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Abstract

This paper analyzes the well-known L1 scheme for fractional wave
equations with nonsmooth data. A new stability estimate is obtained,
and the temporal accuracy O(τ 3−α) is derived for the nonsmooth data.
In addition, a modified L1 scheme is proposed, stability and temporal
accuracy O(τ 2) are derived for this scheme with nonsmooth data. The
convergence of these schemes in inhomogeneous case are also established.
Finally, numerical experiments are performed to verify the theoretical
results.
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1 Introduction

Let 1 < α < 2 and Ω ⊂ Rd (d = 1, 2, 3) be a convex d-polytope. We consider
the following fractional wave equation:

Dα−1
0+ (u′ − u1)(t)−∆u(t) = f(t), t > 0, (1)

subjected to the initial value condition u(0) = u0, where u(t) ∈ H1
0 (Ω) for

all t > 0, u0, u1 and f are given functions, and Dα−1
0+ is a Riemann-Liouville

fractional differential operator of order α− 1.
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As a extension of integer order equation; the fractional diffusion and wave
equations are widely used to model some processes with non-local effect, see
[31, 3, 4, 10]. We also refer readers to [13] for more background of fractional
differential equations. By now there is an extensive literature on the numerical
treatment of fractional diffusion and wave equations. Some of these researches
give the convergence result under the condition that the solution is a C2- or
C3- function in time. However, it is well known that the solution of a fractional
diffusion (or wave) equation generally has singularity in time despite how smooth
the inital data is [12]. In fact, the main challenge is to design stable numerical
scheme and to derive convergence result, without regularity restrictions on the
solution, especially for the case with nonsmooth data.

Let us give a brief introduction of two kinds of numerical methods for solving
fractional diffusion equations with nonsmooth data: the L1-type method [14, 19,
9, 32, 18], discontinuous Galerkin method [27, 30, 29, 1]. The L1-type method
use L1 scheme to approximate the fractional derivative, these methods are very
popular due to their ease of implementation. Jin et al. [11] proved that the
L1 scheme is of temporal accuracy O(τ) for fractional diffusion equations with
smooth and nonsmooth initial data. Yan et al. [36] proposed a modified L1
scheme for fractional diffusion equations, which possesses temporal accuracy
O(τ2−α) for smooth and nonsmooth initial data. The discontinuous Galerkin
method use the finite element method to approximate the fractional derivative.
McLean and Mustapha [25] showed that the piecewise constant discontinuous
Galerkin method is of temporal accuracy O(τ) for fractional diffusion equations
with nonsmooth initial data. Li et al. [16] investigate the regularity of fractional
diffusion equations with nonsmooth data and they proved that discontinuous
Galerkin method possesses optimal convergence rates in L2(0, T ;L2(Ω)) and
L2(0, T ;H1(Ω)) norm, with respect to the regularity of the solution. For more
related works, we refer reader to [37, 17, 5, 15].

Next, let us first briefly summarize some works on a variant of fractional
wave equation:

u′(t)−∆(D1−α
0+ u)(t) = u1 +D1−α

0+ f(t), t > 0,

which is obtained by applying D1−α
0+ to both sides of (1). For this equation,

McLean et al. [23, 24] proposed two positive definite quadratures for the time
fractional integral operator. Combing the convolution quadratures in [20] and
the backward difference methods in time, Lubich et al. [21, 6] proposed the
first- and second-order time-stepping schemes and derived optimal error esti-
mates with nonsmooth inital data. Applying the famous discontinuous Galerkin
method, Mustapha and McLean [28] proposed a new class of algorithms. We
note that the low-order algorithm in [28] is identical to the low-order algorithm
proposed in [24]. For more related works, we refer the reader to [7, 26].

The study on fractional wave equation is limitied. Using the convolution
quadratures in [20] and techniques in [21], Jin et al. [12] developed first- and
second-order time-stepping methods for fractional wave equations and derived
optimal error estimates with nonsmooth inital data. In [22], the convergence in
the H1

0 (Ω)-norm has been derived for a low-order Petrov-Galerkin method with
nonsmooth source term. We note that the low-order Petrov-Galerkin method
in [22] is identical to the L1 scheme.

As far as we know, the convergence in the L2(Ω)-norm of the L1 scheme
for fractional wave equations with nonsmooth data has not been established. In
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this paper, for a full discretization using the L1 scheme in time and the standard
P1-element in space, we derive a new stability estimate and obtain the temporal
accuracy O(τ3−α) in the L2(Ω)-norm at positive times, with nonsmooth ini-
tial data. For another full discretization using a modified L1 scheme in time
and the P1-element in space, we obtain the temporal accuracy O(τ2) for nons-
mooth initial data. We also establish the convergence of the two discretizations
in inhomogeneous case (i.e., f 6≡ 0). The derived error estimates require that
the temporal grid is uniform and that τα/h2min is uniformly bounded, where
hmin is the minimum diameter of the elements in the spatial triangulation. Our
analysis implies that for nonzero initial value u0 large ratio τα/h2min will signifi-
cantly worsen the temporal accuracy of the L1 scheme, and this is confirmed by
the numerical result. To our knowledge, this interesting phenomenon is firstly
reported in this paper.

The rest of this paper is organized as follows. Section 3 establishes the
stability and convergence of the L1 scheme and a modified L1 scheme for a
fractional ordinary equation. Section 4 derives the stability and convergence
of two full discretizations for problem (1), which use the L1 scheme and a
modified L1 scheme in time, respectively. Section 5 performs several numerical
experiments to verify the theoretical results. Finally, Section 6 provides some
concluding remarks.

2 Preliminaries

Let −∞ 6 a < b 6 ∞ and assume that X is a separable Hilbert space X with
inner product (·, ·)X . For any −∞ < γ < 0, define

(Dγ
a+ v)(t) :=

1

Γ(−γ)

∫ t

a

(t− s)−γ−1v(s) ds, a < t < b,

(Dγ
b− v)(t) :=

1

Γ(−γ)

∫ b

t

(s− t)−γ−1v(s) ds, a < t < b,

for all v ∈ L1(a, b;X), where Γ(·) is the gamma function. For anym 6 γ < m+1
with m ∈ N, define

Dγ
a+ v := Dm+1 Dγ−m−1

a+ v,

Dγ
b− v := (−1)m+1Dm+1 Dγ−m−1

b− v,

for all v ∈ L1(a, b;X), where D is the first order differential operator in the
distribution sense.

Then we introduce some properties of fractional calculus operators used in
this paper. Define

0H
1(a, b;X) :=

{
v ∈ L2(a, b;X) : v′ ∈ L2(a, b;X), lim

t→a+
v(t) = 0

}
,

0H1(a, b;X) :=
{
v ∈ L2(a, b;X) : v′ ∈ L2(a, b;X), lim

t→b−
v(t) = 0

}
.

Assume that 0 < γ < 1. Define

0H
γ(a, b;X) := [L2(a, b;X), 0H

1(a, b;X)]γ,2,
0Hγ(a, b;X) := [L2(a, b;X), 0H1(a, b;X)]γ,2,
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where [·, ·]γ,2 means the interpolation space defined by the famous K-method
[34]. We use 0H

−γ(a, b;X) and 0H−γ(a, b;X) to denote the dual spaces of
0Hγ(a, b;X) and 0H

γ(a, b;X), respectively. By [22, Lemma 3.3] we have that,
for any v ∈ L2(a, b;X),

‖D−γ
b− v‖0Hγ(a,b;X) 6 C‖v‖L2(a,b;X),

where C is a positive constant depending only on γ. Therefore, we can define
D−γ

a+ : 0H
−γ(a, b;X) → L2(a, b;X) by that

∫ b

a

(
D−γ

a+ v(t), w(t)
)
X
dt = 〈v,D−γ

b− w〉0Hγ (a,b;X)

for all v ∈ 0H
−γ(a, b;X) and w ∈ L2(a, b;X), where 〈·, ·〉0Hγ (a,b;X) means the

duality pairing between 0H
−γ(a, b;X) and 0Hγ(a, b;X). Moreover, it is evident

that
‖D−γ

a+ v‖L2(a,b;X) 6 C‖v‖
0H−γ (a,b;X), ∀v ∈ 0H

−γ(a, b;X), (2)

where C is a positive constant depending only on γ.

Lemma 2.1. Assume that v ∈ 0H
γ(a, b;X) and w ∈ 0Hγ(a, b;X), with 0 <

γ < 1/2. Then

C1‖D
γ
a+ v‖

2
L2(a,b;X) 6

∫ b

a

(Dγ
a+ v(t),D

γ
b− v(t))X dt 6 C2‖D

γ
a+ v‖

2
L2(a,b;X),

C1‖D
γ
b− v‖

2
L2(a,b;X) 6

∫ b

a

(Dγ
a+ v(t),D

γ
b− v(t))X dt 6 C2‖D

γ
b− v‖

2
L2(a,b;X),

〈D2γ
a+ v, w〉0Hγ(a,b;X) =

∫ b

a

(Dγ
a+ v(t),D

γ
b− w(t))X dt = 〈D2γ

b− w, v〉0Hγ(a,b;X),

where C1 and C2 are two positive constants depending only on γ.

Remark 2.1. For the proof of Lemma 2.1, we refer the reader to [8]. Assume
that 0 < γ < 1/2. If v ∈ 0H

γ(a, b;X) and w ∈ 0Hγ(a, b;X) satisfy that
D2γ

a+ v ∈ Lp(a, b;X) and w ∈ Lp/(p−1)(a, b;X) for some 1 < p <∞, then

〈D2γ
a+ v, w〉0Hγ (a,b;X) =

∫ b

a

(D2γ
a+ v(t), w(t))X dt.

Finally, we introduce some conventions as follows: H1
0 (Ω) denotes the usual

Sobolev space, andH−1(Ω) is its dual space; the spaces 0H
γ(a, b;R) and 0Hγ(a, b;R)

are abbreviated to 0H
γ(a, b) and 0Hγ(a, b), respectively; C× means a generic

positive constant depending only on its subscript(s), and its value may differ
at each occurrence; for an interval ω ⊂ R, the notation 〈p, q〉ω denotes

∫
ω pq

whenever pq ∈ L1(ω).

3 Two discretizations of a fractional ordinary

equation

This section considers two discretizations of the following fractional ordinary
equation:

Dα−1
0+ (y′ − y1)(t) + λy(t) = f(t), t > 0, (3)
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subjected to the initial value condition y(0) = y0, where y0, y1 ∈ R, f ∈
L1(0,∞) ∩ 0H

(1−α)/2(0,∞), and λ > 1 is a positive constant. Let µ := λτα/2
and define tj := jτ for each j ∈ N, where τ is a positive constant. Applying the
L1-scheme proposed in [33], we obtain the first discretization of equation (3).

Remark 3.1. In order to obtain the error estimates of PDE (1), λ will be
chosen as one of the eigen values of the discrete Laplace operator −∆h in the
next section.

Discretization 1. Let Y0 = y0; for each k ∈ N, the value of Yk+1 is determined
by

(Y1 − Y0)(bk+1 − bk) +
k∑

j=1

(Yj+1 − 2Yj + Yj−1)(bk−j+1 − bk−j)

+ µ(Yk + Yk+1) = τα−1

∫ tk+1

tk

f(t) dt+ τy1(bk+1 − bk),

(4)

where bj := j2−α/Γ(3− α), j ∈ N.

Remark 3.2. The above discretization is actually an variant of the temporal
discretization in [33], but it is identical to a low-order Petrov-Galerkin method
analyzed in [22].

The second discretization is a simple modification of the first one.

Discretization 2. Let Y0 = y0; for each k ∈ N, the value of Yk+1 is determined
by

(Y1 − Y0)(βk+1 − βk) +
k∑

j=1

(Yj+1 − 2Yj + Yj−1)(βk−j+1 − βk−j)

+ µ(Yk + Yk+1) = τα−1

∫ tk+1

tk

f(t) dt+ τy1(βk+1 − βk),

(5)

where β1 = b1 + 2 sin(απ/2)
∑∞

k=1(2kπ)
α−3 and βk := bk for all k ∈ N \ {1}.

Remark 3.3. In the numerical analysis of Discretization 1 (cf. Remark 3.8

and Remark 3.9), we found that (̂b(z) − zα−3)(0) 6= 0 caused (3 − α)-order

accuracy of the first discretization, where b̂(z) is the discrete Laplace transform

of (bk)
∞
k=0. This is the motivation for the second discretization. Let β̂(z) be the

discrete Laplace transform of (βk)
∞
k=0. The definition of the sequence (βk)

∞
k=0

implies

β̂(z) = b̂(z) + 2 sin(απ/2)

∞∑

k=1

(2kπ)α−3

= b̂(z)−
(
b̂(z)− zα−3

)
(0) (by (8)).

Hence,
(
β̂(z)− zα−3

)
(0) = 0.

In the rest of Section 3, we shall use the well-known Laplace transform
technique to analyze Discretizations 1 and 2. Firstly, we prove that the discrete
Laplace transform of numerical solutions are well defined (i.e. they will not blow
up in some places). Secondly, we give the integral representations of the exact
and numerical solutions. Finally, we establish the error estimates by comparing
the differences between the above two integrals.
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3.1 Stability of the two discretizations

By an energy argument, it is easy to derive the following stability estimate of
Discretization 1.

Lemma 3.1. For each m ∈ N>0,

|Ym| 6 Cα

(
|y0|+ λ−1/2

(
t1−α/2
m |y1|+ ‖f‖

0H
(1−α)/2(0,tm)

))
. (6)

Proof. Multiplying both sides of (4) by τ1−α(Yk+1 − Yk) and summing over k
from 0 to m− 1, we obtain

〈Dα−1
0+ Y ′, Y ′〉(0,tm) + λ〈Y, Y ′〉(0,tm) = 〈f, Y ′〉(0,tm) + y1〈D

(α−1)
0+ 1, Y ′〉(0,tm),

where, for each k ∈ N, Y is linear on the interval [tk, tk+1] and Y (tk) = Yk. A
straightforward computation then gives

〈Dα−1
0+ Y ′, Y ′〉(0,tm) + λ〈Y, Y ′〉(0,tm)

6 |〈f, Y ′〉(0,tm) + y1〈D
α−1
0+ 1, Y ′〉(0,tm)|

= |〈D
(α−1)/2
0+ D

(1−α)/2
0+ f, Y ′〉(0,tm)|+ |y1〈D

(α−1)/2
0+ D

(α−1)/2
0+ 1, Y ′〉(0,tm)|

= |〈D
(1−α)/2
0+ f,D

(α−1)/2
tm− Y ′〉(0,tm)|+ |y1〈D

(α−1)/2
0+ 1,D

(α−1)/2
tm− Y ′〉(0,tm)|

6
(
‖D

(1−α)/2
0+ f‖L2(0,tm) + |y1|‖D

(α−1)/2
0+ 1‖L2(0,tm)

)
‖D

(α−1)/2
tm− Y ′‖L2(0,tm)

6 Cα

(
‖D

(1−α)/2
0+ f‖L2(0,tm) + t1−α/2

m |y1|
)
‖D

(α−1)/2
tm− Y ′‖L2(0,tm).

Using integration by parts yields

〈Y, Y ′〉(0,tm) = (Y 2
m − Y 2

0 )/2,

and by Lemma 2.1 we have

C1‖D
(α−1)/2
tm− Y ′‖2L2(0,tm) 6 C2‖D

(α−1)/2
0+ Y ′‖2L2(0,tm) 6 〈Dα−1

0+ Y ′, Y ′〉(0,tm),

where C1 and C2 are two positive constants depending only on α. By the above
three estimates and the Young’s inequality with ǫ, a simple calculation gives

|Ym| 6 Cα

(
|y0|+ λ−1/2

(
t1−α/2
m |y1|+ ‖D

(1−α)/2
0+ f‖L2(0,tm)

))
.

Therefore, (2) implies (6) and thus concludes the proof. �

To derive the stability of Discretization 2, for z ∈ C+ := {w ∈ C : Rew > 0},
we introduce the discrete Laplace transform of (bk)

∞
k=0 by that

b̂(z) :=

∞∑

k=0

bke
−kz.

By the routine analytic continuation technique, b̂ has a Hankel integral repre-
sentation (see [35])

b̂(z) =
1

2πi

∫ (0+)

−∞

wα−3

ez−w − 1
dw, z ∈ C \ (−∞, 0], (7)

6



where
∫ (0+)

−∞
means an integral on a piecewise smooth and non-self-intersecting

path enclosing the negative real axis and orienting counterclockwise, 0 and {z+
2kπi 6= 0 : k ∈ Z} lie on the different sides of this path, and wα−3 is evaluated
in the sense that

wα−3 = e(α−3) Logw.

Therefore, by Cauchy’s integral theorem and Cauchy’s integral formula, we have
(see [35, (13.1)])

b̂(z) =

∞∑

k=−∞

(z + 2kπi)α−3 (8)

for all z ∈ C \ (−∞, 0] satisfying −2π < Im z < 2π. From (7) it follows that

b̂(z) = b̂(z) for all z ∈ C \ (−∞, 0].

From (8) it follows that

b̂(z)− zα−3 is analytic on {w ∈ C : |Imw| < 2π}.

Remark 3.4. The b̂(z) also has another representation [35],

b̂(z) =
Liα−2(e

−z)

Γ(3− α)
,

where the polylogarithm is defined by

Lip(z) =

∞∑

k=1

zk

kp
, for |z| < 1 and p ∈ C.

Lemma 3.2. For each m ∈ N>0,

|Ym| 6 Cα

(
|y0|+ λ−1/2(t1−α/2

m |y1|+ ‖f‖
0H

(1−α)/2(0,tm)

))
. (9)

Proof. In virtue of the proof of Lemma 3.1, it suffices to prove

m∑

k=0

Zkδk 6 Cα

m∑

k=0

Zkδk, (10)

where

δj :=

{
Yj+1 − Yj , 0 6 j < m,

0, m 6 j <∞,

Zk := (bk+1 − bk)δ0 +

k∑

j=1

(bk−j+1 − bk−j)(δj − δj−1),

Zk := (βk+1 − βk)δ0 +

k∑

j=1

(βk−j+1 − βk−j)(δj − δj−1).

To this end, we proceed as follows. For z ∈ C+, let β̂(z), δ̂(z), Ẑ(z) and Ẑ(z)
be the discrete Laplace transforms of (βk)

∞
k=0, (δk)

∞
k=0, (Zk)

∞
k=0 and (Zk)

∞
k=0,

7



respectively. It is easy to verify that β̂, δ̂, Ẑ and Ẑ are analytic on C+. A
straightforward computation gives that, for z ∈ C+,

Ẑ(z) = e−z(ez − 1)2b̂(z)δ̂(z),

Ẑ(z) = e−z(ez − 1)2β̂(z)δ̂(z),

and hence, by (8) and the fact

β̂(z) = b̂(z) + (β1 − b1)e
−z,

we obtain

sup
0<x<1

∫ π

−π

|Ẑ(x+ iy)|2 dy <∞,

sup
0<x<1

∫ π

−π

|Ẑ(x+ iy)|2 dy <∞,

lim
x→0+

∫ π

−π

|Ẑ(x+ iy)− e−iy(eiy − 1)2b̂(iy)δ̂(iy)|2 dy = 0,

lim
x→0+

∫ π

−π

|Ẑ(x+ iy)− e−iy(eiy − 1)2β̂(iy)δ̂(iy)|2 dy = 0.

Following the proof of the well-known Paley-Wiener Theorem [2, Theorem
1.8.3]), we easily conclude that

∞∑

k=0

Z2
k <∞,

∞∑

k=0

Z2
k <∞,

∞∑

k=0

Zke
−iy = e−iy(eiy − 1)2b̂(iy)δ̂(iy) in L2(−π, π; dy),

∞∑

k=0

Zke
−iy = e−iy(eiy − 1)2β̂(iy)δ̂(iy) in L2(−π, π; dy).

Therefore, by the famous Parseval’s theorem,
m∑

k=0

Zkδk =

∞∑

k=0

Zkδk =
1

2π

∫ π

−π

e−iy(eiy − 1)2b̂(iy)|δ̂(iy)|2 dy

=
1

π

∫ π

0

Re
(
e−iy(eiy − 1)2b̂(iy)

)
|δ̂(iy)|2 dy. (11)

Similarly,
m∑

k=0

Zkδk =
1

π

∫ π

0

Re
(
e−iy(eiy − 1)2β̂(iy)

)
|δ̂(iy)|2 dy. (12)

In addition, a straightforward calculation gives, by (8), that

Re
(
e−iy(eiy − 1)2β̂(iy)

)

= 2(1−cos y) sin
(απ
2

) ∞∑

k=1

(
(2kπ − y)α−3+(2kπ + y − 2π)α−3−2 cos y(2kπ)α−3

)

> Cα(1− cos y)
∞∑

k=1

(
(2kπ − y)α−3 + (2kπ + y − 2π)α−3

)

> Cα Re
(
e−iy(eiy − 1)2b̂(iy)

)
, (13)

for all y ∈ [−π, π] \ {0}. Finally, combining (11), (12) and (13) yields (10) and
thus concludes the proof. �
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3.2 Convergence of Discretization 1

3.2.1 Integral representation of Yk

For any z ∈ C+, let Ŷ (z) be the discrete Laplace transform of (Yk)
∞
k=0. In virtue

of Lemma 3.1, Ŷ is analytic on C+. Multiplying both sides of (4) by e−kz and
summing over k from 0 to ∞, we obtain

(ψ(z) + µ(ez + 1))Ŷ (z) = ((ez − 1)2b̂(z) + µez)y0 + τ(ez − 1)̂b(z)y1+

+ τα−1
∞∑

k=0

∫ tk+1

tk

f(t) dte−kz , ∀z ∈ C+,
(14)

where

ψ(z) := e−z(ez − 1)3b̂(z). (15)

By the properties of the function b̂ in the previous subsection, ψ has an analytic
continuation as follows:

ψ(z) = e−z(ez − 1)3
∞∑

k=−∞

(z + 2kπi)α−3 (16)

for all z ∈ C \ (−∞, 0] satisfying −2π < Im z < 2π. Moreover,

ψ(z) = ψ(z) for all z ∈ C \ (−∞, 0] with − 2π < Im z < 2π, (17)

ψ(z)− e−z(ez − 1)3zα−3 is analytic on {w ∈ C : |Imw| < 2π}, (18)

and

lim
r→0+

ψ(reiθ)

rα(cos(αθ) + i sin(αθ))
= 1 uniformly for all −π < θ < π. (19)

In the rest of Section 3, we assume that µ 6 µ0, where µ0 is a given positive
constant.

Remark 3.5. Let λ be any eigen value of discrete Laplace operator −∆h, then
µ 6 µ0 implies that τα/h2 is bounded. The L1 scheme in Discretization 1 re-
duces to the second order central difference scheme when α = 2, and this scheme
require that τ/h is bounded (stability), which is consistent with the condition that
µ 6 µ0.

Lemma 3.3. There exists π
2 < θα,µ0 6 α+2

4α π depending only on α and µ0 such
that

ψ(z) + µ(1 + ez) 6= 0 for all 0 < µ 6 µ0 and

z ∈ {w ∈ C : 0 < |Imw| 6 π,
π

2
6 |Argw| 6 θα,µ0}.

(20)

Proof. By (19), there exists 0 < rα < π, depending only on α, such that
Im

(
(1 + ez)−1ψ(z)

)
> 0 and hence

ψ(z)+µ(1 + ez) 6= 0 for all 0 < µ 6 µ0 and

z ∈
{
w ∈ C :

π

2
6 Argw 6

α+ 2

4α
π, 0 < Imw 6 rα

}
.

(21)
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From (17) and (21), it remains therefore to show that there exists π
2 < θα,µ0 6

α+2
4α π such that

ψ(z)+µ(1 + ez) 6= 0 for all 0 < µ 6 µ0 and

z ∈
{
w ∈ C :

π

2
6 Argw 6 θα,µ0 , rα < Imw 6 π

}
.

(22)

To this end, we proceed as follows. For 0 < y 6 π, by (16) we have

ψ(iy) = e−iy(eiy − 1)3
∞∑

k=−∞

(iy + 2kπi)α−3

= e−iy(eiy − 1)3
( −1∑

k=−∞

(−2kπ − y)α−3(−i)α−3 +

∞∑

k=0

(2kπ + y)α−3iα−3
)

= e−iy(eiy − 1)3
( ∞∑

k=1

(2kπ − y)α−3ei(3−α)π/2 +
∞∑

k=0

(2kπ + y)α−3e−i(3−α)π/2
)

= e−iy(eiy − 1)3
(
−

∞∑

k=1

(2kπ − y)α−3ei(1−α)π/2 −
∞∑

k=0

(2kπ + y)α−3e−i(1−α)π/2
)

= e−iy(eiy − 1)3(A(y) + iB(y)), (23)

where

A(y) := − cos((α− 1)π/2)

∞∑

k=0

(2kπ + 2π − y)α−3 + (2kπ + y)α−3,

B(y) := sin((α− 1)π/2)
∞∑

k=0

(2kπ + 2π − y)α−3 − (2kπ + y)α−3.

Moreover,

Im
(
(1 + eiy)−1ψ(iy)

)
= 4A(y)

(cos y − 1) sin y

|eiy + e2iy |2
> 0, ∀0 < y < π. (24)

Inserting y = π into (23) yields

ψ(πi) = 8A(π) < 0 = µ(1 + eπi),

so that by the continuity of ψ, there exists 0 < r1α,µ0
6 rα tan((2 − α)/(4α)π)

and 0 < r2α,µ0
< π, depending only on α and µ0, such that

ψ(z) + µ(1 + ez) 6= 0 for all 0 < µ 6 µ0 and

z ∈ {w ∈ C : −r1α,µ0
6 Rew 6 0, r2α,µ0

6 Imw 6 π}.
(25)

For the case of rα 6 Imw 6 r2α,µ0
, by (24) and the continuity of ψ, it follows

that there exists 0 < r3α,µ0
6 r1α,µ0

, depending only on α and µ0, such that

Im
(
(1 + ez)−1ψ(z)

)
> 0 and hence

ψ(z) + µ(1 + ez) 6= 0 for all 0 < µ 6 µ0 and

z ∈ {w ∈ C : −r3α,µ0
6 Rew 6 0, rα 6 Imw 6 r2α,µ0

}.
(26)

Finally, letting θα,µ0 := π/2 + arctan(r3α,µ0
/π) yields (22), by (25) and (26).

This completes the proof. �
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Remark 3.6. The r1α,µ0
in the above proof will approximate 0, when µ0 → ∞.

Hence, θα,µ0 → (π/2)+ as µ0 → ∞.

Lemma 3.4. For each z ∈ C+ and µ > 0,

ψ(z) + µ(ez + 1) 6= 0. (27)

Proof. Assume that z ∈ C+ satisfies that

ψ(z) + µ(ez + 1) = 0. (28)

It follows that
b̂(z) = −µez(ez + 1)(ez − 1)−3,

and hence
(ez − 1)2b̂(z) + µez = −2µez(ez − 1)−1.

In the case that y0 = 1, y1 = 0 and f ≡ 0, from (14) and (28) we obtain

(ez − 1)2b̂(z) + µez = 0.

Since the above two equations are contradictory, this proves the lemma. �

Remark 3.7. The above two lemmas indicate that ψ(z) + µ(ez + 1) 6= 0 in

some places. Hence, by (14), Ŷ (z) will not blow up in these places. Then it is
reasonable to give the integral representation of the numerical solution Y .

For the sake of simplicity, in the rest of this subsection (i.e., Subsection 3.2)
we use the following conventions: µ0 is a positive constant and µ 6 µ0; θα,µ0

defined in Lemma 3.3 is abbreviated to θ. Define

Υ := (∞, 0]e−iθ ∪ [0,∞)eiθ,

Υ1 := {z ∈ Υ : |Im z| 6 π},

where Υ is oriented so that Im z increases along Υ and Υ1 inherit the orien-
tation of Υ. In addition, if the integral over Υ/Υ1 is divergent, caused by the
singularity of the underlying integrand near the origin, then Υ/Υ1 should be
deformed so that the origin lies at its left side; for example,

Υ := (∞, ǫ]e−iθ ∪ {ǫeiϕ : −θ 6 ϕ 6 θ} ∪ [ǫ,∞)eiθ,

where ǫ is an arbitrary positive constant.

Lemma 3.5 ([12]). For any t > 0,

y(t) =
1

2πi

∫

Υ

e(t/τ)z
y0z

α−1 + τy1z
α−2

zα + 2µ
dz

+

∫ t

0

E(t− s)f(s) ds,

(29)

where

E(t) :=
τα−1

2πi

∫

Υ

e(t/τ)z(zα + 2µ)−1 dz. (30)

11



Lemma 3.6. For each k ∈ N>0,

Yk =
1

2πi

∫

Υ1

ekz
(
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

)
y0 + τ (ez − 1)̂b(z)y1

ψ(z) + µ(ez + 1)
dz

+

∫ tk

0

Ẽ(tk − t)f(t) dt,

(31)

where
Ẽ(t) := τα−1E⌈t/τ⌉, t > 0, (32)

with ⌈·⌉ being the ceiling function and

Ej :=
1

2πi

∫

Υ1

ejz(ψ(z) + µ(ez + 1))−1 dz, for j ∈ Z. (33)

Proof. A straightforward computation yields, by (14) and Lemma 3.4, that

Ŷ (z) =

(
(ez − 1)2b̂(z)+µez

)
y0+τ (e

z − 1)̂b(z)y1+τ
α−1 ∑∞

j=0

∫ tj+1

tj
f(t)dte−jz

ψ(z) + µ(ez + 1)
, (34)

for all z ∈ C+. Hence,

Yk =
1

2πi

∫ a+iπ

a−iπ

ekzŶ (z) dz = I1 + I2 + I3, for 0 < a <∞,

where

I1 :=
y0
2πi

∫ a+iπ

a−iπ

ekz
(ez − 1)2b̂(z) + µez

ψ(z) + µ(ez + 1)
dz,

I2 :=
τy1
2πi

∫ a+iπ

a−iπ

ekz
(ez − 1)̂b(z)

ψ(z) + µ(ez + 1)
dz,

I3 :=
τα−1

2πi

∫ a+iπ

a−iπ

ekz

∑∞
j=0

∫ tj+1

tj
f(t) dte−jz

ψ(z) + µ(ez + 1)
dz.

Here, by Lemma 3.4 and Cauchy’s integral theorem we have

I1 =
1

2πi

∫ a+iπ

a−iπ

ekz
(ez − 1)2b̂(z) + µez

ψ(z) + µ(ez + 1)
dz

=
1

2πi

∫ a+iπ

a−iπ

ekz
((ez − 1)2b̂(z) + µez

ψ(z) + µ(ez + 1)
−

1

2

)
dz

=
1

2πi

∫ a+iπ

a−iπ

ekz
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

ψ(z) + µ(ez + 1)
dz

=
y0
2πi

∫

Υ1

ekz
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

ψ(z) + µ(ez + 1)
dz,

where the latter equality follows from Lemma 3.3 and the fact that

ekz
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

ψ(z) + µ(ez + 1)

= ek(z+2πi) (e
z+2πi − 1)2b̂(z + 2πi)− ψ(z + 2πi)/2− µ(ez+2πi − 1)/2

ψ(z + 2πi) + µ(ez+2πi + 1)

12



for Re z > −π cot(θ) and Im z = −π.
A similar argument gives

I2 =
y1τ

2πi

∫

Υ1

ekz
(ez − 1)̂b(z)

ψ(z) + µ(ez + 1)
dz. (35)

We now turn to I3. Using Fubini’s theorem and Cauchy’s integral theorem, we
have

I3 =
τα−1

2πi

∫ a+iπ

a−iπ

ekz

∑∞
j=0

∫ tj+1

tj
f(t) dte−jz

ψ(z) + µ(ez + 1)
dz

=

∞∑

j=0

∫ tj+1

tj

f(t) dt
τα−1

2πi

∫ a+iπ

a−iπ

e(k−j)z(ψ(z) + µ(ez + 1))−1 dz

=

k−1∑

j=0

∫ tj+1

tj

f(t) dt
τα−1

2πi

∫ a+iπ

a−iπ

e(k−j)z(ψ(z) + µ(ez + 1))−1 dz

=
k−1∑

j=0

∫ tj+1

tj

f(t) dtτα−1Ek−j

=

∫ tk

0

f(t)Ẽ(tk − t) dt.

Combining the estimates of I1, I2 and I3 proves (31) and hence the lemma. �

3.2.2 Convergence for f ≡ 0

Lemma 3.7. For each z ∈ Υ1 \ {0},

|ψ(z) + µ(1 + ez)| > Cα,µ0 (µ+ |z|α). (36)

Proof. By (16) there exists a continuous function g on [0, π/ sin θ] such that

(1 + reiθ)−1ψ(reiθ) = rαeiαθ/2 + rα+1g(r).

It follows that

|µ+ (1 + reiθ)−1ψ(reiθ)|2

= |µ+ rαeiαθ/2 + rα+1g(r)|2

> |µ+ rαeiαθ/2|2/2− r2(α+1)|g(r)|2

= (µ+ rα cos(αθ)/2)2/2 + r2α sin(αθ)2/8− r2(α+1)|g(r)|2, (37)

and hence there exists 0 < rα,µ0 < π/ sin θ, depending only on α and µ0, such
that

|µ+ (1 + reiθ)−1ψ(reiθ)| > Cα,µ0(µ+ rα) for all 0 < r 6 rα,µ0 .

Therefore,

inf
0<r6rα,µ0

|µ+ (1 + reiθ)−1ψ(reiθ)|

µ+ rα
> Cα,µ0 .
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Using this estimate and

|1 + reiθ| > Cα,µ0 , for all 0 6 r 6 π/ sin θ,

we have

inf
0<r6rα,µ0

|ψ(reiθ) + µ(1 + riθ)|

µ+ rα
> Cα,µ0 .

In addition, applying the extreme value theorem yields, by (20), that

inf
rα,µ06r6π/ sin θ

|ψ(reiθ) + µ(reiθ + 1)|

µ+ rα
> Cα,µ0 .

Together, the above two estimates show

inf
0<r6π/ sin θ

|ψ(reiθ) + µ(reiθ + 1)|

µ+ rα
> Cα,µ0 ,

which completes the proof. �

Lemma 3.8. For each z ∈ Υ1 \ {0},

|z + 2µz1−α| > Cα(|z|+ µ|z|1−α). (38)

Proof. A simple calculation yields

|z + 2µz1−α| = |z||1 + 2µz−α|

= r|1 + 2µr−α cos(−αθ) + 2iµr−α sin(−αθ)|

> Cαµr
1−α.

Analogously, we have

|z + 2µz1−α| = |z|1−α|zα + 2µ|

= r1−α|2µ+ rα cos(αθ) + irα sin(αθ)|

> Cαr.

Combining above two estimates proves (38) and hence the lemma. �

Theorem 3.1. For each k ∈ N>0,

|y(tk)− Yk| 6 Cα,µ0τ
3−α

(
tα−3
k |y0|+ tα−2

k |y1|
)
. (39)

Proof. From (29) and (31), it follows that

y(tk)− Yk = I1 + I2 + I3,

where

I1 :=
1

2πi

∫

Υ\Υ1

ekz
y0z

α−1 + τy1z
α−2

zα + 2µ
dz,

I2 :=
y0
2πi

∫

Υ1

ekz
( zα−1

zα + 2µ
−

(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

ψ(z) + µ(ez + 1)

)
dz,

I3 :=
τy1
2πi

∫

Υ1

ekz
( zα−2

zα + 2µ
−

b̂(z)(ez − 1)

ψ(z) + µ(ez + 1)

)
dz.
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Let us first estimate I1. A simple calculation gives

I1 =
1

π
Im

∫ ∞

π/ sin θ

ekre
iθ y0(re

iθ)α−1 + τy1(re
iθ)α−2

(reiθ)α + 2µ
eiθ dr,

and the fact π/2 < θ < (α+ 2)/(4α)π implies

|
y0(re

iθ)α−1 + τy1(re
iθ)α−2

(reiθ)α + 2µ
eiθ|

6
|y0|r

α−1 + τ |y1|r
α−2

|rα cos(αθ) + 2µ+ irα sin(αθ)|

6 Cα,µ0

(
|y0|r

−1 + τ |y1|r
−2

)
.

Hence,

|I1| 6 Cα,µ0

∫ ∞

π/ sin θ

ekr cos θ
(
|y0|r

−1 + τ |y1|r
−2

)
dr

6 Cα,µ0

(
|y0|k

−1 + τ |y1|k
−1

)
ekπ cot θ. (40)

Then let us estimate I2. For z ∈ Υ1 \ {0}, a straightforward calculation
gives

|ψ(z) + µ(1 + ez)− (z + 2µz1−α)
(
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

)
|

<Cα

(
|z|α+2 + µ|z|3−α + µ2|z|2−α

)
,

and so Lemmas 3.7 and 3.8 imply

|
1

z + 2µz1−α
−

(ez − 1)2b̂(z)− e−z(ez − 1)3b̂(z)/2 + µ(ez − 1)/2

ψ(z) + µ(1 + ez)
|

< Cα,µ0

|z|α+2 + µ|z|3−α + µ2|z|2−α

(|z|+ µ|z|1−α)(|z|α + µ)
.

It follows that

|I2| 6 Cα,µ0 |y0|

∫ π/ sin θ

0

ekr cos θ r
α+2 + µr3−α + µ2r2−α

(r + µr1−α)(rα + µ)
dr.

If 0 < r < µ1/α then

rα+2 + µr3−α + µ2r2−α

(r + µr1−α)(rα + µ)

< µ−2rα−1(rα+2 + µr3−α + µ2r2−α)

= µ−2r2α+1 + µ−1r2 + r < 2r + r2−α,

and if µ1/α < r then

rα+2 + µr3−α + µ2r2−α

(r + µr1−α)(rα + µ)

< r−α−1(rα+2 + µr3−α + µ2r2−α)

= r + µr2−2α + µ2r1−2α < 2r + r2−α.
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Therefore,

|I2| 6 Cα,µ0 |y0|

∫ π/ sin θ

0

ekr cos θr2−α dr 6 Cα,µ0 |y0|k
α−3. (41)

Finally, a similar argument as that to derive (41) yields

|I3| 6 Cα,µ0τk
α−2|y1|, (42)

and then combining (40), (41) and (42) gives

|y(tk)− Yk| 6 Cα,µ0

(
kα−3|y0|+ τkα−2|y1|

)

= Cα,µ0τ
3−α

(
tα−3
k |y0|+ tα−2

k |y1|
)
,

which proves (39) and hence this theorem. �

Remark 3.8. In the above proof,

|ψ(z) + µ(1 + ez)− (z + 2µz1−α)
(
(ez − 1)2b̂(z)− ψ(z)/2 + µ(ez − 1)/2

)
|

<Cα

(
|z|α+2 + µ|z|3−α + µ2|z|2−α

)
,

and the term µ|z|3−α leads to (3 − α)-order accuracy. If we choose a β such

that (i.e. (β̂(z)− zα−3) = 0)

|Ψ(z) + µ(1 + ez)− (z + 2µz1−α)
(
(ez − 1)2β̂(z)−Ψ(z)/2 + µ(ez − 1)/2

)
|

<Cα

(
|z|α+2 + µ|z|2 + µ2|z|2−α

)
,

then we can obtain 2-order accuracy, where Ψ(z) = e−z(ez − 1)3β̂(z). This is
the motivation of the second discretization.

3.2.3 Convergence for y0 = y1 = 0

Define

E(t) :=

∫ t

0

(E − Ẽ)(s) ds, t > 0,

where E and Ẽ are defined by (30) and (32), respectively.

Lemma 3.9. For any tk < t 6 tk+1 with k ∈ N,

|E(t)| < Cα,µ0ε(α, τ, k)τ
3−α, (43)

where

ε(α, τ, k) :=





t2α−3
k+1 if 1 < α < 3/2,

1 + |ln τ | if α = 3/2,

1 if 3/2 < α < 2.

(44)

Proof. Since the proof of the case k = 0 is simpler, we only prove the case k > 1.
By Lemmas 3.3 and 3.4 and the fact that

(1− e−z)(ψ(z) + µ(ez + 1)) = (1− e−(z+2πi))(ψ(z + 2πi) + µ(ez+2πi + 1))
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for all z = x− iπ with x > π cot θ, applying Cauchy integral theorem yields that
∫

Υ1

1

(1− e−z)(ψ(z) + µ(ez + 1))
dz = 0,

and using Cauchy integral theorem again gives
∫

Υ

1

z(zα + 2µ)
dz = 0.

Therefore, from (30) and (32) we have

E(t) =

∫ tk

0

E(s) ds−
k∑

j=1

ταEj +

∫ t

tk

E(s) ds− (t− tk)Ek+1

=
τα

2πi

∫

Υ

ekz

z(zα + 2µ)
dz −

τα

2πi

∫

Υ1

ekz

(1− e−z)(ψ(z) + µ(ez + 1))
dz

+
τα

2πi

∫

Υ

e(t/τ)z − ekz

z(zα + 2µ)
dz −

τα

2πi

∫

Υ1

(t/τ − k)e(k+1)z

ψ(z) + µ(ez + 1)
dz.

Inserting t = tk into above equation yields

E(tk) = I1 + I2 + I3, (45)

where

I1 :=
τα

2πi

∫

Υ\Υ1

et/τz

z(zα + 2µ)
dz,

I2 :=
τα

2πi

∫

Υ1

ekz

z(zα + 2µ)
−

ekz(1− e−z)−1

ψ(z) + µ(ez + 1)
dz,

I3 :=
τα

2πi

∫

Υ1

ekz
(
e(t/τ−k)z − 1

z(zα + 2µ)
−

(t/τ − k)ez

ψ(z) + µ(ez + 1)

)
dz.

It is clear that

|I1| < Cα,µ0τ
α

∫ ∞

π/ sin θ

et/τr cos θr−1−α dr < Cα,µ0τ
α+1t−1ekπ cot θ. (46)

Let us proceed to estimate I2. For z ∈ Υ1 \ {0}, a simple calculation yields

|ψ(z) + µ(ez + 1)− z(zα + 2µ)(1− e−z)−1| < Cα,µ0(µ|z|
2 + |z|3),

and Lemmas 3.7 and 3.8 imply

|z(zα + 2µ)(ψ(z) + µ(ez + 1))| > Cα,µ0 |z|(|z|
2α + µ2). (47)

Hence, if µ1/α < π/ sin θ then

|I2| < Cα,µ0τ
α

(∫ µ1/α

0

ekr cos θ(µ−1r + µ−2r2) dr +

∫ π/ sin θ

µ1/α

ekr cos θ(µr1−2α + r2−2α) dr

)

< Cα,µ0τ
α

{∫ π/ sin θ

0
ekr cos θr2−2α dr if 1 < α < 3/2,

∫ µ1/α

0
µ−1r + µ−2r2 dr +

∫ π/ sin θ

µ1/α r1−α + r2−2α dr if 3/2 6 α < 2,

< Cα,µ0τ
α






k2α−3 if 1 < α < 3/2,

1 + |ln τ | if α = 3/2,

τ 3−2α if 3/2 < α < 2,
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and if µ1/α > π/ sin θ then

|I2| < Cα,µ0τ
α

∫ π/ sin θ

0

ekr cos θ(µ−1r + µ−2r2) dr

< Cα,µ0τ
α

∫ π/ sin θ

0

ekr cos θr dr < Cα,µ0τ
αk−2.

Consequently,
|I2| < Cα,µ0ε(α, τ, k)τ

3−α. (48)

Now, let us estimate I3. For z ∈ Υ1 \ {0}, a routine calculation yields

|(e(t/τ−k)z − 1)(ψ(z) + µ(ez + 1))− z(zα + 2µ)(t/τ − k)ez|

< Cα,µ0(t/τ − k)
(
|z|α+2 + µ|z|2

)
,

so that by (47) we obtain

|I3| < Cα,µ0τ
α(t/τ − k)

(∫ min{µ1/α,π/ sin θ}

0

ekr cos θ(µ−2rα+1 + µ−1r) dr +

∫ π/ sin θ

min{µ1/α,π/ sin θ}

ekr cos θ(r1−α + µr1−2α) dr

)

< Cα,µ0τ
α(t/τ − k)

∫ π/ sin θ

0

ekr cos θr1−α dr

< Cα,µ0τ
α(t/τ − k)kα−2. (49)

Finally, combining (45), (46), (48) and (49) proves (43) and thus concludes
the proof. �

Remark 3.9. In the above proof,

|ψ(z) + µ(ez + 1)− z(zα + 2µ)(1− e−z)−1| < Cα,µ0(µ|z|
2 + |z|3),

and the term |z|3 leads to (3-α)-order accuracy. If we choose a β such that

(i.e. (β̂(z)− zα−3) = 0)

|Ψ(z) + µ(ez + 1)− z(zα + 2µ)(1− e−z)−1| < Cα,µ0(µ|z|
2 + |z|2+α),

then we can obtain 2-order accuracy, where Ψ(z) = e−z(ez − 1)3β̂(z).

Theorem 3.2. For each k ∈ N>0, if f
′ ∈ L1(0, tk) then

|y(tk)− Yk| 6 Cα,µ0τ
3−αε(α, τ, k)|f(0)|+

Cα,µ0τ
3−α





∫ tk
0 (tk+1 − t)2α−3|f ′(t)| dt if 1 < α < 3/2,

(1 + |ln τ |)‖f ′‖L1(0,tk) if α = 3/2,

‖f ′‖L1(0,tk) if 3/2 < α < 2,

(50)

where ε(α, τ, k) is defined by (44).
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Proof. By (29) and (31), a straightforward computation yields that

y(tk)− Yk =

∫ tk

0

(E − Ẽ)(tk − t)f(t) ds

=

∫ tk

0

(E − Ẽ)(tk − t)

(
f(0) +

∫ t

0

f ′(s) ds

)
dt

= f(0)E(tk) +

∫ tk

0

E(tk − t)f ′(t) dt

for each k ∈ N>0. Therefore, by Lemma 3.9 we obtain the theorem. �

Remark 3.10. As pointed out in Remark 3.6, θ → (π/2)+ as µ0 → ∞. Hence,
(40) and (46) imply that the Cα,µ0 in (39) and the Cα,µ0 in (50) will both
approach infinity as θ → (π/2)+. Analogously, the Cα,µ0 in (51) will approach
infinity as τα/h2 → ∞.

3.3 Convergence of the second discretization

From the proofs of Theorems 3.1 and 3.2, it is easily perceived that the fact (cf.
Remark 3.8 and Remark 3.9)

(̂b(z)− zα−3)(0) 6= 0

caused (3− α)-order accuracy of the first discretization. This is the inspiration

for the second discretization. Let β̂(z) be the discrete Laplace transform of
(βk)

∞
k=0. The definition of the sequence (βk)

∞
k=0 implies

β̂(z) = b̂(z) + 2 sin(απ/2)
∞∑

k=1

(2kπ)α−3

= b̂(z)−
(̂
b(z)− zα−3

)
(0) (by (8)).

Hence,
(
β̂(z)− zα−3

)
(0) = 0. Finally, by a simple modification of the proofs of

Theorems 3.1 and 3.2, we readily obtain the following error estimate.

Theorem 3.3. For k ∈ N>0,

|y(tk)−Yk|6Cα,µ0τ
2

(
t−2
k |y0|+ t

−1
k |y1|+ t

α−2
k |f(0)|+

∫ tk

0

(tk+1− t)
α−2|f ′(t)|dt

)
. (51)

4 Two full discretizations

Let Kh be a quasi-uniform and shape-regular triangulation of Ω consisting of
d-simplexes, and we use h to denote the maximum diameter of the elements in
Kh. Define

Sh :=
{
vh ∈ H1

0 (Ω) : vh|K ∈ P1(K) ∀K ∈ Kh

}
,

where P1(K) is the set of all linear functions defined on K. Let ∆h : Sh → Sh

be the usual discrete Laplace operator, namely,

〈−∆hvh, wh〉Ω = 〈∇vh,∇wh〉Ω
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for all vh, wh ∈ Sh. In addition, let Ph be the L2-orthogonal projection onto Sh.
Assume that u0, u1 ∈ L2(Ω) and

f ∈ L1(0,∞;L2(Ω)) ∩ 0H
(1−α)/2(0,∞;H−1(Ω)).

Using Discretizations 1 and 2 in time and using −∆h as the discretization of
−∆, we obtain two full discretizations of problem (1) as follows.

Discretization 3. Let U0 = Phu0; for each k ∈ N, the value of Uk+1 is deter-
mined by

(bk+1 − bk)(U1 − U0) +

k∑

j=1

(bk−j+1 − bk−j)(Uj+1 − 2Uj + Uj−1)

−
τα

2
∆h(Uk + Uk+1) = τα−1Ph

∫ tk+1

tk

f(t) dt+ τ (bk+1 − bk)Phu1.

(52)

Discretization 4. Let U0 = Phu0; for each k ∈ N, the value of Uk+1 is deter-
mined by

(βk+1 − βk)(U1 − U0) +
k∑

j=1

(βk−j+1 − βk−j)(Uj+1 − 2Uj + Uj−1)

−
τα

2
∆h(Uk + Uk+1) = τα−1Ph

∫ tk+1

tk

f(t) dt+ τ (βk+1 − βk)Phu1.

(53)

Remark 4.1. We note that Discretization 3 has already been analyzed in [22],
and the following error estimate has been established in the case u0 = u1 = 0:

‖u(tk)− Uk‖H1
0 (Ω) . ‖f‖L2(0,tk ;L2(Ω))

{
τ (α−1)/2 + h1−1/α if 1 < α 6 3/2,

τ (α−1)/2 + τ−1/2h if 3/2 < α < 2,

where h 6 τα/2 if 3/2 < α < 2. This error estimate is optimal with respect to
the regularity of u.

By Lemmas 3.1 and 3.2, we easily obtain the following stability estimates of
Discretizations 3 and 4.

Theorem 4.1. For each k ∈ N>0,

‖Uk‖L2(Ω) 6 Cα

(
‖u0‖L2(Ω) + t

1−α/2
k ‖u1‖Ḣ−1(Ω) + ‖f‖

0H
(1−α)/2(0,tk;H

−1(Ω))

)
,

‖Uk‖L2(Ω) 6 Cα

(
‖u0‖L2(Ω) + t

1−α/2
k ‖u1‖Ḣ−1(Ω) + ‖f‖

0H
(1−α)/2(0,tk;H

−1(Ω))

)
.

Remark 4.2. Since we do not use Laplace transform technique in the proof of
Lemma 3.1, the first stability estimate in the above theorem does not require the
temporal grid to be uniform. We also note that the stability estimate in [33,
Theorem 3.2] essentially requires the initial value to be continuously differen-
tiable.

The main task of the rest of this section is to establish the convergence of
Discretizations 3 and 4. To this end, we first introduce the following conventions:
a . b means that there exists a positive constant C depending only on α, Ω, the
shape regularity of Kh or h−2

minτ
α, such that a 6 Cb, where hmin is the minimum

diameter of the elements in Kh. Then let us consider the error estimate of the
following spatial semidiscretization of problem (1):

Dα−1
0+ (u′h − Phu1)(t)−∆huh(t) = Phf(t), t > 0, (54)

subjected to the initial value condition uh(0) = Phu0.
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Lemma 4.1. If u0, u1 ∈ L2(Ω) and f ∈ L∞(0,∞, L2(Ω)), then

‖(u− uh)(t)‖L2(Ω) . h2
(
t−α‖u0‖L2(Ω) + t1−α‖u1‖L2(Ω)

+ (1 + |lnh|)‖f‖L∞(0,t;L2(Ω))

) (55)

for each t > 0.

Proof. For f = 0, [12, Theorem 3.2] implies

‖(u− uh)(t)‖L2(Ω) . h2
(
t−α‖u0‖L2(Ω) + t1−α‖u1‖L2(Ω)

)
,

it suffices to prove, for u0 = u1 = 0, that

‖(u− uh)(t)‖L2(Ω) . (1 + |lnh|)h2‖f‖L∞(0,t;L2(Ω)), (56)

which is an improvement of [12, Theorem 3.3]. To this end, we proceed as
follows. Similar to [21, Equation (25)], we have

(u− uh)(t) =

∫ t

0

1

2πi

∫

Υ

esz
(
(zα −∆)−1 − (zα −∆h)

−1Ph)
)
dzf(t− s) ds,

where Υ is defined in Section 3. The proof of [21, Theorem 2.1] proves that

‖(zα −∆)−1 − (zα −∆h)
−1Ph‖L(L2(Ω)) . h2, ∀z ∈ Υ \ {0},

and hence
∥∥∥∥
∫

Υ

esz
(
(zα −∆)−1 − (zα −∆h)

−1Ph

)
dz

∥∥∥∥
L(L2(Ω))

. s−1h2.

We also have
∥∥∥∥
∫

Υ

esz
(
(zα −∆)−1 − (zα −∆h)

−1Ph

)
dz

∥∥∥∥
L(L2(Ω))

. 1,

by the fact that, for z ∈ Υ \ {0},

‖(zα −∆)−1‖L(L2(Ω)) . (1 + |z|α)−1,

‖(zα −∆h)
−1‖L(L2(Ω)) . (1 + |z|α)−1.

Therefore, if h2 < t then

‖(u− uh)(t)‖L2(Ω) .

∫ h2

0

‖f(t− s)‖L2(Ω) ds+

∫ t

h2

s−1h2‖f(t− s)‖L2(Ω) ds

. h2(1 + |lnh|)‖f‖L∞(0,t;L2(Ω)),

and if t 6 h2 then

‖(u− uh)(t)‖L2(Ω) .

∫ t

0

‖f(t− s)‖L2(Ω) ds . h2‖f‖L∞(0,t;L2(Ω)).

This proves (56) and thus concludes the proof. �
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Remark 4.3. Since

u′ −∆D1−α
0+ u = D1−α

0+ f,

u′
h −∆h D1−α

0+ u = D1−α
0+ Phf,

we have

〈u′(t)− u′h(t), vh〉Ω + 〈∇D1−α
0+ (u − uh)(t),∇vh〉Ω = 0

for all vh ∈ Sh. Then, by the techniques used in Lemma 3.1, a standard energy
argument yields

‖(u− uh)(t)‖L2(Ω) 6 2‖(I −Rh)u
′‖L1(0,t;L2(Ω)) + ‖u(t)−Rhu(t)‖L2(Ω), t > 0,

where Rh : H1
0 (Ω) → Sh is defined by that, for each v ∈ H1

0 (Ω),
∫

Ω

∇(v −Rhv) · ∇wh = 0 for all wh ∈ Sh.

We can also use this estimate to analyze the convergence of (54) in L2(Ω)-norm
with nonsmooth data.

Finally, let us give the error estimates of Discretization 3. By triangle in-
equality, we have

‖(u− U)(t)‖L2(Ω) 6 ‖(u− uh)(t)‖L2(Ω) + ‖(uh − U)(t)‖L2(Ω), for 0 < t 6 T,

where U :=
∑∞

k=0 Ukϕk and ϕk is the hat function at node tk. The estimate of
‖(u− uh)(t)‖L2(Ω) already exists (cf. Lemma 4.1), and hence we only need to
give the estimate of ‖(uh − U)(t)‖L2(Ω). For i = 1, 2, · · · , N, let (φi, λi) be the
eigen-pair of the operator −∆h. We have

uh =

N∑

i=1

〈uh, φi〉Ωφi, U =

N∑

i=1

〈U, φi〉Ωφi.

It is easy to verify that uih := 〈uh, φi〉Ω with uih(0) = 〈u0, φi〉Ω satisfies that

Dα−1
0+ ((uih)

′ − ui1) + λiu
i
h = fi, for i = 1, 2, · · · , N,

where fi = 〈f, φi〉Ω and ui1 = 〈u1, φi〉Ω. Letting U
i := 〈U, φi〉Ω, by Theorems 3.1

and 3.2 we can obtain the error estimates between uih and U i, and hence the
error estimates between uh and U . By Theorem 3.3, the error estimates of
Discretization 4 follows similarly. By the above procedure, we have the following
two theorems.

Theorem 4.2. For k ∈ N>0, if f
′ ∈ L1(0, tk;L

2(Ω)) then

‖u(tk)− Uk‖L2(Ω)

.
(
tα−3
k τ 3−α + t−α

k h2)‖u0‖L2(Ω) +
(
tα−2
k τ 3−α + t1−α

k h2)‖u1‖L2(Ω)

+ τ 3−αε(α, τ, k)‖f(0)‖L2(Ω) + (1 + |ln h|)h2‖f‖L∞(0,tk;L
2(Ω))

+ τ 3−α






∫ tk
0

(tk+1 − t)2α−3‖f ′(t)‖L2(Ω) dt if 1 < α < 3/2,

(1 + |ln τ |)‖f ′‖L1(0,tk;L
2(Ω)) if α = 3/2,

‖f ′‖L1(0,tk ;L2(Ω)) if 3/2 < α < 2,

(57)

where ε(α, τ, k) is defined by (44).
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Theorem 4.3. For k ∈ N>0, if f
′ ∈ L1(0, tk;L

2(Ω)) then

‖u(tk)− Uk‖L2(Ω) .
(
τ2t−2

k + t−α
k h2

)
‖u0‖L2(Ω) +

(
τ2t−1

k + t1−α
k h2

)
‖u1‖L2(Ω)

+ τ2tα−2
k ‖f(0)‖L2(Ω) + (1 + |lnh|)h2‖f‖L∞(0,tk;L2(Ω))

+ τ2
∫ tk

0

(tk+1 − t)α−2‖f ′(t)‖L2(Ω) dt.

(58)

Remark 4.4. From Remark 3.10 it follows that the implicit constants in (57)
and (58) will approach infinity as τα/h2 → ∞.

5 Numerical experiments

5.1 Discretizations 1 and 2

For equation (3), we set λ = 1 and consider the following three problems:

(a). y0 := 1, y1 := 0, and f(t) := 0;

(b). y0 := 0, y1 := 1, and f(t) := 0;

(c). y0 := 0, y1 := 0, and f(t) := 1 + t0.2.

In this subsection, “Error” means the error of the numerical solution at t = 1,
where the reference solution is the numerical solution of Discretization 2 with
τ = 2−18. The numerical results in Tables 1, 2 and 3 demonstrate that the ac-
curacies of Discretizations 1 and 2 are close to O(τ3−α) and O(τ2), respectively,
which agrees well with Theorems 3.1, 3.2 and 3.3.

Discretization 1 Discretization 2

α = 1.2 α = 1.4 α = 1.8 α = 1.2 α = 1.4 α = 1.8

τ Error Order Error Order Error Order Error Order Error Order Error Order
2−10 2.05e-7 – 8.40e-7 – 4.97e-5 – 6.15e-8 – 4.19e-08 – 8.47e-8 –
2−11 6.12e-8 1.75 2.81e-7 1.58 2.16e-5 1.20 1.54e-8 2.00 1.07e-08 1.98 1.97e-8 2.10
2−12 1.81e-8 1.75 9.35e-8 1.59 9.42e-6 1.20 3.84e-9 2.00 2.70e-09 1.98 4.62e-9 2.09
2−13 5.35e-9 1.76 3.11e-8 1.59 4.10e-6 1.20 9.61e-10 2.00 6.79e-10 1.99 1.09e-9 2.09
2−14 1.57e-9 1.77 1.03e-8 1.59 1.78e-6 1.20 2.42e-10 1.99 1.71e-10 1.99 2.57e-10 2.08

Table 1: Convergence history of Discretizations 1 and 2 for problem (a)

Discretization 1 Discretization 2

α = 1.2 α = 1.5 α = 1.9 α = 1.2 α = 1.5 α = 1.9

τ Error Order Error Order Error Order Error Order Error Order Error Order
2−7 2.22e-6 – 7.90e-5 – 9.98e-4 – 2.65e-6 – 3.67e-6 – 4.58e-6 –
2−8 7.32e-7 1.60 2.83e-5 1.48 4.67e-4 1.10 6.53e-7 2.02 9.13e-7 2.01 9.95e-7 2.20
2−9 2.34e-7 1.65 1.01e-5 1.49 2.18e-4 1.10 1.62e-7 2.01 2.27e-7 2.01 2.14e-7 2.22
2−10 7.31e-8 1.68 3.60e-6 1.49 1.02e-4 1.10 4.03e-8 2.01 5.66e-8 2.00 4.54e-8 2.24
2−11 2.25e-8 1.70 1.28e-6 1.49 4.75e-5 1.10 1.01e-8 2.00 1.41e-8 2.00 9.52e-9 2.26

Table 2: Convergence history of Discretizations 1 and 2 for problem (b)
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Discretization 1 Discretization 2

α = 1.2 α = 1.4 α = 1.9 α = 1.2 α = 1.4 α = 1.9

τ Error Order Error Order Error Order Error Order Error Order Error Order
2−7 1.36e-5 – 2.73e-5 – 2.61e-3 – 5.31e-6 – 2.35e-6 – 9.39e-6 –
2−8 4.11e-6 1.72 9.31e-6 1.55 1.22e-3 1.10 1.32e-6 2.01 6.62e-7 1.83 2.32e-6 2.02
2−9 1.23e-6 1.74 3.14e-6 1.57 5.70e-4 1.10 3.27e-7 2.01 1.77e-7 1.90 5.71e-7 2.02
2−10 3.67e-7 1.75 1.05e-6 1.58 2.66e-4 1.10 8.10e-8 2.01 4.61e-8 1.94 1.40e-7 2.03
2−11 1.08e-7 1.76 3.52e-7 1.58 1.24e-4 1.10 2.01e-8 2.01 1.18e-8 1.96 3.44e-8 2.03

Table 3: Convergence history of Discretizations 1 and 2 for problem (c)

5.2 Discretizations 3 and 4

For equation (1) in the case Ω = (0, 1), we consider the following three problems:

(d). u0(x) := x−0.49, u1(x) := 0, and f(x, t) := 0;

(e). u0(x) := 0, u1(x) := x−0.49, and f(x, t) := 0;

(f). u0(x) := 0, u1(x) := 0, and f(x, t) := x−0.49(1 + t0.2).

Throughout this subsection, we will use uniform spatial grids, and “Error1”
and “Error2” denote the errors (in L2(Ω)-norm) of the numerical solutions of
Discretizations 3 and 4 at t = 1, respectively, where the reference solution is the
numerical solution of Discretization 4 with h = 2−11 and τ = 2−16.

Experiment 1. This experiment verifies the spatial accuracies of Discretiza-
tions 3 and 4. Table 4 demonstrates that the spatial accuracy of Discretization 3
is close to O(h2), which is in good agreement with Theorem 4.2. Since the nu-
merical results of Discretization 4 are almost identical to that of Discretization 3,
they are omitted here.

α = 1.2 α = 1.4 α = 1.8

h Error1 Order Error1 Order Error1 Order

Problem (d)

2−3 1.07e-3 – 4.43e-3 – 4.74e-2 –
2−4 2.73e-4 1.97 1.12e-3 1.99 1.57e-2 1.59
2−5 6.94e-5 1.98 2.80e-4 2.00 4.46e-3 1.82
2−6 1.76e-5 1.98 7.00e-5 2.00 1.15e-3 1.96
2−7 4.45e-6 1.98 1.75e-5 2.00 2.85e-4 2.01

Problem (e)

2−3 2.71e-3 – 2.33e-3 – 7.76e-3 –
2−4 7.21e-4 1.91 6.15e-4 1.92 2.04e-3 1.93
2−5 1.90e-4 1.92 1.61e-4 1.93 5.10e-4 2.00
2−6 4.97e-5 1.93 4.19e-5 1.94 1.27e-4 2.00
2−7 1.29e-5 1.94 1.08e-5 1.95 3.16e-5 2.00

Problem (f)

2−3 6.12e-3 – 6.64e-3 – 8.77e-3 –
2−4 1.63e-3 1.91 1.75e-3 1.92 2.27e-3 1.95
2−5 4.31e-4 1.92 4.60e-4 1.93 5.86e-4 1.96
2−6 1.13e-4 1.93 1.20e-4 1.94 1.51e-4 1.96
2−7 2.95e-5 1.94 3.12e-5 1.95 3.89e-5 1.95

Table 4: Convergence history of Discretization 3 for problems (d), (e) and (f) with

τ = 2−16

Experiment 2. To obtain the temporal accuracies O(τ3−α) and O(τ2) of
Discretizations 3 and 4, respectively, Theorems 4.2 and 4.3 require the ratio
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τα/h2 to be uniformly bounded. Hence, this experiment verifies the temporal
accuracies of Discretizations 3 and 4 in an indirect way. In this experiment,
we set τα = h2. Theorem 4.2 predicts that “Error1” is close to O(h2) for
1 < α 6 3/2 and close to O(h6/α−2) for 3/2 < α < 2. Theorem 4.3 predicts
that “Error2” is close to O(h2) for all 1 < α < 2. The above two predictions
are confirmed by the numerical results in Tables 5, 6 and 7.

α = 1.2 α = 1.5 α = 1.8

h Error1 Order Error2 Order Error1 Order Error2 Order Error1 Order Error2 Order
2−5 6.87e-5 – 6.99e-5 – 4.83e-4 – 5.00e-4 – 4.19e-2 – 7.12e-3 –
2−6 1.75e-5 1.97 1.76e-5 1.99 1.25e-4 1.95 1.25e-4 2.00 1.98e-2 1.08 1.27e-3 2.48
2−7 4.44e-6 1.98 4.45e-6 1.99 3.16e-5 1.98 3.10e-5 2.01 8.57e-3 1.21 2.59e-4 2.29
2−8 1.11e-6 1.99 1.12e-6 2.00 8.08e-6 1.97 7.65e-6 2.02 3.54e-3 1.27 5.88e-5 2.14

Table 5: Convergence history of Discretizations 3 and 4 for problem (d)

α = 1.2 α = 1.5 α = 1.8

h Error1 Order Error2 Order Error1 Order Error2 Order Error1 Order Error2 Order
2−5 1.90e-4 – 1.90e-4 – 1.17e-4 – 1.71e-4 – 6.12e-3 – 6.06e-4 –
2−6 4.98e-5 1.93 4.97e-5 1.93 3.14e-5 1.90 4.23e-5 2.01 2.60e-3 1.24 1.08e-4 2.48
2−7 1.29e-5 1.94 1.29e-5 1.94 8.25e-6 1.93 1.06e-5 1.99 1.06e-3 1.29 1.96e-5 2.46
2−8 3.33e-6 1.96 3.33e-5 1.96 2.15e-6 1.94 2.68e-6 1.99 4.26e-4 1.31 4.44e-6 2.15

Table 6: Convergence history of Discretizations 3 and 4 for problem (e)

α = 1.2 α = 1.5 α = 1.9

h Error1 Order Error2 Order Error1 Order Error2 Order Error1 Order Error2 Order
2−4 1.63e-3 – 1.63e-3 – 1.53e-3 – 1.87e-3 – 2.22e-2 – 2.61e-3 –
2−5 4.31e-4 1.92 4.31e-4 1.92 4.06e-4 1.92 4.91e-4 1.93 1.03e-2 1.10 7.35e-4 1.83
2−6 1.13e-4 1.93 1.13e-4 1.93 1.07e-4 1.92 1.28e-4 1.94 4.75e-3 1.12 1.79e-4 2.03
2−7 2.95e-5 1.94 2.95e-5 1.94 2.80e-5 1.93 3.30e-5 1.95 2.15e-3 1.15 4.17e-5 2.11

Table 7: Convergence history of Discretizations 3 and 4 for problem (f)

Experiment 3. This experiment investigates the effect of large ration τα/h2 on
the accuracy of Discretizations 3 and 4 for problem (d). The numerical results
in Table 8 illustrate that, with fixed τ , the accuracy of Discretizations 3 and 4
will deteriorate as h→ 0+, which confirms Remark 4.4.

α = 1.2 α = 1.4 α = 1.8

h Error1 Error2 Error1 Error2 Error1 Error2
2−4 3.20e-3 5.90e-4 1.29e-3 1.52e-3 5.82e-2 1.12e-2
2−5 1.04e-1 6.00e-2 1.72e-2 4.05e-3 6.13e-2 2.25e-2
2−6 3.81e-1 3.04e-1 1.87e-1 1.17e-1 6.29e-2 2.60e-2
2−7 7.04e-1 6.26e-1 4.94e-1 4.00e-1 1.59e-1 6.81e-2
2−8 9.97e-1 9.28e-1 8.09e-1 7.20e-1 4.44e-1 3.09e-1
2−9 1.25e-0 1.19e-0 8.09e-1 1.01e-0 7.58e-1 6.27e-1

Table 8: Convergence history of Discretizations 3 and 4 for problem (d) with τ = 2−5

25



6 Conclusion

The well-known L1 scheme for fractional wave equations is analyzed in this pa-
per. New stability estimate is established, and temporal accuracy O(τ3−α) is
derived for nonsmooth initial values u0 and u1. A modified L1 scheme is also
proposed, which possesses temporal accuracy O(τ2). The theoretical results
reveal that τα/h2min should be uniformly bounded, where hmin is the minimum
diameter of the elements in Kh; otherwise, the temporal accuracy will deterio-
rate. Numerical experiments are performed to verify the theoretical results.

If the temporal grid is nonuniform or the governing equation is of the form

Dα−1
0+ (u′ − u1)(t)− div(a(x, t)∇u(t)) = f(t), t > 0,

then the techniques used in this paper can not be applied. Hence, an interesting
question is, on the nonuniform temporal grid or for the above equation, how to
derive sharp error estimates for the L1 scheme with nonsmooth data. This will
be our future work.
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