 〈ξv, γ(v − ur)〉X∗×X ≥ 〈f, v − ur〉 + h(v − ur)

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ K(r) × Y (s). Hence, we have

〈Av, v − ur〉 + b(v, λs) − b(ur, ρ) + J0(γv; γv − γur) ≥ 〈f, v − ur〉 + h(v − ur)

for all (v, ρ) ∈ K(r) × Y (s). We now employ Theorem 9 to show that (ur, λs) ∈
K(r) × Y (s) solves problem (10).

On the other hand, when (b) holds, then there exist

{(v1, ρ1), (v2, ρ2), . . . , (vN , ρN)} ⊂ K(r) × Y (s)
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and (ur, λs) ∈ K(r) × Y (s) with ur =
∑N

i=1 tivi, λs =
∑N

i=1 tiρi, ti ∈ [0, 1] for

i = 1, 2, . . . , N , and
∑N

i=1 ti = 1 such that

(ur, λs) /∈
N⋃

i=1

G(vi, ρi).

This means that

〈Avi, vi − ur〉 + b(vi, λs) − b(ur, ρi) + inf
ξi∈∂J(γvi)

〈ξi, γ(vi − ur)〉X∗×X

< 〈f, vi − ur〉 + h(vi − ur) (12)

for i = 1, 2, . . . , N .

Claim 1. There exists a neighborhood O of (ur, λs) in V × Λ such that whenever
(v, ρ) ∈ O ∩

(
K(r) × Y (s)

)
, there holds

〈Avi, vi − v〉 + b(vi, ρ) − b(v, ρi) + inf
ξi∈∂J(γvi)

〈ξi, γ(vi − v)〉X∗×X

< 〈f, vi − v〉 + h(vi − v). (13)

Arguing by contradiction, we may assume that there are {un} ⊂ K(r), {λn} ⊂
Y (s), and {jn} ⊂ {1, 2, . . . , N} such that un → ur in V , λn → λs in E and, for every
n ∈ N, we have

〈Avjn, vjn − un〉 + b(vjn , λn) − b(un, ρjn) + 〈ξjn, γ(vjn − un)〉X∗×X

≥ 〈f, vjn − un〉 + h(vjn − un)

for all ξjn ∈ ∂J(γvjn). Since for all n ∈ N, jn ∈ {1, 2, . . . , N}, so, without any loss
of generality, we may suppose that there exists j0 ∈ {1, 2, . . . , N} such that for all
n ∈ N, the following inequality holds

〈Avj0, vj0 − un〉 + b(vj0 , λn) − b(un, ρj0) + 〈ξj0, γ(vj0 − un)〉X∗×X

≥ 〈f, vj0 − un〉 + h(vj0 − un)

for all ξj0 ∈ ∂J(γvj0). If, we now pass to the upper limit, as n → ∞, in the above
inequality, we get

〈f, vj0 − ur〉 + h(vj0 − ur)

≤ lim
n→∞

〈f, vj0 − un〉 + lim sup
n→∞

h(vj0 − un)

= lim sup
n→∞

[
〈f, vj0 − un〉 + h(vj0 − un)

]

≤ lim sup
n→∞

[
〈Avj0, vj0 − un〉 + b(vj0, λn) − b(un, ρj0) + 〈ξj0, γ(vj0 − un)〉X∗×X

]

= 〈Avj0 , vj0 − ur〉 + b(vj0 , λs) − b(ur, ρj0) + 〈ξj0, γ(vj0 − ur)〉X∗×X
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for all ξj0 ∈ ∂J(γvj0), that is,

〈Avj0 , vj0 − ur〉 + b(vj0 , λs) − b(ur, ρj0) + inf
ξj0∈∂J(γvj0 )

〈ξj0, γ(vj0 − ur)〉X∗×X

≥ 〈f, vj0 − ur〉 + h(vj0 − ur).

This is a contradiction with (12), so, Claim 1 is valid.

Subsequently, from Claim 1, for every i ∈ {1, 2, . . . , N}, we are able to find ξi ∈
∂J(γvi) such that

〈Avi, vi − v〉 + b(vi, ρ) − b(v, ρi) + 〈ξi, γ(vi − v)〉X∗×X

≤ 〈f, vi − v〉 + h(vi − v)

for all (v, ρ) ∈ O ∩
(
K(r) × Y (s)

)
. It follows from the h-relaxed monotonicity of

operator A · +γ∗∂J(γ·) that

〈Av, vi − v〉 + b(vi, ρ) − b(v, ρi) + 〈ξv, γ(vi − v)〉X∗×X + h(vi − v)

≤ 〈Avi, vi − v〉 + b(vi, ρ) − b(v, ρi) + 〈ξi, γ(vi − v)〉X∗×X

≤ 〈f, vi − v〉 + h(vi − v)

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ O ∩
(
K(r) × Y (s)

)
, therefore,

〈Av, v − vi〉 + b(v, ρi) − b(vi, ρ) + 〈ξv, γ(v − vi)〉X∗×X ≥ 〈f, v − vi〉

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ O ∩
(
K(r) × Y (s)

)
. Next, multiplying the above

inequality by ti ≥ 0, and summing up those inequalities from i = 1 to N , one obtains

〈Av, v − ur〉 + b(v, λs) − b(ur, ρ) + 〈ξv, γ(v − ur)〉X∗×X ≥ 〈f, v − ur〉 (14)

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ O ∩
(
K(r) × Y (s)

)
, where we have used the facts

ur =
∑N

i=1 tivi, λs =
∑N

i=1 tiρi, ti ∈ [0, 1] for i = 1, 2, . . . , N , and
∑N

i=1 ti = 1. Assume
now that (w, η) ∈ K(r) × Y (s) is arbitrary, and consider the sequence {(vn, ρn)} ⊂
V × E defined by

vn :=
1

n
w + (1 −

1

n
)ur and ρn :=

1

n
η + (1 −

1

n
)λs.

It is not difficult to find N1 ∈ N large enough such that (vn, ρn) ∈ O∩
(
K(r)×Y (s)

)

for all n ≥ N1. Inserting v = vn and ρ = ρn into (14), it reads

1

n
〈f, w − ur〉

≤
1

n
〈Avn, w − ur〉 +

1

n
b(w, λs) + (1 −

1

n
)b(ur, λs) −

1

n
b(ur, η)

−(1 −
1

n
) b(ur, λs) +

1

n
〈ξvn , γ(w − ur)〉X∗×X (for all ξvn ∈ ∂J(γvn))

≤
1

n

[
〈Avn, w − ur〉 + b(w, λs) − b(ur, η) + J0(γvn; γ(w − ur))

]
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for all n ≥ N1. If we divide both sides of the above inequality by 1
n
, and then pass to

the upper limit, as n → ∞, we get

〈f, w − ur〉

≤ lim sup
n→∞

[
〈Avn, w − ur〉 + b(w, λs) − b(ur, η) + J0(γvn; γ(w − ur))

]

≤ lim sup
n→∞

〈Avn, w − ur〉 + b(w, λs) − b(ur, η) + lim sup
n→∞

J0(γvn; γ(w − ur))

≤ 〈Aur, w − ur〉 + b(w, λs) − b(ur, η) + J0(γur; γ(w − ur)).

Since w ∈ K(r) and η ∈ Y (s) are arbitrary, we conclude that (ur, λs) ∈ K(r) × Y (s)
is also a solution to problem (10).

Step 2. For every s ∈ N fixed, the following problem has at least one solution
(us, λs) ∈ V × Y (s) such that

{
〈Aus, v − us〉 + b(v, λs) − b(us, ρ) + J0(γus; γv − γus)

≥ 〈f, v − us〉 for all v ∈ V and all ρ ∈ Y (s).
(15)

It follows from Step 1 that for any r, s ∈ N, problem (10) admits a solution
(ur, λs) ∈ K(r) × Y (s).

Claim 2. There exist r0 ∈ N and a solution (ur0, λs) ∈ K(r0)×Y (s) to problem (10)
for r = r0 such that

‖ur0‖V < r0. (16)

Suppose that this claim is not true, so for any r ∈ N, for each solution (ur, λs) ∈
K(r) × Y (s) of problem (10), it holds

‖ur‖V = r.

Since 0E ∈ Y (s) and 0V ∈ K(r) for all r ∈ N, we now take v = 0V and ρ = 0E in (10)
to obtain

〈Aur, ur〉 ≤ b(0V , λ) − b(ur, 0E) + J0(γur;−γur) + 〈f, ur〉

= J0(γur;−γur) + 〈f, ur〉 ≤ αJ + βJ‖γ‖
θ
L(V,X)‖ur‖

θ
V + ‖f‖V ∗‖ur‖V ,

and hence,

〈Aur, ur〉

‖ur‖
max{θ,1}
V

≤
αJ

‖ur‖
max{θ,1}
V

+
βJ‖γ‖

θ
L(V,X)

‖ur‖
max{0,1−θ}
V

+
‖f‖V ∗

‖ur‖
max{0,θ−1}
V

.

Passing to the limit, as r → ∞, and invoking the coercivity condition H(A)(iii), we
get a contradiction. This ensures that Claim 2 is true.

Assume now that (ur0 , λs) ∈ K(r0)×Y (s) is a solution to problem (10) for r = r0
such that inequality (16) holds. We affirm that (ur0, λs) ∈ V × Y (s) is also a solution
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to problem (15). Let w ∈ V and η ∈ Y (s) be arbitrary, and t ∈ (0, 1) be small enough
such that vt = tw + (1 − t)ur0 ∈ K(r0) (thanks to inequality (16)). Putting v = vt
and ρ = ρt := tη + (1 − t)λs into (10), it holds

t〈f, w − ur0〉

≤ t〈Aur0, w − ur0〉 + tb(w, λs) + (1 − t)b(ur0 , λs) − tb(ur0 , η)

−(1 − t)b(ur0, λs) + tJ0(γur0; γw − γur0)

= t
[
〈Aur0, w − ur0〉 + b(w, λs) − b(ur0 , η) + J0(γur0; γw − γur0)

]
,

and

〈Aur0, w − ur0〉 + b(w, λs) − b(ur0 , η) + J0(γur0; γw − γur0) ≥ 〈f, w − ur0〉

for all w ∈ V and η ∈ Y (s). Consequently, (ur0, λs) ∈ V × Y (s) is a solution to
problem (15).

Step 3. Problem 1 has at least one solution.

Indeed, Step 2 guarantees that for each s ∈ N, problem (15) admits a solution
(us, λs) ∈ V × Y (s).

Claim 3. The sequences {us} and {λs} are both uniformly bounded in V and E,
respectively.

As concerns the sequence {us}, if it is unbounded, then, without any loss of gen-
erality, we may assume that ‖us‖V → +∞, as s → ∞. Inserting v = 0V and ρ = 0E

into (15), it has

〈Aus, us〉 ≤ b(0V , λs) − b(us, 0E) + J0(γus;−γus) + 〈f, us〉

≤ αJ + βJ‖γ‖
θ
L(V,X)‖us‖

θ
V + ‖f‖V ∗‖us‖V ,

and

〈Aus, us〉

‖us‖
max{θ,1}
V

≤
αJ

‖us‖
max{θ,1}
V

+
βJ‖γ‖

θ
L(V,X)

‖us‖
max{0,1−θ}
V

+
‖f‖V ∗

‖us‖
max{0,θ−1}
V

.

Now, the coercivity condition H(A)(iii) concludes a contradiction, so the sequence
{us} is uniformly bounded in V .

It remains to show that the sequence {λs} is uniformly bounded in E too. For any
w ∈ V \ {0V }, inserting v = us −

w
‖w‖V

and ρ = λs into (15), we have

b(
w

‖w‖V
, λs) ≤ 〈Aus,−

w

‖w‖V
〉 + J0(γus;−γ

w

‖w‖V
) + 〈f,

w

‖w‖V
〉

= 〈Aus,−
w

‖w‖V
〉 + max

ξus∈∂J(γus)
〈ξus

,−γ
w

‖w‖V
〉X∗×X + 〈f,

w

‖w‖V
〉

≤ ‖Aus‖V ∗ + ‖γ∗∂J(γus)‖V ∗ + ‖f‖V ∗ .
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Passing to supremum with w ∈ V \ {0V }, by using inequality (3), we deduce

αb‖λs‖E ≤ lim sup
w∈V \{0V }

b(
w

‖w‖V
, λs) ≤ ‖Aus‖V ∗ + ‖γ∗∂J(γus)‖V ∗ + ‖f‖V ∗

for all s ∈ N. This inequality combined with the uniform boundedness of {us}, hy-
potheses H(A)(iv) and H(J)(iii), implies that the sequence {λs} is uniformly bounded
in E.

From Claim 3, we can find s0 ∈ N large enough such that ‖λs0‖E < s0. We shall
verify that (us0, λs0) is also a solution to Problem 1. Let η ∈ Λ be arbitrary and
t ∈ (0, 1) be small enough such that ρt = tη + (1 − t)λs0 ∈ Y (s0). After inserting
ρ = ρt and v = us0 into (15) for s = s0, we have

b(us0, λs0) − tb(us0, η) − (1 − t)b(us0, λs0) ≥ 0,

i.e.,
b(us0 , η − λs0) ≤ 0 for all η ∈ Λ.

Putting ρ = λs0 into (15), we have

〈Aus0, v − us0〉 + b(v − us0, λs0) + J0(γus0; γv − γus0) ≥ 〈f, v − us0〉 for all v ∈ V.

The last two inequalities reveal that (us0, rs0) ∈ V × Λ is a solution to Problem 1,
which concludes the proof. �

In what follows, we denote the solution set to Problem 1 by S(A, J, b, f). By
Theorem 10, we know that the set S(A, J, b, f) ⊂ V × Λ is nonempty. It is desirable
to investigate further properties of the solution set which can be useful, for instance, in
the study of optimal control problems for systems governed by a mixed variational-
hemivariational inequality. This is the reason that in the next theorem we study
essential properties of S(A, J, b, f), such as, convexity, closedness and continuity.

Theorem 11. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ. If
hypotheses H(A), H(b), H(J), H(h)(i)–(ii), and H(γ) are satisfied, then the following
hold

(i) the solution set S(A, J, b, f) is bounded and weakly closed in V × Λ,

(ii) if h : V → R is convex, then the set S(A, J, b, f) is convex as well,

(iii) the multivalued mapping S : V ∗ → 2V×Λ, defined by f 7→ S(f) := S(A, J, b, f),
is bounded, i.e., S maps bounded subsets of V ∗ to bounded subsets of V × Λ,

(iv) the multivalued mapping f 7→ S(f) is strongly-weakly upper semicontinuous,
(i.e., it is upper semicontinuous from V ∗ endowed with the norm topology to the
subsets of V ×Λ endowed with the weak topology), and it has a strongly-weakly closed
graph.

Proof. (i) Arguing by contradiction, if we assume that S(A, J, b, f) is unbounded,
then there exists a sequence {(un, λn)} ⊂ S(A, J, b, f) such that

‖un‖V + ‖λn‖E → +∞, as n → ∞. (17)
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For the sequence {(un, λn)}, we claim that {un} is bounded in V . If it is not true,
then one has

‖un‖V → +∞, as n → ∞. (18)

In fact, for each n ∈ N, we have

〈A(un), v − un〉 + b(v − un, λn) + J0(γun; γv − γun) ≥ 〈f, v − un〉 for all v ∈ V, (19)

b(un, ρ− λn) ≤ 0 for all ρ ∈ Λ. (20)

Choosing v = 0V and ρ = 0E in (19) and (20), respectively, from the resulting
inequalities, it yields

〈A(un), un〉 ≤ b(−un, λn) + J0(γun;−γun) + 〈f, un〉

≤ αJ + βJ‖γ‖
θ
L(V,X)‖un‖

θ
V + ‖f‖V ∗‖un‖V ,

and hence

〈A(un), un〉

‖un‖
max{1,θ}
V

≤
αJ

‖un‖
max{1,θ}
V

+
βJ‖γ‖

θ
L(V,X)

‖un‖
max{1−θ,0}
V

+
‖f‖V ∗

‖un‖
max{0,θ−1}
V

.

The above inequality combined with (18) and hypothesis H(A)(iii) leads to a contra-
diction. Hence, we deduce that the sequence {un} is bounded in V .

Moreover, by (17), we know that {λn} is unbounded in E. Let w ∈ V \ {0V } be
arbitrary. Taking account of v = un −

w
‖w‖V

in (19), it reads

b(
w

‖w‖V
, λn) ≤ 〈Aun,−

w

‖w‖V
〉 + J0(γun;−γ

w

‖w‖V
) + 〈f,

w

‖w‖V
〉

= 〈Aun,−
w

‖w‖V
〉 + max

ξun∈∂J(γun)
〈ξun

,−γ
w

‖w‖V
〉X∗×X + 〈f,

w

‖w‖V
〉

≤ ‖Aun‖V ∗ + ‖γ∗∂J(γun)‖V ∗ + ‖f‖V ∗ .

Passing to supremum with w ∈ V \ {0V } and using hypotheses H(A)(iv), H(J)(iii),
H(b), and the boundedness of {un}, we are able to find a constant C∗, which is
independent of n, such that

‖λn‖E ≤ C∗ for all n ∈ N.

This leads to a contradiction with (17). Therefore, we conclude that the solution set
S(A, J, b, f) to Problem 1 is bounded in V × Λ.

Next, we show the weak closedness of S(A, J, b, f). Let {(un, λn)} ⊂ S(A, J, b, f)
be a sequence such that

un → u weakly in V , and λn → λ weakly in E, as n → ∞. (21)

It follows from Theorem 9 that

〈Aun, v − un〉 + b(v, λn) − b(un, ρ) + J0(γun; γv − γun)

≥ 〈f, v − un〉 for all v ∈ K and all ρ ∈ Y.
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Furthermore, the h-relaxed monotonicity of the mapping u 7→ Au+γ∗∂J(γu) implies

〈Aun, v − un〉 + J0(γun; γv − γun) + h(v − un)

= 〈Aun, v − un〉 + 〈ξun
, γ(v − un)〉X∗×X + h(v − un)

≤ 〈Av, v − un〉 + 〈ξv, γ(v − un)〉X∗×X

for all ξv ∈ ∂J(γv), where ξun
∈ ∂J(γun) is such that 〈ξun

, γ(v − un)〉X∗×X =
J0(γun; γv − γun). We use the last two inequalities to obtain

〈Av, v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X

≥ 〈f, v − un〉 + h(v − un) for all ξv ∈ ∂J(γv),

and all (v, ρ) ∈ V × Λ. Passing to the upper limit, as n → ∞, one has

〈f, v − u〉 + h(v − u)

≤ lim sup
n→∞

[
〈f, v − un〉 + h(v − un)

]

≤ lim sup
n→∞

[
〈Av, v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X

]

≤ 〈Av, v − u〉 + b(v, λ) − b(u, ρ) + 〈ξv, γ(v − u)〉X∗×X (for all ξv ∈ ∂J(γv))

≤ 〈Av, v − u〉 + b(v, λ) − b(u, ρ) + J0(γv; γv − γu)

for all v ∈ V and ρ ∈ Λ. We now invoke Theorem 9 again to reveal that (u, λ) ∈
S(A, J, b, f). Hence, S(A, J, b, f) is a weakly closed set.

(ii) Assume that h is a convex function. Let (u1, λ1), (u2, λ2) ∈ S(A, J, b, f) and
t ∈ (0, 1). From Theorem 9, we have

〈Aui, v − ui〉 + b(v, λi) − b(ui, ρ) + J0(γui; γv − γui)

≥ 〈f, v − ui〉

for all v ∈ V and ρ ∈ Λ. Hence, for i = 1, 2, we get

〈Av, v − ui〉 + b(v, λi) − b(ui, ρ) + 〈ξv, γ(v − ui)〉X∗×X

≥ 〈f, v − ui〉 + h(v − ui)

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ V × Λ. Here, we have applied the h-relaxed mono-
tonicity of A · +γ∗∂J(γ·). Denote ut = tu1 + (1 − t)u2 and λt = tλ1 + (1 − t)λ2. It
follows that

〈Av, v − ut〉 + b(v, λt) − b(ut, ρ) + 〈ξv, γ(v − ut)〉X∗×X

= t
[
〈Av, v − u1〉 + b(v, λ1) − b(u1, ρ) + 〈ξv, γ(v − u1)〉X∗×X

]

+(1 − t)
[
〈Av, v − u2〉 + b(v, λ2) − b(u2, ρ) + 〈ξv, γ(v − u2)〉X∗×X

]

≥ t〈f, v − u1〉 + (1 − t)〈f, v − u2〉 + th(v − u1) + (1 − t)h(v − u2)

≥ 〈f, v − ut〉 + h(v − ut)
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for all ξv ∈ ∂J(γv) and (v, ρ) ∈ V ×Λ, where the last inequality is obtained by using
the convexity of function h. Combining this inequality with Theorem 9 and the fact

〈Av, v − ut〉 + b(v, λt) − b(ut, ρ) + J0(γv; γv − γut)

≥ 〈Av, v − ut〉 + b(v, λt) − b(ut, ρ) + 〈ξv, γ(v − ut)〉X∗×X (for all ξv ∈ ∂J(γv))

≥ 〈f, v − ut〉 + h(v − ut) for all v ∈ V and ρ ∈ Λ,

implies that (ut, λt) is also a solution to Problem 1. This proves that S(A, J, b, f) is
a convex set.

(iii) If S : V ∗ → 2V×Λ is not a bounded mapping, then we are able to find a bounded
set B ⊂ V ∗, and sequences {fn} ⊂ B, {(un, λn)} ⊂ V × Λ with (un, λn) ∈ S(fn) for
all n ∈ N such that ‖un‖V + ‖λn‖E → +∞, as n → ∞. As in the proof of assertion
(i), we derive

〈A(un), un〉

‖un‖
max{1,θ}
V

≤
αJ

‖un‖
max{1,θ}
V

+
βJ‖γ‖

θ
L(V,X)

‖un‖
max{1−θ,0}
V

+
‖fn‖V ∗

‖un‖
max{0,θ−1}
V

,

and
b(

w

‖w‖V
, λn) ≤ ‖Aun‖V ∗ + ‖γ∗∂J(γun)‖V ∗ + ‖fn‖V ∗ .

The above inequalities combined with the boundedness of {fn} and the coercivity con-
dition H(A)(iii) leads to a contradiction. Consequently, S : V ∗ → 2V×Λ is a bounded
mapping.

(iv) In order to prove the upper semicontinuity of the mapping f 7→ S(f), by Propo-
sition 3, it is enough to prove that for each weakly closed subset C of V × Λ, the
set

S−(C) :=
{
f ∈ V ∗ | S(f) ∩ C 6= ∅

}

is closed in V ∗. Let C be a weakly closed subset of V × Λ, and {fn} ⊂ S−(C) be a
sequence such that fn → f in V ∗. Thus, for each n ∈ N, we can find a pair of elements
(un, λn) ∈ S(fn) ∩ C, i.e.,

〈Aun, v − un〉 + b(v, λn) − b(un, ρ) + J0(γun; γv − γun)

≥ 〈fn, v − un〉 for all v ∈ V and all ρ ∈ Λ.

The h-relaxed monotonicity of A · +γ∗∂J(γ·) shows that

〈Av, v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X

≥ 〈fn, v − un〉 + h(v − un) (22)

for all ξv ∈ ∂J(γv) and (v, ρ) ∈ V × Λ. From assertion (iii), we can see that the
sequence {(un, λn)} is bounded in V × E. The latter and the reflexivity of V × E
guarantee that there exist a subsequence of {(un, λn)}, still denoted in the same way,
and a pair of elements (u, λ) ∈ V × Λ such that

un → u weakly in V , and λn → λ weakly in E, as n → ∞. (23)
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Taking into account the inequality (22), and passing to the upper limit, as n → ∞,
we obtain

〈Av, v − u〉 + b(v, λ) − b(u, ρ) + J0(γv; γv − γu)

≥ 〈Av, v − u〉 + b(v, λ) − b(u, ρ) + 〈ξv, γ(v − u)〉X∗×X (for all ξv ∈ ∂J(γv))

≥ 〈f, v − u〉 + h(v − u)

for all (v, ρ) ∈ V × Λ. It follows from Theorem 9 that (u, λ) ∈ S(f). On the other
hand, the convergences (23) entail that (u, λ) ∈ S(f)∩C, due to the weak closedness
of the set C. Therefore, we conclude that S is a strongly-weakly upper semicontinuous
mapping.

Finally, since S is a strongly-weakly u.s.c. mapping with weakly closed values, we
are now in a position to apply Theorem 4 to obtain the desired result that S has a
strongly-weakly closed graph. This completes the proof. �

Remark 12. From the proofs of Theorems 10 and 11, we can see that the essence of
the coercivity condition H(A)(iii) and inequality H(J)(ii) is to guarantee the following
condition

〈Au, u〉 − J0(γu;−γu)

‖u‖V
→ +∞, as ‖u‖V → ∞. (24)

Moreover, it can be observed that if h is coercive in the following sense

h(u)

‖u‖V
→ +∞, as ‖u‖V → ∞, (25)

and hypotheses H(J)(i), H(J)(iii), and H(A)(ii) hold, then condition (24) is au-
tomatically satisfied. In that case, assumptions H(J)(ii) and H(A)(iii) could be re-
moved.

Lemma 13. Assume that H(J)(i),H(J)(iii), andH(A)(ii) are fulfilled. If the function
h is coercive in the sense of (25), then condition (24) holds.

Proof. Let u ∈ V . By the h-relaxed monotonicity of A · +γ∗∂J(γ·), we deduce

h(u) ≤ 〈Au−A0V , u〉 + 〈ξu − ξ0, γu〉X∗×X (for all ξ0 ∈ ∂J(0X))

≤ 〈Au, u〉 +
(
‖A0V ‖V ∗ + ‖γ∗∂J(0X)‖V ∗

)
‖u‖V − J0(γu;−γu),

where ξu ∈ ∂J(γu) is such that 〈ξu,−γu〉X∗×X = J0(γu;−γu). This implies

h(u)

‖u‖V
−

(
‖A0V ‖V ∗ + ‖γ∗∂J(0X)‖V ∗

)
≤

〈Au, u〉 − J0(γu;−γu)

‖u‖V
.

Now, by the coercivity condition (25) and hypothesis H(J)(iii) we obtain the desired
conclusion. �
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Remark 14. Note that if A : V → V ∗ is strongly monotone with constant mA > 0
and ∂J : X → X∗ is relaxed monotone with constant mJ ≥ 0, i.e.,

〈Au− Av, u− v〉 ≥ mA‖u− v‖2V and 〈ξw − ξx, w − x〉X∗×X ≥ −mJ‖w − x‖2X

for all u, v ∈ V , all x, w ∈ X, and all ξw ∈ ∂J(w), ξx ∈ ∂J(x), and the inequality
mJ‖γ‖

2
L(V,X) < mA holds, then h : V → R chosen as h(u) = (mA−mJ‖γ‖

2
L(V,X))‖u‖

2
V

satisfies condition (24).

In what follows, we introduce a multivalued function S1 : V ∗ → 2V defined by

S1(f) :=
{
u ∈ V | there exists λ ∈ Λ such that (u, λ) ∈ S(f)

}
.

The unique solvability is of fundamental importance in numerical analysis of the
problem. So, this brings about the natural question of whether the mixed variational-
hemivariational inequality has a unique solution. The following theorem examines a
significant conclusion that Problem 1 has at least a solution (u, λ) ∈ V × Λ, which is
unique in its first component.

Theorem 15. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ. If
hypotheses H(A), H(b), H(J), H(h), and H(γ) are fulfilled, then Problem 1 has at
least one solution (u, λ) ∈ V × Λ, which is unique in its first component.

Proof. The existence of solution is a direct consequence of Theorem 10. Now, we
shall prove the uniqueness in the first component of the pair solution for Problem 1.
Let (u1, λ1) ∈ V × Λ and (u2, λ2) ∈ V × Λ be solutions to Problem 1, so, we have

〈A(ui), v − ui〉 + b(v − ui, λi) + J0(γui; γv − γui) ≥ 〈f, v − ui〉 for all v ∈ V, (26)

b(ui, ρ− λi) ≤ 0 for all ρ ∈ Λ (27)

with i = 1, 2. We take ρ = λ2 and ρ = λ1 in (27) for i = 1 and 2, respectively, then,
we sum up the resulting inequalities to obtain

b(u1 − u2, λ2 − λ1) = b(u1, λ2 − λ1) + b(u2, λ1 − λ2) ≤ 0. (28)

On the other hand, inserting v = u2 in (26) for i = 1 and v = u1 in (26) for i = 2,
accordingly, and combining the resulting inequalities with (28), we can find elements
ξu1

∈ ∂J(γu1) and ξu2
∈ ∂J(γu2) such that

{
J0(γu1; γu2 − γu1) = 〈ξu1

, γu2 − γu1〉X∗×X ,

J0(γu2; γu1 − γu2) = 〈ξu2
, γu1 − γu2〉X∗×X ,

and

〈A(u1) − A(u2), u1 − u2〉 −
(
〈ξu1

, γu2 − γu1〉X∗×X + 〈ξu2
, γu1 − γu2〉X∗×X

)

= 〈A(u1) − A(u2), u1 − u2〉 −
(
J0(γu1; γu2 − γu1) + J0(γu2; γu1 − γu2)

)

≤ b(u2 − u1, λ1) + b(u1 − u2, λ2) = b(u1 − u2, λ2 − λ1) ≤ 0.
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The latter combined with the h-relaxed monotonicity of A · +γ∗∂J(γ·) implies

h(u1 − u2) ≤ 〈A(u1) + γ∗ξu1
−A(u2) − γ∗ξu2

, u1 − u2〉 ≤ 0.

Recalling that h(v) > 0 for all v ∈ V \{0V }, we conclude that u1 = u2. �

In what follows, when the first component of the pair solution to Problem 1 is
unique, we have the following stability result.

Theorem 16. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ. If
hypotheses H(A), H(b), H(J), H(h), and H(γ) hold, then the mapping S1 : V ∗ → V is
weakly continuous, i.e., fn → f in V ∗ implies S1(fn) → S1(f) weakly in V . Moreover,
if there exist τ > 1 and ch > 0 such that h(u) ≥ ch‖u‖

τ
V for all u ∈ V , then we have

‖S1(f1) − S1(f2)‖V ≤ c
1

τ−1

h ‖f1 − f2‖
1

τ−1

V ∗ . (29)

Proof. Let {fn} ⊂ V ∗ be a sequence such that fn → f in V ∗. Let (un, λn) ∈ V × Λ
be a solution to Problem 1 corresponding to fn. It follows from the assertion (iii)
of Theorem 11 that the sequence {(un, λn)} is bounded in V × Λ. The reflexivity of
V ×E ensures that there exist a subsequence of {(un, λn)}, still denoted by the same
symbol, and a pair of elements (u, λ) ∈ V × Λ such that

un → u weakly in V , and λn → λ weakly in E, as n → ∞. (30)

We now claim that (u, λ) is also a solution of Problem 1 associated with f . Indeed,
for each n ∈ N, we use Theorem 9 to get

〈A(un), v − un〉 + b(v, λn) − b(un, ρ) + J0(γun; γv − γun) ≥ 〈fn, v − un〉

for all v ∈ V and ρ ∈ Λ. From the h-relaxed monotonicity of A · +γ∗∂J(γ·), we have

〈A(v), v − un〉 + b(v, λn) − b(un, ρ) + 〈ξv, γ(v − un)〉X∗×X ≥ 〈fn, v − un〉 (31)

for all ξv ∈ ∂J(γv) and all (v, ρ) ∈ V × Λ. Passing to the upper limit in (31), as
n → ∞, and applying Theorem 9, we conclude that (u, λ) is a solution to Problem 1
with respect to f . Note that the first component of the pair solution for Problem 1 is
unique, this confesses that every subsequence of {un} converges weakly to the same
limit u, so, we deduce that the whole sequence {un} converges weakly to u in V , thus
is, S1(fn) → S(f) weakly in V , as n → ∞.

Furthermore, we assume that there exist τ > 1 and ch > 0 such that h(u) ≥
ch‖u‖

τ
V for all u ∈ V . Let (ui, λi) be a solution to Problem 1 corresponding to fi, for

i = 1, 2, respectively. So, we have ui = S1(fi) for i = 1, 2. By an easy calculation, it
turns out that

〈A(S1(f1)) − A(S1(f2)),S1(f1) − S1(f2)〉 −
(
J0(γS1(f1); γS1(f2) − γS1(f1))

+J0(γS1(f2); γS1(f1) − γS1(f2))
)
≤ 〈f1 − f2,S1(f1) − S1(f2)〉.
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Next, H(A)(ii) implies

ch‖S1(f1) − S1(f2)‖
τ
V ≤ h(S1(f1) − S1(f2)) ≤ 〈f1 − f2,S1(f1) − S1(f2)〉

≤ ‖f1 − f2‖V ∗‖S1(f1) − S1(f2)‖V .

Consequently, we can readily derive the inequality (29). This completes the proof. �

From Theorems 10 and 11, we have the following result.

Corollary 17. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ.
If hypotheses H(A), H(b), H(J), and H(γ) are satisfied with h(u) = 0 for all u ∈ V ,
then we have

(i) the solution set S(A, J, b, f) to Problem 1 is nonempty, bounded, weakly closed,
and convex in V × Λ,

(ii) the multivalued mapping S : V ∗ → 2V×Λ defined by f 7→ S(f) := S(A, J, b, f)
is bounded, i.e., S maps bounded subsets of V ∗ to bounded subsets of V × Λ,

(iii) the multivalued mapping f 7→ S(f) is strongly-weakly upper semicontinuous,
(i.e., it is upper semicontinuous from V ∗ endowed with the norm topology to the
subsets of V ×Λ endowed with the weak topology), and it has a strongly-weakly closed
graph.

Finally, invoking Remark 12, Lemma 13, Theorems 11, 15 and 16, we obtain the
following conclusion.

Corollary 18. Let Λ be a nonempty, closed and convex subset of E with 0E ∈ Λ. If
hypotheses H(A)(i)–(ii), H(A)(iv), H(b), H(J)(i), H(h)(ii), H(J)(iii) and H(γ) are
fulfilled with h(u) ≥ ch‖u‖

q for all u ∈ V and some ch > 0, q > 1, then Problem 1 has
at least one solution (u, λ) ∈ V ×Λ, which is unique in its first component. Moreover,
the following inequality holds

‖S1(f1) − S1(f2)‖V ≤ c
1

q−1

h ‖f1 − f2‖
1

q−1

V ∗ for all f1, f2 ∈ V ∗.
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[6] N. Costea, V. Rădulescu, Inequality problems of quasi-hemivariational type in-
volving set-valued operators and a nonlinear term, J. Global Optim. 52 (2012),
743–756.
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[24] S. Migórski, S.D. Zeng, Penalty and regularization method for variational-
hemivariational inequalities with application to frictional contact, Z. Angew.
Math. Mech. 98 (2018), 1503–1520.
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