
Polyhedral Mesh Quality Indicator for the Virtual Element Method

T. Sorgentea,∗, S. Biasottia, G. Manzinia, M. Spagnuoloa

a Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Italy

Abstract

We present the design of a mesh quality indicator that can predict the behavior of the Vir-
tual Element Method (VEM) on a given mesh family or finite sequence of polyhedral meshes
(dataset). The mesh quality indicator is designed to measure the violation of the mesh reg-
ularity assumptions that are normally considered in the convergence analysis. We investigate
the behavior of this new mathematical tool on the lowest-order conforming approximation of
the three-dimensional Poisson equation. This work also assesses the convergence rate of the
VEM when applied to very general polyhedral meshes, including non convex and skewed three-
dimensional elements. Such meshes are created within an original mesh generation framework,
which is designed to allow the generation of meshes with very different sizes, connectivity and
geometrical properties. The obtained results show a significant correlation between the quality
measured a priori by the indicator and the effective performance of the VEM.

Keywords: virtual element method, polyhedral mesh, mesh regularity assumptions, mesh
quality indicators, small edges, small faces, 3D Poisson problem, optimal convergence

AMS subject classification: 65N12; 65N15

1. Introduction

The Virtual Element Method (VEM) [6] is a Galerkin projection method such as the Finite
Element Method (FEM). The major difference between VEM and FEM is that VEM does not
require the explicit evaluation of the basis functions and their gradients, which are integrated in
the variational formulation. In the VEM, the basis functions are formally defined as the solutions
to suitable partial differential equation problems formulated in every mesh element, and they are
dubbed as virtual since they are never explicitly evaluated. The method relies on some special
polynomial projections of the basis functions and their derivatives, which are computable from a
careful choice of the degrees of freedom. Using these projection operators, we define the bilinear
forms and linear functionals of the variational formulation. The resulting schemes can be proved
to be consistent with polynomials of a given degree and this property determines the accuracy of
the discretization, while the stability of the method, which implies its well-posedness, is ensured
by introducing in the formulation a suitable stabilization term.

This computational approach is extremely powerful and offers indeed several potential ad-
vantages with respect to the FEM. In fact, we can easily build approximation spaces that work
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on very general meshes, including meshes whose elements are generic-shaped polygons in 2D and
polyhedra in 3D (also called polytopes for short when we do not need to specify the number of
dimensions). These finite dimensional spaces can show arbitrary global regularity, a property
useful in the discretization of high order partial differential equations such as, for example, the
polyharmonic problems [5]. The VEM has thus been proved to be very successful, and an in-
complete list of significant applications on general meshes includes, for example, the works of
Refs. [4, 8, 10–13, 15–17, 20, 22–26, 29, 32–35, 42]. A detailed description of the state of the art
can also be found in the very recent collection of thematic articles [3].

A major property of the VEM is that this method is especially suited to solving partial
differential equations (PDEs) on polygonal and polyhedral meshes. The VEM is indeed highly
versatile in the admissible meshes. This property is very useful when we consider a mesh adap-
tation strategy that allows the mesh to be locally refined in those parts of the domain requiring
greater accuracy in order to improve the numerical approximation. A second major property of
the method, which was noted form the very beginning of the VEM history, is its extreme robust-
ness with respect to mesh deformations. For example, the VEM can be used for problems with
oddly shaped material interfaces to which the mesh must be conformal, or where the boundary
of the computational domain deforms in time.

The convergence of the VEM can be proved under different sets of mesh regularity assump-
tions, which impose restrictions on the meshes that we use in practical calculations. A detailed
review of these results for the numerical approximation of the two-dimensional Poisson equation
can be found in the book chapter [41]. In our first work [39], we investigated this aspect in a
very extensive way and we noted that even relaxing part of these assumptions does not seem
to impact significantly on the optimal convergence behavior of the VEM when applied to the
discretization of the two-dimensional Poisson equation. Such an approximation was shown to be
robust and accurate even on meshes with highly irregular structures or meshes with highly skewed
elements, as for example, those ones that could be outcome from mesh adaptation algorithms
and refinement.

We also designed a mesh quality indicator, which is a mathematical tool that predicts the
behavior of the virtual element method on a given sequence of refined meshes without solving
the differential problem. This indicator can be useful to select the kind of meshes to which we
can apply the VEM and, also, to improve the quality of the meshes that are outcome by some
adaptation or agglomeration algorithm.

The present work aims at generalizing such indicator to three-dimensional polytopal meshes.
Again, the indicator is useful to predict the behavior of the VEM over a given sequence of meshes
before applying the numerical method itself, so that we can evaluate if the given mesh sequence is
suited to the virtual element discretization. The paper starts from an overview of the geometrical
assumptions to guarantee the convergence introduced in the literature of the conforming VEM
for the Poisson equation in three dimensions. Similarly to what has been done in [39], from these
assumptions we derive our quality indicator for polyhedral meshes, which uniquely depends on the
geometry of the mesh elements and measures the violation of the geometrical assumptions. Then,
we define a mesh generation framework, consisting in a number of sampling strategies and meshing
techniques, which allows us to build sequences of polyhedral meshes (datasets) with different
connectivity. Many of the so-generated datasets violate the considered geometrical assumptions,
and this fact allows a correlation analysis between such assumptions and the VEM performance.
We are then ready to measure the quality of each dataset and solve the Poisson problem over
it with the lowest-order conforming VEM, which is built upon the elemental virtual element
spaces that contain the linear polynomials as a subspace. We focus on the linear virtual element
method for computational simplicity and because we think that this is the most interesting
choice in three-dimensional practical engineering applications, leaving a similar investigation for
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the higher-order formulations to future work. We experimentally show how the VEM presents a
good convergence rate in the majority of the cases, underperforming only in very few situations.
We also show a strict correspondence between the values measured by the quality indicator and
the performance of the VEM on a given mesh, or dataset, both in terms of approximation error
and convergence rate.

1.1. Notation and technicalities
We use the standard definition and notation of Sobolev spaces, norms and seminorms, cf. [1].

Let k be a nonnegative integer number. The Sobolev space Hk(ω) consists of all square inte-
grable functions with all square integrable weak derivatives up to order k that are defined on the
open, bounded, connected subset ω of Rd, d = 1, 2. As usual, if k = 0, we prefer the notation
L2(ω). Norm and seminorm in Hk(ω) are denoted by || · ||k,ω and | · |k,ω, while for the inner
product in L2(ω) we prefer the integral notation. We denote the space of polynomials of degree
less than or equal to k ≥ 0 on ω by Pk(ω) and conventionally assume that P−1(ω) = {0}. In
our implementation, we consider the orthogonal basis on every mesh edge through the univari-
ate Legendre polynomials and inside every mesh cell provided by the Gram-Schmidt algorithm
applied to the standard monomial basis.

1.2. Outline
The paper is organized as follows. In Section 2, we present the VEM in three dimensions

and the convergence results for the Poisson equation with Dirichlet boundary conditions. In
Section 3, we report the geometrical assumptions on the mesh elements that are used in the
literature to guarantee the convergence of the VEM, both in 2D and in 3D. We then introduce
the mesh quality indicator for 3D polyhedral meshes, which extends the indicator presented in
[39] for polygonal meshes. In Section 4, we define and build a number of polyhedral datasets and
analyze their geometrical properties. In Section 5, we apply the mesh quality indicator to the
datasets and solve the problem with the VEM, looking for correlations between the quality and
the approximation errors. In Section 6, we offer our final remarks and discuss future developments
and work. All the meshes used in this work are available at

https://github.com/TommasoSorgente/vem-indicator-3D-dataset
for download.

2. The Virtual Element Method on polyhedral meshes

In this section, we briefly review the lowest-order virtual element method in three space
dimensions for the Poisson equation in primal form. A more detailed presentation of these
concepts can be found in [2, 6, 7] where the VEM with arbitrary order of accuracy is presented.
The extension to a more general second-order three-dimensional elliptic problem including a
reaction term is found in [14].

2.1. Mesh generalities
The virtual element method is formulated on the mesh family T =

{
Ωh

}
h
, where each mesh

Ωh is a partition of the computational domain Ω into nonoverlapping polyhedral elements E
and is labeled by the mesh size parameter h that is defined below. A polyhedral element E is
a compact subset of R3 with boundary ∂E, volume |E|, barycenter xE = (xE , yE , zE)T , and
diameter hE = supx,y∈E |x− y|. The set of the mesh elements Ωh form a finite cover of Ω such
that Ω = ∪E∈Ωh

E and the mesh size labeling each mesh Ωh is defined by h = maxE∈Ωh
hE . We

assume that the mesh sizes of the mesh family T are in a countable subset H of the real line
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(0,+∞) having 0 as its unique accumulation point. A mesh face f is a planar, two-dimensional
subset of R3 with area |f|, barycenter xf and diameter hf = supx,y∈f |x − y| and we denote the
set of mesh faces by Fh. We shall consider on every mesh face a local coordinate system (ξ, η).
A mesh edge e is a straight one-dimensional subset of R3 with length he and we denote the set
of mesh edges by Eh. We shall consider on every mesh edge a local coordinate system s. A mesh
vertex v has three-dimensional position vector xv and we denote the set of mesh vertices by Vh.

According to the notation introduced in Section 1.1, we denote the space of linear polyomials
defined on E, f, and e by P1(E), P1(f) and P1(e), respectively, and the space of piecewise linear
polynomials on the whole mesh Ωh by P1(Ωh). Accordingly, if q ∈ P1(Ωh) then it holds that
q|E ∈ P1(E) for all E ∈ Ωh.

In the implementation, we consider the following basis of P1(E) in each element E:

m3D
0 (x, y, z) = 1, m3D

1 (x, y, z) = x− xE

hE
, m3D

2 (x, y, z) = y − yE

hE
,

m3D
3 (x, y, z) = z − zE

hE
.

Similarly, we consider the following basis of P1(f) on each face f:

m2D
0 (ξ, η) = 1, m2D

1 (ξ, η) = ξ − ξf
hf

, m2D
2 (ξ, η) = η − ηf

hf
,

where we recall that (ξ, η) is the local coordinate system defined on f and xf = (ξf, ηf)T is the
center of the face. We also use the following basis of P1(e) on every edge e:

m1D
0 (s) = 1, m1D

1 (s) = s− se
he

,

where we recall that (ξ, η) is the local coordinate system defined on e and sE is the center
(mid-point) of the edge.

2.2. The model problem
Let Ω ⊂ R3 be an open, bounded, simply connected, convex domain with Lipschitz boundary

Γ. For exposition’s sake, we assume that Ω is a polyhedral domain and its boundary Γ is given
by the union of a subset of the faces in F . We consider the diffusion problem

−∆u = f in Ω, (1)

u = g on Γ, (2)

where f ∈ L2(Ω) is the load term and g ∈ H 1
2 (Γ) the Dirichlet boundary data. The variational

form of this problem reads as:

Find u ∈ Vg such that
∫

Ω
∇u · ∇v =

∫
Ω
fv ∀v ∈ V0, (3)

where Vg = {v ∈ H1(Ω) : v|Γ = g} and V0 = {v ∈ H1(Ω) : v|Γ = 0}. The well-posedness of
this problem follows from the coercivity and continuity of the bilinear form on the left-hand side
of (3) and the boundedness on the linear functional of the right-hand side of (3) and can be
proved by an application of the Lax-Milgram theorem, see [37, Theorem 2.7.7].
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2.3. Virtual elements on polygonal faces
The three-dimensional conforming virtual element space is built recursively on top of the

virtual element spaces defined on the polyhedral faces. Under the assumptions presented in
section 2.1, each polyhedral face f is a two-dimensional planar polygon. In order to define the
virtual element space on f, we preliminarly introduce the virtual element space

Ṽ h(f) :=
{
vh ∈ H1(f) ∩ C0(f) : vh|e ∈ P1(e)∀e ∈ ∂f, ∆vh ∈ P1(f)

}
. (4)

Next, we consider the linear, bounded operators λ` : V h(f)→ R such that λ`(vh) = vh(v`) is the
value at the `-th vertex of ∂f and the elliptic projection operator Π∇,f

f : V h(f)→ P1(f), which is
such that ∫

f
∇
(
vh −Π∇,f

1 vh

)
· ∇q = 0 ∀q ∈ P1(f), (5)∫

∂f

(
vh −Π∇,f

1 vh

)
= 0. (6)

An integration by parts shows that we can reduce the integral in (5) to a boundary integral that
can be evaluated by a splitting on the elemental edges. On each edge we apply the trapezoidal
rule, which only depends on the vertex values, i.e., the values λ`(vh), and returns the exact
integral value since the trace of vh is linear, cf. [6, 7]. The integral in (6) is evaluated in the same
way and also depends only on the vertex values of vh.

Then, we define the two-dimensional virtual element space on f as

V h(f) :=
{
vh ∈ Ṽ h(f) :

∫
f
vhq =

∫
f

(
Π∇,E

1 vh

)
q ∀q ∈ P1(E)

}
. (7)

A major property of definition (7) is that the linear polynomials over f are a subspace of V h(f);
formally, we can write that P1(f) ⊆ V h(f) ⊆ Ṽ h(f). Moreover, the virtual element functions
vh ∈ V h(f) are uniquely identified by their vertex values. i.e., λ`(vh). A proof of the unisolvence
of the set {λ`(vh)} in V h(f) can be found in [2].

2.4. Virtual elements on polyhedral cells
Let E denote a generic three-dimensional element with boundary ∂E and f ∈ ∂E a generic

polygonal face of E. We first introduce the elemental boundary space

Bh(∂E) :=
{
vh ∈ C0(∂E) : vh|f ∈ V h(f) ∀f ∈ ∂E

}
. (8)

The functions in Bh(∂E) are continuous linear polynomials across the face edge and their re-
striction to a given face f belong to the virtual element space V h(f) defined in (7). We use (8)
to introduce the preliminary virtual element space on the polytopal element E

Ṽ h(E) :=
{
vh ∈ H1(E) : vh|∂E ∈ Bh(∂E), ∆vh ∈ P1(E)

}
. (9)

As for the two-dimensional case, the virtual element functions vh ∈ Ṽ h(E) are uniquely charac-
terized by their vertex values, which are again returned by the same linear bounded functionals
λ`(vh) introduced in the previous section. We call these vertex values the degrees of freedom of
the method. The unisolvence of the set {λ`(vh)} in V h(E) is proved by using the same arguments
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as in [2]. Next, we introduce the elliptic projection operator Π∇,E : Ṽ h(E) → P1(E), which is
such that ∫

E

∇
(
vh −Π∇,E

1 vh

)
· ∇q = 0 ∀q ∈ P1(f), (10)∫

∂E

(
vh −Π∇,E

1 vh

)
= 0. (11)

As for the two-dimensional case, the elliptic operator Π∇,E
1 vh of a virtual element function

vh ∈ Ṽ h(E) only depends on its vertex values, i.e., the values λ`(vh). Then, we define the local
virtual element space

V h(E) :=
{
vh ∈ Ṽ h(E) :

∫
E

vhq =
∫

E

(
Π∇,E

1 vh

)
q ∀q ∈ P1(E)

}
. (12)

A major property of definition (7) is that the linear polynomials over E are a subspace of V h(E);
formally, we can write that P1(E) ⊆ V h(f) ⊆ Ṽ h(E).

It is worth noting that the orthogonal projection operator Π0,E
` : V h(E)→ P`(E), ` = 0, 1, is

also computable and, in particular, Π0,E
1 coincides with Π∇,E

1 , see [2]. The orthogonal projection
Π0,E

` vh of the virtual element function vh is the linear polynomial solving the variational problem:∫
E

(
Π0,E

` vh − vh

)
q dV = 0 ∀q ∈ P`(E). (13)

Building on top of this definition, we can introduce the global piecewise linear and constant
orthogonal projections onto the piecewise discontinuous polynomial space P`(Ωh) that is such
that Π0

`vh|E = Π0,E
` (vh|E) for all E ∈ Ωh.

Finally, the global virtual element space V h ⊂ H1(Ω) is defined by “gluing” all the elemental
virtual element spaces in a conforming way

V h :=
{
vh ∈ H1(Ω) : vh|E ∈ V h(E) ∀E ∈ Ωh

}
. (14)

The degrees of freedom that uniquely characterize the virtual element function are still the vertex
values λ`(vh), and their unisolvence in the global space V h is a consequence of their unisolvence
in each elemental space.

2.5. Virtual element approximation of the Poisson equation
The virtual element approximation of (3) is the variational problem that reads as

Find uh ∈ V h
g such that ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ V h

0 , (15)

where

• V h
g :=

{
vh ∈ V h : vh|Γ = gI

}
and V h

0 :=
{
vh ∈ V h : vh|Γ = 0

}
;

• gI is a suitable approximation (trace interpolation) of the boundary function used in (2);

• the bilinear form ah : V h × V h → R is the virtual element approximation of the left-hand
side of Eq. (1);
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• the linear functional 〈fh, ·〉 : V h → R is the virtual element approximation of the right-hand
side of Eq. (1) using fh, which is an element of the dual space (V h)∗.

The well-posedness of this problem follows from the coercivity and continuity of the bilinear
form ah(·, ·) and the boundedness on the linear functional 〈fh, ·〉, and can be proved by an
application of the Lax-Milgram theorem, see [37, Theorem 2.7.7]. These properties follows from
the construction that is briefly reviewed below.

The bilinear form ah(·, ·) is written as the sum of local terms

ah(uh, vh) =
∑

E∈Ωh

aE
h (uh, vh), (16)

where each term aE
h : V h(E)×V h(E)→ R is a symmetric bilinear form over the elemental space

V h(E). We set

aE
h (uh, vh) = aE(Π∇,E

1 uh,Π∇,E
1 vh) + hES

E(uh −Π∇,E
1 uh, vh −Π∇,E

1 vh), (17)

and the stabilization form SE : V h × V h → R is a symmetric, positive definite, bilinear form
such that

σ∗a
E(vh, vh) ≤ SE(vh, vh) ≤ σ∗aE(vh, vh) ∀vh ∈ V h with Π∇,E

1 vh = 0, (18)

for two positive constants σ∗, σ∗ that are independent of h (and E). Condition (18) implies
that the resulting bilinear form aE

h (·, ·) in (17) has the two major properties of linear consistency
and stability. These two properties are exploited in the convergence analysis of the method,
see [2, 6]. In all our numerical test case, the solver implements the so called dofi-dofi stabilization,
see [28, 31].

To approximate the right-hand side of (3), we first set fh|E = Π0,E
1 f and then we consider

the elemental decomposition

〈fh, vh〉 =
∑

E∈Ωh

∫
E

(
Π0,E

1 f)vh. (19)

Estimates of such approximation are found in [2, Section 5.8].

2.6. Convergence results

For the sake of reference, we report below the convergence result in the L2-norm and the
energy norm for the numerical approximation using the virtual element space (14). This result
follows from the general convergence theorem that is proved in [2, Theorem 1]. Let u ∈ H2(Ω) be
the solution to the variational problem (3) on a convex domain Ω with f ∈ H1(Ω). Let uh ∈ V h

be the solution of the virtual element method (15) on every mesh of a mesh family T = {Ωh}
satisfying a suitable set of mesh geometrical assumptions. Then, a strictly positive constant C
exists such that

• the H1-error estimate holds:

||u− uh||1,Ω ≤ Ch (||u||2,Ω + |f |1,Ω) ; (20)

• the L2-error estimate holds:

||u− uh||0,Ω ≤ Ch2 (||u||2,Ω + |f |1,Ω) . (21)
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Finally, we note that the approximate solution uh is not explicitly known inside the elements.
Consequently, in the numerical experiments of Section 5, we approximate the error in the L2-
norm as follows:

||u− uh||0,Ω ≈ ||u−Π0
1uh||0,Ω, (22)

where Π0
1uh is the global L2-orthogonal projection of the virtual element approximation uh to

u. On its turn, we approximate the error in the energy norm as follows:

|u− uh|1,Ω ≈ ||∇u−Π0
0∇uh||0,Ω, (23)

where Π0
0 is extended component-wisely to the vector fields.

3. Analysis of the quality of a polyhedral mesh

As mentioned in Section 2.6, there are several theoretical results behind the VEM that depend
on particular geometrical (or regularity) assumptions. These assumptions ensure that in the
refinement process each element of any mesh in the mesh family, is sufficiently regular, and
guarantee the VEM convergence and optimal estimates of the approximation error with respect
to different norms. In this section we overview the most common geometrical assumptions found
in the literature and provide an indicator of the violation of these assumptions, which depends
uniquely on the geometry of the mesh elements. As these assumptions have been shown to
be quite restrictive [39], we try to measure how much a mesh satisfies them instead of simply
discarding all the non-compliant meshes.

3.1. Geometrical assumptions
A complete analysis of the geometrical assumptions typically required in literature for the

VEM in two dimensions can be found in [41]. We report here the main results from that paper,
as they will be the basis on which we build their three-dimensional counterparts.

Besides some small variants, we can isolate four main conditions common to all the considered
works relative to the 2D case. They are defined for a single mesh Ωh, but the conditions contained
in them are required to hold independently of h. Therefore, when considering a mesh family
T = {Ωh}h, these assumptions have to be verified simultaneously by every Ωh ∈ T . We use
the superscript 2D to indicate the fact that they are relative to the two-dimensional VEM
formulation.

G12D ∃ ρ ∈ (0, 1) s.t. every polygon E ∈ Ωh with diameter hE is star-shaped with respect to a
disc with radius

rE ≥ ρhE .

G22D ∃ ρ ∈ (0, 1) s.t. for every polygon E ∈ Ωh, the length he of every edge e ∈ ∂E satisfies

he ≥ ρhE .

G32D ∃N ∈ N s.t. the number of edges of every polygon E ∈ Ωh is (uniformly) bounded by N .

G42D ∃ δ > 0 s.t. for every polygon E ∈ Ωh the one-dim. mesh IE representing its boundary can
be subdivided into a finite number of disjoint sub-meshes I1

E , . . . , IN
E (each one containing

possibly more than one edge of E), and for each Ii
E it holds that

maxe∈Ii
E
he

mine∈Ii
E
he
≤ δ.
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Authors typically require their meshes to satisfy either G12D and G22D or G12D and G22D or
G12D and G32D, also depending to the type of stabilization term adopted.

The assumptions for the regularity of polyhedral meshes are straightforwardly derived from
the 2D ones. According to [2, 7, 9, 18, 19], we consider the following requirements.

G1 ∃ ρ ∈ (0, 1) s.t. every polyhedron E ∈ Ωh is star-shaped with respect to a disc with radius

rE ≥ ρhE ,

and every face f ∈ ∂E is star-shaped with respect to a disc with radius

rf ≥ ρhf,

G2 ∃ ρ ∈ (0, 1) s.t. for every polyhedron E ∈ Ωh, the length he of every edge e of every face f
satisfies

he ≥ ρhf ≥ ρ2hE .

G3 ∃N ∈ N s.t. the number of edges and faces of every polyhedron E ∈ Ωh is (uniformly)
bounded by N .

In most of the considered papers only G1 and G2 are considered, while more recent works like
[19] replace G2 with the more general G3. Indeed, G3 can be derived from G1 and G2, as
these latters imply the existence of an integer number N such that every polyhedron has fewer
than N faces and every face has fewer than N edges [2, Remark 11]. It is worth noting that
here we are not extending [39, Assumption G4] to the three-dimensional case. To the best of
our knowledge such extension has not yet been considered in the analysis of the 3D VEM, and
this topic is beyond the scope of our work.

As observed in [2, Remark 10], such assumptions allow us to use very general mesh families.
However, as for the two-dimensional case, they can be more restrictive than necessary to ensure
the proper convergence of the method. This fact is also something that we want to investigate
in our work.

3.2. Quality indicators
In the first paper [39], starting from each geometrical assumption Gi2D, i = 1, . . . , 4, we

derived a scalar function %2D
i : {E ⊂ Ωh} → [0, 1] defined element-wise, which measures how well

a polygon E ∈ Ωh meets the requirements of Gi2D from 0 (E does not respect Gi2D) to 1 (E
fully respects Gi2D).

%2D
1 (E) = k(E)

|E|
=


1 if E is convex
∈ (0, 1) if E is concave and star-shaped
0 if E is not star-shaped

(24)

%2D
2 (E) = min(

√
|E|, mine∈∂E he)

max(
√
|E|, hE)

(25)

%2D
3 (E) = 3

# {e ∈ ∂E} =
{

1 if E is a triangle
∈ (0, 1) otherwise

(26)

%2D
4 (E) = min

i

mine∈Ii
E
he

maxe∈Ii
E
he

(27)
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Combining together %2D
1 , %2D

2 , %2D
3 and %2D

4 , we defined a global function %2D : {Ωh}h → [0, 1]
which measures the overall quality of a mesh Ωh:

%2D(Ωh) =
√

1
# {E ∈ Ωh}

∑
E∈Ω

%2D
1 (E)%2D

2 (E) + %2D
1 (E)%2D

3 (E) + %2D
1 (E)%2D

4 (E)
3 . (28)

We have %2D(Ωh) = 1 if and only if Ωh is made only of equilateral triangles, %2D(Ωh) = 0 if and
only if Ωh is made only of non star-shaped polygons, and 0 < %2D(Ωh) < 1 otherwise.

Similarly, for the 3D case, from each geometrical assumption Gi, i= 1, 2, 3, we need to derive
a scalar function %i which measures how well a polyhedron E ∈ Ωh meets the requirements of
Gi. We do not consider %2D

4 , since assumption G42D has not been extended to the 3D scenario.
We measure the quality of the interior of E defining a new volumetric operator, and we also
include a measure of the quality of its faces ∂E using the old 2D indicators. Then we collect
together the volumetric and the boundary parts into a single function.

%1(E) = k(E)
|E|

∏
f∈∂E

%2D
1 (f) (29)

=


1 if E and all its faces are convex
∈ (0, 1) if E and all its faces are concave and star-shaped
0 if E or one of its faces are not star-shaped

%2(E) = 1
2

[
min( 3

√
|E|, minf∈∂E hf)

max( 3
√
|E|, hE)

+ 1
# {f ∈ ∂E}

∑
f∈∂E

%2D
2 (f)

]
(30)

%3(E) = 1
2

[
4

# {f ∈ ∂E} + 1
# {f ∈ ∂E}

∑
f∈∂E

%2D
3 (f)

]
(31)

=
{

1 if E is a tetrahedron
∈ (0, 1) otherwise

The operator k(·) in %1 measures the volume of the kernel of a polyhedron E, defined as the set
of points in E from which the whole polyhedron is visible, computed with the algorithm proposed
in [40]. The volumetric and the boundary components (the kernel of each face) are multiplied
so that, even if only one of them is zero (if a single face is not star-shaped), the whole product
vanishes. The function %2 is an average of the volumetric constant ρ from G2, expressed trough
the ratio hf/hE , and all the boundary constants represented by the 2D indicators %2D

2 . Function
%3 measures the number of edges and faces of a polyhedron, penalizing elements with numerous
edges and faces as required by G3.

We can now define a global function % : {Ωh}h → [0, 1] which measures the overall quality
of a polyhedral mesh Ωh. The formula for combining %1, %2 and %3 is derived straightforwardly
from (28):

%(Ωh) =
√

1
# {E ∈ Ωh}

∑
E∈Ω

%1(E)%2(E) + %1(E)%3(E)
2 . (32)

We have %(Ωh) = 1 if and only if Ωh is made only of equilateral tetrahedrons, %(Ωh) = 0 if
and only if Ωh is made only of non star-shaped polyhedrons (or with non star-shaped faces),
and 0 < %(Ωh) < 1 otherwise. All indicators %1, %2 and %3, and consequently %, only depend on
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the geometrical properties of the mesh elements; therefore their values can be computed before
applying the VEM, or any other numerical scheme.

As already observed in [39], this approach is easily upgradeable to future developments:
whenever new assumptions on the features of a mesh should appear in the literature (for example
a valid extension of G42D), one simply needs to introduce in this framework a new function %i

that measures the violation of the new assumption and inserts it into the formulation of the
general indicator % in equation (32). For the rest of the work we will be dealing only with
volumetric meshes, therefore we will indicate % simply as % and Gi as Gi for i= 1, 2, 3, with a
little abuse of notation.

4. Generation of the datasets

In this section, we define a number of mesh “datasets” on which we will test our indicator.
We call a dataset a collection D := {Ωn}n=0,...,N of meshes Ωn covering the domain Ω = (0, 1)3

such that:

• the mesh Ωn+1 has smaller mesh size than Ωn for every n = 0, . . . , N − 1;

• the meshes Ωn are built with the same technique and therefore contain similar polyhedra
organized in similar configurations.

Note that each mesh Ωn is uniquely identified (in the dataset it belongs to) by its size as Ωh,
therefore we can consider a dataset D as a subset of a mesh family: D = {Ωh}h∈H′ ⊂ T where
H′ is a finite subset of H.

Each dataset is characterized by a sampling strategy for generating a number of points inside
the unit cube Ω, and a meshing technique to connect them. Algorithms for generating all the
samplings strategies and the meshing techniques are based on cinolib [30]; all the generated
datasets are publicly available at:

https://github.com/TommasoSorgente/vem-indicator-3D-dataset

4.1. Sampling strategies
We defined six different sampling strategies, summarized in Figure 1. In order to create

multiple refinements for each dataset, each sampling takes an integer parameter t in input,
which determines the number of points to be generated, and consequently the size of the induced
mesh.

The sampling strategies are the followings:

• Uniform sampling the points are disposed along a uniform equispaced grid of size 1/t;

• Anisotropic sampling a regular grid in which the distance between the points is fixed at
1/t along two directions while it linearly increases (1/t, 2/t, 3/t, . . .) along the third axis,
leading to anisotropic configurations;

• Parallel sampling this sampling is obtained from a uniform sampling with parameter t
by randomly moving all the points belonging to a certain plane p1 to another plane p2,
parallel to p1. In practice, we pick all the points sharing the same x−coordinate and
randomly change x by the same quantity; then, we repeat this operation for the y and the
z−coordinates;
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uniform sampling anisotropic sampling parallel sampling

Body Centered Lattice Poisson sampling random sampling

Figure 1: Summary of the sampling strategies.

• Body Centered Lattice (BCL) a uniform equispaced grid of size 1/t is generated and one
more point is added to the center of each cubic cell, using the implementation proposed
in https://github.com/csverma610/CrystalLattice. This sampling produces equilat-
eral tetrahedra when combined with tetrahedral meshing and truncated octahedra when
combined with Voronoi meshing (see Section 4.2);

• Poisson sampling the points are generated following the Poisson Disk Sampling algorithm
[21]. First, we apply the algorithm to the cube (1/t, 1−1/t)3 and the square (1/t, 1−1/t)2

with radius 1/t, to generate points inside Ω and on its boundary. Then, in order to cover
the domain more uniformly, we add an equispaced sampling with distance 1/t on each edge
of Ω;

• Random sampling the points are randomly placed inside Ω. In order to guarantee a decent
distribution, given the input parameter t we generate t points along each edge of Ω, t2
points on each face and t3 points inside Ω.

We point out that, for how the samplings are defined, the number of points generated with the
same parameter t in the different strategies may vary.

4.2. Meshing techniques
We create meshes by connecting a certain set of points with different techniques: we con-

sidered the three most common types of mesh connectivity found in the literature (tetrahedral,
hexahedral and Voronoi) plus a generic polyhedral one. As soon as sampling points are connected
into a mesh, we call them vertices.

• Tetrahedral meshing points are connected in tetrahedral elements with TetGen library [38],
enforcing two quality constraints on tetrahedra: a maximum radius-edge ratio bound and
a minimum dihedral angle bound;
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• Voronoi meshing points are considered as centroids for the construction of a Voronoi lattice
using library Voro++ [36]. In this case the sampled points will not appear as vertices in
the final mesh, and the number of vertices does not depend uniquely on the number of
points;

• Hexahedral meshing points are connected to form hexahedral elements. For ease of imple-
mentation the mesh is still generated as a Voronoi lattice, but we make sure that points
are placed in such a way that the final result is a pure hexahedral mesh;

• Polyhedral meshing we start from a tetrahedral mesh and we aggregate 20% of the elements
to generate non-convex polyhedra. In order to avoid numerical problems, we select the
elements with the greatest volume and aggregate them with the neighboring element sharing
the widest face. Note that we only aggregate couple of elements and merge eventual
coplanar faces, but in any case we remove vertices of the original tetrahedral mesh.

It would also be possible to generate polyhedral meshes starting from hexahedral or Voronoi
ones, but we chose to limit our tests to aggregations of the tetrahedral datasets.

4.3. Validation datasets
Each combination of sampling strategy and meshing technique gives a dataset. As not all

combinations are possible or meaningful, we selected the most significant datasets for our purpose,
presented in Figure 2 and Figure 3.

For validating our experiments we generated datasets composed by five meshes each, with
decreasing mesh size: they contain 60, 500, 4000, 32000 and 120000 vertices approximately.
For each n, the mesh Ωn+1 has about eight times more vertices than Ωn, except for the last
mesh which only has four times more vertices than the previous, for computational reasons. We
determine the number of vertices by opportunely setting the sampling parameter t, and we have
no constraints on the numbers of edges, faces or elements. We label each dataset to indicate the
meshing technique and the sampling strategy. For example, Dtet−uniform is the dataset that is
built by combining the tetrahedral meshing and the uniform sampling.

• Tetrahedral datasets we combined the tetrahedral meshing with all the considered sam-
pling methods, creating six tetrahedral datasets: Dtet−uniform, Dtet−anisotropic, Dtet−parallel,
Dtet−bcl, Dtet−poisson and Dtet−random;

• Hexahedral datasets among the six considered samplings, only the first three provide regular
grids suitable for the generation of hexahedral elements. Therefore our hexahedral datasets
are Dhex−uniform, Dhex−anisotropic and Dhex−parallel;

• Voronoi datasets the last three samplings instead, have been used to generate Voronoi
datasets: Dvoro−bcl, Dvoro−poisson and Dvoro−random;

• Polyhedral datasets finally, any of the tetrahedral datasets could have been modified to
obtain polyhedral meshes, but we observed that aggregating elements from Dtet−uniform,
Dtet−anisotropic or Dtet−bcl would still generate convex elements, not so different from
the original ones. We therefore chose to consider only Dpoly−parallel, Dpoly−poisson and
Dpoly−random.

Comparing to the datasets defined over the unit cube in [14], we could say that datasetDvoro−random
is analogous to the “Random” discretization, dataset Dhex−uniform is equivalent to their “Struc-
tured” meshes and dataset Dvoro−bcl can be considered as a particular case of “CVT” discretiza-
tion.
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Dtet−uniform Dtet−anisotropic Dtet−parallel

Dtet−bcl Dtet−poisson Dtet−random

Figure 2: Summary of the tetrahedral datasets

Dhex−uniform Dhex−anisotropic Dhex−parallel

Dvoro−bcl Dvoro−poisson Dvoro−random

Figure 3: Summary of the hexahedral and Voronoi datasets
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In Table 1 we report some considerations about the datasets and the geometrical assumptions
from Section 3.1. First, all the considered datasets satisfy assumption G1: the only non convex
elements can be found in meshes belonging to polyhedral datasets, but even those elements
are still star-shaped, being the union of two tetrahedra. Datasets originating from parallel and
random samplings are not guaranteed to satisfy assumption G2, due to their random nature.
The same holds for datasets from Poisson sampling: even if the points are placed at fixed
distance apart, they may still fall arbitrary close to each other around the boundary of Ω.
Datasets originating from the anisotropic sampling instead, are guaranteed to systematically
violate assumption G2. Assumption G3 is violated only by Dvoro−poisson and Dvoro−random, as it
is not possible to bound the number of faces of a random Voronoi cell. Last, datasets originating
from uniform sampling and BCL are guaranteed to satisfy all the geometrical assumptions. We
recall from Section 3.2 that to ensure the optimal behavior of the method either assumptions
G1 and G2 or assumptions G1 and G3 need to be satisfied. Therefore we are allowed to expect
optimal convergence rates over all datasets, except for Dvoro−poisson and Dvoro−random.

Table 1: Summary of the geometrical assumptions violated by each dataset.

dataset G1 G2 G3

Dtet−uniform
Dtet−anisotropic ×
Dtet−parallel ×
Dtet−bcl
Dtet−poisson ×
Dtet−random ×

dataset G1 G2 G3

Dhex−uniform
Dhex−anisotropic ×
Dhex−parallel ×
Dvoro−bcl
Dvoro−poisson × ×
Dvoro−random × ×
Dpoly−parallel ×
Dpoly−poisson ×
Dpoly−random ×

5. Correlations between the quality and the performance

In order to test the accuracy of the quality indicator % defined in Section 3.2, we evaluate it
over each mesh of each dataset from Section 4.3. We recall that for an ideal dataset made by
meshes containing only equilateral tetrahedra, % would be constantly equal to 1. We assume this
value as a reference for the other datasets: the closer is % on a dataset to the line y = 1, the
smaller is the approximation error that we expect that dataset to produce. Moreover, the % slope
is indicative of the convergence rate. Since an ideal dataset would produce an horizontal line, the
more negative is the slope, the worse is the convergence rate that we expect. A positive trend
instead, should indicate a convergence rate higher than the one obtained with an equilateral
tetrahedral mesh, that is, higher than the theoretical estimates. This phenomenon is commonly
called superconvergence.

Then, we solve the discrete Poisson problem (3) with the VEM (15) described in Section 2,
using as groundtruth the function

u(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz), (x, y, z) ∈ Ω. (33)
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For each class of datasets (tetrahedral, hexahedral, Voronoi and polyhedral) we plot the relative
H1-seminorm and L2-norm as defined in (22), (23):

||u− uh||0,Ω/||u||0,Ω, |u− uh|1,Ω/|u|1,Ω,

and the relative L∞-norm

||u− uh||∞/||u||∞, where ||u||∞ = ess supx∈Ω|u(x)|,

of the approximation error u− uh as the number of vertices increases (which corresponds to the
number of degrees of freedom in our formulation). The optimal convergence rate of the method,
provided by the estimates (20) and (21), is indicated by the slope of the reference triangle. In
the case of the L∞-norm we do not have such theoretical results.

The exercise we propose is to first analyse the values of % on a dataset, computed before
solving the problem, and make some predictions on the behaviour of the VEM over it in terms
of convergence rate and error magnitude. Then, looking at the approximation errors actually
produced by that dataset, search for correspondences between % and the errors, checking the
accuracy of the prediction. Clearly, as % does not depend on the type of norm used, we will
compare it to an average of the plots for the different norms.

5.1. Tetrahedral datasets
Predictions. Looking at the quality plot in Figure 4 (the leftmost) we would say that the VEM
should converge with the optimal rate over almost all datasets, as their % tend to get horizontal.
One exception is Dtet−anisotropic, which has a negative trend and therefore is not expected to
converge properly. We can also observe how the slope of Dtet−parallel becomes positive in the last
mesh: this should indicate a more than optimal convergence rate. Regarding the error magnitude,
represented by the overall distance from the top of the plot, we can predict that Dtet−bcl will
produce the smallest errors, being the one with the highest quality. This is reasonable because
this dataset is composed mainly of equilateral tetrahedra. We can then order decreasingly the
other datasets according to their quality: Dtet−poisson, Dtet−uniform, Dtet−random, Dtet−parallel and
Dtet−anisotropic, and we expect the errors magnitudes to behave accordingly.

Figure 4: Mesh quality indicator %, H1-seminorm, L2-norm and L∞-norm of the approximation errors relative
to the tetrahedral datasets.

Verification. The convergence rates of the tetrahedral datasets in the error plots of Figure 4
faithfully respect all the above considerations. In both H1 and L2-norms, the method converges
with the optimal rate (the one suggested by the reference triangle) over all datasets, except
for Dtet−anisotropic, and datasets Dtet−parallel superconverges in the last mesh. We checked the
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condition numbers for the linear systems that are built on the meshes of Dtet−anisotropic and
we verified that their values are reasonably small, i.e., in the range [1, 106]. These values are
comparable to the condition numbers seen in the other datasets. In the L∞-norm the situation is
similar, even if Dtet−random has an unexpected peak in the last mesh. The error magnitudes, i.e.
the distance of the line from the y−axis, perfectly follow the ordering suggested by the quality
plot. The dataset which produces the smallest errors is Dtet−bcl. After that, in the H1 and L2

plots we have Dtet−poisson, Dtet−uniform and Dtet−random, which tend to become very close, then
Dtet−parallel and last Dtet−anisotropic. The situation slightly changes if we look at the L∞ error: in
this case Dtet−uniform performs better than Dtet−poisson, probably due to a bunch of poor quality
elements which do not particularly affect the overall accuracy of the method.

5.2. Hexahedral datasets
Predictions. Results for the hexahedral datasets are shown in Figure 5. Similarly to what hap-
pened for the tetrahedral datasets, the meshes produced by the anisotropic sampling have very
poor quality. While Dhex−uniform and Dhex−parallel tend to flatten, with the second one increas-
ing in the last refinement, the % value for the meshes of Dhex−anisotropic keeps decreasing. Our
prediction is therefore to have optimal convergence on Dhex−uniform and Dhex−parallel and bad
results with Dhex−anisotropic. In addition, Dhex−uniform is expected to produce smaller errors than
Dhex−parallel.

Figure 5: Mesh quality indicator %, H1-seminorm, L2-norm and L∞-norm of the approximation errors relative
to the hexahedral datasets.

Verification. In the error plots of Figure 5 all the predictions are confirmed. The VEM converges
perfectly over Dhex−uniform and Dhex−parallel, with the second one producing higher errors than
the first one and improving its convergence rate in the last refinement. Instead, Dhex−anisotropic
does not produce a correct convergence rate in the H1 and L2 plots, and also in the L∞ plot
exhibits a significantly slower rate with respect to the other datasets. Also in this case, the
condition numbers for the linear systems are not particularly bigger than the ones of the other
datasets.

5.3. Voronoi datasets
Predictions. In Figure 6, results relative to the Voronoi datasets are shown. The quality of
all three datasets tend to stabilize to a constant value, and this makes us presume a correct
convergence rate for all of them. We can expect Dvoro−bcl to produce smaller errors than the
other two, and Dvoro−random to be the less accurate.
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Figure 6: Mesh quality indicator %, H1-seminorm, L2-norm and L∞-norm of the approximation errors relative
to the Voronoi datasets.

Verification. Looking at the H1 and L2 error plots we notice how all datasets converge properly,
and the accuracy of the approximation follows the order foreseen by the indicator: Dvoro−bcl,
Dvoro−poisson and Dvoro−random. The L∞ plot is less similar to the other two in this case, but
still we can recognise a common pattern.

5.4. Polyhedral datasets
Predictions. Last, in Figure 7 we report the analysis of the polyhedral datasets. The indicator
% suggests that Dpoly−poisson and Dpoly−random converge perfectly. Regarding Dpoly−parallel, the
indicator seems to flatten and then increases in the last refinement. The convergence should
therefore be optimal for the first meshes and more than optimal for the last one. The most
accurate dataset should be Dpoly−poisson and the least accurate Dpoly−parallel.

Figure 7: Mesh quality indicator %, H1-seminorm, L2-norm and L∞-norm of the approximation errors relative
to the polyhedral datasets.

Verification. The method performs essentially as expected. All datasets produce optimal rates
and Dpoly−parallel converges even faster than the reference in the last refinement. Dataset
Dpoly−random has a peak in the last mesh with the L∞ error: this is similar to what hap-
pened with Dtet−random and it probably due to the same bad-shaped element (remember that
tetrahedral and polyhedral meshes differ only for the 20% of their elements). Concerning the
errors magnitude, as foreseen by the indicator, Dpoly−poisson is the most accurate and then we
have Dpoly−random and Dpoly−parallel.
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6. Conclusions

We conclude with some more general considerations on the results obtained in the previous
section. When all three geometrical assumptions are respected, that is, with meshes from uni-
form sampling and BCL, the performance are obviously optimal. It is important to notice how
Dtet−anisotropic and Dhex−anisotropic are the only two cases in which the VEM underperforms, de-
spite satisfying both assumptions G1 and G3. In these cases, the strong violation of assumption
G2 significantly impacts on the proper convergence of the method. In other similar situations,
e.g. with parallel samplings, G2 is violated less heavily and the method works as expected.
Vice-versa, Dvoro−poisson and Dvoro−random satisfy G1 but not G2 nor G3, and the VEM still
manages to converge on them. These results are not unexpected, as the geometrical assumptions
are only sufficient conditions for the convergence of the method, but confirm our suspects that
the current restrictions on the meshes are probably more severe than necessary.

The mesh quality indicator has been able to properly predict the behaviour of the VEM, both
in terms of convergence rate and error magnitude, up to a certain precision. It showed up to
be particularly accurate when compared to the H1 and the L2-norms of the error, while it not
always managed to capture the oscillations of the L∞-norm.

In conclusion, the relationship between the geometrical assumptions respected by a dataset
and the performance of the VEM on it is not so obvious, especially when we try to violate at
least one of them. In those situations, our mesh quality indicator turns out to be particularly
useful in predicting the result of the numerical approximation. Its effectiveness lies in the ability
of capturing a qualitative measure of the violation of the single assumptions.

We are currently working on a software library capable of splitting or merging the elements of
a mesh in order to maximize an energy functional based on the quality indicator. This software is
capable of spotting the most pathological elements in a mesh (the ones with the poorest quality)
and either aggregate them with a neighbor or split them into smaller parts, improving the global
quality of the mesh. We believe this could be extremely useful in VEM simulations, as a higher
quality mesh leads to cheaper and more accurate approximations.

As a future work, we plan to further investigate the geometrical assumptions involved in the
three-dimensional VEM analysis, for instance an extension of assumption G42D, and to study
the convergence of the VEM with order k > 1. In [39] it was shown that the behaviour of the
VEM over a polygonal mesh does not drastically change for different values of k, and therefore
the quality measured by % can be considered as a reliable indicator for all the orders of the
method. We suspect this could be true also for the three-dimensional formulation, but more
detailed studies are required on this topic. Last, it would be interesting to see if the quality
indicator could be adapted to other numerical schemes different from the VEM, such as the
Discontinuous Galerkin method [27], by opportunely defining a new set of scalar functions based
on appropriate geometrical assumptions.
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