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Abstract

This paper analyzes the well-known L1 scheme for fractional wave
equations with nonsmooth data. A new stability estimate is obtained,
and the temporal accuracy O(r*~®) is derived for the nonsmooth data.
In addition, a modified L1 scheme is proposed, stability and temporal
accuracy O(7?) are derived for this scheme with nonsmooth data. The
convergence of these schemes in inhomogeneous case are also established.
Finally, numerical experiments are performed to verify the theoretical
results.
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1 Introduction

Let 1 <a<2and Q CR? (d=1,2,3) be a convex d-polytope. We consider
the following fractional wave equation:

Dy (! — wn)(t) — Au(t) = f(t), >0, (1)

subjected to the initial value condition w(0) = ug, where u(t) € Hg(Q) for
all t > 0, ug, up and f are given functions, and DS‘;l is a Riemann-Liouville
fractional differential operator of order o — 1.
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As a extension of integer order equation; the fractional diffusion and wave
equations are widely used to model some processes with non-local effect, see
[31, 3, 4, 10]. We also refer readers to [13] for more background of fractional
differential equations. By now there is an extensive literature on the numerical
treatment of fractional diffusion and wave equations. Some of these researches
give the convergence result under the condition that the solution is a C?- or
C3- function in time. However, it is well known that the solution of a fractional
diffusion (or wave) equation generally has singularity in time despite how smooth
the inital data is [12]. In fact, the main challenge is to design stable numerical
scheme and to derive convergence result, without regularity restrictions on the
solution, especially for the case with nonsmooth data.

Let us give a brief introduction of two kinds of numerical methods for solving
fractional diffusion equations with nonsmooth data: the L1-type method [14, 19,
9, 32, 18], discontinuous Galerkin method [27, 30, 29, 1]. The Ll-type method
use L1 scheme to approximate the fractional derivative, these methods are very
popular due to their ease of implementation. Jin et al. [11] proved that the
L1 scheme is of temporal accuracy O(7) for fractional diffusion equations with
smooth and nonsmooth initial data. Yan et al. [36] proposed a modified L1
scheme for fractional diffusion equations, which possesses temporal accuracy
O(127%) for smooth and nonsmooth initial data. The discontinuous Galerkin
method use the finite element method to approximate the fractional derivative.
McLean and Mustapha [25] showed that the piecewise constant discontinuous
Galerkin method is of temporal accuracy O(r) for fractional diffusion equations
with nonsmooth initial data. Li et al. [16] investigate the regularity of fractional
diffusion equations with nonsmooth data and they proved that discontinuous
Galerkin method possesses optimal convergence rates in L?(0,T; L*(Q)) and
L?(0,T; HY(Q)) norm, with respect to the regularity of the solution. For more
related works, we refer reader to [37, 17, 5, 15].

Next, let us first briefly summarize some works on a variant of fractional
wave equation:

u'(t) = A(Dgy* u)(t) = us + DI f(t), t>0,

which is obtained by applying Déjro‘ to both sides of (1). For this equation,
McLean et al. [23, 24] proposed two positive definite quadratures for the time
fractional integral operator. Combing the convolution quadratures in [20] and
the backward difference methods in time, Lubich et al. [21, 6] proposed the
first- and second-order time-stepping schemes and derived optimal error esti-
mates with nonsmooth inital data. Applying the famous discontinuous Galerkin
method, Mustapha and McLean [28] proposed a new class of algorithms. We
note that the low-order algorithm in [28] is identical to the low-order algorithm
proposed in [24]. For more related works, we refer the reader to [7, 26].

The study on fractional wave equation is limitied. Using the convolution
quadratures in [20] and techniques in [21], Jin et al. [12] developed first- and
second-order time-stepping methods for fractional wave equations and derived
optimal error estimates with nonsmooth inital data. In [22], the convergence in
the Hg (Q2)-norm has been derived for a low-order Petrov-Galerkin method with
nonsmooth source term. We note that the low-order Petrov-Galerkin method
in [22] is identical to the L1 scheme.

As far as we know, the convergence in the L?(Q)-norm of the L1 scheme
for fractional wave equations with nonsmooth data has not been established. In



this paper, for a full discretization using the L1 scheme in time and the standard
Pi-element in space, we derive a new stability estimate and obtain the temporal
accuracy O(737%) in the L?(2)-norm at positive times, with nonsmooth ini-
tial data. For another full discretization using a modified L1 scheme in time
and the Pj-element in space, we obtain the temporal accuracy O(7?) for nons-
mooth initial data. We also establish the convergence of the two discretizations
in inhomogeneous case (i.e., f # 0). The derived error estimates require that
the temporal grid is uniform and that 7%/h2, is uniformly bounded, where
Bmin is the minimum diameter of the elements in the spatial triangulation. Our
analysis implies that for nonzero initial value ug large ratio 7@ /h2 . will signifi-
cantly worsen the temporal accuracy of the L1 scheme, and this is confirmed by
the numerical result. To our knowledge, this interesting phenomenon is firstly
reported in this paper.

The rest of this paper is organized as follows. Section 3 establishes the
stability and convergence of the L1 scheme and a modified L1 scheme for a
fractional ordinary equation. Section 4 derives the stability and convergence
of two full discretizations for problem (1), which use the L1 scheme and a
modified L1 scheme in time, respectively. Section 5 performs several numerical
experiments to verify the theoretical results. Finally, Section 6 provides some
concluding remarks.

2 Preliminaries

Let —oo < a < b < oo and assume that X is a separable Hilbert space X with
inner product (-,-)x. For any —oo < v < 0, define

1
L'(—v)

1

b
(D} v)(t) == m/t (s— ) u(s)ds, a<t<b

for allv € L'(a, b; X), where I'(+) is the gamma function. For any m < v < m+1
with m € N, define

(D2, v)(t) == / (t—s)"Yu(s)ds, a<t<b,

—m—1
D}, v:=D""'DI ",

D] v:= (1"t D" D)y

)

for all v € L'(a,b; X), where D is the first order differential operator in the
distribution sense.

Then we introduce some properties of fractional calculus operators used in
this paper. Define

oH(a,b; X) := {v e L*(a,b;X) :v' € L*(a,b; X), lim v(t) =0},

t—a+
OH'(a,b;X) := {v € L*(a,b; X) : v' € L*(a,b; X), lim v(t) = 0}.
vl
Assume that 0 < v < 1. Define
oH(a,b; X) := [L*(a,b; X), 0 H" (a,b; X)] 2,
OHV(a,b;X) = [LQ(a,b;X),OHl(a,b;X)].Yﬁg,



where [-,-]y,2 means the interpolation space defined by the famous K-method
[34]. We use oH (a,b; X) and °H~7(a,b; X) to denote the dual spaces of
YH7(a,b; X) and oH"(a,b; X), respectively. By [22, Lemma 3.3] we have that,
for any v € L?(a,b; X),

1D vl (a0 x) < Clloll2(a,0:)

where C is a positive constant depending only on 7. Therefore, we can define
D, :oH 7(a,b;X)— L*(a,b; X) by that

b
[ (D27 001, 00)  dt = (0,072 whors

for all v € ¢H "(a,b; X) and w € L*(a,b; X), where (-,-)og(q,;x) means the
duality pairing between oH =7 (a,b; X) and °H7 (a, b; X). Moreover, it is evident
that

HD;J:’UHLZ(a,b;X) < CHUHOH*V(a,b;X)a \ORS OH_’y(a’b;X)a (2)

where C' is a positive constant depending only on .

Lemma 2.1. Assume that v € oH"(a,b; X) and w € °H"(a,b; X), with 0 <
v <1/2. Then

b
2 2
CIHDZ+ UHLZ(a,b;X) < / (DZ+ v(t), Dy_v(t))x dt < C2HDZ+ UHLz(a,b;X)7
b
C1lD_ vl 2 (a,x) < / (D24 o(1), D v(t))x dt < Col|DY_ vl|72(qp:x):

b
(D2 v, )0 (abix) = / (D2 v(t), DI w(t))x dt = (D2 w, v)g i (a,pix)
a
where Cy and Cs are two positive constants depending only on 7.

Remark 2.1. For the proof of Lemma 2.1, we refer the reader to [8]. Assume
that 0 < v < 1/2. Ifv € ¢H"(a,b;X) and w € °H"(a,b; X) satisfy that
Di}rv € LP(a,b; X) and w € LP/®P=Y(a,b; X) for some 1 < p < oo, then

b
(D). v, w)o g (apix) = / (D2 o(t), w(t))x dt.

Finally, we introduce some conventions as follows: H} () denotes the usual
Sobolev space, and H (1) is its dual space; the spaces o H” (a, b; R) and " H7(a, b; R)
are abbreviated to oH”(a,b) and H7(a,b), respectively; C'y means a generic
positive constant depending only on its subscript(s), and its value may differ
at each occurrence; for an interval w C R, the notation (p, ), denotes fw pq
whenever pg € L' (w).

3 Two discretizations of a fractional ordinary
equation
This section considers two discretizations of the following fractional ordinary

equation:

Do (Y —y)(t) + My(t) = f(t), t>0, (3)



subjected to the initial value condition y(0) = yo, where yo,11n € R, f €
LY(0,00) N gH1=2)/2(0,00), and A > 1 is a positive constant. Let y := \7®/2
and define t; := j7 for each j € N, where 7 is a positive constant. Applying the
L1-scheme proposed in [33], we obtain the first discretization of equation (3).

Remark 3.1. In order to obtain the error estimates of PDE (1), \ will be
chosen as one of the eigen values of the discrete Laplace operator —Ay, in the
next section.

Discretization 1. Let Yy = yo; for each k € N, the value of Yi41 is determined
by
k
(Y1 = Yo) (b1 — be) + > (Vi1 — 25 4 Y1) (beji1 — br—j)
= ()
sl bht1
+ (Y + Y1) = / f(t) dt + 7y1 (brgr — be),
tk

where b; == j7*/T'(3 — ), j € N.

Remark 3.2. The above discretization is actually an variant of the temporal
discretization in [33], but it is identical to a low-order Petrov-Galerkin method

analyzed in [22].
The second discretization is a simple modification of the first one.

Discretization 2. Let Yy = yo; for each k € N, the value of Vi11 is determined
b
Y k

(V1 = Vo) (Br+1 — Z Vi1 = 2Y; + V1) (Be—j+1 — Be—;)

=t (5)
a—1 bht1
b+ Vi) =727 [ @) e (B - B,
tg

where f1 = by + 2sin(am/2) Z;OZI(QIMT)O"B and By := by for all k e N\ {1}.

Remark 3.3. In the numerical analysis of Discretization 1 (cf. Remark 3.8
and Remark 3.9), we found that (b(z) — z*73)(0) # 0 caused (3 — a)-order
accuracy of the first discretization, where 3(2) is the discrete Laplace transform
of (b)72y- This is the motivation for the second discretization. Let B(z) be the
discrete Laplace transform of ()32, The definition of the sequence (Br)72,
implies

o0

b(z) + 2sin(am/2) Z (2km)”
k=1

b(z) — (b(z) — 2°72)(0) (by (8)).

Hence, (B(z) —227%)(0) = 0.

-~

B(z)

In the rest of Section 3, we shall use the well-known Laplace transform
technique to analyze Discretizations 1 and 2. Firstly, we prove that the discrete
Laplace transform of numerical solutions are well defined (i.e. they will not blow
up in some places). Secondly, we give the integral representations of the exact
and numerical solutions. Finally, we establish the error estimates by comparing
the differences between the above two integrals.



3.1 Stability of the two discretizations

By an energy argument, it is easy to derive the following stability estimate of
Discretization 1.

Lemma 3.1. For each m € Ny,
Yo | < Ca(lyol F ATV (60 |y | + ||f|\0H<1—a)/2<o,tm>))- (6)

Proof. Multiplying both sides of (4) by 7'7%(Yx41 — Y%) and summing over k
from 0 to m — 1, we obtain

DY, Y Y 000y + AV YV 0.0y = (YN 0.00y + 1D 1Y) 000,

where, for each k € N, Y is linear on the interval [t,tx41] and Y (tg) = Vi, A
straightforward computation then gives

(F:Y") 0,tm) + 41 (D65 LY ) 0,000

1)/2 1— 2 —-1)/2 —1)/2
(DS VDT £ Y ) 00| + (DYDY 1Y) (0,0
(Dg (1 )/ f7D(a Y 0y + 1 (DSTV2 1, DY) |

D5 YY) 0,0) + MY, Y ) (0,m)
<|
|
|

< (HDEJ 2 Fllzaomy + 3 lIDEE" 1l 0,0 ) DS ¥ 20,0
Ca (IS Fllz2 0.y + th ™ 1) IDE 2 Y 20,0,
Using integration by parts yields
Y, Y )0y = (Y = Y5)/2,
and by Lemma 2.1 we have
D2 Y 720,00y < ColIDET Y 720,000 < (DET Y, Y ) 0,010,

tm

where C; and Cs are two positive constants depending only on «. By the above
three estimates and the Young’s inequality with €, a simple calculation gives

Yol < o (J30l + 272 (657 2] + 1D Fll 20 ) -

Therefore, (2) implies (6) and thus concludes the proof. |

To derive the stability of Discretization 2, for z € C4 := {w € C: Rew > 0},
we introduce the discrete Laplace transform of (by)72, by that

o]
= E bkeikz.
k=0

By the routine analytic continuation technique, b has a Hankel integral repre-
sentation (see [35])

eZ*’UJ

N (0+) w® 3
b(z):—_/ Y —dw, 2€C\(~o,0] (1)

— 00



where ffool_) means an integral on a piecewise smooth and non-self-intersecting
path enclosing the negative real axis and orienting counterclockwise, 0 and {z 4+
2kmi # 0 : k € Z} lie on the different sides of this path, and w3 is evaluated

in the sense that

wa—3 _ e(oz—3) Log w

Therefore, by Cauchy’s integral theorem and Cauchy’s integral formula, we have
(see [35, (13.1)])

o0

b(z)= > (24 2kmi)*? (8)

k=—oc0
for all z € C\ (—o0,0] satisfying —27 < Im z < 27. From (7) it follows that
Bb(2) = b(z) for all z € C \ (—o0o,0].
From (8) it follows that
Bb(z) — 2%~ is analytic on {w € C : |Imw| < 2}
Remark 3.4. The g(z) also has another representation [35],

~ . Lia,g(efz)
=T

where the polylogarithm is defined by
. — 2"
Li,(z) = kz L for |z] <1 and p € C.
=1

Lemma 3.2. For each m € N+,

[l < Ca (lyol + A7 (1l + 1102000 )- (9)

Proof. In virtue of the proof of Lemma 3.1, it suffices to prove

> Zkbk < Ca > Ziby, (10)
k=0 k=0
where
5 e Virr =V, 0<j<m,
"7 o, m < j < oo,

e

Zk = (brt1 — be)do + > (bk—jt1 — be—;)(6; — d-1),
i

Il
i

E

Z, := (Brr1 — Br)do + : (Br—j+1 = Br—3)(05 — dj—1)-

Jj=1

To this end, we proceed as follows. For z € C, let B(z), g(z), Z(2) and Z(2)
be the discrete Laplace transforms of (8r)2o, (0k)io: (Zr)52, and (Zk)72,,



respectively. It is easy to verify that B, g, Z and Z are analytic on C,. A
straightforward computation gives that, for z € C,

Z(z) = e *(e* — 1)%b(2)8(2),
2(2) =7 (eF — 1)°B(2)0(2),
and hence, by (8) and the fact
B(z) =b(2) + (B — b)e 7,
we obtain

sup / Z(x + iy)|* dy < oo,

0<z<1

sup / z+iy) 2 dy < oo,
0<z<1

lim / | Z(x +iy) — e~ ¥ (" — 1)%b(iy)d(iy)|* dy = 0,
x—0+

lim / |Z(x +iy) — e (e — 1)*B(iy)d(iy)|* dy = 0.

r—0+4

Following the proof of the well-known Paley-Wiener Theorem [2, Theorem
1.8.3]), we easily conclude that

ZZ,% < 00, ZZ;? < 00,
sze W= T (e — 1)%b(iy)d(iy) in L (—m,mdy),
ZZke_iy =e (e —1)?B(iy)d(iy) in L*(—m,m;dy).
k=0

Therefore, by the famous Parseval’s theorem,

S Ziby = Ejm%f = e = ) B dy
k=0 -

Similarly,
Zdek B %/ Re (67@(6@ - 1)23(29))|g(2y)|2 dy. (12)
k=0 0

In addition, a straightforward calculation gives, by (8), that
I%G_(i—UBWD

= 2(1—cosy)sin ( Z ( (2km — y)* P+ (2km 4+ y — 27)* % —2cos y(2k7r)a73)
k=1
> Ca(1 — cosy) Z( (2km —y 3+(2k7r+y727r)a73)
k=1
> CuRe (e* V(e — 1) b(iy)), (13)

for all y € [—m, x|\ {0}. Finally, combining (11), (12) and (13) yields (10) and
thus concludes the proof. |



3.2 Convergence of Discretization 1
3.2.1 Integral representation of Yj

For any z € Cy, let 17(21) be the discrete Laplace transform of (Y3)72,. In virtue

of Lemma 3.1, Y is analytic on C,. Multiplying both sides of (4) by e~ and
summing over k from 0 to oo, we obtain

((z) + p(e* + 1)V (2) = ((e% = 1)°b(z) + pe?)yo + 7(e* — 1)b(z)y1+

< e 14
+ 7ot Z/ () dte ™%, vz e Cy, (14)
k=0"tk

where
W(z) = e *(e* — 1)%b(2). (15)

By the properties of the function bin the previous subsection, 1 has an analytic
continuation as follows:

oo

P(z) =e (e —1)° Y (24 2kmi)* (16)

k=—o00

for all z € C\ (—o0,0] satisfying —27 < Im z < 27. Moreover,

¥(z) =¢(Z) for all z € C\ (—o0,0] with — 27 <Imz < 2, (17)
P(2) — e #(e* —1)%2°73 is analytic on {w € C: [Imw| < 27}, (18)
and

W(re)

r504 7 (cos(af) + i sin(ad))

=1 uniformly for all —7 < 0 < 7. (19)

In the rest of Section 3, we assume that p < o, where po is a given positive
constant.

Remark 3.5. Let \ be any eigen value of discrete Laplace operator —Ay, then
u < po implies that 7 /h? is bounded. The L1 scheme in Discretization 1 re-
duces to the second order central difference scheme when oo = 2, and this scheme
require that T/h is bounded (stability), which is consistent with the condition that
S fho-

Lemma 3.3. There exists § < 0q,u, < CZ—J;Q

that

7w depending only on « and pg such

() +Fp(l+e*)#0  forall 0 < p < po and

20
ze{weC: O<|Imw|<7r,g<|Argw|<9a7m}. (20)

Proof. By (19), there exists 0 < r, < m, depending only on «, such that
Im ((1+€*)~4(z)) > 0 and hence

P(2)+p(l+e*)#0 forall 0 < pu < po and
(21)

2
ze{wGC:ggArgw<a+ 7r70<Imw<ra}.
o



From (17) and (21), it remains therefore to show that there exists £ < 04, <
Cﬁl—fﬂ such that
P(2)+u(l+e*)£0 forall 0< p< po and
™ (22)
z € {w eC 5 <Argw < Oa,ug, "o < Imw < 7r}.
< 7, by (16) we have

To this end, we proceed as follows. For 0 < y

e (e —1)° Z (i + 2kmi)™™

Pliy) =
1 oo
e 3( Z 9k — )3 (=)™ 3+22kﬂ_+ya 30 3)
[ k=0
_ —'Ly 3(2 2['{)71'7 a 3 2(3 a)ﬂ/2+z 2kﬂ'+y) 736*1(37(1)‘"/2)
k=1 k=0
_ —1y 3( Z Qkﬂ'— a Sei(l—a)ﬂ'/Q —Z(ka+y)a_3 —i(1 0)7"/2)
k=1 k=0
=e V(e —1)*(A(y) +iB(y)), (23)
where
A(y) := —cos((a — 1)m/2) Z (2km 4 2w — y)* 7% + (2km +y)* 7,
k=0
B(y) :=sin((a — 1)7/2) Z (2km + 21 — y)* 7% — (2km +y)* 2.
k=0
Moreover,
— 1) si
(cosy = Dsiny o yocyem  (2)

((1 + eiy)—lw(iy)) =4A(y) [t + e2v]?

Inserting y = 7 into (23) yields
P(mi) = 8A(m) <0 =

so that by the continuity of v, there exists 0 < r}, , < 7o tan((2 — a)/(4a)T)
< m, depending only on o and p, such that

for all 0 < pu < po and
Imw < 7}.

p(l+e™),

and0<7“a7#0

+ 1+Z 0
P(z) + (1 +¢€7) # (25)
< Rew < Ora#U

ze{weC: —r, ,,
by (24) and the continuity of 1, it follows

Imw < r a Ho’
depending only on « and pg, such that

For the case of r, <
that there exists 0 < r3 o ST auov
14(2)) > 0 and hence
o and
g (26)

for all 0 < p
<0, 70 <Imw

/) yields (22), by (25) and (
|

Im ((1+€*)~
P(2) + (1 +€%) #0

ze{weC:—r), <Rew
Finally, letting 0 ,, = 7/2 4 arctan(
This completes the proof.

10



Remark 3.6. The Téwo in the above proof will approximate 0, when pg — oo.
Hence, 04,1, — (7/2)+ as po — 0.

Lemma 3.4. For each z € C4 and pn > 0,

¥(2) + p(e” +1) #0. (27)
Proof. Assume that z € C satisfies that
P(z) + p(e® +1) =0. (28)
It follows that N
b(z) = —pe(e* +1)(e* —1)73,

and hence R
(€* — 1)%b(2) + pe* = —2ue*(e* — 1)1

In the case that yo =1, y1 = 0 and f =0, from (14) and (28) we obtain

A~

(e* —1)%b(2) + pe* = 0.
Since the above two equations are contradictory, this proves the lemma. |

Remark 3.7. The above two lemmas indicate that ¥(z) + u(e* +1) # 0 in
some places. Hence, by (14), Y (z) will not blow up in these places. Then it is
reasonable to give the integral representation of the numerical solution Y .

For the sake of simplicity, in the rest of this subsection (i.e., Subsection 3.2)
we use the following conventions: pg is a positive constant and u < po; Oa,pu,
defined in Lemma 3.3 is abbreviated to . Define

T := (00,0]e” U [0, 00)e®,
Ti:={z€Y: Imz| <7},

where T is oriented so that Im z increases along T and Y inherit the orien-
tation of Y. In addition, if the integral over Y /Y is divergent, caused by the
singularity of the underlying integrand near the origin, then Y/Y; should be
deformed so that the origin lies at its left side; for example,

T := (o0, ele™ U {ee™ : —0 < o < 0} Ue, 00)e™,
where € is an arbitrary positive constant.

Lemma 3.5 ([12]). For anyt > 0,

a—1 a—2
y(t) = o= / e/mz 02 ETNE g,
T

2w z2% 42U
; (29)
+ [ E(t—s)f(s)ds,
0
where )
T
E(t) = /M2 (> p o)~ dz.
(0= G [ e 27 s (30)

11



Lemma 3.6. For each k € N+,

L[ e (€ = 1D%0(2) — 9(2)/2 + ple” = 1)/2)yo +7(e* = D)y

Y= — d
" 2wy, Y(z) + ples + 1) -
e _
[ Bl —0)f)dt,
i (31)
where B
E(t):==1"""Ep/m, t>0, (32)
with [-] being the ceiling function and
1 .
E;:=— e (P(2) + ule* +1))"1dz, for jeZ. (33)
27 Jy,

Proof. A straightforward computation yields, by (14) and Lemma 3.4, that

N il 1)°b(2)+pe”)yo+7(e* = Db(z)yr+7°71 52 [ f()dte ™ 34
== D) + pler + 1) > (39)

for all z € C,. Hence,

1 a-+im N
Yk:T Y (2)dz =1, + 1o+ 13, for 0 <a< oo,
T Ja—im
where
a+im z_ 1 2/b\ z
]11 = & ekz (6 ) (Z) + pe dZ,
2mi a—im ’l/)(Z) + ‘u(ez + 1)

Lo 0 /* g 0bE)
2mi a—im ’l/)(Z) + M(ez + 1)

Ta_l /a+i7r s Z‘;’;O J;jj+l f(t) dte—jz
e
a—im ’l/)(Z) + ‘u(ez + 1)

Here, by Lemma 3.4 and Cauchy’s integral theorem we have

Hg =

- z.
211

Lo LT (et = 1)%(z) + et
' 2mi a—17 w(’z) + ’u(ez + 1)

1 a+tim z_ 1 27 z 1
/ ekz ( (6 ) b(Z) + ne ) dz

T2 o Y(z) +ple +1) 2

_ LT (@ = 1PD(2) — 9()/2+ ple ~1)/2
270 Jo—in Y(z) + ple* +1)

_ w0 [ (€ D)~ 9()/2 4 plet ~1)/2
2mi Jy, P(z) + ple* +1) ’

where the latter equality follows from Lemma 3.3 and the fact that

e (67 = 1)%0(z) —9(2)/2 4 ple* —1)/2
P(z) + ple” + 1)
w2mi_ 1)2h(z + 2mi) — (2 + 2mi) /2 — p(e* T2 — 1) /2
(2 + 2mi) + p(e* 2™ + 1)

_ ek(z+2ﬂ'i) (6

12



for Rez > —mcot(d) and Imz = —.
A similar argument gives

_nr ke (€7 — 1)b(z)
STl e R T )

We now turn to I3. Using Fubini’s theorem and Cauchy’s integral theorem, we
have

dz

i [e%} t; iy
I3 = i_l /a+m ok zjfo j;g]. i f(t)dte™?
a-in (z) + ple + 1)

tj+1 a 1 a+im )
/ [ ) e 4 1) s

27m ir

I
ng

/J+1 o= 1 /a+i7r (k—j)z(,t/]( )+ ( z+1))—1d
par 27” L e z ple z
k-1 J+1
= / dtTa 1Ek j
0

f(t)E(tk —t)dt.

Il
N i

Combining the estimates of I;, I and I3 proves (31) and hence the lemma. M

3.2.2 Convergence for f =0
Lemma 3.7. For each z € Y1\ {0},
[9(2) + (1 + €)] > Copo (1 + [2]%)- (36)
Proof. By (16) there exists a continuous function g on [0, 7/ sin 6] such that
(1 +re?)"Lop(re'?) = r2ei® /2 4 roFlg ().
It follows that
e (L o) ()

= |u+roe? /24 1T g(r)?

> |n+ et 222 — 2@ H D g (r)?

= (p + 7% cos(ah) /2)%/2 + r** sin(ah)? /8 — r2 @D |g(r)|?, (37)

and hence there exists 0 < rq,,, < 7/sinf, depending only on « and pg, such
that

|+ (14 rew)flz/}(rewﬂ > Copo(p+1r%) forall 0 <r <7 p,.
Therefore,

i e )
1mn
O<7‘§TQYMO [L+ ro

> Caalio'

13



Using this estimate and
14 7€ > Cyppy, forall 0<r < 7/sind,

we have

i6 i6
o Rre?) £ ()
0<7‘§TQYMO [L+ ro

> Caalio'

In addition, applying the extreme value theorem yields, by (20), that

[¢(re”) + p(re® +1)]

Teono < 17"n<f7r/sm€ e > Cano-
Together, the above two estimates show
i0 i0
0<r<12§sin0 s )/j—:tiz‘e — > Coopios
which completes the proof. |
Lemma 3.8. For each z € 11\ {0},
|2+ 202170 > Call2] + pl2|'~). (38)

Proof. A simple calculation yields

|2 + 201217 = [2][1 + 2u2"
=714 2ur~“ cos(—ab) + 2ipr~ sin(—ab)|
> C’aurlf’l.
Analogously, we have
|2 + 200217 = 27|20 + 24
= 117 2p + r cos(af) + ir® sin(ad)|
> Cyr.
Combining above two estimates proves (38) and hence the lemma. |
Theorem 3.1. For each k € N+,
ly(tr) = Yel < Copuo ™ (62 lyol + 12 %It ]). (39)
Proof. From (29) and (31), it follows that

y(tr) = Yi =1 + 1o + I3,

where
1 a—1 a—2
I == — ek Yoz t Tz dz,
271 Jy\r, 2%+ 2u
SOy O B G O RG] R
Co2miJy,  \z%+2u ¥(z) + ple? +1) ’
a—2 b o 1
I3 := E ekz( i — (e? ) dz.
270 Jy, 224 2u  Y(2) +M (e +1)

14



Let us first estimate I;. A simple calculation gives
1 00 freif yo(reiG)oz—l + T (TeiG)a—Q
]11 = —Im 0
m 7/ sin 6 (Tez )a + 2:“’

and the fact 7/2 < § < (o + 2)/(4a)7 implies

e dr,

|y0(7"ei9)o‘_1 + Ty (Teie)a—Q ei9|
(rei?)e + 2p
lyolr® ™" + 7lya |[ro =2
= |re cos(af) + 2u + ire sin(af)|
< Coz,uo (|y0|T_1 + lellr_Q)'

Hence,

o0
L] < Cop / o Tl )
7/ sin @

< C’a,m(|yo|l<:71 +T|y1|k*1)ek“°w. (40)

Then let us estimate Iy. For z € T; \ {0}, a straightforward calculation
gives

(=) + 1+ €%) = (24 202" (7 = 1)B(2) = $(2)/2 + ule” = 1)/2)|
<Ca (|21 + plz~ + w|277),

and so Lemmas 3.7 and 3.8 imply

1

(eF - 1)2b(2) — e=#(e* — 1)3b(2) /2 + p(e* — 1)/2
Z242uzl—o

T AT ) |
B
CET IR

< Ca»#o

It follows that

7/ sin 0 a+2 3—a 2,.2—«a
r + ur + pcr
Lol < Copoliol [ brees? dr.
0

(r+ pr'=e)(r* + p)
If 0 < r < '/ then

rot2 poprdTe 4 2o
(r+ pr'=e)(r* + )
< e (p0F2 o Bma | 2p2ma)
=p 2ot T2 e < 2 42

and if p'/® < r then

)

pot2 4 o 42,20

(r+ pr'=e)(r* + p)
e (R T Ty C
=4 pur? T2 4 Pt < 2 2T

15



Therefore,

7/ sin 6
L] < Coupo ol / ebreosty2=adr < O, ok 0. (41)
0

Finally, a similar argument as that to derive (41) yields
3] < Coupuo TR %[0, (42)
and then combining (40), (41) and (42) gives

[y(t) = Yil < Cauuo (K lyol + 75 ?|1])
= Couo™ = (12> lyol + 1272 I1n),

which proves (39) and hence this theorem. [ |
Remark 3.8. In the above proof,

(=) + B0+ ) = (2 + 2021 7) (e = 17B(2) = w(2)/2 + ple” = 1)/2))]

<Ca(|2F? + pl2P~ + p*]27),

and the term p|z|>~% leads to (3 — a)-order accuracy. If we choose a 3 such
that (i.e. (B(z) —2273)=0)

W)+ (1 + €%) = (24 2027 (€ = 1)2B(2) = W(2)/2 + ple” = 1)/2))

<Ca(|21F2 + 2l + w2l2P ),

then we can obtain 2-order accuracy, where W(z) = e~*(e* — 1)3B(z). This is
the motivation of the second discretization.

3.2.3 Convergence for yp =y; =0
Define .
E(t) == / (E — E)(s)ds, t>0,
0
where E and E are defined by (30) and (32), respectively.

Lemma 3.9. For any t <t < tpy1 with k € N,

1E@)| < Copoela, 7, k)37, (43)
where
e ifl <a<3/2,
ela, 7, k) =1+ |In7| if a=3/2, (44)
1 if3/2 < a<2.

Proof. Since the proof of the case k = 0 is simpler, we only prove the case k > 1.
By Lemmas 3.3 and 3.4 and the fact that

(1—e ) (W(2) + p(e* + 1)) = (1 — e~ EF2) (2 + 270) + p(e* 2™ + 1))

16



for all z = x —im with x > 7 cot 8, applying Cauchy integral theorem yields that

1
/Tl 0@ e+ 1) 2=

and using Cauchy integral theorem again gives

1
— dz=0.
|

Therefore, from (30) and (32) we have

th k t
n:/ m@@fz}%%f/E@wfufmmﬂ
0 j=1 tr

o / ekz o / ekz
=— | ——dz— — dz
270 Jx e w20 2wy, U= e + e + 1)
T / et/mz _ ok dz— i (t/r—k)e(k“)z
27 Jv 2(2% + 2p) 270 Jy, P(2) + ple* +1)
Inserting ¢ = t; into above equation yields
E(ty) =11 + Iy + I3, (45)

where
t/TZ

I := dz,
! 271'2 o, 2(z° +2u)

. (1 _ 6—2)—1
e / I e e D
- (t/T k)z 1 (t/T*k))ez
Is := 271'2 / ( (zo+2p)  (z) + pler + 1)) dz.

It is clear that

oo
I1] < Ca”uoTa/ et/rreostp=l=aqr < 0, TOT ek eott, (46)
/sin @

Let us proceed to estimate Iy. For z € T1 \ {0}, a simple calculation yields
[W(2) + p(e® +1) — 2(2% 4+ 2p) (1 — e *) 7| < Copo (1]2]* + [2]%)
and Lemmas 3.7 and 3.8 imply
|2(2* +20) ((2) + p(e® + 1)| > Cao l2|([2]** + 1) (47)
Hence, if 4!/ < 7/sin 6 then

1/a

|]I2| < Ca,/,LOTa</ ekrcose(}ll711"+u727’2)d7'+
0

/‘rr/sin9 6krcos<9(url—2a + T2—2a) d?“)
%

1/
. fOTr/sinQ ekrc059 2—2« dr fl<a< 3/2,
<Ca o #1/‘1 1 2 2 7/ sin @ 1 a 22 :
oo T dr+f1/a +7r dr if3/2<a<?2,
[ if 1 <a<3/2,
< Coapem {1+ |In7| if a=3/2,
372 if3/2<a<2,

17



and if '/ > 7/sin 6 then
7/ sin 6
|H2| < Coé,uoTa/ ekrcosﬂ(u—lr+u—2r2)dr
0

7/ sin 0
C « / kr cos 6 d C ak—Q
< Ca,peT e rar < Ca,u,T .
0

Consequently,
Ia| < Cu poe(a, 7, k)37, (48)

Now, let us estimate I5. For z € T; \ {0}, a routine calculation yields

|(eTRE — 1)(9(2) + ple® +1)) = 2(=* + 2)(t/7 — k)e?|
< Clguo (t/7 = &) (|22 + i),

so that by (47) we obtain

min{ul/a,ﬂ'/ sin 0}
[Is| < Ca,puom™(t/T — k) (/ eFrees Oy 2ot ey dr 4
0

/‘rr/sin9 ekrcose(rl—a +MT1_2a)dT)

min{pl/e 7/sin 6}
7/ sin 6
< Caypot™ ()T — k)/ ghreesfpl=a g,
0
< Clopug T (t/7 — KK 2. (49)
Finally, combining (45), (46), (48) and (49) proves (43) and thus concludes
the proof. [
Remark 3.9. In the above proof,
() + ple” +1) = 2(2* +2p) (1 — %) 71 < Capuo (12 + |2]°),
and the term |z|® leads to (3-o)-order accuracy. If we choose a [ such that
(i.e. (B(z)—2273)=0)
[P (2) + p(e® +1) = 2(2% + 2u)(1 = )| < Cag (ulz]? + [2]*F),

then we can obtain 2-order accuracy, where W(z) = e=*(e* — 1)3B(2).

Theorem 3.2. For each k € N~g, if f' € L*(0,ts) then

ly(te) — Yi| < Cape™ *e(a, 7, k)| f(0)] +

S ey — 23]t if 1< a < 3/2,
TS (U4 T L 0,80 if a =3/2,

£ 1 (0,60) if3/2<a<?2,

Co T (50)
@, o

where (o, T, k) is defined by (44).

18



Proof. By (29) and (31), a straightforward computation yields that

y(tr) — Yy = /tk(E —E)(tx —t)f(t)ds

0

— /tk(E—E)(tk —1) (f(0)+/t f’(s)ds) dt

0 0
= f(0)E(tx) +/ ' E(ty —t)f'(t)dt
0

for each k£ € Ny . Therefore, by Lemma 3.9 we obtain the theorem. |

Remark 3.10. As pointed out in Remark 3.6, 0 — (7/2)+ as pg — co. Hence,
(40) and (46) imply that the Cq ., in (39) and the Co o in (50) will both
approach infinity as 0 — (w/2)+. Analogously, the Cq. ., in (51) will approach
infinity as 7*/h? — oc.

3.3 Convergence of the second discretization

From the proofs of Theorems 3.1 and 3.2, it is easily perceived that the fact (cf.
Remark 3.8 and Remark 3.9)

(b(z) — 2°72)(0) # 0

caused (3 — a)-order accuracy of the first discretization. This is the inspiration
for the second discretization. Let §(z) be the discrete Laplace transform of
(Br)72o- The definition of the sequence (8x)52, implies

o~

B(z)

b(z) +2sin(an/2) Y (2km)*
k=1

(2) — (b(z) = 2°73)(0)  (by (8)).

Hence, (E(z) — za_3) (0) = 0. Finally, by a simple modification of the proofs of
Theorems 3.1 and 3.2, we readily obtain the following error estimate.

Il
)

Theorem 3.3. For k € Ny,

tr
ly(t4) — Vi < Co ™ <t£2|yol+t21|y1|+t2’2|f(0)|+ / (tkﬂft)“*ﬂf'(tndt). (51)
0

4 Two full discretizations

Let Kp be a quasi-uniform and shape-regular triangulation of € consisting of
d-simplexes, and we use h to denote the maximum diameter of the elements in

Kr. Define
Spi= {vn € H}(Q): vp|lg € PLI(K) VK €Ky},

where P;(K) is the set of all linear functions defined on K. Let Ay, : S, — S,
be the usual discrete Laplace operator, namely,

(—Apvp, wp)a = (Vop, Vwr)a
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for all vp,, wy, € Sy. In addition, let P, be the L2-orthogonal projection onto Sp,.
Assume that ug,u; € L?(Q) and

f € L*0,00; L*(Q)) N o HY=/2(0, 00; HH(Q)).

Using Discretizations 1 and 2 in time and using —A}, as the discretization of
—A, we obtain two full discretizations of problem (1) as follows.

Discretization 3. Let Uy = Pyug; for each k € N, the value of Ug41 is deter-
mined by

k
(b1 — b)) (Ur = Uo) + D (bk—gi1 = bi—y) (Uss1 — 2U; + Uj)
=t (52)

te41
— %Ah(Uk + Uk+1) = Tailph/ f(t) dt + T(bk+1 — bk)PhuL
tr

Discretization 4. Let Uy = Pyug; for each k € N, the value of Uy41 is deter-
mined by

k
(Br+1 = Bi)(Us —Uo) + > (Br—jt1 — Br—y) User — 2Us +Us—1)
=t (53)

Ta a—1 Pt

— TAh(uk +Upt1) =T Ph/ f(t)dt + 7(Br+1 — Br) Prui.
ty
Remark 4.1. We note that Discretization 3 has already been analyzed in [22],
and the following error estimate has been established in the case ug = up = 0:

(a—1)/2 1-1/« .

T +h if 1 < a<3/2,
_ <

) = Ukllgg ) S 1f11L2(0,6:22(0)) {T(al)/g 2 if3/2<a <2,

where h < 7%/? if 3/2 < «a < 2. This error estimate is optimal with respect to
the reqularity of u.

By Lemmas 3.1 and 3.2, we easily obtain the following stability estimates of
Discretizations 3 and 4.

Theorem 4.1. For each k € Ny,

1— 2
1Ukllz2) < Ca(lluollLz @) + ty o/ sl -1y + 11y zra-e/200,00 -1 (2)))

Uil 22y < Ca(lluoll2() + t;lc_a/QHWHHfl(Q) 1l sra=ar/20,0, -1 (2)) -
Remark 4.2. Since we do not use Laplace transform technique in the proof of
Lemma 3.1, the first stability estimate in the above theorem does not require the
temporal grid to be uniform. We also note that the stability estimate in [33,
Theorem 3.2] essentially requires the initial value to be continuously differen-
tiable.

The main task of the rest of this section is to establish the convergence of
Discretizations 3 and 4. To this end, we first introduce the following conventions:
a < b means that there exists a positive constant C' depending only on «, €2, the
shape regularity of /Cj, or h:ﬂ?nTa, such that a < Cb, where hpj, is the minimum
diameter of the elements in Kj. Then let us consider the error estimate of the
following spatial semidiscretization of problem (1):

Dg;l(u% — Phul)(t) — Ahuh(t) = th(t), t>0, (54)

subjected to the initial value condition uy(0) = Ppuo.
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Lemma 4.1. If ug,u; € L*(Q) and f € L®(0, 00, L*(Q)), then

[(w = un) ()| 20) S h? (fa||uo||L2(Q) + ]| 2o

(55)
+ (14 M ADI 0,220 )
for each t > 0.
Proof. For f =0, [12, Theorem 3.2] implies
ll(w = un) ()2 S W (1™ luoll L2y + '~ luallz2@))
it suffices to prove, for ug = u; = 0, that
1w —un) ()l 22y S (L + AR fll oo 0,202 (56)

which is an improvement of [12, Theorem 3.3]. To this end, we proceed as
follows. Similar to [21, Equation (25)], we have

!
(u—up)(t) = / — / e ((z* = A) = (2% = Ap) 7 Py)) dzf(t — s) ds,
0 27t Jy
where T is defined in Section 3. The proof of [21, Theorem 2.1] proves that

1(z% = A) 7 = (2% = Ap) ' Pull ey S h% Wz e T\ {0},

We also have

and hence

< TR
L(L2(2))

/ e ((2% - A (27— Ah)flPh) dz
T

<1
L(L2(%2))

)

/Tesz (= A = (2% — Ap) ' Py) dz

by the fact that, for z € T\ {0},

[(z* = A) Hlzre)y S (141207,
1(z* = Ap) "Ml S A+ [2|%) 7
Therefore, if h? < t then

t

h2
= wn) Ol S [ 1= )iy ds+ [ sTH (= 9oy ds
0

hZ
S+ )| fll (06522 0)

and if ¢t < h? then

t
[(u = un) (@)l L2 S /0 1£(t = $)llz2@) ds € B[ fllo=(o.6:29)-

This proves (56) and thus concludes the proof. |
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Remark 4.3. Since
u' — ADg} " u =Dy f,
up — Ap Do u=Do; " P f,
we have
(W' (t) — up(t),vn)0 + (V Dcl)jra(u —up)(t), Vor)a =0

for all vy, € Sp,. Then, by the techniques used in Lemma 3.1, a standard energy
argument yields

1w = un)(®)l| L2 (0 < 217 = Ru)u'|[L1(0,6:02()) + I1u(t) = Rou(®)llL2(e), >0,
where Ry, : HY(Q) — Sy, is defined by that, for each v € H}(Q),
V(v = Rpv) -Vwy, =0  for all w, € S,.
Q

We can also use this estimate to analyze the convergence of (54) in L?(Q2)-norm
with nonsmooth data.

Finally, let us give the error estimates of Discretization 3. By triangle in-
equality, we have

[(w—=U)O) 20 < [[(w—un)®)l2) + [(un = U)(E)ll220), for 0 <t <T,

where U := Z;O:O Uk and ¢y, is the hat function at node t;. The estimate of
|(w —un)(t)| £2(q) already exists (cf. Lemma 4.1), and hence we only need to
give the estimate of ||[(up — U)(t)||z2(q). Fori=1,2,--- N, let (¢, \;) be the
eigen-pair of the operator —Aj;,. We have

up = Z(uh,¢i>§z¢m U=

i=1 i3

(U, i)ad;.

N N

[

It is easy to verify that u}, = (un, ¢i)q with u} (0) = (ug, ¢;)q satisfies that
Dgil((uz>/7ui)+/\lu;1:fh fori:1,2,---,N,

where f; = (f, #i)q and u® = (u1, ¢;)q. Letting U’ := (U, ¢;)q, by Theorems 3.1
and 3.2 we can obtain the error estimates between u}L and U?, and hence the
error estimates between u; and U. By Theorem 3.3, the error estimates of
Discretization 4 follows similarly. By the above procedure, we have the following
two theorems.

Theorem 4.2. For k € N~o, if f' € L*(0,t; L2(2)) then
llu(te) — UkHLZ(Q)
S (7T 1R ol 2y + (8272777 + 4,7 R?) ua || 2o
+ 757 %(a, T, ) (O)] 20y + (1 + |1nhl)h2||f”L°°(O,tk;L2(Q))

(57)
JoF (s =2 F Ol ey dt if 1 < a<3/2,
+7TN (14 o T[22 (0,6:02 () if . =3/2,
£ 1121 0,00522(2)) if3/2 < a <2,

where (o, T, k) is defined by (44).
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Theorem 4.3. For k € Nvo, if f' € L*(0,t; L3(2)) then

Jutte) — Ul S (452 + 2R ol + (267 + 1R e
+ 7222 F0) |22 () + (L4 [ RDE || £l Lo (0,60:22(02))
ty
47 [t =072 O g .
0
(58)

Remark 4.4. From Remark 3.10 it follows that the implicit constants in (57)
and (58) will approach infinity as 7/h? — oo.

5 Numerical experiments

5.1 Discretizations 1 and 2

For equation (3), we set A = 1 and consider the following three problems:
(a). yo:=1, y1 :=0, and f(t) := 0;

(b). yo:= 0, y1 :=1, and f(t) := 0;
(¢). yo:=0,y1 :=0, and f(t) :=1+ "2

In this subsection, “Error” means the error of the numerical solution at t = 1,
where the reference solution is the numerical solution of Discretization 2 with
7 = 2718, The numerical results in Tables 1, 2 and 3 demonstrate that the ac-
curacies of Discretizations 1 and 2 are close to O(737%) and O(7?2), respectively,
which agrees well with Theorems 3.1, 3.2 and 3.3.

Discretization 1 Discretization 2
a=1.2 a=14 a=1.8 a=1.2 a=14 a=1.8
7 Error Order Error Order Error Order Error Order Error Order Error Order
27102.05e-7 — 8.40e-7 — 4.97e-5 -~ 6.15e-8 — 4.19e-08 —  8.47e-8

2711 6.12e-8 1.75 2.81e-7 1.58 2.16e-5 1.20 1.54e-8 2.00 1.07e-08 1.98 1.97e-8 2.10
27121 81e-8 1.75 9.35e-8 1.59 9.42e-6 1.20 3.84e-9 2.00 2.70e-09 1.98 4.62e-9 2.09
2713 5.35¢-9 1.76 3.11e-8 1.59 4.10e-6 1.20 9.61e-10 2.00 6.79e-10 1.99 1.09e-9 2.09
2714 1.57e-9 1.77 1.03e-8 1.59 1.78e-6 1.20 2.42e-10 1.99 1.71e-10 1.99 2.57e-10 2.08

Table 1: Convergence history of Discretizations 1 and 2 for problem (a)

Discretization 1 Discretization 2
a=1.2 a=1.5 a=1.9 a=1.2 a=1.5 a=1.9
7 Error Order Error Order Error Order Error Order Error Order Error Order
277 2.22-6 — 7.90e-5 — 9984 — 265e-6 — 3.67e-6 — 4.58e-6 —

278 7.32e-7 1.60 2.83e-5 1.48 4.67e-4 1.10 6.53e-7 2.02 9.13e-7 2.01 9.95e-7 2.20
279 2.34e-7 1.65 1.0le-5 1.49 2.18e-4 1.10 1.62e-7 2.01 2.27e-7 2.01 2.14e-7 2.22
2710 7.31e-8 1.68 3.60e-6 1.49 1.02¢-4 1.10 4.03e-8 2.01 5.66e-8 2.00 4.54e-8 2.24
2711 2.25¢-8 1.70 1.28e-6 1.49 4.75e-5 1.10 1.01e-8 2.00 1.41e-8 2.00 9.52e-9 2.26

Table 2: Convergence history of Discretizations 1 and 2 for problem (b)
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Discretization 1 Discretization 2

a=1.2 a=1.4 a=1.9 a=1.2 a=14 a=1.9
7  Error Order Error Order Error Order Error Order Error Order Error Order
277 1.36e-5 — 2.73e-5 — 2.6le-3 — 53le6 — 2.35e-6 - 9.39e-6 —

278 4.11e-6 1.72 9.31e-6 1.55 1.22e-3 1.10 1.32e-6 2.01 6.62e-7 1.83 2.32e-6 2.02
279 1.23e-6 1.74 3.14e-6 1.57 5.70e-4 1.10 3.27e-7 2.01 1.77e-7 1.90 5.71le-7 2.02
2710 3.67e-7 1.75 1.05e-6 1.58 2.66e-4 1.10 8.10e-8 2.01 4.61e-8 1.94 1.40e-7 2.03
2711 1.08¢-7 1.76 3.52e-7 1.58 1.24e-4 1.10 2.0le-8 2.01 1.18e-8 1.96 3.44e-8 2.03

Table 3: Convergence history of Discretizations 1 and 2 for problem (c)

5.2 Discretizations 3 and 4
For equation (1) in the case = (0, 1), we consider the following three problems:
(d). ug(z) == 279 wuy(z) := 0, and f(z,t) :=0;

(e). up(x) =0, uy(x) :=27%9 and f(x,t) = 0;

(f). uo(z) := 0, uy(z) := 0, and f(z,t) := 270191 +¢92),
Throughout this subsection, we will use uniform spatial grids, and “Errorl”
and “Error2” denote the errors (in L?(2)-norm) of the numerical solutions of

Discretizations 3 and 4 at t = 1, respectively, where the reference solution is the
numerical solution of Discretization 4 with A = 27!! and 7 = 2716,

Experiment 1. This experiment verifies the spatial accuracies of Discretiza-
tions 3 and 4. Table 4 demonstrates that the spatial accuracy of Discretization 3
is close to O(h?), which is in good agreement with Theorem 4.2. Since the nu-
merical results of Discretization 4 are almost identical to that of Discretization 3,
they are omitted here.

a=1.2 a=1.4 a=1.8

h Errorl Order Errorl Order Errorl Order

273 1.07e-3 - 4.43e-3 - 4.74e-2 -
2% 2.73e-4 1.97 1.12¢-3 1.99 1.57e-2 1.59
Problem (d) 27° 6.94e-5 1.98  2.80e-4  2.00 4.46e-3  1.82
26 1.76e-5 1.98  7.00e-5 2.00 1.15e-3  1.96
277 4.45e-6 198  1.75¢-5 2.00 2.85e-4  2.01

273 2.71e-3 - 2.33e-3 - 7.76e-3 -
2% 72le4 191  6.15e-4 1.92  2.04e-3  1.93
Problem (¢) 27° 1.90e-4  1.92  1.6le-4 1.93  5.10e-4  2.00
276 497e-5 193 4195 194  1.27e-4  2.00
27 1.29¢-5 1.94  1.08e-5 1.95 3.16e-5  2.00

273 6.12e-3 - 6.64e-3 - 8.77e-3 -
2% 1.63e-3 191 1.75¢-3  1.92  2.27e-3  1.95
Problem (f) 275 4.3le-4 1.92 4.60e-4 1.93 5.86e-4 1.96
276 1.13e-4 193 1.20e-4 1.94 1.5le-4  1.96
27 2955 194 3.12-5 1.95 3.89e-5 1.95

Table 4: Convergence history of Discretization 8 for problems (d), (e) and (f) with
T=2716

Experiment 2. To obtain the temporal accuracies O(737%) and O(7%) of
Discretizations 3 and 4, respectively, Theorems 4.2 and 4.3 require the ratio
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7%/h? to be uniformly bounded. Hence, this experiment verifies the temporal
accuracies of Discretizations 3 and 4 in an indirect way. In this experiment,
we set 7@ = h2?. Theorem 4.2 predicts that “Errorl” is close to O(h?) for
1 < a < 3/2 and close to O(h%/*=2) for 3/2 < a < 2. Theorem 4.3 predicts
that “Error2” is close to O(h?) for all 1 < a < 2. The above two predictions
are confirmed by the numerical results in Tables 5, 6 and 7.

a=1.2 a=1.5 a=1.8
h  Errorl Order Error2 Order Errorl Order Error2 Order Errorl Order Error2 Order
2756.87e-5 - 6.99¢-5 — 4.83e-4 — 5.00e-4 — 4.19e-2 -~ 7.12e-3 -

276 1.75e-5 1.97 1.76e-5 1.99 1.25e-4 1.95 1.25e-4 2.00 1.98e-2 1.08 1.27e-3 2.48
277 4.44e-6 1.98 4.45¢-6 1.99 3.16e-5 1.98 3.10e-5 2.01 8.57e-3 1.21 2.59e-4 2.29
278 1.11e-6 1.99 1.12e-6 2.00 8.08¢-6 1.97 7.65e-6 2.02 3.54e-3 1.27 5.88¢-5 2.14

Table 5: Convergence history of Discretizations 3 and 4 for problem (d)

a=1.2 a=1.5 a=1.8
h  Errorl Order Error2 Order Errorl Order Error2 Order Errorl Order Error2 Order
2751.90e-4 — 1.90e-4 — 1.17e-4 — 1.7led — 6.12¢-3 — 6.06e-4 —

2764.98¢-5 1.93 4.97e-5 1.93 3.14e-5 1.90 4.23e-5 2.01 2.60e-3 1.24 1.08e-4 2.48
2771.29¢-5 1.94 1.29¢-5 1.94 8.25¢-6 1.93 1.06e-5 1.99 1.06e-3 1.29 1.96e-5 2.46
278 3.33¢-6 1.96 3.33¢-5 1.96 2.15e-6 1.94 2.68¢-6 1.99 4.26e-4 1.31 4.44e-6 2.15

Table 6: Convergence history of Discretizations 3 and 4 for problem (e)

a=1.2 a=1.5 a=1.9
h  Errorl Order Error2 Order Errorl Order Error2 Order Errorl Order Error2 Order
2=%1.63¢-3 — 1.63e-3 — 1.53e-3 — 1.87e-3 — 2.22e-2 — 2.6le-3 -

2754.31e-4 1.92 4.3le-4 1.92 4.06e-4 1.92 4.91e-4 1.93 1.03e-2 1.10 7.35e-4 1.83
276 1.13e-4 1.93 1.13e-4 1.93 1.07e-4 1.92 1.28e-4 1.94 4.75e-3 1.12 1.79e-4 2.03
277 2.95¢-5 1.94 2.95¢-5 1.94 2.80e-5 1.93 3.30e-5 1.95 2.15e-3 1.15 4.17e-5 2.11

Table 7: Convergence history of Discretizations 8 and 4 for problem (f)

Experiment 3. This experiment investigates the effect of large ration 7% /h? on
the accuracy of Discretizations 3 and 4 for problem (d). The numerical results
in Table 8 illustrate that, with fixed 7, the accuracy of Discretizations 3 and 4
will deteriorate as h — 0+, which confirms Remark 4.4.

a=1.2 a=14 a=1.8

h  Errorl Error2 Errorl Error2 Errorl Error2
—4 3.20e-3 5.90e-4 1.29¢-3 1.52e-3 5.82e-2 1.12e-2
5 1.04e-1 6.00e-2 1.72e-2 4.05e-3 6.13e-2 2.25e-2
6 3.8le-1 3.04e-1 1.87e-1 1.17e-1 6.29e-2 2.60e-2
—T 7.04e-1 6.26e-1 4.94e-1 4.00e-1 1.59e-1 6.81e-2
8 9.97e-1 9.28e-1 8.09e-1 7.20e-1 4.44e-1 3.09e-1
9 1.25e-0 1.19¢-0 8.09e-1 1.0le-0 7.58e-1 6.27e-1

Table 8: Convergence history of Discretizations 3 and 4 for problem (d) with T = 27°
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6 Conclusion

The well-known L1 scheme for fractional wave equations is analyzed in this pa-
per. New stability estimate is established, and temporal accuracy O(737%) is
derived for nonsmooth initial values ug and u;. A modified L1 scheme is also
proposed, which possesses temporal accuracy O(72). The theoretical results
reveal that 7%/h2 . should be uniformly bounded, where A, is the minimum
diameter of the elements in Kp; otherwise, the temporal accuracy will deterio-
rate. Numerical experiments are performed to verify the theoretical results.

If the temporal grid is nonuniform or the governing equation is of the form
Dy (' —wr)(t) — divla(e, ) V(b)) = £(), >0,

then the techniques used in this paper can not be applied. Hence, an interesting
question is, on the nonuniform temporal grid or for the above equation, how to
derive sharp error estimates for the L1 scheme with nonsmooth data. This will
be our future work.
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