
Versatile Mixed Methods for the Incompressible
Navier-Stokes Equations

Xi Chen, David M. Williams∗

Department of Mechanical Engineering, The Pennsylvania State University, University
Park, Pennsylvania 16802

Abstract

In the spirit of the “Principle of Equipresence” introduced by Truesdell &
Toupin, The Classical Field Theories (1960), we use the full version of the
viscous stress tensor ν

(
∇u+∇uT − 2

3 (∇ · u) I
)

which was originally derived
for compressible flows, instead of the classical incompressible stress tensor ν∇u.
(Note that, here ν is the dynamic viscosity coefficient, and u is the velocity field.)
In our approach, the divergence-free constraint for the viscous stress term is not
enforced ahead of discretization. Instead, our formulation allows the scheme
itself to “choose” a consistent way to interpret the divergence-free constraint:
i.e., the divergence-free constraint is interpreted (or enforced) in a consistent
fashion in both the mass conservation equation and the stress tensor term (in
the momentum equation). Furthermore, our approach preserves the original
symmetrical properties of the stress tensor, e.g. its rotational invariance, and it
remains physically correct in the context of compressible flows. As a result, our
approach facilitates versatility and code reuse. In this paper, we introduce our
approach and establish some important mathematical properties for the result-
ing class of finite element schemes. More precisely, for general mixed methods,
which are not necessarily pointwise divergence-free, we establish the existence of
a new norm induced by the full, viscous bilinear form. Thereafter, we prove the
coercivity of the viscous bilinear form and the semi-coercivity of a convective
trilinear form. In addition, we demonstrate L2-stability of the discrete velocity
fields for the general class of methods and (by deduction) the H(div)-conforming
methods. Finally, we run some numerical experiments to illustrate the behav-
ior of the versatile mixed methods, and we make careful comparisons with a
conventional H(div)-conforming scheme.

Keywords: Galerkin, divergence-free, symmetric tensor, incompressible
Navier-Stokes, mixed finite element methods, versatile
2010 MSC: 76M10, 65M12, 65M60, 76D05

∗Corresponding author
Email address: david.m.williams@psu.edu (David M. Williams )

Preprint submitted to Computers & Mathematics with Applications July 17, 2020

ar
X

iv
:2

00
7.

08
01

5v
1 

 [
m

at
h.

N
A

] 
 1

5 
Ju

l 2
02

0



1. Introduction

In this paper, we discuss the discretization of the incompressible Navier-
Stokes equations using mixed finite element methods. It is important to note
that mixed methods are not all the same, and that there are some important
differences that distinguish them from each other. Standard mixed methods
lack pressure robustness in the sense that the error estimate of velocity will be
affected by the pressure approximation scaled by the inverse of the viscosity
coefficient [1]. This scaling will lead to poor convergence behavior, especially
in convection-dominated flows. Another closely-related issue with many mixed
methods is the weak enforcement of the divergence-free constraint. As a re-
sult, one loses the conservation of mass that is associated with the continuous
system. There are many ways to address this issue for non-divergence-free meth-
ods. For example, for the standard Taylor-Hood velocity-pressure pair (which
is H1-conforming in both velocity and pressure fields), one of the popular ap-
proaches is to add a grad-div stabilization term originally proposed by Franca
and Hughes [2]. This term effectively penalizes the lack of mass conservation.
As a result, one can improve solution accuracy by reducing the effect of the
pressure error on the velocity error [3, 4]. One thing worth noticing is that,
although the grad-div term penalizes the failure to conserve mass, the result-
ing method may still be far from divergence free [1]. For practical problems
which require strict mass conservation, this remains an issue. (For some more
recent work related to grad-div stabilization, see for example [5, 6, 7, 8, 9]). One
way to completely remedy the poor mass conservation is to use Scott-Vogelius
elements [10], which maintain the H1-conforming nature of the velocity field,
while allowing the pressure field to become discontinuous. For these methods,
one can obtain pressure robustness, as now the weakly divergence-free velocity
space is pointwise divergence-free [10]. Note: in this context and throughout
the remainder of the paper, whenever we say pointwise divergence-free, we mean
pointwise divergence-free within each element. Finally, a typical way to remedy
mass conservation issues for a discontinuous Galerkin method is to perform a
post-processing procedure on the velocity field, or to penalize the jumps in the
normal components of the velocity field. The post-processing procedure involves
projecting the discrete velocity field into an exactly incompressible space [11],
whereas the penalization procedure is enforced through the introduction of a
dissipative numerical flux function [12] which controls the jumps in the normal
components. Similar procedures are discussed in [13, 14].

The key point is that, for many H(div)-conforming methods, we can com-
pletely omit the penalization and post-processing procedures described above.
The principal advantage of these H(div)-conforming methods is that, by care-
fully choosing the velocity and pressure pair [15], one can make the velocity
space to be pointwise divergence-free, while simultaneously enforcing an inf-
sup condition on the velocity and pressure spaces. These two properties can
be used to (naturally) ensure mass conservation and pressure robustness [16].
There are many H(div)-conforming methods of this type, including Raviart-
Thomas and Brezzi-Douglas-Marini based methods [12, 17], and related meth-
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ods [18, 19, 20, 21]. This list of methods is far from exhaustive, but is merely
meant to summarize some of the recent work in this area.

In addition to pressure robustness and conservation of mass, finite element
schemes should possess other desirable properties, such as conservation of lin-
ear momentum, angular momentum, and kinetic energy. Note that the con-
servation of kinetic energy only holds in the limit of vanishing viscosity, (see
the discussions in [22, 23, 24] for details). It turns out that all of the im-
portant conservation properties (mentioned above) are exactly satisfied at the
discrete level for pointwise divergence-free, H1-conforming methods. In addi-
tion, conservation of kinetic energy is guaranteed for pointwise divergence-free,
H(div)-conforming methods that are equipped with an appropriate numerical
flux, (e.g. the central flux of [12]). However, these properties are not guaranteed
to hold for general mixed methods. For these methods, discrete conservation of
linear momentum, angular momentum, and kinetic energy are closely linked to
the discretization of the nonlinear convective term (u · ∇)u that appears in the
momentum equation (as discussed in [25]). The conventional discretizations of
this term, such as the direct discretization of (u · ∇)u, or the discretization of
the skew-symmetric formulation, (u · ∇)u+ (1/2) (∇ · u)u, fail to enforce dis-
crete conservation. Instead, it is necessary to introduce the “energy momentum
and angular momentum conserving” (EMAC) formulation [26, 27, 28, 29] which
takes the following form: (∇u + ∇uT )u + (∇ · u)u. This form is interesting
because it rewrites the convective term as a function of the symmetric gradient.
We choose not to focus on EMAC methods in the remainder of this work, but we
mention them here due to their recent popularity in finite element discussions,
and their superficial similarity to our proposed approach.

In light of our previous discussion, which focused on the convective term, we
now turn our attention to the classical viscous term, ∇ · (ν∇u). Naturally, this
term is obtained by applying the divergence-free constraint to the compressible,
symmetric stress tensor ν

(
∇u+∇uT − 2

3 (∇ · u) I
)
. Therefore, finite element

methods that use the non-symmetric form of the stress tensor, i.e. ν∇u, effec-
tively assume that the divergence-free constraint should be enforced prior to
discretization. Here, we propose that the divergence-free constraint should be
enforced after discretization, and that the original symmetric formulation of the
stress tensor should be retained. This facilitates philosophical consistency be-
tween the treatment of the divergence-free constraint in the mass equation and
the momentum equation. Furthermore, we prefer the full compressible tensor
due to its symmetry, which enables rotational invariance, and its versatility,
which facilitates the application of our methods to compressible flows.

Now, the idea of reformulating the stress tensor term by using a symmetric
stress tensor instead of a non-symmetric stress tensor is not new. However,
most finite element methods which utilize a symmetric stress tensor have been
designed for solving elasticity problems, rather than fluids problems. Since the
divergence of the Cauchy stress tensor contributes to the governing equations
of elasticity, the appropriate space for the stress tensor is H(div; Ω;S), where
S denotes a symmetric tensor. If one is able to work inside this space at the
discrete level, then one obtains H(div)-conforming approximations and sym-
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metry [30, 31, 32, 33]. However, the resulting methods have some issues with
computational efficiency [34], and therefore, some researchers relax the H(div)-
conforming requirement while maintaining symmetry [35, 36, 34].

The construction of mixed methods that preserve the symmetry of the stress
tensor for fluids problems has only recently garnered significant attention. In
particular, for Stokes flow, [37] and [38] constructed H(div)-nonconforming and
symmetric methods. These methods are more expensive than standard mixed
methods, as they introduce additional unknowns for the stress tensor compo-
nents, (although this yields better accuracy in some cases). In contrast, one
may consider less expensive mixed methods that omit the extra unknowns, and
directly introduce the symmetric tensor into the primal formulation. Examples
of these methods include the H1-conforming method of [39], and the H(div)-
conforming method of [40, 41]. In the remainder of this paper, we propose mixed
finite element methods that are natural extensions of these ‘primal methods’.
Our work differs from the previous work in this area, as all previous efforts have
utilized the symmetric tensor formulation ν

(
∇u+∇uT

)
, whereas we use the

full symmetric tensor formulation ν
(
∇u+∇uT − 2

3 (∇ · u) I
)
. Furthermore,

almost all prior work has focused on the Stokes equations, whereas we focus on
the complete, incompressible Navier-Stokes equations.

Our paper is organized as follows. In section 2 we introduce some relevant
notation and give the motivation for our formulation. In sections 3 and 4 we
present a general class of mixed finite element methods, and then introduce
a specific class of pointwise divergence-free, H(div)-conforming methods. In
section 5 we explore the key differences between our general approach and several
alternative methods. In section 6 we prove some important properties of the
bilinear and trilinear forms for the general case. In section 7 we prove L2-
stability of the velocity field for the general case. Next, in section 8 we carry
out some canonical simulations to show the behavior of our schemes. Finally, in
section 9 we summarize our work, and in the Appendices we provide a detailed
derivation of the schemes.

2. Preliminaries

Our objective is to solve the incompressible Navier-Stokes (NS) equations in
a bounded, (d+ 1)-dimensional domain (0, tn)×Ω, with boundary (0, tn)×∂Ω,
where tn > 0 is an arbitrary final time and d = 2 or 3. Towards this end, we
first define the pressure field p (t,x) and the velocity field u (t,x). Throughout
this discussion, we assume that the density is constant in both space and time,
i.e., ρ = ρ0, ρ 6= ρ (t,x). It is common practice to specify ρ0 as a unit value
to simplify the presentation, and then to denote p/ρ as simply p. We will not
do this here, as this practice is not (strictly speaking) dimensionally consistent
and it obfuscates the connection between the incompressible and compressible
NS equations. Instead, we will define a new pressure variable p̃ = p/ρ. In what
follows, p̃ and u will serve as the primary parameters of interest.
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Now, we can formally introduce the incompressible NS equations, which take
the form

∂t u+∇ · (u⊗ u+ p̃ I)−∇ · τ̃ = f̃ , in (0, tn)× Ω, (2.1)

∇ · u = 0, in (0, tn)× Ω, (2.2)

u = 0, on (0, tn)× ∂Ω, (2.3)

u(0,x) = u0(x), in Ω, (2.4)

where ∂t (·) is the temporal derivative operator, ∇ (·) is the spatial gradient op-

erator, f̃ is the density-weighted forcing function, and τ̃ is the density-weighted
viscous stress tensor

τ̃ = ν

(
∇u+∇uT − 2

3
(∇ · u) I

)
. (2.5)

Here, ν = µ/ρ0 is the kinematic viscosity coefficient, and µ is the dynamic
viscosity coefficient.

Our presentation of the incompressible NS equations differs from the clas-
sical presentation as we use a ‘compressible stress tensor’ in Eq. (2.5) that
contains the velocity gradient, the velocity gradient transpose, and the velocity
divergence; whereas conversely, the classical ‘incompressible stress tensor’ only
contains the velocity gradient, as follows

τ̃ = ν∇u. (2.6)

Of course, if our objective is to calculate ∇ · τ̃ in Eq. (2.1), the stress tensor
formulations in Eqs. (2.5) and (2.6) are equivalent, as the following identities
hold at the continuous level

∇ ·
(
ν∇uT

)
= ν∇ ·

(
∇uT

)
= ν∇ (∇ · u) = 0, (2.7)

−∇ ·
(

2

3
ν (∇ · u) I

)
= −2

3
ν∇ · ((∇ · u) I) = 0, (2.8)

because ∇ · u vanishes pointwise in accordance with Eq. (2.2). However, the
stress tensor formulations are different at the discrete level, as ∇ · u does not
necessarily vanish pointwise when a generic finite element method is applied to
Eq. (2.2). Furthermore, even if we successfully choose a finite element method
for which ∇ ·u vanishes pointwise, the velocity gradient transpose (∇uT ) term
in Eq. (2.7) does not necessarily vanish in the weak formulation of the equa-
tions. Because of these considerations, the formulation in Eq. (2.5) is inherently
distinct from the formulation in Eq. (2.6).

Based on the discussion above, it is not immediately clear which stress tensor
formulation, Eq. (2.5) or (2.6), should be utilized in practice. In what follows,
we claim that the formulation in Eq. (2.5) is preferable, due to its superior
versatility and flexibility. In particular:
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1. The formulation in Eq. (2.5) easily applies to both incompressible and
compressible fluids, whereas the formulation in Eq. (2.6) only applies to
incompressible fluids. We anticipate that the formulation in Eq. (2.5) will
facilitate code-reuse, and allow for a more unified treatment of compress-
ible and incompressible flows.

2. The formulation in Eq. (2.5) is rotationally invariant, whereas the for-
mulation in Eq. (2.6) is rotationally variant. This follows from the fact
that Eq. (2.6) contains the full velocity gradient tensor ∇u, which (by
construction) is composed from symmetric and antisymmetric parts,

∇u =
1

2

(
∇u+∇uT

)
︸ ︷︷ ︸

symmetric

+
1

2

(
∇u−∇uT

)
︸ ︷︷ ︸

antisymmetric

= ε (u) + ω (u) .

Conversely, Eq. (2.5) only contains the symmetric part. In order to high-
light the significance of this distinction, we review the following basic
result from the field of continuum mechanics. Let us consider two refer-
ence frames that are related by a proper orthogonal tensor Q ∈ SO(3),
(i.e. a rotation tensor), such that x∗ − x∗0 = Q (x− x0). Then, we have
rotational invariance for the symmetric part

ε (u)
∗

= Qε (u)QT ,

but not for the antisymmetric part

ω (u)
∗

= Qω (u)QT + Q̇QT .

In light of the above discussion, one may view Eqs. (2.1) and (2.2) as a system
of equations for unknowns p̃ and u, where Eq. (2.5) is a general constitutive
relation.

Next, we will prepare to solve Eqs. (2.1) and (2.2) at the discrete level by
introducing the necessary mathematical machinery which consists of the follow-
ing: a suitable subdivision of the domain Ω and notations for inner products,
jumps, and function spaces. Towards this end, we introduce a mesh Th that
discretizes the domain Ω and contains elements K. We assume that the bound-
ary of the domain, ∂Ω, is composed from straight edges (or faces), and that
the mesh conforms to the domain. In addition, each element in the mesh has
a boundary ∂K that is composed from a collection of faces denoted by FK .
The total collection of faces in the mesh is denoted by Fh. Therefore, if we
denote an individual face by F , then the collection of faces for an element are
defined such that: FK = {F ∈ Fh : F ⊂ ∂K}. Each interior face F is shared
by two elements, and we assume that the elements do not overlap, and that the
mesh does not contain any hanging nodes. The collection of all interior faces is
denoted by F ih = {F ∈ Fh : F ∩ ∂Ω = ∅}, and the collection of boundary faces
by F∂h = {F ∈ Fh : F ∩ ∂Ω 6= ∅}. Finally, an outward-pointing normal vector
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for an arbitrary element is denoted by n, and a normal vector associated with a
face F is denoted by nF . The vector nF is assumed to point from the positive
(+) side of a face towards the negative (-) side.

We can now define inner products of vector-valued functions v and w over
the elements and faces of the mesh as follows

(v,w)Th =
∑
K∈Th

∫
K

v ·w dV, 〈v,w〉∂Th =
∑
K∈Th

∫
∂K

v ·w dA,

〈v,w〉Fh
=
∑
F∈Fh

∫
F

v ·w dA.

In addition, for a scalar-valued function φ, a vector-valued function v, and
a second-order-tensor-valued function T , we have the following integration by
parts formulas ∫

∂K

φ (v · n) dA =

∫
K

(φ (∇ · v) + v · ∇φ) dV,

∫
∂K

v · Tn dA =

∫
K

(v · (∇ · T ) + T : ∇v) dV,

or equivalently

〈φv,n〉∂K = (φ,∇ · v)K + (v,∇φ)K ,

〈v,Tn〉∂K = (v,∇ · T )K + (T ,∇v)K .

For each of the integration formulas above, we have assumed that the integrands
are well-defined such that the integrations make sense.

Next, we will introduce jump [[·]] and average {{·}} operators for an interface
F as follows

[[φ]] = φ+ − φ−, [[φn]] = φ+n+ + φ−n−, {{φ}} =
1

2
(φ+ + φ−) ,

[[v]] = v+ − v−, [[v ⊗ n]] = v+ ⊗ n+ + v− ⊗ n−, {{v}} =
1

2
(v+ + v−) ,

when F ∈ F ih, and we define

[[φ]] = φ, [[φn]] = φn, {{φ}} = φ,

[[v]] = v, [[v ⊗ n]] = v ⊗ n, {{v}} = v,

when F ∈ F∂h . We conclude this section by introducing some standard function
spaces that are necessary for constructing mixed finite element methods. We
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begin by defining the following Hilbert spaces

H0(div; Ω) =
{
w : w ∈ L2(Ω), ∇ ·w ∈ L2(Ω), w · n|∂Ω = 0

}
,

H1
0 (Ω) =

{
w : w ∈H1(Ω), w|∂Ω = 0

}
,

Hm(Th) =
{
w ∈ L2(Ω),w|K ∈Hm(K), ∀K ∈ Th

}
,

where H1 (Ω) =
(
H1 (Ω)

)d
. Next, we can define the finite element spaces

QDCh =
{
qh : qh ∈ L2

∗ (Ω) , qh|K ∈ Pk (K) ,∀K ∈ Th
}
,

WRT
h = {wh : wh ∈H0 (div; Ω) ,wh|K ∈ RTk (K) ,∀K ∈ Th} ,

where L2
∗ (Ω) is the space of L2 functions with zero mean, Pk (K) is the space

of polynomials of degree ≤ k, and RTk (K) is the Raviart-Thomas space of
degree k

RTk (K) = (Pk (K))
d ⊕ Pk (K)x.

Note that the Raviart-Thomas space does not completely span (Pk+1 (K))
d
.

This limits the accuracy of the resulting methods, and as a result, one may in-
stead consider the Brezzi-Douglas-Marini (BDM) space which maintains H(div)-

conformity, while still spanning (Pk+1 (K))
d
. We denote the BDM space by

WBDM
h , and we refer the reader to [15] for an explicit definition.
Finally, we define the following continuous function spaces that are necessary

for constructing Taylor-Hood elements

QTHh =
{
qh : qh ∈ C0 (Ω) , qh|K ∈ Pk (K) ,∀K ∈ Th

}
∩ L2
∗ (Ω) ,

W TH
h =

{
wh : wh ∈ C0 (Ω) ,wh|K ∈ (Pk+1 (K))

d
,∀K ∈ Th

}
∩H1

0 (Ω),

where C0 (Ω) =
(
C0 (Ω)

)d
.

3. General Mixed Methods

In this section, we introduce a new class of mixed finite element methods
for discretizing Eqs. (2.1) and (2.2). This class of methods is very general,
and it includes methods that are not necessarily pointwise divergence-free. We
will utilize this class of methods to construct a particular class of pointwise
divergence-free methods in the next section. For now, we consider the general
framework of methods, which can be formally stated as follows: 1) identify
function spaces Qh ⊂ L2

∗ (Ω) and Wh ⊂ H0(div; Ω); 2) choose test functions
(qh,wh) that span Qh ×Wh; and 3) find unknowns (p̃h,uh) in Qh ×Wh that
satisfy

(∇ · uh, qh)Th = 0, (3.1)
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(∂tuh,wh)Th − (uh ⊗ uh,∇hwh)Th − (p̃h,∇ ·wh)Th + 〈σ̂inv n,wh〉∂Th

+ νh

[(
∇huh +∇huTh −

2

3
(∇ · uh) I,∇hwh

)
Th
− 〈σ̂vis n,wh〉∂Th

+

〈
ϕ̂vis − uh,

(
∇hwh +∇hwT

h −
2

3
(∇ ·wh) I

)
n

〉
∂Th

]

− 1

2
((∇ · uh)uh,wh)Th =

(
f̃ ,wh

)
Th
, (3.2)

where the quantities with hats (e.g. σ̂inv) denote numerical fluxes. We recom-
mend that the numerical fluxes are specified in the following fashion

σ̂inv = {{uh}} ⊗ {{uh}}+ {{p̃h}} I + ζ |uh · nF | [[uh ⊗ n]] ,

σ̂vis =

{{
∇huh +∇huTh −

2

3
(∇ · uh) I

}}
− η

hF
[[uh ⊗ n]] ,

ϕ̂vis = {{uh}} ,

where ζ and η are user-specified parameters that control the amount of dissipa-
tion that is added to the scheme.

Now, it is standard practice to rewrite Eqs. (3.1) and (3.2) as the following
compact system

bh (uh, qh) = 0, (3.3)

(∂t uh,wh)Th + ch (uh;uh,wh) + νhah (uh,wh)− bh (wh, p̃h) =
(
f̃ ,wh

)
Th
,

where ah is a viscous bilinear form, bh is a convective bilinear form, and ch is a
convective trilinear form. Each of the bilinear and trilinear forms in Eq. (3.3)
can be explicitly defined in terms of scalar function qh ∈ L2

∗ (Ω), and vector
functions vh, wh, and βh ∈H0(div; Ω) as follows

bh (vh, qh) = (∇ · vh, qh)Th , (3.4)

ch (βh;vh,wh) = − (vh ⊗ βh,∇hwh)Th −
1

2
((∇ · βh)vh,wh)Th (3.5)

+ 〈({{vh}} ⊗ {{βh}}+ ζ |βh · nF | [[vh ⊗ n]])n,wh〉∂Th ,

ah (vh,wh) =

(
∇hvh +∇hvTh −

2

3
(∇ · vh) I,∇hwh

)
Th

(3.6)

−
〈({{

∇hvh +∇hvTh −
2

3
(∇ · vh) I

}}
− η

hF
[[vh ⊗ n]]

)
n,wh

〉
∂Th

+

〈
{{vh}} − vh,

(
∇hwh +∇hwT

h −
2

3
(∇ ·wh) I

)
n

〉
∂Th

.
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In addition, we can perform integration by parts on the trilinear form ch, and
then rewrite ch and the bilinear form ah in terms of summations over faces in
the mesh as follows

ch (βh;vh,wh) = (βh · ∇hvh,wh)Th +
1

2
((∇ · βh)vh,wh)Th (3.7)

− 〈(βh · nF ) [[vh]] , {{wh}}〉Fi
h

+ ζ 〈|βh · nF | [[vh]] , [[wh]]〉Fi
h
,

ah (vh,wh) =

(
∇hvh +∇hvTh −

2

3
(∇ · vh) I,∇hwh

)
Th

(3.8)

−
〈

[[vh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇ ·wh) I

}}
nF

〉
Fh

−
〈

[[wh]] ,

{{
∇hvh +∇hvTh −

2

3
(∇ · vh) I

}}
nF

〉
Fh

+

〈
η

hF
[[vh]] , [[wh]]

〉
Fh

.

Here, we assumed that a consistent boundary term was added to Eq. (3.6) in
order to obtain Eq. (3.8). Generally speaking, the consistency of the formulation

holds for exact solutions p̃(t) ∈ L2
∗(Ω) and u(t) ∈ H 3

2 +ε(Th) ∩H1
0 (Ω) where

ε > 0.

4. Pointwise Divergence-Free, H(div)-Conforming Methods

In this section, we introduce a class of pointwise divergence-free, H(div)-
conforming methods for discretizing Eqs. (2.1) and (2.2). These methods are
derived from section 3, and can be stated formally as follows: 1) set function
spaces Qh = QDCh and Wh = WRT

h or Wh = WBDM
h ; 2) choose test functions

(qh,wh) that span Qh ×Wh; and 3) find unknowns (p̃h,uh) in Qh ×Wh that
satisfy

(∇ · uh, qh)Th = 0, (4.1)

(∂tuh,wh)Th − (uh ⊗ uh,∇hwh)Th − (p̃h,∇ ·wh)Th + 〈σ̂inv n,wh〉∂Th

+ νh

[ (
∇huh +∇huTh ,∇hwh

)
Th
− 〈σ̂vis n,wh〉∂Th

+
〈
ϕ̂vis − uh,

(
∇hwh +∇hwT

h

)
n
〉
∂Th

]
=
(
f̃ ,wh

)
Th
. (4.2)

We can now rewrite Eqs. (4.1) and (4.2) as the following compact system

bh (uh, qh) = 0,

(∂t uh,wh)Th + ch (uh;uh,wh) + νhah (uh,wh)− bh (wh, p̃h) =
(
f̃ ,wh

)
Th
.
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The bilinear form bh was previously defined in Eq. (3.4). In addition, the forms
ch and ah can be written as follows

ch (βh;vh,wh) = (βh · ∇hvh,wh)Th (4.3)

− 〈(βh · nF ) [[vh]] , {{wh}}〉Fi
h

+ ζ 〈|βh · nF | [[vh]] , [[wh]]〉Fi
h
,

ah (vh,wh) =
(
∇hvh +∇hvTh ,∇hwh

)
Th
−
〈
[[vh]] ,

{{
∇hwh +∇hwT

h

}}
nF
〉
Fh

−
〈
[[wh]] ,

{{
∇hvh +∇hvTh

}}
nF
〉
Fh

+

〈
η

hF
[[vh]] , [[wh]]

〉
Fh

. (4.4)

One should note that these methods are pointwise divergence-free because Wh

and Qh are ‘divergence-conforming’ in the following sense: ∇·Wh ⊆ Qh, (see [1]
for more details).

5. Connections with Other Approaches

In this section, we explore the connections between the general finite ele-
ment methods in section 3, and previously established methods. We begin by
discussing the relationship between the viscous bilinear form ah in Eq. (3.8) and
the classical concept of grad-div stabilization. Thereafter, we demonstrate that
the conventional analysis of grad-div stabilization does not immediately apply
to the new viscous bilinear form. Finally, we explore the connections between
the new approach and several additional stabilization procedures.

5.1 Relationship with Grad-Div Stabilization

The standard grad-div stabilization term can be written as follows

ε (∇ · vh,∇ ·wh)Th , (5.1)

where ε ≥ 0 is a user-defined parameter. Note that the origin of the name
‘grad-div stabilization’ can be illustrated upon integrating Eq. (5.1) by parts

ε (∇ · vh,∇ ·wh)Th = ε
[
〈∇ · vh,wh · n〉∂Th − (∇h (∇ · vh) ,wh)Th

]
. (5.2)

If one neglects the first term on the RHS of Eq. (5.2), or equivalently, if ∇ · vh
is continuous and wh vanishes on the boundary, then

ε (∇ · vh,∇ ·wh)Th = −ε (∇h (∇ · vh) ,wh)Th ,

and the stabilization only consists of a grad-div volumetric term.
Now, in order to help stabilize the finite element methods introduced in

section 3, the grad-div term (Eq. (5.1)) can be added to the LHS of Eq. (3.2).
Upon performing this operation, and setting vh = wh = uh one obtains

(∂tuh,uh)Th + ε (∇ · uh,∇ · uh)Th + (Remaining Terms) = 0,
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or equivalently

1

2

d

dt
‖uh‖2L2(Ω) + (Remaining Terms) = −ε ‖∇ · uh‖2L2(Ω) .

Naturally, the grad-div term helps stabilize the resulting scheme by decreasing
the growth rate of the kinetic energy.

With this in mind, we can now highlight the key distinction between grad-
div stabilization and the formulation of ah in Eq. (3.8). In particular, upon
setting vh = wh = uh in Eq. (3.8) and multiplying by the viscosity coefficient
νh, one obtains

νhah (uh,uh) = νh

[ (
∇huh +∇huTh ,∇huh

)
Th

(5.3)

− 2
〈
[[uh]] ,

{{
∇huh +∇huTh

}}
nF
〉
Fh

+

〈
η

hF
[[uh]] , [[uh]]

〉
Fh

+
4

3
〈[[uh]] , {{(∇ · uh) I}}nF 〉Fh

− 2

3
(∇ · uh,∇ · uh)Th

]
.

Upon examining Eq. (5.3), we see that all of the dilatational terms have been
placed on the last line. As a result of these terms, some non-standard analysis
is required. In particular, let us focus on the second term of the last line

−2 νh
3

(∇ · uh,∇ · uh)Th .

This term is identical to the grad-div stabilization term of Eq. (5.1) if we set
ε = −2 νh/3. Unfortunately, this action is not permitted since we require ε ≥ 0
by construction. Therefore, we have shown that the stability (or coercivity) of
ah in Eq. (3.8) does not immediately follow from the standard arguments for
grad-div stabilization, as ε has the wrong sign. In what follows, we will briefly
review some attempts to address this issue.

5.2 Alternative Perspectives

In his classical textbook, John has suggested (see [9], p. 219) modifying the
stress tensor by replacing the coefficient of the dilatation term (−2ν/3) with
(ξ − 2ν/3), such that

τ̃ = ν
(
∇u+∇uT

)
+

(
ξ − 2ν

3

)
(∇ · u) I.

Here, ξ is the ‘bulk viscosity coefficient’. For sufficiently large values of ξ
(i.e. ξ > 2ν/3), the coefficient of the dilatational term becomes positive, and
the resulting volumetric contribution can be treated as a grad-div stabilization
term. Unfortunately, in accordance with Stokes’ hypothesis, it is commonplace
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to assume that ξ = 0. This hypothesis is exactly correct for monatomic gases,
and for polyatomic gases, it produces accurate predictions over a wide range of
flow conditions [42]. Therefore, it is difficult to justify choosing ξ 6= 0, and the
resulting argument is not sufficiently general.

Some authors (e.g. Peterson et al. [43]), have suggested ignoring the volu-
metric dilatational term entirely, based on principles from residual-based stabi-
lization theory. In particular, they suggest balancing the volumetric dilatational
term by implicitly adding a term of the form

(τLSIC∇ · uh,∇ ·wh)Th = τLSIC (∇ · uh,∇ ·wh)Th (5.4)

=
2ν

3
(∇ · uh,∇ ·wh)Th ,

where τLSIC = 2ν/3 is a least-squares incompressibility condition (LSIC) coeffi-
cient. This stabilization term is merely a re-interpretation of grad-div stabiliza-
tion. The resulting method is only guaranteed to be stable if the inter-element
jump terms vanish. Evidently, this assumption is valid for H1-conforming meth-
ods, but not for discontinuous Galerkin or H(div)-conforming methods. Fur-
thermore, we claim that the resulting schemes are unnecessarily dissipative. In
particular, the stabilization term in Eq. (5.4) is unnecessary, as we can prove
coercivity in its absence (see Lemma 6.2, in the next section).

Finally, Allaire has shown (see [44], p. 138), that there is an alternative ap-
proach that applies to H1

0 -conforming methods, (or more specifically, H1
0 ∩C0-

conforming methods). In order to illustrate this approach, one may start with
the gradient transpose term

(
∇hzT ,∇hz

)
Th

, with z ∈ C∞c (Ω) and C∞c (Ω) the

space of vector-valued, compactly supported, infinitely differentiable functions.
Then, we have(

∇hzT ,∇hz
)
Th

= 〈∇hz,n⊗ z〉∂Th − (∇h (∇ · z) , z)Th (5.5)

= 〈∇hz,n⊗ z〉∂Th − 〈∇ · z, z · n〉∂Th + (∇ · z,∇ · z)Th

= (∇ · z,∇ · z)Th .

Now, we observe that due to the density of C∞c (Ω) in H1
0 (Ω), and with an abuse

of notation, Eq. (5.5) holds for all z ∈H1
0 (Ω). Upon enforcing the inter-element

continuity of uh, and substituting this identity into Eq. (5.3) with z = uh one
obtains

νhah (uh,uh) = νh

[
(∇huh,∇huh)Th +

1

3
(∇ · uh,∇ · uh)Th

]
. (5.6)

The second term on the RHS of Eq. (5.6) is simply a grad-div stabilization
term with ε = νh/3. Therefore, we have shown that the negative dilatational
contribution is completely cancelled by the gradient transpose term forH1

0∩C0-
conforming methods. Of course, the assumption of H1

0 -conformity means that
the approach of Allaire does not apply to general H1-conforming methods with
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non-zero velocity boundary conditions, H(div)-conforming methods, or discon-
tinuous Galerkin methods.

With all of the limitations and restrictions (above) in mind, in the next
section we explore a significantly more general approach.

6. Analysis of the Bilinear and Trilinear Forms: General Case

In this section, we prove that there is a norm associated with the viscous
bilinear form ah in Eq. (3.8). Furthermore, we prove that the viscous bilinear
form ah is coercive and show that the convective trilinear form ch in Eq. (3.7)
is semi-coercive.

Lemma 6.1 (Establishing a New Norm). Suppose w ∈ H1(Th), the space of
piecewise H1 vector fields, and d = 2 or 3, then

‖w‖sym =

(∥∥∥∥∇hw +∇hwT − 2

3
(∇h ·w) I

∥∥∥∥2

L2(Ω)×L2(Ω)

+

〈
1

hF
[[w]] , [[w]]

〉
Fh

)1/2

,

(6.1)

is a norm on Ω.

Proof. The only nontrivial part of the proof is to show that if ‖w‖sym = 0, then
w = 0. With this in mind, let us first consider the case of d = 2 and find the
kernel of

∇w +∇wT − 2

3
(∇ ·w) I, (6.2)

for a single element. Towards this end, we can obtain four equations, one for
each of the tensor components as follows

∂wi
∂xj

+
∂wj
∂xi
− 2

3

∂wk
∂xk

δij = 0.

If we consider only the diagonal components, we find that

∂w1(x1, x2)

∂x1
=
∂w2(x1, x2)

∂x2
= 0.

Therefore, w1 = w1 (x2) and w2 = w2 (x1). Next, based on the off-diagonal
components of the tensor, we conclude that

∂w1(x2)

∂x2
= −∂w2(x1)

∂x1
= k1,

where k1 is a generic constant. Thus, the kernel space Wker of Eq. (6.2) can be
expressed as follows: w ∈ R2 such that

w =

[
w1

w2

]
=

[
0 k1

−k1 0

] [
x1

x2

]
+

[
k2

k3

]
, (6.3)
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where k2 and k3 are constants.
Now, since we have established an explicit definition for the kernel space on

each element, we can assert that ‖w‖sym = 0 implies that w ∈ Wker on each
element. Furthermore, by the definition of ‖·‖sym, we note that ‖w‖sym = 0
implies that w is continuous across interior edges, and that w = 0 on the
boundary of the domain. It turns out that if w ∈ Wker over an arbitrary
element and w = 0 on at least one edge of the element, then w vanishes over
the entire element (see [44], p. 140). By this fact, and the fact that w vanishes
on the boundary of the domain and is continuous over interior edges, then w
vanishes over the entire domain. This completes our proof for the case of d = 2.

Now, let us consider the case of d = 3. In accordance with [45, 46], the kernel
space Wker can be written as follows: w ∈ R3 such that

w =

w1

w2

w3

 =

 0 k1 k2

−k1 0 k3

−k2 −k3 0

x1

x2

x3

+

k4

k5

k6

− (x2
1 + x2

2 + x2
3)

 k8

k9

k10



+
(
2(k8x1 + k9x2 + k10x3) + k7

)x1

x2

x3

 , (6.4)

where k1, k2, . . . , k10 are constants.
The key is to prove that if w ∈ Wker vanishes on a plane (e.g. the face of an

element), then w = 0 throughout the element. Without loss of generality, we
begin by assuming that w vanishes on a plane of the form

x1 = bx2 + cx3 + d, (6.5)

where b, c, and d are constants. Next, we substitute Eq. (6.5) into Eq. (6.4),
and rearrange the result in order to obtain(

k4 + dk7 + d2k8

)
+ (k1 + bk7 + 2bdk8 + 2dk9)x2

+
(
−k8 + b2k8 + 2bk9

)
x2

2 + (2dk10 + k2 + ck7 + 2cdk8)x3

+ (2bk10 + 2bck8 + 2ck9)x2x3 +
(
2ck10 − k8 + c2k8

)
x2

3 = 0, (6.6)(
−dk1 + k5 − d2k9

)
+ (−bk1 + k7 + 2dk8 − 2bdk9)x2

+
(
2bk8 + k9 − b2k9

)
x2

2 + (−ck1 + k3 − 2cdk9)x3

+ (2k10 + 2ck8 − 2bck9)x2x3 +
(
−k9 − c2k9

)
x2

3 = 0, (6.7)(
−d2k10 − dk2 + k6

)
+ (−2bdk10 − bk2 − k3)x2

+
(
−k10 − b2k10

)
x2

2 + (−2cdk10 − ck2 + k7 + 2dk8)x3

+ (−2bck10 + 2bk8 + 2k9)x2x3 +
(
k10 − c2k10 + 2ck8

)
x2

3 = 0. (6.8)

In order for these equations to hold, the coefficients in front of the monomial
terms x2, x3, x2x3, x

2
2 and x2

3 must vanish. More specifically, by examining the
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coefficient of x2
3 in Eq. (6.7) and the coefficient of x2

2 in Eq. (6.8), we obtain
that k9 = k10 = 0. Next, we divide the remainder of the proof into the following
three cases:

Case 1) b 6= 0, c ∈ R, d ∈ R

Upon inspecting the coefficient of x2
2 in Eq. (6.7), we immediately obtain that

k8 = 0. The remaining nontrivial equations are

k5 − dk1 = 0, −bk1 + k7 = 0, −ck1 + k3 = 0,

k4 + dk7 = 0, bk7 + k1 = 0, ck7 + k2 = 0,

k6 − dk2 = 0, −bk2 − k3 = 0, −ck2 + k7 = 0.

Upon multiplying the third equation of the second row by k2 and the third
equation of the third row by k7, and then adding the results together, we obtain
k2

2 + k2
7 = 0. Therefore, k2 = k7 = 0. Now, it is straightforward to obtain

k1 = k3 = k4 = k5 = k6 = 0 by inspecting the remaining equations in rows 1–3.

Case 2) b = 0, c 6= 0, d ∈ R

Upon inspecting the coefficient of x2
3 in Eq. (6.8), we immediately obtain that

k8 = 0. The remaining nontrivial equations are

k4 + dk7 = 0, k1 = 0, ck7 + k2 = 0,

k5 − dk1 = 0, k7 = 0, −ck1 + k3 = 0,

k6 − dk2 = 0, k3 = 0, −ck2 + k7 = 0.

It immediately follows that k1 = k2 = k3 = k4 = k5 = k6 = k7 = 0 by examining
these equations.

Case 3) b = 0, c = 0, d ∈ R

Finally, upon inspecting the coefficient of x2
2 in Eq. (6.6), we immediately obtain

that k8 = 0. The remaining nontrivial equations are

k4 + dk7 = 0, k1 = 0, k2 = 0,

k5 − dk1 = 0, k7 = 0, k3 = 0,

k6 − dk2 = 0, k3 = 0, k7 = 0.

It immediately follows that k1 = k2 = k3 = k4 = k5 = k6 = k7 = 0 by examining
these equations.

Therefore, we have proved that if w ∈ Wker vanishes on at least one face of
an element, then w = 0 on the entire element. Finally, the proof for the case of
d = 3 is completed by observing that if ‖w‖sym = 0, then we have w ∈ Wker on
each element, w vanishes on the domain boundary, and w is continuous across
the interior faces. These facts combine to ensure that w vanishes throughout
the domain.

Lemma 6.2 (Coercivity of the Viscous Bilinear Form). Suppose we choose
generic test functions wh,vh ∈Wh, and we assume that d = 2 or 3. Further-
more, we choose η > 2C2

trN∂ , where Ctr and N∂ are constants which depend on
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the mesh topology. Then, the bilinear form ah in Eq. (3.8) is coercive on Wh,
such that

∀wh ∈Wh, ah (wh,wh) ≥ C ‖wh‖2sym , (6.9)

where C is a positive constant independent of h.

Proof. Consider the following identity

2

(
∇hwh : ∇hvh +∇hwh : ∇hvTh −

2

3
(∇h ·wh) (∇h · vh)

)

=

(
∇hvh +∇hvTh −

2

3
(∇h · vh) I

)
:

(
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

)

+
4 (3− d)

9
(∇h ·wh) (∇h · vh) .

Using this result, the bilinear form in Eq. (3.8) becomes

ah(vh,wh) =
1

2

(
∇hvh +∇hvTh −

2

3
(∇h · vh) I,∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

)
Th

(6.10)

+
2 (3− d)

9
(∇h · vh,∇h ·wh)Th −

〈
[[vh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
Fh

−
〈

[[wh]] ,

{{
∇hvh +∇hvTh −

2

3
(∇h · vh) I

}}
nF

〉
Fh

+

〈
η

hF
[[vh]] , [[wh]]

〉
Fh

.

By setting vh = wh in Eq. (6.10), we have

ah(wh,wh) =
1

2

∥∥∥∥∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

∥∥∥∥2

L2(Ω)×L2(Ω)

+
2 (3− d)

9
‖∇h ·wh‖2L2(Ω)

(6.11)

− 2

〈
[[wh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
Fh

+ η |wh|2J ,

where |wh|J is defined to be

|wh|J =

( ∑
F∈Fh

h−1
F ‖[[wh]] ||2L2(F )

)1/2

.

After examining Eq. (6.11), we find that the key is to bound the third term on
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the RHS. In what follows, we prove that for all (wh,wh) ∈Wh ×Wh,∣∣∣∣∣
〈

[[wh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
Fh

∣∣∣∣∣ (6.12)

≤

( ∑
K∈Th

∑
F∈FK

hF

∥∥∥∥(∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

) ∣∣∣∣
K

· nF
∥∥∥∥2

L2(F )

)1/2

|wh|J .

In accordance with a similar presentation in [47], we begin by identifying neigh-
boring elements K1 and K2 that share a face F = ∂K1 ∩ ∂K2. Then, we define
ai = (∇hwh + ∇hwT

h − 2
3 (∇h ·wh) I)|Ki

· nF and let i = {1, 2}, in order to
obtain〈

[[wh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
F

=

〈
1

2
(a1 + a2), [[wh]]

〉
F

≤
(∫

F

1

4
(a1 + a2) · (a1 + a2) dA

)1/2(∫
F

[[wh]] · [[wh]] dA

)1/2

≤1

2

((∫
F

a1 · a1 dA

)1/2

+

(∫
F

a2 · a2 dA

)1/2
)(∫

F

[[wh]] · [[wh]] dA

)1/2

≤1

2

(
‖a1‖L2(F ) + ‖a2‖L2(F )

)
‖[[wh]]‖L2(F )

≤
(

1

2
hF

(
‖a1‖2L2(F ) + ‖a2‖2L2(F )

))1/2

h
−1/2
F ‖[[wh]]‖L2(F ) ,

for all interior faces F ih. Note that Hölder’s inequality, the Triangle inequality,
and the root-mean-square arithmetic-mean inequality have been used above.

We can obtain a similar result for all boundary faces F∂h ,〈
[[wh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
F

≤ h1/2
F

∥∥∥∥(∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

) ∣∣∣∣
K

· nF
∥∥∥∥
L2(F )

h
−1/2
F ‖[[wh]]‖L2(F ) .

Summing over all mesh faces, using the Cauchy-Schwarz inequality, and re-
grouping the face contributions for each element, we get the desired result in
Eq. (6.12).
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Now, we can continue by rewriting the RHS of Eq. (6.12) as follows∑
K∈Th

∑
F∈FK

hF

∥∥∥∥(∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

) ∣∣∣∣
K

· nF
∥∥∥∥2

L2(F )

(6.13)

≤
∑
K∈Th

hK

∥∥∥∥(∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

) ∣∣∣∣
K

· nF
∥∥∥∥2

L2(∂K)

≤ C2
trN∂

∥∥∥∥∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

∥∥∥∥2

L2(Ω)×L2(Ω)

,

where a discrete trace inequality has been used in the last line (cf. [47], p. 27).
Here, the constant Ctr depends on the shape parameters of elements in the mesh,
and N∂ characterizes the number of boundary faces. The result in Eq. (6.13)
leads to∣∣∣∣∣

〈
[[wh]] ,

{{
∇hwh +∇hwT

h −
2

3
(∇h ·wh) I

}}
nF

〉
Fh

∣∣∣∣∣ (6.14)

≤ CtrN
1/2
∂

∥∥∥∥∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

∥∥∥∥
L2(Ω)×L2(Ω)

|wh|J .

Next, in preparation for the final coercivity result, we will define

a =

∥∥∥∥∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

∥∥∥∥
L2(Ω)×L2(Ω)

,

b =

〈
1

hF
[[wh]] , [[wh]]

〉1/2

Fh

, c = ‖∇h ·wh‖L2(Ω) .

Now, combining these definitions with Eqs. (6.11) and (6.14) we have

ah(wh,wh) ≥ 1

2
(a2 − 4CtrN

1/2
∂ ab+ 2ηb2) +

2 (3− d)

9
c2 (6.15)

≥ 1

2
(a2 − 4CtrN

1/2
∂ ab+ 2ηb2) ≥

(
η − 2C2

trN∂
1 + 2η

)
(a2 + b2),

where we have assumed that d ≤ 3 in the first line. If we use the definition of
the norm ‖·‖sym, we get the following condition on the coercivity of the bilinear
form

ah(wh,wh)

≥
(
η − 2C2

trN∂
1 + 2η

)(∥∥∥∥∇hwh +∇hwT
h −

2

3
(∇h ·wh) I

∥∥∥∥2

L2(Ω)×L2(Ω)

+

〈
1

hF
[[wh]] , [[wh]]

〉
Fh

)

≥
(
η − 2C2

trN∂
1 + 2η

)
‖wh‖2sym .
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Upon setting C =
(
η − 2C2

trN∂
)
/ (1 + 2η), we obtain the desired result (see

Eq. (6.9)).

Remark 6.1. In principle, Lemma 6.2 holds for a much broader class of schemes,
and is not merely limited to the mixed methods of section 3. For example, it
remains valid for general discontinuous Galerkin schemes.

Now, having established Lemma 6.2, we will construct a relatively straight-
forward corollary which establishes the coercivity of ah in a slightly stronger
norm (at least for the 2D case). This result is not used in the present paper,
but we provide it for the sake of completeness, and to help facilitate future
analysis.

Corollary 6.1. Under the assumptions of Lemma 6.2, the bilinear form ah in
Eq. (3.8) is coercive on Wh, such that

∀wh ∈Wh, ah (wh,wh) ≥ C|||wh|||2sym, (6.16)

where C is a positive constant independent of h, and where

|||wh|||sym =

(
‖wh‖2sym +

4

9
(3− d) ‖∇h ·wh‖2L2(Ω)

)1/2

,

is a norm on Ω. The present corollary is identical to Lemma 6.2 when d = 3,
and differs from it when d = 2.

Proof. One may begin the proof by rewriting Eq. (6.15) of Lemma 6.2, as follows

ah(wh,wh) ≥ 1

2
(a2 − 4CtrN

1/2
∂ ab+ 2ηb2) +

2

9
(3− d) c2

≥
(
η − 2C2

trN∂
1 + 2η

)
(a2 + b2) +

1

2
· 4

9
(3− d) c2

≥
(
η − 2C2

trN∂
1 + 2η

)(
a2 + b2 +

4

9
(3− d) c2

)
.

Here, we have used the fact that
(
η − 2C2

trN∂
)
/ (1 + 2η) resides on the interval(

0, 1
2

)
for all η > 2C2

trN∂ . Upon rewriting the expression above, we find that

ah(wh,wh) ≥
(
η − 2C2

trN∂
1 + 2η

)(
‖wh‖2sym +

4

9
(3− d) ‖∇h ·wh‖2L2(Ω)

)

≥
(
η − 2C2

trN∂
1 + 2η

)
|||wh|||2sym,

where we have used the definition of |||·|||sym. Upon setting C =
(
η − 2C2

trN∂
)
/ (1 + 2η),

we obtain the desired result (see Eq. (6.16)).
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Lemma 6.3 (Semi-Coercivity of the Convective Trilinear Form). Consider test
functions βh,wh ∈Wh. Then, the trilinear form ch in Eq. (3.7) is semi-coercive
on Wh, such that

∀ (βh,wh) ∈Wh ×Wh, ch (βh;wh,wh) = |wh|2βh
, (6.17)

where

|wh|βh
=
(
ζ 〈|βh · nF | [[wh]] , [[wh]]〉Fi

h

)1/2

, (6.18)

is a seminorm on Ω.

Proof. We begin by substituting vh = wh into Eq. (3.7) in order to obtain the
following

ch (βh;wh,wh) = (βh · ∇hwh,wh)Th +
1

2
((∇h · βh)wh,wh)Th (6.19)

− 〈(βh · nF ) [[wh]] , {{wh}}〉Fi
h

+ ζ 〈|βh · nF | [[wh]] , [[wh]]〉Fi
h
.

Next, we can substitute Eq. (A.1) from the lemma in Appendix A.1 into
Eq. (6.19)

ch (βh;wh,wh) = ζ 〈|βh · nF | [[wh]] , [[wh]]〉Fi
h
. (6.20)

The proof of semi-coercivity is completed by substituting the definition of the
appropriate seminorm into the RHS of Eq. (6.20).

Remark 6.2. One should note that Lemma 6.3 can be generalized to non-H(div)
conforming methods, such as discontinuous Galerkin methods. This can be
achieved by replacing the boundary terms in ch with

− 〈({{βh}} · nF ) [[vh]] , {{wh}}〉Fi
h

+ ζ 〈|{{βh}} · nF | [[vh]] , [[wh]]〉Fi
h

− 1

2
〈[[βh]] · nF , {{vh ·wh}}〉Fh

.

The corresponding proof of semi-coercivity is discussed in [47], p. 272.

7. Stability: General Case

Theorem 7.1 (Kinetic Energy Estimate). Consider a forcing function f̃ ∈
L1
(
t0, tn,L

2 (Ω)
)

and an initial condition uh (t0) ∈Wh ⊂ H0(div; Ω). Subject
to these assumptions, the discrete kinetic energy of the general mixed methods
(formulated in Eqs. (3.1) and (3.2)) is governed by the following equation at
time tn ≥ t0

1

2
‖uh (tn)‖2L2(Ω) +

∫ tn

t0

(
|uh (s)|2uh

+ νh C ‖uh (s)‖2sym
)
ds (7.1)

≤ ‖uh (t0)‖2L2(Ω) +
3

2

∥∥∥f̃∥∥∥2

L1(t0,tn,L2(Ω))
,
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where

‖f‖L1(t0,tn,L2(Ω)) =

∫ tn

t0

‖f (s)‖L2(Ω) ds,

is a space-time norm on (t0, tn)× Ω.

Proof. We begin by substituting qh = p̃h and wh = uh into Eq. (3.3), in order
to obtain

bh (uh, p̃h) = 0,

(∂t uh,uh)Th + ch (uh;uh,uh) + νhah (uh,uh)− bh (uh, p̃h) =
(
f̃ ,uh

)
Th
.

Upon summing these equations together we obtain

(∂t uh,uh)Th + ch (uh;uh,uh) + νhah (uh,uh) =
(
f̃ ,uh

)
Th
,

or equivalently

1

2

d

dt
‖uh‖2L2(Ω) + ch (uh;uh,uh) + νhah (uh,uh) =

(
f̃ ,uh

)
Th
.

Next, we invoke the coercivity of ah (Lemma 6.2) and the semi-coercivity of ch
(Lemma 6.3) in order to obtain

1

2

d

dt
‖uh‖2L2(Ω) + |uh|2uh

+ νh C ‖uh‖2sym ≤
(
f̃ ,uh

)
Th
. (7.2)

In accordance with the approach of [48], we examine Eq. (7.2) and note that

1

2

d

dt
‖uh‖2L2(Ω) ≤

(
f̃ ,uh

)
Th
,

and by the Cauchy-Schwarz inequality

‖uh‖L2(Ω)

d

dt
‖uh‖L2(Ω) ≤

∥∥∥f̃∥∥∥
L2(Ω)

‖uh‖L2(Ω)

d

dt
‖uh‖L2(Ω) ≤

∥∥∥f̃∥∥∥
L2(Ω)

. (7.3)

Now, we integrate Eq. (7.3) from t = t0 to t = tn in order to obtain

‖uh (tn)‖L2(Ω) − ‖uh (t0)‖L2(Ω) ≤
∫ tn

t0

∥∥∥f̃ (s)
∥∥∥
L2(Ω)

ds,

or equivalently

‖uh (tn)‖L2(Ω) ≤ ‖uh (t0)‖L2(Ω) +
∥∥∥f̃∥∥∥

L1(t0,tn,L2(Ω))
. (7.4)
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Setting aside Eq. (7.4) for the moment, we return our attention to Eq. (7.2).
Upon integrating Eq. (7.2) from t = t0 to t = tn we obtain

1

2
‖uh (tn)‖2L2(Ω) +

∫ tn

t0

(
|uh (s)|2uh

+ νh C ‖uh (s)‖2sym

)
ds (7.5)

≤ 1

2
‖uh (t0)‖2L2(Ω) +

∫ tn

t0

(
f̃ (s) ,uh (s)

)
Th
ds.

The last term on the RHS of Eq. (7.5) can be rewritten by applying the Cauchy-
Schwarz inequality, Eq. (7.4), and Young’s inequality as follows∫ tn

t0

(
f̃ (s) ,uh (s)

)
Th
ds ≤

∫ tn

t0

[∥∥∥f̃ (s)
∥∥∥
L2(Ω)

‖uh (s)‖L2(Ω)

]
ds

≤
∫ tn

t0

[∥∥∥f̃ (s)
∥∥∥
L2(Ω)

(
‖uh (t0)‖L2(Ω) +

∥∥∥f̃∥∥∥
L1(t0,s,L2(Ω))

)]
ds

≤
∫ tn

t0

∥∥∥f̃ (s)
∥∥∥
L2(Ω)

ds

(
‖uh (t0)‖L2(Ω) +

∥∥∥f̃∥∥∥
L1(t0,tn,L2(Ω))

)

=
∥∥∥f̃∥∥∥

L1(t0,tn,L2(Ω))

(
‖uh (t0)‖L2(Ω) +

∥∥∥f̃∥∥∥
L1(t0,tn,L2(Ω))

)

≤ 1

2
‖uh (t0)‖2L2(Ω) +

3

2

∥∥∥f̃∥∥∥2

L1(t0,tn,L2(Ω))
. (7.6)

Upon combining Eqs. (7.6) and (7.5), we obtain the desired bound on the dis-
crete kinetic energy, (see Eq. (7.1)).

8. Numerical Experiments

In this section, we will present some numerical simulations to demonstrate
the performance of the newly proposed, versatile mixed methods. We considered
four mixed methods: i) a Taylor-Hood method based on the symmetric tensor
formulation in Eqs. (3.1) and (3.2), with continuous Lagrangian elements for the
velocity and pressure (denoted by TH-Symmetric); ii) a Taylor-Hood method
based on the classical, non-symmetric tensor formulation (denoted by TH-
Non-Symmetric), iii) a pointwise divergence-free, H(div)-conforming method
based on the symmetric tensor formulation in Eqs. (4.1) and (4.2), with Brezzi-
Douglas-Marini elements for the velocity and discontinuous Lagrangian ele-
ments for the pressure (denoted by BDM-Symmetric); and iv) a pointwise
divergence-free, H(div)-conforming, BDM method based on the classical, non-
symmetric tensor formulation (denoted by BDM-Non-Symmetric) which was
reviewed by [17]. In each case, we considered polynomial degree k ∈ {1, 2, 3},
(omitting the case of k = 0), and we imposed a zero integral mean condition for
the pressure via a Lagrange multiplier. In addition, the computational domains
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were meshed with squares, and each square was split into two congruent trian-
gles. The high-order BDF3 scheme was used for the time discretization. The nu-
merical results presented below were obtained using FEniCS, which is an open-
source software package for solving partial differential equations, (see [49, 50]
for details).

For the first example, we follow [12, 16] and consider the 2D Taylor-Green
vortex case with periodic boundary conditions on all sides. The exact solution
is given by

u(t,x) =

(
sin(x1) cos(x2)e−2νt,− cos(x1) sin(x2)e−2νt

)
,

p̃(t,x) =
1

4

(
cos(2x1) + cos(2x2)

)
e−4νt,

with domain Ω := [0, 2π]2, x := (x1, x2) ∈ Ω, t ∈ [0, 1], and viscosity ν =
0.01. The Taylor-Green vortex can be simulated for much longer times t � 1
(see [16]), but our objective was to limit the total runtime in order to help control
the temporal errors. This was necessary for calculating the spatial orders of
accuracy. In each of our simulations, we computed the approximations of u and
p̃ at t = 1.0 s, with time-step ∆t = 0.01 s, on four uniform meshes (h = 0.8886,
0.4443, 0.2221, and 0.1777). For the TH-Symmetric and TH-Non-Symmetric
schemes, we performed tests with and without a stabilization term of the form

δ (|uh|∇ · uh,∇ ·wh)Th .

For the tests with non-zero stabilization, we set δ = 10. For the BDM-Symmetric
and BDM-Non-Symmetric schemes, we computed the numerical fluxes with
ζ = 0.5 for an upwind biased convective flux, ζ = 0 for a central unbiased
convective flux, and η = 3(k+ 1)(k+ 2) for a viscous flux with extra dissipation
that scales with k2.

In table 1, we present the results of the TH-Symmetric method with and
without stabilization. We observe that, in almost all cases, the velocity and
pressure errors converge at the expected rates. However, when k = 1, we obtain
super-convergence of the velocity for the TH-Symmetric method without the
stabilization term. This is an exceptional case, and as expected, the method
recovers the standard rates of convergence for k = 2 and 3. The TH-Symmetric
method with stabilization does not demonstrate superconvergence (even for k =
1), but instead achieves the expected rate of convergence in all cases. Overall,
despite the superconvergence results for k = 1, the TH-Symmetric method
with stabilization tends to outperform the method without stabilization, as it
produces lower absolute values of error in most cases.

In table 2, we present the results of the TH-Non-Symmetric method with
and without stabilization. The results are very similar to those of the TH-
Symmetric method in table 1. Interestingly enough, we observe slightly lower
absolute errors for both velocity and pressure with the symmetric formulation,
especially when the stabilization term is omitted (δ = 0).
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In table 3, we present a comparison of the upwind and central versions of
the BDM-Symmetric method. For both versions of the method, we observe the
expected convergence rates for velocity and pressure. We obtain similar results,
upon comparing the upwind and central versions of the BDM-Non-Symmetric
method in table 4.

Now, when we compare tables 3 and 4 to one another, we see that the
BDM-Symmetric and BDM-Non-Symmetric methods achieve roughly the same
absolute levels of accuracy. Of course, this holds with the caveat that the BDM-
Symmetric method is significantly more versatile than the BDM-Non-Symmetric
method (as previously discussed). Finally, when we compare tables 1 and 2 with
tables 3 and 4, we observe that the pointwise divergence-free, H(div)-conforming
methods behave better than the Taylor-Hood methods. This is not a surprise,
as the latter methods are neither pointwise divergence-free, nor pressure-robust.

We conclude our discussion of example 1, by examining the qualitative be-
haviour of the vorticity and pressure for the BDM-Symmetric method as illus-
trated in figures 1–6. Here, we observe that the approximations of vorticity and
pressure become significantly more accurate when k increases, and similarly,
when h decreases.

In example 2, we compare the behavior of the upwind and central versions
of the BDM-Symmetric method on the Gresho-vortex problem (see [25]). This
problem is defined on a domain Ω = (−0.5, 0.5)2. The initial state of the fluid
is described by

uφ(r, φ) =


5r 0 ≤ r ≤ 0.2

2− 5r 0 ≤ r ≤ 0.4

0 0.4 ≤ r

ur(r, φ) = 0.

Note here that polar coordinates (r, φ) are used. For this problem, we set
ν = 5 × 10−6, and performed simulations with k ∈ {1, 2, 3} and h = 0.0354.
The total simulation time was set to be 14.0 s and the time-step was ∆t =
0.01 s. Velocity magnitude contours for this example are shown in figures 7–9.
We observe that, in general, the upwind flux behaves better than the central
flux, especially when k = 1, which implies the superiority of the upwind flux
compared with the central flux when one considers convection-dominated flows.
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k h d.o.f
δ = 0 δ = 10

‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order
‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order

1

0.8886 901 2.85e-1 —– 1.51e-1 —– 1.53e-1 —– 1.07e-1 —–
0.4443 3601 2.54e-2 3.49 2.36e-2 2.68 1.87e-2 3.04 2.34e-2 2.20
0.2221 14401 1.54e-3 4.05 5.62e-3 2.07 2.52e-3 2.89 5.64e-3 2.05
0.1777 22501 6.39e-4 3.93 3.58e-3 2.02 1.26e-3 3.10 3.59e-3 2.03

2

0.8886 2201 4.96e-2 —– 2.57e-2 —– 1.18e-2 —– 1.42e-2 —–
0.4443 8801 5.68e-3 3.13 3.33e-3 2.95 8.71e-4 3.75 2.05e-3 2.80
0.2221 35201 3.79e-4 3.90 3.53e-4 3.24 4.70e-5 4.21 2.66e-4 2.94
0.1777 55001 1.54e-4 4.05 1.69e-4 3.30 1.78e-5 4.35 1.37e-4 2.98

3

0.8886 4101 1.22e-3 —– 8.98e-4 —– 1.94e-4 —– 8.05e-4 —–
0.4443 16401 2.33e-5 5.71 4.66e-5 4.27 4.94e-6 5.30 4.63e-5 4.12
0.2221 65601 6.60e-7 5.14 2.84e-6 4.04 1.44e-7 5.10 2.83e-6 4.03
0.1777 102501 2.16e-7 5.00 1.16e-6 4.01 4.69e-8 5.04 1.16e-6 4.01

Table 1: A comparison of the TH-Symmetric method without stabilization (δ = 0), to the
same method with stabilization (δ = 10) at t = 1.0. The stabilization term takes the form
δ|uh| (∇ · uh) (∇ ·wh).

k h d.o.f
δ = 0 δ = 10

‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order
‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order

1

0.8886 901 3.09e-1 —– 1.58e-1 —– 1.53e-1 —– 1.07e-1 —–
0.4443 3601 3.21e-2 3.27 2.40e-2 2.72 1.87e-2 3.04 2.34e-2 2.20
0.2221 14401 1.98e-3 4.02 5.62e-3 2.09 2.52e-3 2.89 5.64e-3 2.05
0.1777 22501 8.26e-4 3.91 3.58e-3 2.02 1.26e-3 3.10 3.59e-3 2.03

2

0.8886 2201 5.82e-2 —– 2.91e-2 —– 1.18e-2 —– 1.42e-2 —–
0.4443 8801 7.13e-3 3.03 3.85e-3 2.92 8.70e-4 3.75 2.05e-3 2.80
0.2221 35201 4.98e-4 3.84 4.01e-4 3.26 4.70e-5 4.21 2.66e-4 2.94
0.1777 55001 2.03e-4 4.02 1.89e-4 3.37 1.78e-5 4.35 1.37e-4 2.98

3

0.8886 4101 1.47e-3 —– 9.50e-4 —– 1.94e-4 —– 8.05e-4 —–
0.4443 16401 2.76e-5 5.74 4.68e-5 4.34 4.94e-6 5.30 4.63e-5 4.12
0.2221 65601 7.53e-7 5.20 2.84e-6 4.04 1.44e-7 5.10 2.83e-6 4.03
0.1777 102501 2.46e-7 5.02 1.16e-6 4.01 4.69e-8 5.04 1.16e-6 4.01

Table 2: A comparison of the TH-Non-Symmetric method without stabilization (δ = 0), to
the same method with stabilization (δ = 10) at t = 1.0. The stabilization term takes the form
δ|uh| (∇ · uh) (∇ ·wh).
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k h d.o.f
Upwind flux Central flux

‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order
‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order

1

0.8886 2101 1.98e-2 —– 6.79e-2 —– 1.82e-2 —– 6.77e-2 —–
0.4443 8401 2.46e-3 3.01 1.72e-2 1.98 2.29e-3 2.99 1.72e-2 1.98
0.2221 33601 2.95e-4 3.06 4.30e-3 2.00 2.85e-4 3.01 4.30e-3 2.00
0.1777 52501 1.49e-4 3.05 2.76e-3 2.00 1.46e-4 3.01 2.75e-3 2.00

2

0.8886 4001 1.29e-3 —– 7.04e-3 —– 1.28e-3 —– 7.03e-3 —–
0.4443 16001 7.41e-5 4.12 8.89e-4 2.98 7.37e-5 4.12 8.89e-4 2.98
0.2221 64001 4.55e-6 4.03 1.11e-4 3.00 4.53e-6 4.02 1.11e-4 3.00
0.1777 100001 1.87e-6 3.99 5.71e-5 3.00 1.86e-6 3.98 5.71e-5 3.00

3

0.8886 6501 8.55e-5 —– 5.50e-4 —– 8.26e-5 —– 5.50e-4 —–
0.4443 26001 2.78e-6 4.94 3.47e-5 3.99 2.72e-6 4.92 3.47e-5 3.99
0.2221 104001 8.63e-8 5.01 2.17e-6 4.00 8.56e-8 4.99 2.17e-6 4.00
0.1777 162501 2.82e-8 5.01 8.91e-7 4.00 2.80e-8 5.00 8.91e-7 4.00

Table 3: A comparison of the BDM-Symmetric method with an upwind numerical flux, to the
same method with a central numerical flux at t = 1.0.

k h d.o.f
Upwind flux Central flux

‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order
‖u− uh‖L2(Ω)

error order
‖p̃− p̃h‖L2(Ω)

error order

1

0.8886 2101 1.95e-2 —– 6.80e-2 —– 1.77e-2 —– 6.77e-2 —–
0.4443 8401 2.40e-3 3.02 1.72e-2 1.98 2.22e-3 2.99 1.72e-2 1.98
0.2221 33601 2.88e-4 3.06 4.31e-3 2.00 2.78e-4 3.00 4.30e-3 2.00
0.1777 52501 1.46e-4 3.04 2.76e-3 2.00 1.42e-4 3.00 2.76e-3 2.00

2

0.8886 4001 1.31e-3 —– 7.05e-3 —– 1.29e-3 —– 7.03e-3 —–
0.4443 16001 7.52e-5 4.12 8.90e-4 2.99 7.47e-5 4.11 8.89e-4 2.98
0.2221 64001 4.60e-6 4.03 1.11e-4 3.00 4.58e-6 4.03 1.11e-4 3.00
0.1777 100001 1.89e-6 3.99 5.71e-5 3.00 1.88e-6 3.99 5.71e-5 3.00

3

0.8886 6501 8.66e-5 —– 5.50e-4 —– 8.36e-5 —– 5.50e-4 —–
0.4443 26001 2.82e-6 4.94 3.47e-5 3.99 2.77e-6 4.92 3.47e-5 3.99
0.2221 104001 8.77e-8 5.01 2.17e-6 4.00 8.70e-8 4.99 2.17e-6 4.00
0.1777 162501 2.87e-8 5.01 8.91e-7 4.00 2.85e-8 5.00 8.91e-7 4.00

Table 4: A comparison of the BDM-Non-Symmetric method with an upwind numerical flux,
to the same method with a central numerical flux at t = 1.0.
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Figure 1: Contours of vorticity for the BDM-Symmetric method with k = 1 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1

Figure 2: Contours of vorticity for the BDM-Symmetric method with k = 2 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1

Figure 3: Contours of vorticity for the BDM-Symmetric method with k = 3 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1
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Figure 4: Contours of pressure for the BDM-Symmetric method with k = 1 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1

Figure 5: Contours of pressure for the BDM-Symmetric method with k = 2 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1

Figure 6: Contours of pressure for the BDM-Symmetric method with k = 3 and the upwind
flux on meshes with h = 0.8886 (left) and h = 0.4443 (right) at t = 1.0 — Example 1
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Figure 7: Contours of velocity magnitude for the BDM-Symmetric method with upwind flux
(left) and central flux (right) with k = 1 and h = 0.0354 at t = 14.0 — Example 2

Figure 8: Contours of velocity magnitude for the BDM-Symmetric method with upwind flux
(left) and central flux (right) with k = 2 and h = 0.0354 at t = 14.0 — Example 2

Figure 9: Contours of velocity magnitude for the BDM-Symmetric method with upwind flux
(left) and central flux (right) with k = 3 and h = 0.0354 at t = 14.0 — Example 2
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9. Conclusion

This paper presents a more consistent way to treat the divergence-free con-
straint that appears in both the mass and momentum conservation equations.
The key idea is to use the full, compressible version of the stress tensor, and
allow the finite element scheme to completely control the enforcement of the
divergence-free constraint in the momentum equation. In this way, the divergence-
free constraint in the momentum equation is not enforced a priori (which is the
case in most classical schemes), but rather is dictated by the scheme. The re-
sulting schemes are versatile, in the sense that they are easily generalizable to
compressible flows, and they enable the straightforward treatment of rotation-
ally symmetric flows.

In order to help build a mathematical foundation for the schemes, we estab-
lished the existence of a new norm associated with the viscous bilinear form. In
addition, we presented some coercivity and semi-coercivity results that govern
the bilinear and trilinear forms associated with the schemes. We also proved
an L2-stability condition that governs the velocity fields for the general class of
schemes. Finally, we constructed versatile, Taylor-Hood-based and BDM-based
schemes, and then compared them with the standard BDM-based scheme of [17].
The numerical simulations indicated that both sets of schemes achieve the same
order of accuracy. Therefore, utilization of the symmetric tensor formulation
increases the versatility of the schemes, while maintaining their accuracy.

There are many promising paths for additional research on the proposed
schemes. For example, it would be useful to extend the stability analysis in
the present work, and develop L2-bounds for the pressure, and (perhaps) for
secondary quantities, such as the enstrophy. Furthermore, it would be useful
to construct rigorous error estimates for the schemes, in accordance with the
analysis in (for example) [12, 16, 17, 25]. In addition, it may be possible to
extend the conventional analysis techniques in order to prove stability and error
estimates for the schemes in the context of weakly compressible flows, and in
the singular limit, as the overall compressibility of a weakly compressible flow
approaches zero.

From a more practical standpoint, the next step is to apply the schemes
to compressible flow problems. Since the schemes are provably stable for in-
compressible flows, there is a strong possibility that they will remain stable in
weakly compressible flows, regardless of whether or not a rigorous proof can
be constructed. In addition, we anticipate that the high-order accuracy of the
schemes will extend to weakly compressible flows, without any significant issues.
Finally, there are potentially promising applications of the schemes to complex
flows, which contain multiple regimes of incompressible and compressible flow.
We hope to explore each of these potential applications in future work.
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Appendix A. Complementary Result(s)

Lemma Appendix A.1. Suppose that wh and βh ∈ H0(div; Ω). Then, the
following identity holds:

(βh · ∇hwh,wh)Th +
1

2
((∇ · βh)wh,wh)Th = 〈(βh · nF ) [[wh]] , {{wh}}〉Fi

h
.

(A.1)

Proof. We begin by using integration by parts to expand the second term on
the LHS of Eq. (A.1)

1

2
((∇ · βh)wh,wh)Th =

1

2
〈wh,wh (βh · n)〉∂Th − (βh · ∇hwh,wh)Th . (A.2)

Upon using Eq. (A.2) to rewrite the LHS of Eq. (A.1), we obtain the following

(βh · ∇hwh,wh)Th +
1

2
((∇ · βh)wh,wh)Th =

1

2
〈wh,wh (βh · n)〉∂Th . (A.3)

Next, we can rewrite the RHS of Eq. (A.3) in terms of summations over faces
F in the mesh

1

2
〈wh,wh (βh · n)〉∂Th =

1

2
〈[[(wh ·wh)βh]] ,nF 〉Fi

h

=
1

2
〈[[βh]] ,nF {{wh ·wh}}〉Fi

h
+ 〈({{βh}} · nF ) [[wh]] , {{wh}}〉Fi

h
.

(A.4)

We complete the proof by substituting Eq. (A.4) into Eq. (A.3), and noting that
βh has continuous normal components.

Appendix B. Derivation of the General Mixed Methods

Appendix B.1 Mass Equation Derivation

One may substitute uh into Eq. (2.2), multiply by a test function qh, and
integrate over the entire domain in order to obtain

(∇ · uh, qh)Th = 0, (B.1)

which is identical to Eq. (3.1).
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Appendix B.2 Linear Momentum Equation Derivation

One may substitute p̃h and uh into Eq. (2.1), compute the dot product with
a test function wh, and integrate over the entire domain in order to yield

(∂tuh,wh)Th + (∇h · (uh ⊗ uh + p̃hI) ,wh)Th (B.2)

− νh
(
∇h ·

(
∇huh +∇huTh −

2

3
(∇ · uh) I

)
,wh

)
Th

=
(
f̃ ,wh

)
Th
.

Upon integrating the second and third terms by parts and inserting numerical
fluxes σ̂inv and σ̂vis, one obtains

(∇h · (uh ⊗ uh + p̃hI) ,wh)Th = − (uh ⊗ uh + p̃hI,∇hwh)Th + 〈(uh ⊗ uh + p̃hI)n,wh〉∂Th
(B.3)

≡ − (uh ⊗ uh + p̃hI,∇hwh)Th + 〈σ̂inv n,wh〉∂Th

= − (uh ⊗ uh,∇hwh)Th − (p̃h,∇ ·wh)Th + 〈σ̂inv n,wh〉∂Th .

−
(
∇h ·

(
∇huh +∇huTh −

2

3
(∇ · uh) I

)
,wh

)
Th

(B.4)

=

(
∇huh +∇huTh −

2

3
(∇ · uh) I,∇hwh

)
Th
−
〈(
∇huh +∇huTh −

2

3
(∇ · uh) I

)
n,wh

〉
∂Th

≡
(
∇huh +∇huTh −

2

3
(∇ · uh) I,∇hwh

)
Th
− 〈σ̂vis n,wh〉∂Th .

One may expand each term in Eq. (B.4) by integrating by parts, inserting a
numerical flux ϕ̂vis, and integrating by parts again as follows

(∇huh,∇hwh)Th = − (uh,∇h · (∇hwh))Th + 〈uh, (∇hwh)n〉∂Th (B.5)

≡ − (uh,∇h · (∇hwh))Th + 〈ϕ̂vis, (∇hwh)n〉∂Th

= (∇huh,∇hwh)Th + 〈ϕ̂vis − uh, (∇hwh)n〉∂Th .

(
∇huTh ,∇hwh

)
Th

=
(
∇huh,∇hwT

h

)
Th

(B.6)

= −
(
uh,∇h ·

(
∇hwT

h

))
Th

+
〈
uh,

(
∇hwT

h

)
n
〉
∂Th

≡ −
(
uh,∇h ·

(
∇hwT

h

))
Th

+
〈
ϕ̂vis,

(
∇hwT

h

)
n
〉
∂Th

=
(
∇huTh ,∇hwh

)
Th

+
〈
ϕ̂vis − uh,

(
∇hwT

h

)
n
〉
∂Th

.
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(
−2

3
(∇ · uh) I,∇hwh

)
Th

= −2

3
(∇ · uh,∇ ·wh)Th (B.7)

= −2

3

(
− (uh,∇h (∇ ·wh))Th + 〈uh, (∇ ·wh)n〉∂Th

)
≡ −2

3

(
− (uh,∇h (∇ ·wh))Th + 〈ϕ̂vis, (∇ ·wh)n〉∂Th

)
=

(
−2

3
(∇ · uh) I,∇hwh

)
Th
− 2

3
〈ϕ̂vis − uh, (∇ ·wh)n〉∂Th .

Upon combining Eqs. (B.5) – (B.7), one obtains(
∇huh +∇huTh −

2

3
(∇ · uh) I,∇hwh

)
Th

(B.8)

≡
(
∇huh +∇huTh −

2

3
(∇ · uh) I,∇hwh

)
Th

+

〈
ϕ̂vis − uh,

(
∇hwh +∇hwT

h −
2

3
(∇ ·wh) I

)
n

〉
∂Th

.

Finally, one may substitute Eqs. (B.3), (B.4), and (B.8), into Eq. (B.2) in order
to obtain Eq. (3.2).
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