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Abstract

We study the adapted solution, numerical methods, and related convergence analysis

for a unified backward stochastic partial differential equation (B-SPDE). The equation

is vector-valued, whose drift and diffusion coefficients may involve nonlinear and high-

order partial differential operators. Under certain generalized Lipschitz and linear growth

conditions, the existence and uniqueness of adapted solution to the B-SPDE are justi-

fied. The methods are based on completely discrete schemes in terms of both time and

space. The analysis concerning error estimation or rate of convergence of the methods

is conducted. The key of the analysis is to develop new theory for random field based

Malliavin calculus to prove the existence and uniqueness of adapted solutions to the first-

order and second-order Malliavin derivative based B-SPDEs under random environments.
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1 Introduction

In this paper, we study the adapted solution, numerical schemes, and related convergence

analysis for a unified backward stochastic partial differential equation (B-SPDE) given by

V (t, x) = H(x) +

∫ T

t
L(s, x, V )ds+

∫ T

t

(J (s, x, V )− V̄ (s, x)
)

dW (s).(1.1)

The equation in (1.1) is vector valued. The nonlinear partial differential operators L and J
depend not only on V and/or V̄ but also on their associated high-order partial derivatives,

e.g., up to the kth, mth, and nth orders for k,m, n ∈ {0, 1, 2, ...},

L(s, x, V ) ≡ L(s, x, V (s, x), ..., V (k)(s, x), V̄ (s, x), ..., V̄ (m)(s, x)),

J (s, x, V ) ≡ J (s, x, V (s, x), ..., V (n)(s, x)).

1This paper was presented in 2013 IMA Theory and Applications of Stochastic PDEs from January 13-18

of 2013 in Minneapolis, Minnesota, U.S.A. and will be presented as an invited talk in IMS-China 2013 from

June 30 to July 4 of 2013 in Chengdu, China.
2Supported by National Natural Science Foundation of China under grant No. 10971249.
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The unified B-SPDE in (1.1) covers many existing systems as special cases. For examples,

when J = 0 and L depends only on x, V, V̄ , but not on their associated partial derivatives,

it reduces to a conventional backward (ordinary) stochastic differential equation (BSDE)

(see, e.g., Pardoux and Peng [25]); Furthermore, when J = 0 and L depends on both the

derivatives of V and V̄ , it reduces to a well-known example of strongly nonlinear B-SPDE

derived in Musiela and Zariphopoulou [19] for the purpose of optimal-utility based portfolio

choice. We here note that the strongly nonlinearity concerning the operator L is in the sense

addressed in Lions and Souganidis [17], Pardoux [23]. Besides these existing examples, our

motivations to study the B-SPDE in (1.1) are also from optimal portfolio management in

finance (see, e.g., Becherer [2], Dai [10, 11], Musiela and Zariphopoulou [19]), and multi-

channel (or multi-valued) image regularization such as color images in computer vision and

network application (see, e.g., Caselles et al. [8], Tschumperlé and Deriche [31, 32, 33]).

Under certain generalized Lipschitz and linear growth conditions, we adopt a method to

prove the unified B-SPDE in (1.1) to be well-posed in a suitable functional space. Although

the approach is partially embedded in the discussion of unique existence of solution to a more

general system with jumps in the preprint of Dai [12]. We refine it here and make it consistent

with the system in (1.1) to develop theoretical foundation of random field based Malliavin cal-

culus to conduct convergence analysis and error estimation for our newly designed numerical

schemes.

Currently, there are numerous discussions concerning the numerical schemes for resolving

SDEs (see, e.g., Kloeden and Platen [16]), SPDEs (see, e.g, Barth and Lang [3], Juan et

al. [18]), and BSDEs (see, e.g., Bender and Denk [4], Bouchard and Touzi [7], Bouchard and

ELIE [6], Gobet et al. [13], Hu et al. [14], Zhang [36]). Furthermore, there are also numerical

techniques available in computing the stationary distributions of reflecting SDEs (see, e.g.,

Dai [9], Shen et al. [29]). However, to the best of our knowledge, there is no numerical

technique available in the literature for B-SPDEs. Thus, in this paper, we make such an

attempt to develop some numerical methods for the unified B-SPDE in (1.1).

More precisely, we design two algorithms to compute the adapted solution of the B-SPDE

in (1.1). Comparing with most of the existing schemes for BSDEs and considering computer

implementation, both of the algorithms are handled with completely discrete schemes in

terms of time and space. The first one (named Algorithm 3.1) is an iterative one while the

second one (named Algorithm 3.2) is not a purely iterative one since it needs to solve linear

or nonlinear equations at each time point. Hence, Algorithm 3.2 is expensive when x is in

a higher-dimensional domain. Nevertheless, for the purpose of comparison and for the case

that x is in a lower-dimensional domain, Algorithm 3.2 is useful. Owing to the similarity of

discussions, the convergence analysis for the algorithms is focused on Algorithm 3.1.

The analysis concerning error estimation or rate of convergence of Algorithm 3.1 is con-

ducted with respect to a completely discrete criterion. Comparing with existing discussions

for BSDEs, we need to develop new theory for random field based Malliavin calculus to prove

the existence and uniqueness of adapted solutions to related first-order and second-order

Malliavin derivative based B-SPDEs under random environments.
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The remainder of the paper is organized as follows. In Section 2, we state conditions

to guarantee the existence and uniqueness of adapted solution to the B-SPDE in (1.1). In

Section 3, we design our numerical schemes and state our main convergence theorem. Related

notations of random field based calculus are also introduced. In Section 4, we prove our B-

SPDE in (1.1) to be well-posed. In Section 5, we develop new theory for random field based

Malliavin calculus to provide theoretical foundation in proving our main convergence theorem.

2 The Adapted Solution to the B-SPDE: Existence and Uniqueness

2.1 Preliminary Notations

First, we use (Ω,F , {Ft}, P ) to denote a complete filtered probability space on which are

defined a standard d-dimensional Brownian motion W ≡ {W (t), t ∈ [0, T ]} with W (t) =

(W1(t), ...,Wd(t))
′ and a filtration {Ft, t ∈ [0, T ]} with Ft = σ(W (s), s ≤ t), where T ∈ [0,∞)

and the prime denotes the corresponding transpose of a matrix or a vector.

Second, we consider the p-dimensional rectangle D = [0, b1] × · · · × [0, bp] with a given

p ∈ N = {1, 2, ...}. Let Ck(D,Rq) for each k, q ∈ N denote the Banach space of all functions

f having continuous derivatives up to the order k with the uniform norm,

‖f‖Ck(D,q) = max
c∈{0,1,...,k}

max
j∈{1,...,r(c)}

sup
x∈D

∣

∣

∣f
(c)
j (x)

∣

∣

∣(2.1)

for each f ∈ Ck(D,Rq). The r(c) in (2.1) for each c ∈ {0, 1, ..., k} is the total number of the

partial derivatives of the order c

f
(c)
r,(i1...ip)

(x) =
∂cfr(x)

∂xi11 ...∂x
ip
p

(2.2)

with il ∈ {0, 1, ..., c}, l ∈ {1, ..., p}, r ∈ {1, ..., q}, and i1 + ...+ ip = c. Furthermore, let

f
(c)
(i1,...,ip)

≡ (f
(c)
1,(i1,...,ip)

, ..., f
(c)
q,(i1,...,ip)

),(2.3)

f (c)(x) ≡ (f
(c)
1 (x), ..., f

(c)
r(c)(x)),(2.4)

where each j ∈ {1, ..., r(c)} corresponds to a p-tuple (i1, ..., ip) and a r ∈ {1, ..., q}.
Third, we use C∞(D,Rq) to denote the Banach space

C∞(D,Rq) ≡
{

f ∈
∞
⋂

c=0

Cc(D,Rq), ‖f‖C∞(D,q) < ∞
}

,(2.5)

where

‖f‖2C∞(D,q) =
∞
∑

c=0

ξ(c)‖f‖2Cc(D,q)(2.6)

for some discrete function ξ(c) in terms of c ∈ {0, 1, 2, ...}, which is fast decaying in c. For

convenience, we take ξ(c) = 1
((c10)!)(η(c)!)ec with

η(c) = [max{|x1|+ ...+ |xp|, x ∈ D}]c,
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where the notation [] denotes the summation of the unity and the integer part of a real

number.

Fourth, we define some measurable spaces to support random fields considered in this

paper. Let L2
F ([0, T ], C

∞(D;Rq)) denote the set of all Rq-valued (or called C∞(D;Rq)-

valued) measurable stochastic processes Z(t, x) adapted to {Ft, t ∈ [0, T ]} for each x ∈ D,

which are in C∞(D,Rq) for each fixed t ∈ [0, T ]), such that

E

[

∫ T

0
‖Z(t)‖2C∞(D,q)dt

]

< ∞.(2.7)

Let L2
F ,p([0, T ], C

∞(D,Rq)) denote the corresponding set of predictable processes (see, e.g.,

Definition 5.2 and Definition 1.1 respectively in pages 21 and 45 of Ikeda and Watanabe [15]).

Furthermore, let L2
FT

(Ω, C∞(D;Rq)) denote the set of all Rq-valued, FT -measurable random

variables ζ(x) for each x ∈ D, where ζ(x) ∈ C∞(D,Rq) satisfies

‖ζ‖2L2
FT

(Ω,C∞(D,Rq)) ≡ E
[

‖ζ‖2C∞(D,q)

]

< ∞.(2.8)

In addition, we define

Q2
F ([0, T ]×D) ≡ L2

F ([0, T ], C
∞(D,Rq))× L2

F ,p([0, T ], C
∞(D,Rq×d)).(2.9)

2.2 The Conditions

In this subsection, we impose some conditions to guarantee the unique existence of adapted

solution to (1.1) and to be used in the convergence analysis of our designed algorithms. First,

let “a.s.” denote “almost surely”. Then, suppose that, for each s ∈ [0, T ],

V̄ (s, ·) =
(

V̄1(s, ·), ..., V̄d(s, ·)
) ∈ C∞(D,Rq×d) a.s.,(2.10)

and in (1.1), L is a q-dimensional partial differential operator satisfying the generalized

Lipschitz condition a.s.

∥

∥

∥∆L(c+l+o)(s, x, u, v)
∥

∥

∥ ≤ KD,c

(

‖u− v‖Ck+c(D,q) + ‖ū− v̄‖Cm+c(D,qd)

)

(2.11)

for any (u, ū), (v, v̄) ∈ C∞(D,Rq)×C∞(D,Rq×d), where KD,c with each c ∈ {0, 1, 2, ...} is a

nonnegative constant. Note that KD,c depends on the domain D and the differential order

c with respect to each x ∈ D and may be unbounded as c → ∞ and D → Rp. l ∈ {0, 1, 2}
denotes the lth order of partial derivative of ∆L(c)(s, x, u, v) in time variable t. o ∈ {0, 1, 2}
denotes the oth order of partial derivative of ∆L(c+l)(s, x, u, v) in terms of a component of

u or v. ‖A‖ is the largest absolute value of entries (or components) of the given matrix (or

vector) A, and

∆L(c+l+o)(s, x, u, v) ≡ L(c+l+o)(s, x, u, ū)− L(c+l+o)(s, x, v, v̄).
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Similarly, J = (J1, ...,Jd) is a q × d-dimensional partial differential operator satisfying, a.s.,

‖∆J (c+l+o)(s, x, u, v)‖ ≤ KD,c

(

‖u− v‖Cm+c(D,q)

)

.(2.12)

In addition, we assume that the generalized linear growth conditions hold,

∥

∥

∥L(c+l+o)(s, x, u, ū)
∥

∥

∥ ≤ KD,c

(

δ0c + ‖u‖Ck+c(D,q) + ‖v̄‖Cm+c(D,qd)

)

,(2.13)
∥

∥

∥J (c+l+o)(s, x, u)
∥

∥

∥ ≤ KD,c

(

δ0c + ‖u‖Cm+c(D,q)

)

,(2.14)

where δ0c = 1 if c = 0 and δ0c = 0 if c > 0.

2.3 The Adapted Solution

Theorem 2.1 Assume that H(x) ∈ L2
FT

(Ω, C∞(D;Rq)) for each x ∈ D. Then, under

conditions of (2.11)-(2.14), if L(t, x, v, ·) and J (t, x, v, ·) are {Ft}-adapted for each fixed

x ∈ D and any given (v, v̄) ∈ C∞(D,Rq)× C∞(D,Rq×d) with

L(·, x, 0, ·) ∈ L2
F ([0, T ], C∞(D,Rq)) , J (·, x, 0, ·) ∈ L2

F

(

[0, T ], C∞(D,Rq×d)
)

,(2.15)

the B-SPDE (1.1) has a unique adapted solution,

(V (·, ·), V̄ (·, ·)) ∈ Q2
F ([0, T ] ×D).(2.16)

The proof of Theorem 2.1 is provided in Section 4, which is partially embedded in the

discussion of unique existence of solution to a more general system with jumps in the preprint

of Dai [12]. Since the techniques adopted in the proof are frequently used in the rest of this

paper, we refine them here and make them consistent with the system in (1.1) for convenience.

3 Numerical Schemes and Their Convergence

3.1 The Schemes

Consider a partition π for the product of the time interval [0, T ] and the p-dimensional

rectangle D = [0, b1]× · · · × [0, bp] with a given p ∈ N = {1, 2, ...} as follows,

π : 0 = t0 < t1 < · · · < tn0 = T with n0 ∈ {0, 1, ...},(3.1)

0 = x0l < x1l < · · · < xnl

l = bl with l ∈ {1, ..., p}, nl ∈ {0, 1, ...}.

In the sequel, for all l ∈ {0, 1, ..., p} and jl ∈ {1, ..., nl}, we take

∆π
j0 = tj0 − tj0−1,(3.2)

∆π
l = xjll − xjl−1

l =
bl
nl
,(3.3)

∆πWj0 = W (tj0)−W (tj0−1),(3.4)
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and let

|π| ≡ max
j0∈{1,...,n0}, l∈{1,...,p}

{

∆π
j0 , ∆

π
l

}

,(3.5)

Dj1...jp ≡ [xj1−1
1 , xj11 )× · · · × [xjp−1

p , xjpp ),(3.6)

X ≡
{

x : x = (xj11 , ..., xjpp ), jl ∈ {0, 1, ..., nl}, l ∈ {1, ..., p}
}

.(3.7)

To suitably describe the approximations of partial derivatives appeared in (1.1) and (2.2),

we assume that the orders k and m are less than 2max{n1, ..., np}. Then we can use the

forward and the backward difference techniques to approximate the partial derivatives in

(1.1) and (2.2) as follows. For each f ∈ {V, V̄ }, x ∈ X , l ∈ {1, ..., p}, and each integer c

satisfying 1 ≤ c ≤ k or m or n, define

f
(c)
i1...(il+1)...ip,π

(t, x) ≡















f
(c−1)
i1...ip,π

(t,x+∆π
l
el)−f

(c−1)
i1...ip,π

(t,x)

∆π
l

if jl < nl,

f
(c−1)
i1...ip,π

(t,x−∆π
l
el)−f

(c−1)
i1...ip,π

(t,x)

∆π
l

if jl = nl,

(3.8)

where el is the unit vector whose lth component is the unity and others are zero, f (0) = f ,

and (i1, ..., ip) ∈ Ic−1 with

Ic ≡ {(i1, ..., ip) : i1, ..., ip are nonnegative integers satisfying i1 + ...+ ip = c}.(3.9)

Furthermore, we define the following vector for all given (i1, ..., ip) ∈ Ic

f (c)
π (t, x) = (f

(c)
i1...ip,π

(t, x))(3.10)

according to an increasing order indexed by ipc
p+ ip−1c

p−1+ ...+ i2c+ i1. Next, to be simple

for notations, we define

L(t, x, Vπ(t, x)) ≡ L(t, x, Vπ(t, x), ..., V
(k)
π (t, x), V̄π(t, x), ..., V̄

(m)
π (t, x)),(3.11)

J (t, x, Vπ(t, x)) ≡ J (t, x, Vπ(t, x), ..., V
(n)
π (t, x))(3.12)

for each x ∈ X . Thus, based on spacial discretization, we can design the following direct

discrete approximations of a solution to the B-SPDE displayed in (1.1).

Algorithm 3.1 This algorithm is an iterative one in terms of {V (c)(tj0 , x), V̄
(c)(tj0 , x) for

all x ∈ X} with j0 decreasing from n0 to 1 in a backward manner and c = 0, 1, ...,M with

M = max{m,n, k},

V
(c)
i1...ip,π

(tn0 , x) = H
(c)
i1...ip,π

(x), V̄
(c)
i1...ip,π

(tn0 , x) = 0,(3.13)

V
(c)
i1...ip,π

(tj0−1, x) = E
[

V
(c)
i1...ip,π

(tj0 , x) + L(c)
i1...ip,π

(tj0 , x, Vπ(tj0 , x))∆
π
j0

∣

∣

∣Ftj0−1

]

,(3.14)

V̄
(c)
i1...ip,π

(tj0−1, x) =
1

∆π
j0

E
[

V
(c)
i1...ip,π

(tj0 , x)∆
πWj0

∣

∣

∣Ftj0−1

]

(3.15)

+E
[

L(c)
i1...ip,π

(tj0 , x
π, Vπ(tj0 , x))∆

πWj0

∣

∣

∣Ftj0−1

]

+J (c)
i1...ip,π

(tj0−1, x, Vπ(tj0−1, x)).
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Algorithm 3.2 For all x ∈ X and c = 0, 1, ...,M , we have the following algorithm with

respect to j0 decreasing from n0 to 1,

V
(c)
i1...ip,π

(tn0 , x) = H
(c)
i1...ip,π

(x)(3.16)

V
(c)
i1...ip,π

(tj0−1, x) = E
[

V
(c)
i1...ip,π

(tj0 , x)
∣

∣

∣Ftj0−1

]

(3.17)

+L(c)
i1...ip,π

(tj0−1, x, Vπ(tj0−1, x))∆
π
j0 ,

V̄
(c)
i1...ip,π

(tj0−1, x) =
1

∆π
j0

E
[

V
(c)
i1...ip,π

(tj0 , x)∆
πWj0

∣

∣

∣Ftj0−1

]

(3.18)

+J (c)
i1...ip,π

(tj0−1, x, Vπ(tj0−1, x)).

In nature, Algorithm 3.2 is a sort of generalization of the scheme considered in Bouchard and

Touzi [7] from BSDEs to the B-SPDEs. Comparing with Algorithm 3.1, it is not a purely

iterative one since it needs to solve linear or nonlinear equations at each time tj0−1 to obtain

V
(c)
i1...ip,π

(tj0−1, x) and V̄
(c)
i1...ip,π

(tj0−1, x), which is expensive when x is in a higher-dimensional

domain (e.g., p ≥ 3). Furthermore, since the convergence analysis is similar, we will focus

our discussion on Algorithm 3.1 in the rest of this paper.

3.2 Additional Notations for Random Field Based Malliavin Calculus

Let H = L2([0, T ], Rd) denote the separable Hilbert space of all square integrable real-valued

d-dimensional functions over the time interval [0, T ] with inner product

< ·, · >H=

∫ T

0
〈h1(t), h2(t)〉dt for any h1, h2 ∈ H,

and

〈h1(t), h2(t)〉 =
d
∑

i=1

h1i (t)h
2
i (t).(3.19)

For each h ∈ H, we define W (h) =
∫ T
0 〈h(t), dW (t)〉. Furthermore, let S denote the set of all

the random variables F (x, ω) of the following form with x ∈ D and ω ∈ Ω,

F (x) = φ(W (h1), ...,W (hg), x) with φ ∈ C∞
b (Rg+p, Rq), h1, ..., hg ∈ H,(3.20)

for some nonnegative integer g, where the lower index b appeared in C∞
b means bounded.

For each F ∈ S, we define

‖F‖∞,2
α,2 =

∞
∑

v=0

ξ(v) ‖F‖v,2α,2 ,(3.21)

where, the norm ‖ · ‖vα,2 with α ∈ {1, 2} and v ∈ {0, 1, 2, ...} is defined in the following way.

7



First, we define the first-order Malliavin derivative of the cth order partial derivative

F
(c)
r,i1...ip

(x) in terms of x ∈ D for each r ∈ {1, ..., q}, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈ Ic to be

the H-valued random variable,

Dθ1F
(c)
r,i1...ip

(x) =
g
∑

l=1

∂φ
(c)
r,i1...ip

∂yl
(W (h1), ...,W (hg), x)hl(θ1), 0 ≤ θ1 ≤ T.(3.22)

Second, for each j ∈ {1, ..., d}, we define the associated second-order Malliavin derivative

Dθ2Dj
θ1
F

(c)
r,i1...ip

(x) =
g
∑

l=1

∂Dj
θ1
F

(c)
r,i1...ip

(x)

∂yl
hl(θ2), 0 ≤ θ2 ≤ T.(3.23)

Third, we define

‖F‖v,21,2 = E

[

Λv

∥

∥

∥F
(c)
r,i1...ip

∥

∥

∥

2

Cv(D,1)
+

∫ T

0
Λv

∥

∥

∥Dθ1F
(c)
r,i1...ip

∥

∥

∥

2

Cv(D,d)
dθ1

]

,(3.24)

‖F‖v,22,2 = ‖F‖v,21,2 + E

[

∫ T

0

∫ T

0
Λv

∥

∥

∥Dθ2Dθ1F
(c)
r,i1...ip

∥

∥

∥

2

Cv(D,d×d)
dθ1dθ2

]

,(3.25)

where the notation Λv is defined by

Λv = max
c∈{0,1,...,v}

max
r∈{1,...,q},(i1,...,ip)∈Ic

.(3.26)

Note that if F
(c)
r,i1...ip

(x) for each x ∈ D is Ft-measurable, then DθF
(c)
r,i1...ip

(x) = 0 for θ ∈ (t, T ]

and we use Dj
θF

(c)
r,i1...ip

(x) for each j ∈ {1, .., d} to denote the jth component of DθF
(c)
r,i1...ip

(x).

Next, let L2(Ω, C∞(D,Rq)) be the space corresponding to (2.8) with no measurable prop-

erty imposed, and let L2
α,2(Ω, (C

∞(D,H))q) be the space of Hq(q product space H× ...×H)-

valued processes, which is endowed with the norm (3.21). Then, we can use Dα,2
∞ to denote

the domain of the following unbounded operator,

D : L2(Ω, C∞(D,Rq)) → L2
α,2(Ω, (C

∞(D,H))q).

Owing to Lemma 5.1 proved in Section 5, this domain is the closure of the class of smooth

random variables S with the norm (3.21). In the sequel, we use DθF (x, ω) with each F ∈ D1,2
∞

and θ ∈ [0, T ] to denote the following infinite-dimensional vector
{

(Dj
θF

(c)
r,i1...ip

(t, x) : r ∈ {1, ..., q}, j ∈ {1, ..., d}, c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic
}

.(3.27)

Similarly, we use Dθ2Dθ1F (x, ω) with each F ∈ D2,2
∞ and θ1, θ2 ∈ [0, T ] to denote the following

infinite-dimensional vector
{

(Dj2
θ2
Dj1

θ1
F

(c)
r,i1...ip

(t, x) : r ∈ {1, ..., q}, j1 , j2 ∈ {1, ..., d}, c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic
}

.(3.28)

Finally, based on the above notations, we can impose the following terminal conditions

for the q-dimensional B-SPDEs in (1.1),

H(x, ω) ∈ D2,2
∞

⋂

L2
FT

(Ω, C∞(D,Rq)),(3.29)

Dθ1H(x, ω) ∈ L2
FT

(Ω;C∞(D,Rq×d)), θ1 ∈ [0, T ],(3.30)

Dθ2Dθ1H(x, ω) ∈ L2
FT

(Ω, C∞(D,Rq×d×d)), θ2 ∈ [0, T ].(3.31)
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3.3 Convergence Theorem for Algorithm 3.1

Theorem 3.1 Consider Algorithm 3.1 under conditions required by Theorem 2.1 and with

additional terminal conditions (3.29)-(3.31). Then, there exists some nonnegative constant

C depending only on the terminal time T , the region D, and the constant κ such that

M
∑

c=0

max
x∈X

(

sup
t∈[0,T ]

E

[

∥

∥

∥∆V (c)(t, x)
∥

∥

∥

2
]

+ sup
t∈[0,T ]

E

[

∥

∥

∥∆V̄ (c)(t, x)
∥

∥

∥

2
]

)

≤ C|π|,(3.32)

for all sufficiently small |π|, where

∆V (c)(t, x) = V (c)(t, x)− V (c)
π (t, x),

∆V̄ (c)(t, x) = V̄ (c)(t, x)− V̄ (c)
π (t, x),

V (c)
π (t, x) = V (c)

π (tj0−1, x), t ∈ [tj0−1, tj0), j0 ∈ {n0, n0 − 1, ..., 1},
V̄ (c)
π (t, x) = V̄ (c)

π (tj0−1, x), t ∈ [tj0−1, tj0).

for each c ∈ {0, 1, ...,M}.

The proof of Theorem 3.1 will be provided in Section 5.

4 Proof of Theorem 2.1

We first prove three lemmas. Then, by combining these lemmas, we can provide a proof for

the theorem.

4.1 Three Lemmas and Their Proofs

Lemma 4.1 Under the conditions of Theorem 2.1, consider a tuplet for each fixed x ∈ D,

(U(·, x), Ū (·, x)) ∈ Q2
F ([0, T ]×D).(4.1)

Then, there exists another tuplet (V (·, x), V̄ (·, x)) such that

V (t, x) = H(x) +

∫ T

t
L(s, x, U, ·)ds +

∫ T

t

(J (s, x, U, ·) − V̄ (s, x)
)

dW (s),(4.2)

where V is a {Ft}-adapted càdlàg process, V̄ is the corresponding predictable process. Fur-

thermore, for each x ∈ D,

E

[

∫ T

0
‖V (t, x)‖2dt

]

< ∞,(4.3)

E

[

∫ T

0
‖V̄ (t, x)‖2dt

]

< ∞.(4.4)
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Proof. For each fixed x ∈ D and a tuplet (U(·, x), Ū(·, x)) as stated in (4.1), it follows

from conditions (2.11)-(2.15) that

L(·, x, U, ·) ∈ L2
F ([0, T ], C

∞(D,Rq)), J (·, x, U, ·) ∈ L2
F ([0, T ], C

∞(D,Rq×d)).(4.5)

Now, consider L and J in (4.5) as two new starting L(·, x, 0, ·) and J (·, x, 0, ·). Then, by

the Martingale representation theorem (see, e.g., Theorem 43 in page 186 of Protter [28]),

we know that there is a unique predictable process V̄ (·, x) which is square-integrable for each

x ∈ D in the sense of (4.4) such that

V̂ (t, x) ≡ E

[

H(x) +

∫ T

0
L(s, x, U, ·)ds +

∫ T

0
J (s, x, U, ·)dW (s)

∣

∣

∣

∣

∣

Ft

]

(4.6)

= V̂ (0, x) +

∫ t

0
V̄ (s, x)dW (s).

Hence, we have,

V̂ (0, x) = V̂ (T, x)−
∫ T

0
V̄ (s, x)dW (s)(4.7)

= H(x) +

∫ T

0
L(s, x, U, ·)ds +

∫ T

0

(J (s, x, U, ·) − V̄ (s, x)
)

dW (s).

Furthermore, owing to the Corollary in page 8 of Protter [28], V̂ (·, x) can be taken as a càdlàg

process. Next, define a process V given by

V (t, x) = E

[

H(x) +

∫ T

t
L(s, x, U, ·)ds +

∫ T

t
J (s, x, U, ·)dW (s)

∣

∣

∣

∣

∣

Ft

]

.(4.8)

Then, it follows from (2.12)-(2.14) and simple calculation that V (·, x) is square-integrable in

the sense of (4.3). Furthermore, by (4.6)-(4.8), we know that

V (t, x) = V̂ (t, x)−
∫ t

0
L(s, x, U, ·)ds −

∫ t

0
J (s, x, U, ·)dW (s)(4.9)

which indicates that V (·, x) is a càdlàg process. Now, for a given tuplet (U(·, x), Ū(·, x)), it
follows from (4.6)-(4.7) and (4.9) that the corresponding tuplet (V (·, x), V̄ (·, x)) satisfies the
equation (4.2) as stated in the lemma. Thus, we know that

V (t, x) ≡ V (0, x) −
∫ t

0
L(s, x, U, ·)ds −

∫ t

0

(J (s, x, U, ·) − V̄ (s, x)
)

dW (s)(4.10)

Hence, we complete the proof of Lemma 4.1. ✷

Lemma 4.2 Under the conditions of Theorem 2.1, consider a tuplet as in (4.1) for each

fixed x ∈ D and define V (t, x) and V̄ (t, x) by (4.2). Then, (V (c)(·, x), V̄ (c)(·, x)) for each

c ∈ {0, 1, ..., } exists a.s. and satisfies

V
(c)
(i1...ip)

(t, x) = H
(c)
(i1...ip)

(x) +

∫ T

t
L(c)
(i1...ip)

(s, x, U, ·)ds(4.11)

+

∫ T

t

(

J (c)
(i1...ip)

(s, x, U, ·) − V̄
(c)
(i1...ip)

(s, x)
)

dW (s),
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where i1 + ... + ip = c and il ∈ {0, 1, ..., c} with l ∈ {1, ..., p}. Furthermore, V
(c)
(i1...ip)

for each

c ∈ {0, 1, ...} is a {Ft}-adapted càdlàg process, and V̄
(c)
(i1...ip)

is the corresponding predictable

processes. Both of them are square-integrable in the senses of (4.3)-(4.4).

Proof. First, we prove the claim in the lemma to be true for c = 1. To do so, for each

given t ∈ [0, T ], x ∈ D, and (U(t, x), Ū (t, x)) as in the lemma, let

(V
(1)
(l) (t, x), V̄

(1)
(l) (t, x))(4.12)

be defined by using (4.2), where L and J are replaced by their first-order partial derivatives

L(1)
(l) and J (1)

(l) in terms of xl with l ∈ {1, ..., p}. Then, we can prove that the tuplet defined in

(4.12) for each l is indeed the required first-order partial derivative of (V, V̄ ) that is defined

by using (4.2) for the given (U, Ū ).

In fact, for each f ∈ {U, Ū , V, V̄ }, sufficiently small positive constant δ, and l ∈ {1, ..., p},
define

f(l),δ(t, x) ≡ f(t, x+ δel),(4.13)

where el is the unit vector whose lth component is one and others are zero. Furthermore, let

∆f
(1)
(l),δ(t, x) =

f(l),δ(t, x)− f(t, x)

δ
− f

(1)
(l) (t, x)(4.14)

for each f ∈ {U, Ū , V, V̄ }. In addition, let

∆I(1)
(l),δ(s, x, U) =

1

δ
(I(s, x+ δel, U(s, x+ δel), ·) − I(s, x, U(s, x), ·))(4.15)

−I(1)
(l) (s, x, U(s, x), ·)

for each I ∈ {L,J }, and let Tr(A) denote the trace of the matrix A′A for a given matrix

A. Then, by applying (4.10) and the Ito’s formula (see, e.g., Theorem 33 in page 81 of

Protter [28]) to the function

ζ(∆V
(1)
(l),δ(t, x)) ≡ Tr

(

∆V
(1)
(l),δ(t, x)

)

e2γt

for some γ > 0, we see that

ζ(∆V
(1)
(l),δ(t, x)) +

∫ T

t
Tr
(

∆J (1)
(l),δ(s, x, U)−∆V̄

(1)
(l),δ(s, x)

)

e2γsds(4.16)

= 2

∫ T

t

(

−γTr
(

∆V
(1)
(l),δ(s, x)

)

+
(

∆V
(1)
(l),δ(s, x)

)′ (

∆L(1)
(l),δ(s, x, U)

)

)

e2γsds −Mδ(t)

≤
(

−2γ +
3K2

D,1

γ̂

)

∫ T

t
Tr
(

∆V
(1)
(l),δ(s, x)

)

e2γsds+ γ̂

∫ T

t

∥

∥

∥∆L(1)
(l),δ(s, x, U)

∥

∥

∥

2
e2γsds−Mδ(t)

= γ̂

∫ T

t

∥

∥

∥∆L(1)
(l),δ(s, x, U)

∥

∥

∥

2
e2γsds −Mδ(t)
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if, in the last equality, we take

γ̂ =
3K2

D,1

2γ
> 0,(4.17)

where KD,1 is defined in (2.11)-(2.14) and Mδ(t) is a martingale given by

2
d
∑

j=1

∫ T

t

(

∆V
(1)
(l),δ(s, x)

)′ (

∆(Jj)
(1)
(l),δ(s, x, U)−∆(V̄j)

(1)
(l),δ(s, x)

)

e2γsdWj(s).

Next, by Lemma 1.3 in Peskir and Shiryaev [27], there is a sequence of {δn, n = 1, 2, ...} ⊂
[0, σ] for each t ∈ [0, T ] and σ > 0 such that

E

[

ess sup
0≤δ≤σ

ζ(∆V
(1)
(l),δ(t, x))

]

(4.18)

= E

[

ess sup
{δn:0≤δn≤σ,n=1,2,...}

ζ(∆V
(1)
(l),δn

(t, x))

]

= lim
n→∞

E
[

ζ(∆V
(1)
(l),δn

(t, x))
]

≤ γ̂ lim
n→∞

E

[

∫ T

t

∥

∥

∥∆L(1)
(l),δn

(s, x, U)
∥

∥

∥

2
e2γsds

]

− lim
n→∞

E [Mδn(t)]

≤ γ̂E

[

∫ T

t
ess sup

0≤δ≤σ

∥

∥

∥∆L(1)
(l),δ(s, x, U)

∥

∥

∥

2
e2γsds

]

,

where “esssup” denotes the essential supremum. Furthermore, the first inequality in (4.18)

is owing to (4.16). Thus, by the Lebesgue’s dominated convergence theorem, we have

lim
σ→0

E

[

ess sup
0≤δ≤σ

ζ(∆V
(1)
(l),δ(t, x))

]

(4.19)

≤ γ̂E

[

∫ T

t
lim
σ→0

ess sup
0≤δ≤σ

∥

∥

∥∆L(1)
(l),δ(s, x, U)

∥

∥

∥

2
e2γsds

]

,

where we have used the following fact owing to the mean-value theorem and the conditions

stated in (2.12),

∥

∥

∥∆L(1)
(l),δ(t, x, U)

∥

∥

∥ ≤ 2KD,1

(

‖U‖Ck+1(D,q) + ‖Ū‖Cm+1(D,qd)

)

.

Thus, it follows from (4.19) and the Fatou’s lemma that, for any sequence σn satisfying

σn → 0 along n ∈ N , there is a subsequence N ′ ⊂ N such that

ess sup
0≤δ≤σn

ζ(∆V
(1)
(l),δ(t, x)) → 0 along n ∈ N ′ a.s..(4.20)

Therefore, we know that the first-order derivative of V with respect to xl for each l ∈ {1, ..., p}
exists and equals V

(1)
(l) (t, x) a.s. for each t ∈ [0, T ] and x ∈ D. Furthermore, it is {Ft}-adapted.
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Now, by applying the similar proof as used in (4.18), we have

lim
σ→0

E

[

∫ T

t
ess sup

0≤δ≤σ
Tr
(

∆J (1)
(l),δ(s, x, U)−∆V̄

(1)
(l),δ(s, x)

)

e2γsds

]

(4.21)

≤ γ̂E

[

∫ T

t
lim
σ→0

ess sup
0≤δ≤σ

∥

∥

∥∆L(1)
(l),δ(s, x, U)

∥

∥

∥

2
e2γsds

]

.

Hence, it follows from (4.20) and (4.21) that

lim
δ→0

∆V̄
(1)
(l),δ(t, x) = lim

δ→0
∆J (1)

(l),δ(t, x, U) = 0. a.s.

Thus, we know that the first-order derivative of V̄ in terms of xl for each l ∈ {1, ..., p} exists

and equals V̄
(1)
(l) (t, x) a.s. for every t ∈ [0, T ] and x ∈ D. Furthermore, it is a {Ft}-predictable

process.

Second, supposing that (V (c−1)(t, x), V̄ (c−1)(t, x)) associated with a given (U(t, x), Ū(t, x))

∈ Q2
F ([0, T ]) exists for any given c ∈ {1, 2, ...}. Then, we can prove that

(

V (c)(t, x), V̄ (c)(t, x)
)

(4.22)

exists for the given c. In doing so, for any fixed nonnegative integer numbers i1, ..., ip satisfying

i1 + ... + ip = c − 1 for the given c ∈ {1, 2, ...}, any f ∈ {V, V̄ }, any l ∈ {1, ..., p}, and any

small enough δ > 0, we define

f
(c−1)
(i1...(il+1)...ip),δ

(t, x) ≡ f
(c−1)
(i1...ip)

(t, x+ δel),(4.23)

which corresponds to I(c−1)
(i1...ip)

(s, x+ δel, U(s, x+ δel), ·) with I ∈ {L,J } via (4.2), where the

differential operators L and J are replaced by their (c−1)th-order partial derivatives L(c−1)
(i1...ip)

and J (c−1)
(i1...ip)

. Similarly, let

(V
(c)
(i1...(il+1)...ip)

(t, x), V̄
(c)
(i1...(il+1)...ip)

(t, x))

be defined by using (4.2), where L and J are replaced by their cth-order partial derivatives

L(c)
i1...(il+1)...ip

and J (c)
i1...(il+1)...ip

corresponding to a given t, x, U(t, x), Ū(t, x). Furthermore,

set

∆f
(c)
(i1...(il+1)...ip),δ

(t, x) =
f
(c−1)
(i1...(il+1)...ip),δ

(t, x)− f
(c−1)
(i1...ip)

(t, x)

δ
− f

(c)
(i1...(il+1)...ip)

(t, x)(4.24)

for each f ∈ {U, Ū , V, V̄ }, and let

∆I(c)
(i1...(il+1)...ip),δ

(t, x, U)(4.25)

=
1

δ

(

I(c−1)
(i1...ip)

(t, x+ δel, U(t, x + δel), ·)− I(c−1)
(i1...ip)

(s, x, U(s, x), ·)
)

−I(c)
(i1...(il+1)...ip)

(s, x, U(s, x), ·)
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for I ∈ {L,J }. Then, by the Itô’s formula and repeating the procedure as used in the second

step, we know that

(V
(c)
(i1...(il+1)...ip)

(t, x), V̄
(c)
(i1...(il+1)...ip)

(t, x))

exist for the given c ∈ {1, 2, ...} and all l ∈ {1, ..., p}. Thus, we know that the claim in (4.22)

is correct.

Third, by the induction method in terms of c ∈ {1, 2, ...}, we know that the claims stated

in the lemma are right. Therefore, we complete the proof of Lemma 4.2. ✷

To state our next lemma, we let D2
F ([0, T ], C

∞(D,Rq)) be the set of Rq-valued {Ft}-
adapted and square integrable càdlàg processes as in (2.7). Furthermore, for any given

number sequence γ = {γc, c = 0, 1, 2, ...} with γc ∈ R, define MD
γ [0, T ] to be the following

Banach space (see, e.g., the similar explanation as used in Yong and Zhou [34], and Situ [30])

MD
γ [0, T ] = D2

F ([0, T ], C
∞(D,Rq))× L2

F ,p([0, T ], C
∞(D,Rq×d))(4.26)

endowed with the norm: for any given (U, Ū) ∈ MD
γ [0, T ],

∥

∥(U, Ū )
∥

∥

2
MD

γ
≡

∞
∑

c=0

ξ(c)
∥

∥(U, Ū)
∥

∥

2
MD

γc,c
,(4.27)

where, without loss of generality, we assume that m = k in (1.1) and

∥

∥(U, Ū )
∥

∥

2
MD

γc,c
= E

[

sup
0≤t≤T

‖U(t)‖2Cc(D,q) e
2γct

]

+ E

[

∫ T

0

∥

∥Ū(t)
∥

∥

2
Cc(D,qd) e

2γctdt

]

.(4.28)

Then, we have the following lemma.

Lemma 4.3 Under the conditions of Theorem 2.1, all the claims in the theorem are true.

Proof. First, by using (4.2), we can define the following map,

Ξ : (U(·, x), Ū (·, x)) → (V (·, x), V̄ (·, x)).

Then, based on the norm defined in (4.27), we can show that Ξ forms a contraction mapping

in MD
γ [0, T ]. In fact, for i ∈ {1, 2, ...}, consider the following sequence of processes,

(U i(·, x), Ū i(·, x)) ∈ MD
γ [0, T ],

(U i+1(·, x), Ū i+1(·, x)) = Ξ(U i(·, x), Ū i(·, x)).

Furthermore, define

∆f i = f i+1 − f i with f ∈ {U, Ū} ,

and take

ζ(∆U i(t, x)) = Tr
(

∆U i(t, x)
)

e2γ0t.(4.29)
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Then, by using (2.11) and the similar argument as used in proving (4.16), we know that, for

a γ0 > 0 and each i ∈ {2, 3, ...},

ζ(∆U i(t, x)) +

∫ T

t
Tr
(

∆J (s, x, U i, U i−1)−∆Ū i(s, x)
)

e2γ0sds(4.30)

≤ γ̂0

∫ T

t

∥

∥

∥∆L(s, x, U i, U i−1)
∥

∥

∥

2
e2γ0sds−M i(t)

≤ γ̂0Ka,0N
i−1(t)−M i(t),

where Ka,0 is some nonnegative constant depending only on KD,0. For the last inequality in

(4.30), we have taken

γ̂0 =
3K2

D,0

2γ0
> 0.(4.31)

Furthermore, N i−1(t) appeared in (4.30) is given by

N i−1(t) =

∫ T

t

(

∥

∥

∥∆U i−1(s)
∥

∥

∥

2

Ck(D,q)
+
∥

∥

∥∆Ū i−1(s)
∥

∥

∥

2

Ck(D,qd)

)

e2γ0sds(4.32)

and M i(t) is a martingale of the following form,

M i(t) = −2
d
∑

j=1

∫ T

t

(

(∆U i)(s, x)
)′ (

∆Jj(s, x, U
i, U i−1)− (∆Ū i)j(s, x)

)

e2γ0sdWj(s).(4.33)

Then, by applying (4.30)-(4.33) and the martingale properties related to stochastic integral,

we have

E

[

∥

∥

∥∆U i(t, x)
∥

∥

∥

2
e2γ0t +

∫ T

t
Tr
(

∆J (s, x, U i, U i−1)−∆Ū i(s, x)
)

e2γ0sds(4.34)

≤ γ̂0(T + 1)Ka,0

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ0,k

.

Thus, by using (4.33) and the Burkholder-Davis-Gundy’s inequality (see, e.g., Theorem 48

in page 193 of Protter [28]), we have,

E

[

sup
0≤t≤T

∣

∣

∣M i(t)
∣

∣

∣

]

(4.35)

≤ 4
d
∑

j=1

E

[

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

(

∆U i(s, x)
)′ (

∆Jj(s, x, U
i, U i−1)− (∆Ū i)j(s, x)

)

e2γ0sdWj(s)

∣

∣

∣

∣

]

≤ Kb,0

d
∑

j=1

E





(

∫ T

0

∥

∥

∥∆U i(s, x)
∥

∥

∥

2 ∥
∥

∥(∆J i)j(s, x, U
i, U i−1)− (∆Ū i)j(s, x)

∥

∥

∥

2
e4γ0sds

) 1
2





≤ Kb,0E





(

sup
0≤t≤T

‖∆U i(t, x)‖2e2γ0t
) 1

2
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d
∑

j=1

(

∫ T

0

∥

∥

∥∆Jj(s, x, U
i, U i−1)− (∆Ū i)j(s, x)

∥

∥

∥

2
e2γ0sds

) 1
2





≤ 1

2
E

[

sup
0≤t≤T

‖∆U i(t, x)‖2e2γ0t
]

+dK2
b,0E

[(

∫ T

0
Tr
(

∆J (s, x, U i, U i−1)− (∆Ū i)(s, x)
)

e2γ0sds

)]

≤ 1

2
E

[

sup
0≤t≤T

‖∆U i(t, x)‖2C0(q)e
2γ0t

]

+ γ̂0(T + 1)dKa,0K
2
b,0

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ0,k

,

where Kb,0 is some nonnegative constant depending only on KD,0 and T . The last inequality

of (4.35) is owing to (4.34). Therefore, by using (4.30)-(4.35), we know that

E

[

sup
0≤t≤T

∥

∥

∥∆U i(t)
∥

∥

∥

2

C0(q)
e2γ0t

]

(4.36)

≤ 2
(

1 + dK2
b,0

)

Ka,0γ̂0(T + 1)
∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ0,k

.

Furthermore, by using (4.30) and (2.12), we know that, for each i ∈ {3, 4, ...},

E

[

∫ T

t
Tr
(

∆Ū i(s, x)
)

e2γ0sds

]

(4.37)

≤ 2E

[

∫ T

t
Tr
(

∆J (s, x, U i, U i−1)−∆Ū i(s, x)
)

e2γ0sds

]

+2E

[

∫ T

t
Tr
(

∆J (s, x, U i, U i−1)
)

e2γ0sds

]

≤ 2γ̂0KC,0

(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ0,k

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

2

MD
γ0,k

)

,

where KC,0 is some nonnegative constant depending only on KD,0 and T . Hence, by (4.30),

(4.36)-(4.37), and the fact that all functions and norms used in this paper are continuous in

terms of x, we have that

∥

∥

∥(∆U i,∆Ū i)
∥

∥

∥

2

MD
γ0,0

(4.38)

≤ γ̂0Kd,0

(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ0,k

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

2

MD
γ0,k

)

,

where Kd,0 is some nonnegative constant depending only on KD,0 and T .

Next, by using Lemma 4.2 and the similar construction as used in (4.29), we can define

ζ(∆U c,i(t, x)) ≡ Tr
(

∆U c,i(t, x)
)

e2γct(4.39)
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for each c ∈ {1, 2, ...}, where

∆U c,i(t, x)) = (∆U (0),i(t, x)),∆U (1),i(t, x)), ...,∆U (c),i(t, x))′.

Thus, by using the Itô’s formula and the similar discussion for (4.38), we have that

∥

∥

∥(∆U i,∆Ū i)
∥

∥

∥

2

MD
γc,c

(4.40)

≤ γ̂cKd,c

(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γc,k+c

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

2

MD
γc,k+c

)

≤ δ

((c + 1)10(c+ 2)10...(c+ k)10)(η(c + 1)η(c + 2)...η(c + k))
(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γk+c,k+c

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

2

MD
γk+c,k+c

)

,

where, for the last inequality of (4.40), we have taken the number sequence γ such that

γ0 < γ1 < ... and

γ̂cKd,c((c+ 1)10(c+ 2)10...(c+ k)10)(η(c + 1)η(c + 2)...η(c + k)) ≤ δ

for some δ > 0 such that 2
√
ekδ is sufficiently small. Hence, we know that

∥

∥

∥(∆U i,∆Ū i)
∥

∥

∥

2

MD
γ

≤ ekδ

(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

2

MD
γ

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

2

MD
γ

)

.(4.41)

Owing to (a2 + b2)1/2 ≤ a+ b for a, b ≥ 0, we can conclude that

∥

∥

∥(∆U i,∆Ū i)
∥

∥

∥

MD
γ

≤
√
ekδ

(

∥

∥

∥(∆U i−1,∆Ū i−1)
∥

∥

∥

MD
γ

+
∥

∥

∥(∆U i−2,∆Ū i−2)
∥

∥

∥

MD
γ

)

.(4.42)

Thus, it follows from (4.42) that

∞
∑

i=3

∥

∥

∥(∆U i,∆Ū i)
∥

∥

∥

MD
γ

≤
√
ekδ

1− 2
√
ekδ

(

2
∥

∥

∥(∆U2,∆Ū2)
∥

∥

∥

MD
γ

+
∥

∥

∥(∆U1,∆Ū1)
∥

∥

∥

MD
γ

)

(4.43)

< ∞.

Therefore, by using (4.43), we see that (U i, Ū i) with i ∈ {1, 2, ...} forms a Cauchy sequence

in MD
γ [0, T ]. Hence, there is some (U, Ū ) such that

(U i, Ū i) → (U, Ū ) as i → ∞ in MD
γ [0, T ].(4.44)

Finally, by using (4.44) and the similar procedure as used for Theorem 5.2.1 in pages 68-71

of ∅ksendal [22], the proof of Lemma 4.3 is completed. ✷

4.2 Proof of Theorem 2.1

By combining Lemma 4.1-Lemma 4.3, we can reach a proof for Theorem 2.1. ✷
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5 Proof of Theorem 3.1

To prove the theorem, we first develop new fundamental theory for random field based Malli-

avin Calculus in subsections 5.1-5.5. Then, based on this newly developed theory, we provide

a proof for Theorem 3.1 in subsections 5.6-5.7.

5.1 Basic Properties of Random Field Based Malliavin Calculus

Lemma 5.1 The unbounded operator defined in (3.22) is closable from L2(Ω, C∞(D,Rq))

to L2
α,2(Ω, (C

∞(D,H))q) with α ∈ {1, 2}.

Proof. First, we consider the case that α = 1. Let {F i : i ∈ {1, 2, ...}} be a sequence of

smooth random variables, which converges to zero along i ∈ {1, 2, ...} in L2(Ω, C∞(D,Rq)).

Thus, we can conclude that F
(c),i
r,i1...ip

(x) → 0 along i ∈ {1, 2, ...} in the usual mean-square

sense for each x ∈ D, r ∈ {1, ..., q}, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈ Ic. In the meanwhile, we

suppose that the corresponding sequence related to Malliavin derivatives converges to some

η in L2
1,2(Ω, (C

∞(D,H))q), which implies that DF
(c),i
r,i1...ip

(x) → η
(c)
r,i1...ip

(x) along i ∈ {1, 2, ...}
in the usual mean-square sense for each x ∈ D, r ∈ {1, ..., q}, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈
Ic. Then, it follows from the proof of Proposition 1.2.1 in page 26 of Nualart [20] that

η
(c)
r,i1...ip

(x) = 0 for each x ∈ D, r ∈ {1, ..., q}, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈ Ic. Thus, we

know that η = 0. Hence, by the definition of the closable operator (see, e.g., page 77 of

Yosida [35]), we conclude that the claim in the lemma is true if α = 1.

Second, we consider the case that α = 2. By combining the above discussion and the

proof used for Exercise 1.2.3 in page 34 of Nualart [20], we know that the claim for α = 2 is

also true. ✷

Lemma 5.2 Consider each F ∈ D1,2
∞ . Then, for each c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic, and

x ∈ D, we have

E
[

DtF
(c)
i1...ip

(x)
∣

∣

∣Ft

]

∈
(

L2([0, T ] × Ω, C∞(D,Rq))
)d

,(5.1)

and furthermore,

F
(c)
i1...ip

(x) = E
[

F
(c)
i1...ip

(x)
]

+

∫ T

0
E
[

DtF
(c)
i1...ip

(x)
∣

∣

∣Ft

]

dW (t).(5.2)

Proof. For each F ∈ D1,2
∞ and r ∈ {1, ..., q}, we have the following calculation,

E

[

∫ T

0

∥

∥

∥E
[

DtF
(c)
r,i1...ip

(x)
∣

∣

∣Ft

]∥

∥

∥

2

C∞(D,d)
dt

]

(5.3)

≤
∫ T

0
E

[

∥

∥

∥DtF
(c)
r,i1...ip

(x)
∥

∥

∥

2

C∞(D,d)

]

dt

= E

[

∫ T

0

∥

∥

∥DtF
(c)
r,i1...ip

(x)
∥

∥

∥

2

C∞(D,d)
dt

]

.
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Thus, it follows from (5.3) that the claim in (5.1) is true. Furthermore, owing to the Clark-

Haussmann-Ocone formula (see, e.g., Aase et al. [1]), we know that (5.2) holds. ✷

Lemma 5.3 Let Z ∈ L2
F ,p([t, T ], C

∞(D,Rd)) with a fixed t ∈ [0, T ] replacing t = 0 in the

previous discussion be such that F ∈ D1,2
∞ with F defined by

F
(c)
i1...ip

(t, x) =

∫ T

t
Z

(c)
i1...ip

(s, x)dW (s)(5.4)

for each x ∈ D, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈ Ic. Then, Z ∈ D1,2
∞ ∩ L2

1,2(Ω, (C
∞(D,H))d).

Furthermore, for each j ∈ {1, ..., d},

Dj
θF

(c)
i1...ip

(t, x) =







∫ T
t Dj

θZ
(c)
i1...ip

(s, x)dW (s) if θ ≤ t,

Z
(c),j
i1...ip

(θ, x) +
∫ T
θ Dj

θZ
(c)
i1...ip

(s, x)dW (s) if θ > t,
(5.5)

where Z
(c),j
i1...ip

is the jth component of Z
(c)
i1...ip

.

Proof. First of all, if Z ∈ D1,2
∞ ∩ L2

1,2(Ω, (C
∞(D,H))d) and F is defined by (5.4) for each

fixed t ∈ [0, T ], it follows from Proposition 3.4 in Nualart and Pardoux [21] that F ∈ D1,2
∞

and the claim in (5.5) holds for each x ∈ D, c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic, and j ∈ {1, ..., d}.
Furthermore, owing to the Ito’s isometry, we have

‖|F‖|∞,2
1,2 =

∞
∑

v=0

ξ(v) ‖F‖v,21,2(5.6)

where

‖|F‖ |v,21,2 = E

[

∫ T
t Λv

∥

∥

∥Z
(c)
r,i1...ip

(s, x)
∥

∥

∥

2

Cv(D,d)
ds+

∫ T
t

∫ T
t Λv

∥

∥

∥DθZ
(c)
r,i1...ip

(s, x)
∥

∥

∥

2

Cv(D,dd)
dθds

]

,

and Λv is defined in (3.26). Therefore, by the similar argument as used in the proof of Lemma

2.3 of Pardoux and Peng [24], it suffices to show that the following set for each fixed t ∈ [0, T ]
{

F satisfying (5.4) with Z ∈ D1,2
∞ ∩ L2

1,2(Ω, (C
∞(D,H))d)

}

(5.7)

is dense in D1,2
∞ ∩L2

FT
(Ω, C∞(D,Rd)). In fact, it is a direct conclusion of Lemma 5.1 and the

fact that the set defined in (5.7) contains the following set for each fixed t ∈ [0, T ] owing to

Lemma 5.2,

{F ∈ S ∩ L2
FT

(Ω, C∞(D,Rd)) with E[F
(c)
i1...ip

(t, x)] = 0

for each x ∈ D c ∈ {1, 2, ...}, (i1, ..., ip) ∈ Ic}.

Hence, we complete the proof of the lemma. ✷

Now, for each t ∈ [tj0−1, tj0), x ∈ D, and v ∈ {0, 1, ...,M}, we consider the following

B-SPDE,

V
(v)
i1...ip

(t, x) = H
(v)
i1...ip

(x) +

∫ T

t
L(v)
i1...ip

(s, x, V, V̄ )ds(5.8)

+

∫ T

t

(

J (v)
i1...ip

(s, x, V )− V̄
(v)
i1...ip

(s, x)
)

dW (s),
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where i1 + ... + ip = v and il ∈ {0, 1, ..., v} with l ∈ {1, ..., p}. Then, we have the following

lemma.

Lemma 5.4 Under conditions (3.29) and (2.11)-(2.14), there is a unique adapted and square-

integrable solution (V
(v)
i1...ip

(t, x), V̄
(v)
i1...ip

(t, x)) to the B-SPDE in (5.8).

Proof. The lemma is a direct conclusion of Theorem 2.1. ✷

Remark 5.1 Note that, since the structures of the B-SPDEs displayed in (5.8) are the same

for all v ∈ {0, 1, ...,M}, we only consider the case that v = 0 in the rest of this subsection,

i.e., the equation in (1.1). Furthermore, for the time-inhomogeneous B-SPDE in (5.8), we

can introduce an additional B-SPDE through

V 0(t, x) = T −
∫ T

t
ds.(5.9)

Obviously, (V 0(t, x), V̄ 0(t, x)) with V 0(t, x) = t and V̄ 0(t, x) = (0, ..., 0) = 0̂ (a d-dimensional

zero row vector) is the unique solution to the B-SPDE in (5.9). Then, by combining (5.9)

and (1.1), we can get a (q + 1)-dimensional B-SPDE,

U(t, x) = H̃(x) +

∫ T

t
L̃(x,U)ds +

∫ T

t

(

J̃ (x,U)− Ū(s, x)
)

dW (s),(5.10)

where

H̃(x) = (T,H(x)′)′,

U(t, x) = (V 0(t, x), V (t, x)′)′,

Ū(t, x) = (V̄ 0(t, x)′, V̄ (t, x)′)′,

L̄(x,U) = (−1,L(x,U)′)′,

J̄(x,U) = (0̂′,J (x,U)′)′.

Thus, without loss of generality and to be simple for notations, we only consider the time-

homogeneous case in (1.1) in the rest of this section, i.e., the case corresponding to L(s, x, V ) =

L(x, V ) and J (s, x, V ) = J (x, V ).

5.2 B-SPDE with Malliavin Derivative Terminal Condition

First, consider a properly chosen number sequence γ = {γc, c = 0, 1, 2, ...} satisfying 0 < γ0 <

γ1 < .... such that the discussions for Theorem 2.1 and Subsections 5.2-5.3 are meaningful,

which will be elaborated during the subsequent proof. Second, we redefine the space in (4.26)

as follows,

ND
γ [0, T ] = D2

F ([0, T ], C
∞(D,Rq×d))× L2

F ,p([0, T ], C
∞(D,Rq×d×d))(5.11)

endowed with the norm similarly defined as in (4.27)-(4.28). Then, we have the following

lemma.
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Lemma 5.5 Under conditions as required in Theorem 3.1 and with Remark 5.1, if (V (t, x), V̄ (t, x))

∈ Q2
F ([0, T ] ×D) is an adapted solution to (1.1), then the system of the following B-SPDEs

has a unique square-integrable adapted solution (V
(c),θ
i1...ip

(t, x),V̄
(c),θ
i1...ip

(t, x)), i.e., each component

(V
j,(c),θ
i1...ip

(t, x), V̄
j,(c),θ
i1...ip

(t, x)) satisfies ,

V
j,(c),θ
i1...ip

(t, x) = Dj
θH

(c)
i1...ip

(x)(5.12)

+

∫ T

t

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V )V
j,(c+l),θ
j1...jp

(s, x)ds

+

∫ T

t

m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V )V̄
j,(c+l),θ
j1...jp

(s, x)ds

+

∫ T

t

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )V
j,(c+l),θ
j1...jp

(s, x)dW (s)

−
∫ T

t
V̄

j,(c),θ
i1...ip

(s, x)dW (s)

for j ∈ {1, ..., d}, c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic, t ∈ [θ, T ], and x ∈ D. Furthermore, for each

δ ∈ (0, 23), there is a number sequence γ0 < γ1 < · · · such that

∫ T
0

∥

∥

∥(V θ, V̄ θ)
∥

∥

∥

2

ND
γ [θ,T ]

dθ < 1
1−δ ‖H‖∞,2

1,2 + δT 2

1−δ < ∞.(5.13)

Proof. First, we note that it follows from Theorem 2.1 and its proof that there is a unique

adapted solution (V (t, x), V̄ (t, x)) ∈ Q2
F ([0, T ] × D) to (1.1). Thus, we know that there is

no explosion time for the process (V (t, x), V̄ (t, x)) over time interval [0, T ]. Furthermore, for

each x ∈ D, V (·, x) is a càdlàg process and V̄ (·, x) is its corresponding predictable process.

Then, it follows from Theorem 3 in page 4 of Protter [28] and Remark 5.1 in page 21 of Ikeda

and Watanabe [15] that

τw ≡ T ∧ inf
{

t > 0, ‖V (t)‖C∞(D,q) +
∥

∥V̄ (t)
∥

∥

C∞(D,qd) > w
}

(5.14)

is a sequence of nondecreasing {Ft}-stopping times and satisfies τw → T a.s. as w → ∞
along w ∈ {0, 1, ...}.

Now, for all j ∈ {1, ..., d}, c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic, t ∈ [θ, τw], and x ∈ D, we define

the following system of B-SPDEs,

V
j,(c),θ
i1...ip

(t, x) = E
[

Dj
θH

(c)
i1...ip

(x)
∣

∣

∣Fτw

]

(5.15)

+

∫ τw

t∧τw

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V )V
j,(c+l),θ
j1...jp

(s, x)ds

+

∫ τw

t∧τw

m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V )V̄
j,(c+l),θ
j1...jp

(s, x)ds
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+

∫ τw

t∧τw

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )V
j,(c+l),θ
j1...jp

(s, x)dW (s)

−
∫ τw

t∧τw
V̄

j,(c),θ
i1...ip

(s, x)dW (s).

Then, over the random time interval [θ, τw], the B-SPDEs in (5.15) satisfy conditions (2.11)

and (2.14). Thus, by slightly generalizing the discussions in proving Theorem 2.1 and Yong

and Zhou [34], we know that (5.15) has a unique adapted solution (V θ,w, V̄ θ,w) in ND
γ [θ, τw].

Furthermore, the solution has the following infinite-dimensional vector form,

{

(V
(c),θ,w
r,i1...ip

(t, x), V̄
(c),θ,w
r,i1...ip

(t, x)), r ∈ {1, ..., q}, c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic
}

.(5.16)

Thus, by (3.29), (2.13)-(2.14), the Itô’s formula, and the similar technique in the proof for

the claims in (4.38) and (4.40), we know that

∥

∥

∥(V θ,w, V̄ θ,w)
∥

∥

∥

2

ND
γc,c

[θ,τw]
(5.17)

≤ E

[

Λ̄c

∥

∥

∥DθH
(v)
i1...ip

∥

∥

∥

2

C∞(D,q)

]

+ γ̂cK
1
d,c

(

(T − θ)δ0c +
∥

∥

∥(V θ,w, V̄ θ,w)
∥

∥

∥

2

ND
γc,c+2k

[θ,τw]

)

for each c ∈ {0, 1, ...}. The notation Λ̄c in (5.17) is defined by

Λ̄c = max
v∈{0,1,...,c}

max
(i1,...,ip)∈Ic

,(5.18)

and δ0c is defined in (2.13)-(2.14). Furthermore, K1
d,c is some nonnegative constant depending

only on c, T and the region D, which satisfies K1
d,c ≥ Kd,c (that is used in (4.40)). In

addition, γ̂c is a nonnegative constant depending on γc and can be arbitrarily chosen by

suitably managing the number sequence γ0 < γ1 < · · · such that

γ̂cK
1
d,c((c+ 1)10(c+ 2)10...(c + 2k)10)(η(c + 1)η(c + 2)...η(c + 2k))e2k ≤ δ(5.19)

for some constant δ ∈ (0, 2/3). Therefore, we have

∥

∥

∥(V θ,w, V̄ θ,w)
∥

∥

∥

ND
γ [θ,τw]

≤
∞
∑

c=1

ξ(c)E

[

Λ̄c

∥

∥

∥DθH
(v)
i1...ip

∥

∥

∥

2

C∞(D,q)

]

+ δT + δ
∥

∥

∥(V θ,w, V̄ θ,w)
∥

∥

∥

ND
γ [θ,τw]

.

Thus, it follows from conditions (3.29)-(3.31) that

∥

∥

∥(V θ,w, V̄ θ,w)
∥

∥

∥

2

ND
γ [θ,τw]

≤ 1

1− δ

∞
∑

c=1

ξ(c)E

[

Λ̄c

∥

∥

∥DθH
(v)
i1...ip

∥

∥

∥

2

C∞(D,q)

]

+
δT

1− δ
(5.20)

< ∞.
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Second, we use Πθ,w(t, x) ≡ (V θ,w(t, x), V̄ θ,w(t, x)) for t ≤ τw and x ∈ D to denote the

unique adapted solution to the system in (5.15) for each w ∈ {1, 2, ...}. Then, it follows from

the Ito’s formula, conditions (2.11)-(2.14), and the similar proof for (5.20) that

∥

∥

∥Πθ,w1 −Πθ,w2

∥

∥

∥

2

ND
γ [θ,T ]

(5.21)

≤ 1

1− δ

∞
∑

c=1

ξ(c)E

[

Λ̄c

∥

∥

∥E
[

DθH
(v)
i1...ip

∣

∣

∣Fτw1

]

− E
[

DθH
(v)
i1...ip

∣

∣

∣Fτw2

]∥

∥

∥

2

C∞(D,q)

]

+
δ

1− δ
E [τw2 − τw1 ]

≤ 1

1− δ

∞
∑

c=1

ξ(c)

(

E

[

Λ̄c

∥

∥

∥E
[

DθH
(v)
i1...ip

∣

∣

∣Fτw1

]

−DθH
(v)
i1...ip

∥

∥

∥

2

C∞(D,q)

]

+ E

[

Λ̄c

∥

∥

∥E
[

DθH
(v)
i1...ip

∣

∣

∣Fτw1

]

−DθH
(v)
i1...ip

∥

∥

∥

2

C∞(D,q)

])

+
δ

1− δ
E [τw2 − τw1 ]

→ 0

as w1, w2 → ∞ along w1, w2 ∈ {1, 2, ...}. Note that the last claim of (5.21) follows from

(3.29)-(3.31) and the Martingale convergence theorem (see, e.g., Page 8 of Protter [28]).

Furthermore, in the proof of (5.21), we also used the fact that

V θ,w(t, x) = E
[

DθH
(v)
i1...ip

(x)
∣

∣

∣Fτw1

]

for each t ∈ [τw, T ].(5.22)

Thus, from (5.21), we know that {Πθ,w, w ∈ {1, 2, ...}} is a cauchy sequence in ND
γ [θ, T ].

Hence, there is a Πθ ∈ ND
γ [θ, T ] such that

Πθ,w → Πθ as w → ∞.(5.23)

In addition, we claim that Πθ is the unique square-integrable adapted solution to the system

of B-SPDEs in (5.12).

In fact, since Πθ,w is a solution satisfying (5.15) for each w ∈ {1, 2, ...}, it follows from

the Ito’s isometry, Holder’s inequality, the similar ideas as used for (5.21) and the proof of

Theorem 5.1.2 in page 68 of ∅ksendal [22] that Πθ is a square-integrable adapted solution to

the system of B-SPDEs in (5.12). Next, suppose that Πθ
1 and Πθ

2 are two required solutions

to the system in (5.12). Then, Πθ
1 −Πθ

2 is a square-integrable adapted solution to the system

in (5.12) with terminal value 0. Thus, Πθ
1 − Πθ

2 is the unique square-integrable adapted

solution to the system in (5.15) with terminal value 0 over each random interval [0, τw] for

w ∈ {1, 2, ...}. Since τw → T as w → ∞, we know that Πθ
1 = Πθ

2 a.s.

Finally, it follows from (5.23) and (5.20) that the claim in (5.13) is true. Thus, we

complete the proof of Lemma 5.5. ✷

5.3 First-Order Malliavin Derivative Based B-SPDE

First, let L∞,2
α,2 ([0, T ]×Ω, (C∞(D,H))q) represent the set of Hq-valued progressively measur-

able processes {ζ(t, x, ω), 0 ≤ t ≤ T, ω ∈ Ω} for each x ∈ D such that
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• For a.e. t ∈ [0, T ], ζ(t, ·, ·) ∈ Dα,2
∞ ;

• (t, x, ω) → Dζ
(c)
i1...ip

(t, x, ω) ∈ (L2([0, T ] × Ω, C∞(D,Rq)))d admits a progressively mea-

surable version for each x ∈ D, c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic if α = 1. In addition,

(t, x, ω) → DDζ
(c)
i1...ip

(t, x, ω) ∈ (L2([0, T ] × Ω, C∞(D,Rq)))d×d also admits a progres-

sively measurable version if α = 2;

• The following norm is defined,

‖|ζ‖|∞,2
α,2 =

∞
∑

v=0

ξ(v)‖|ζ‖|v,2α,2 < ∞,

where, for each v ∈ {0, 1, ...},

‖|ζ‖|v,21,2 = E

[

∫ T
0 Λv

∥

∥

∥ζ
(c)
r,i1...ip

(t)
∥

∥

∥

2

Cv(D,1)
dt+

∫ T
0

∫ T
0 Λv

∥

∥

∥Dθ1ζ
(c)
r,i1...ip

(t)
∥

∥

∥

2

Cv(D,d)
dθ1dt

]

,

‖|ζ‖|v,22,2 = ‖ζ‖v,21,2 + E

[

∫ T
0

∫ T
0

∫ T
0 Λv

∥

∥

∥Dθ2Dθ1ζ
(c)
r,i1...ip

(t)
∥

∥

∥

2

Cv(D,d×d)
dθ1dθ2dt

]

.

Then, we have the following lemma.

Lemma 5.6 Under conditions as required in Theorem 3.1 and with Remark 5.1, if (V (t, x), V̄ (t, x))

∈ Q2
F ([0, T ]×D) is the adapted solution to (1.1), then

(V (t, x), V̄ (t, x)) ∈ L∞,2
1,2 ([0, T ] × Ω, (C∞(D,H))q×q×d).

Furthermore, for each 1 ≤ j ≤ d and x ∈ D, a version of the infinite-dimensional vector

process

{(Dj
θV

(c)
i1...ip

(t, x),Dj
θ V̄

(c)
i1...ip

(t, x)) : 0 ≤ θ, t ≤ T, c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic}

is the solution of the following system of Malliavin derivative based B-SPDEs under random

environment,

Dj
θV

(c)
i1...ip

(t, x) = Dj
θH

(c)
i1...ip

(x)(5.24)

+

∫ T

t

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V )Dj
θV

(c+l)
j1...jp

(s, x)ds

+

∫ T

t

m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V )Dj
θV̄

(c+l)
j1...jp

(s, x)ds

+

∫ T

t

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )Dj
θV

(c+l)
j1...jp

(s, x)dW (s)

−
∫ T

t
Dj

θV̄
(c)
i1...ip

(s, x)dW (s),
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where j1, ..., jp are nonnegative integers, and for 0 ≤ t < θ ≤ T ,

Dj
θV

(c)
i1...ip

(t, x) = 0, Dj
θV̄

(c)
i1...ip

(t, x) = 0.(5.25)

In addition, let “=d” denote “equal in distribution”, then
{

V̄
(c)
i1...ip

(t, x), t ∈ [0, T ], c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, x ∈ D
}

(5.26)

=d
{

DtV
(c)
i1...ip

(t, x) + J (c)
i1...ip

(x, V ), t ∈ [0, T ], c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, x ∈ D
}

.

Proof. First, it follows from Theorem 2.1 and its proof that there is a unique adapted

solution (V (t, x), V̄ (t, x)) ∈ Q2
F ([0, T ]×D) to (1.1). Furthermore, it can be approximated by

a sequence of (V i(t, x), V̄ i(t, x)) ∈ MD
γ [0, T ] with i ∈ {0, 1, ...}, satisfying,

V 0(t, x) = V̄ 0(t, x) = 0(5.27)

V
(c),i+1
i1...ip

(t, x) = H
(c)
i1...ip

(x) +

∫ T

t
L(c)
i1...ip

(x, V i)ds(5.28)

+

∫ T

t

(

J (c)
i1...ip

(x, V i)− V̄
(c),i+1
i1...ip

(s, x)
)

dW (s)

for all t ∈ [0, T ], x ∈ D, and (i1, ..., ip) ∈ Ic.

Now, by induction in terms of i ∈ {0, 1, ...}, we can show that

(V i(t, x), V̄ i(t, x)) ∈ L∞,2
1,2 ([0, T ] × Ω, (C∞(D,H))q×q×d).

Equivalently, if

(V i(t, x), V̄ i(t, x)) ∈ L∞,2
1,2 ([0, T ]× Ω, (C∞(D,H))q×q×d)

for any i ∈ {0, 1, ...}, we need to prove that

(V i+1(t, x), V̄ i+1(t, x)) ∈ L∞,2
1,2 ([0, T ] × Ω, (C∞(D,H))q×q×d).

In fact, since

H(x) +

∫ T

t
L(x, V i)ds ∈ D1,2

∞ ,(5.29)

it follows from Lemma 5.2 and Lemma 5.3 that

V i+1(t, x) = E

[

H(x) +

∫ T

t
L(x, V i)ds

∣

∣

∣

∣

∣

Ft

]

∈ D1,2
∞ .(5.30)

Thus, by using (5.28)-(5.30) and Lemma 5.3, we know that

J (x, V i)− V̄ i+1(s, x) ∈ D1,2
∞ .

Hence, by chain rule for Malliavin calculus, we have that

V̄ i+1(s, x) ∈ D1,2
∞ .
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Therefore, for each 0 ≤ θ ≤ t and j ∈ {1, ..., d}, it follows from chain rule for Malliavin

calculus and Lemma 5.3 that

Dj
θV

(c),i+1
i1...ip

(t, x) = Dj
θH

(c)
i1...ip

(x)(5.31)

+

∫ T

t

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V i)Dj
θV

(c+l),i
j1...jp

(s, x)ds

+

∫ T

t

m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V i)Dj
θV̄

(c+l),i
j1...jp

(s, x)ds

+

∫ T

t

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V i)Dj
θV

(c+l),i
j1...jp

(s, x)dW (s)

−
∫ T

t
Dj

θV̄
(c),i+1
i1...ip

(s, x)dW (s).

Furthermore, it follows from the proof of Lemma 4.1 that
{

(Dj
θV

(c),i+1
i1...ip

(t, x),Dj
θV̄

(c),i+1
i1...ip

(t, x)), i ∈ {1, 2, ...}, j ∈ {1, ..., d}, c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic
}

is the unique adapted solution to the system in (5.31). In addition, it follows from the similar

proof of Lemma 4.2 that this solution is continuous with respect to x ∈ D.

Next, we show that (V i(t, x), V̄ i(t, x)) converges in L∞,2
1,2 ([0, T ] × Ω, (C∞(D,H))q×q×d).

In particular, we have the convergence of their Malliavin derivatives as i → ∞ as follows,
{

(DθV
(c),i
i1...ip

(t, x),Dθ V̄
(c),i
i1...ip

(t, x)), c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, t ∈ [θ, T ], x ∈ D
}

(5.32)

→
{

(V
(c),θ
i1...ip

(t, x), V̄
(c),θ
i1...ip

(t, x)), c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, t ∈ [θ, T ], x ∈ D
}

,

where each component (V
j,(c),θ
i1...ip

(t, x),V̄
j,(c),θ
i1...ip

(t, x)) of the limit (V
(c),θ
i1...ip

(t, x),V̄
(c),θ
i1...ip

(t, x)) with

j ∈ {1, ..., d} is the unique adapted solution to the B-SSPDEs in (5.12) for all c ∈ {0, 1, ...},
(i1, ..., ip) ∈ Ic, t ∈ [θ, T ], and x ∈ D owing to Lemma 5.5.

Now, by applying conditions (3.29), (2.11)-(2.14), the Itô’s formula, and the similar tech-

nique used in the proof of Lemma 4.3, we have that

∥

∥

∥(DθV
i+1 − V θ,DθV̄

i+1 − V̄ θ)
∥

∥

∥

2

Nγc,c

≤ γ̂cK
1
d,cE

[

∫ T

θ

(

αi(s) + βi(s)
)

e2γcsds

]

(5.33)

for all c ∈ {0, 1, ...} with each given i ∈ {0, 1, ...}. The notation K1
d,c is some nonnegative

constant depending only on c, D, and T , γ̂c is taken and explained as in (5.19). The functions

αi(s) and βi(s) are respectively given by

αi(s) =

(

1 +
∥

∥

∥V i(s)
∥

∥

∥

2

Cc+k+1(D,q)

)

∥

∥

∥DθV
i(s)− V θ(s)

∥

∥

∥

2

Cc+k+1(D,qd)

+

(

1 +
∥

∥

∥V̄ i(s)
∥

∥

∥

2

Cc+k+1(D,qd)

)

∥

∥

∥DθV̄
i(s)− V̄ θ(s)

∥

∥

∥

2

Cc+k+1(D,qdd)
,

βi(s) =
∥

∥

∥V θ(s)
∥

∥

∥

2

Cc+k+1(D,qd)

(

1 +
∥

∥

∥V i(s)− V (s)
∥

∥

∥

2

Cc+k+1(D,q)

)

+
∥

∥

∥V̄ θ(s)
∥

∥

∥

2

Cc+k+1(D,qdd)

(

1 +
∥

∥

∥V̄ i(s)− V̄ (s)
∥

∥

∥

2

Cc+k+1(D,qd)

)

.
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Thus, by (5.13), (5.33), and the fact that |ab| ≤ 1
2(a

2 + b2) for any two real numbers a and

b, we have that

∫ T

0

∥

∥

∥(DθV
i+1 − V θ,DθV̄

i+1 − V̄ θ)
∥

∥

∥

2

ND
γ [θ,T ]

dθ(5.34)

≤ δT
∥

∥

∥(V i − V, V̄ i − V̄ )
∥

∥

∥

2

ND
γ [θ,T ]

+ δT
∥

∥(V, V̄ )
∥

∥

2
ND

γ
+

3δ

2

∫ T

0

∥

∥

∥(V θ, V̄ θ)
∥

∥

∥

2

ND
γ [θ,T ]

dθ

+
3δ

2
E

[

∫ T

0

∥

∥

∥(DθV
i − V θ,DθV̄

i − V̄ θ)
∥

∥

∥

2

ND
γ [θ,T ]

dθ

]

≤ (δ + ...+ δi)K1 + δi
∫ T

0

∥

∥

∥(DθV
0 − V θ,DθV̄

0 − V̄ θ)
∥

∥

∥

2

ND
γ [θ,T ]

dθ

≤ δK1

1− δ
+ δiK2

where K1 and K2 are some nonnegative constants. Since e2γct > 1 for all c ∈ {0, 1, ...}, we
know that

∞
∑

v=0

ξ(v)E

[

∫ T

0

∫ T

0
Λv

∥

∥

∥(DθV
i+1 − V θ,DθV̄

i+1 − V̄ θ)
∥

∥

∥

2

Cv(D,qd×qdd)
dθdt

]

(5.35)

≤ δK1

1− δ
+ δiK2

→ 0

by letting i → ∞ first and δ → 0 second since δ ∈ (0, 1). Thus, by (5.35) and the factor that

e2γct > 1 again, we have

‖|(V i, V̄ i)− (V, V̄ )‖|∞,2
1,2 → 0 as i → ∞.(5.36)

Thus, we know that (V i, V̄ i) with Malliavin derivative (DθV
i, DθV̄

i) converges to (V, V̄ )

with Malliavin derivative (V θ, V̄ θ) in L∞,2
1,2 ([0, T ] × Ω, (C∞(D,H))q×q×d) as i → ∞. Hence,

a version of the following infinite-dimensional vector process

{(Dj
θV

(c)
i1...ip

(t, x),Dj
θ V̄

(c)
i1...ip

(t, x)) : 0 ≤ θ, t ≤ T, c ∈ {0, 1, ...}, j ∈ {1, ..., d}, (i1 , ..., ip) ∈ Ic}

is given by (5.24).

Finally, for the considered version, the claims in (5.25) of Lemma 5.6 are follows from

the fact that (V, V̄ ) is an adapted solution to the B-SPDE displayed in (1.1) and Corollary

1.2.1 in page 34 and its related remark in page 42 of Nualart [20]. Furthermore, the claims

in (5.26) are justified as follows. Since, for t ≤ u, we have that

V
(c)
i1...ip

(u, x) = V
(c)
i1...ip

(t, x)−
∫ u

t
L(c)
i1...ip

(x, V )ds(5.37)

−
∫ u

t

(

J (c)
i1...ip

(x, V )− V̄
(c)
i1...ip

(s, x)
)

dW (s)

27



for all x ∈ D, c ∈ {0, 1, ...}, and (i1, ..., ip) ∈ Ic. Then, it follows from Lemma 5.3 that, for

j ∈ {1, ..., d} and t < θ ≤ u,

Dj
θV

(c)
i1...ip

(u, x) = V̄
(c),j
i1...ip

(θ, x)− J (c),j
i1...ip

(x, V )(5.38)

−
∫ u

θ

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V )Dj
θV

(c+l)
j1...jp

(s, x)ds

−
∫ u

θ

m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V )Dj
θV̄

(c+l)
j1...jp

(s, x)ds

−
∫ u

θ

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )Dj
θV

(c+l)
j1...jp

(s, x)dW (s)

+

∫ u

θ
Dj

θV̄
(c)
i1...ip

(s, x)dW (s).

Thus, by taking θ = u in (5.38), we know that the claims in (5.26) are true. Hence, we

complete the proof of Lemma 5.6. ✷

5.4 Second-Order Marlliavin Derivative Based B-SPDE

First, we use θ1 to replace θ in (5.24). Second, for each j ∈ {1, ..., d}, c ∈ {0, 1, ...}, and

(i1, ..., ip) ∈ Ic, we define

L̄(c+1)
i1...ip

(x, V,Dj
θ1
V ) =

k
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,vj1...jp

(x, V )Dj
θ1
V

(c+l)
j1...jp

(s, x)(5.39)

+
m
∑

l=0

∑

j1+...+jp=c+l

L(c+1)
i1...ip,v̄j1...jp

(x, V )Dj
θ1
V̄

(c+l)
j1...jp

(s, x),

J̄ (c+1)
i1...ip

(x, V,Dj
θ1
V ) =

n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )Dj
θ1
V

(c+l)
j1...jp

(s, x).(5.40)

Then, we can obtain the following system of B-SPDEs for each j̄ ∈ {1, ..., d} by taking

Malliavin derivatives on both sides of the equation in (5.24),

Dj̄
θ2
Dj

θ1
V

(c)
i1...ip

(t, x)(5.41)

= Dj̄
θ2
Dj

θ1
H

(c)
i1...ip

(x)

+

∫ T

t

k
∑

l=0

∑

j1+...+jp=c+l

L̄(c+2)
i1...ip,vj1...jp

(x, V,Dj
θ1
V )Dj̄

θ2
V

(c+l)
j1...jp

(s, x)ds

+

∫ T

t

k
∑

l=0

∑

j1+...+jp=c+l

L̄(c+2)

i1...ip,(D
j

θ1
v)j1...jp

(x, V,Dj
θ1
V )Dj̄

θ2
Dj

θ1
V

(c+l)
j1...jp

(s, x)ds

+

∫ T

t

m
∑

l=0

∑

j1+...+jp=c+l

L̄(c+2)

i1...ip,(D
j
θ1

v̄)j1...jp
(x, V,Dj

θ1
V )Dj̄

θ2
V̄

(c+l)
j1...jp

(s, x)ds
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+

∫ T

t

m
∑

l=0

∑

j1+...+jp=c+l

L̄(c+2)

i1...ip,(D
j

θ1
v̄)j1...jp

(x, V,Dj
θ1
V )Dj̄

θ2
Dj

θ1
V̄

(c+l)
j1...jp

(s, x)ds

+

∫ T

t

n
∑

l=0

∑

j1+...+jp=c+l

J̄ (c+2)

i1...ip,(D
j

θ1
v)j1...jp

(x, V,Dj
θ1
V )Dj̄

θ2
V

(c+l)
j1...jp

(s, x)dW (s)

+

∫ T

t

n
∑

l=0

∑

j1+...+jp=c+l

J̄ (c+2)

i1...ip,(D
j
θ1

v)j1...jp
(x, V,Dj

θ1
V )Dj̄

θ2
Dj

θ1
V

(c+l)
j1...jp

(s, x)dW (s)

−
∫ T

t
Dj̄

θ2
Dj

θ1
V̄

(c)
i1...ip

(s, x)dW (s).

Furthermore, consider a properly chosen number sequence γ = {γc, c = 0, 1, 2, ...} satisfying

0 < γ0 < γ1 < .... such that the discussions for Theorem 2.1, Subsections 5.2-5.3, and the

following Lemma 5.7 are meaningful, which can be elaborated similar to the previous proof

in Subsection 5.2. Then, we can define the space

OD
γ [0, T ] = D2

F ([0, T ], C
∞(D,Rq×d×d))× L2

F ,p([0, T ], C
∞(D,Rq×d×d×d))(5.42)

endowed with the norm similarly defined as in (4.27)-(4.28). Thus, we have the following

lemma.

Lemma 5.7 Under conditions as required in Theorem 3.1 and with Remark 5.1, if (V (t, x), V̄ (t, x))

∈ Q2
F ([0, T ]×D) is the adapted solution to (1.1), then,

(V (t, x), V̄ (t, x)) ∈ L∞,2
2,2 ([0, T ] × Ω, (C∞(D,H))q×q×d).

Furthermore, for x ∈ D, a version of the following infinite-dimensional vector process
{

(Dθ2Dθ1V
(c)
i1...ip

(t, x),Dθ2Dθ1 V̄
(c)
i1...ip

(t, x)) : 0 ≤ θ1, θ2, t ≤ T, c ∈ {0, 1, ...}, (i1, ..., ip) ∈ Ic
}

is given by the system in (5.41). In addition, for 0 ≤ t < θ1 ∧ θ2 ≤ T and 1 ≤ j̄, j ≤ d,

Dj̄
θ2
Dj

θ1
V

(c)
i1...ip

(t, x) = 0, Dj̄
θ2
Dj

θ1
V̄

(c)
i1...ip

(t, x) = 0,(5.43)

and
{

DtV̄
(c)
i1...ip

(t, x), t ∈ [0, T ], c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, x ∈ D
}

(5.44)

=d {DtDtV
(c)
i1...ip

(t, x) +
n
∑

l=0

∑

j1+...+jp=c+l

J (c+1)
i1...ip,vj1...jp

(x, V )DtV
(c+l)
j1...jp

(t, x),

t ∈ [0, T ], c ∈ {0, 1, ...}, (i1 , ..., ip) ∈ Ic, x ∈ D}.

Proof. Let

L(t) ≡ ‖V (t)‖C∞(D,q) +
∥

∥V̄ (t)
∥

∥

C∞(D,qd)

+ ‖Dθ1V (t)‖C∞(D,qd) +
∥

∥Dθ1 V̄ (t)
∥

∥

C∞(D,qdd)

+ ‖Dθ2V (t)‖C∞(D,qd) +
∥

∥Dθ2 V̄ (t)
∥

∥

C∞(D,qdd) .
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Then, similar to (5.14), we define a sequence of nondecreasing {Ft}-stopping times along

w ∈ {0, 1, ...} as follows,

τw ≡ T ∧ inf {t > 0, L(t) > w} ,(5.45)

which satisfies τw → T a.s. as w → ∞. Thus, by the similar arguments as used in the proofs

of Lemmas 5.5-5.6, we can provide a proof for Lemma 5.7. ✷

5.5 Priori Estimates

Lemma 5.8 Under conditions as required in Theorem 3.1 and with Remark 5.1, if (V i(t, x),

V̄ i(t, x)) for each i ∈ {1, 2} is the unique adapted solution to equation (1.1) with terminal

condition H i(x), then,

∥

∥

∥(V i, V̄ i)
∥

∥

∥

2

MD
γ [0,T ]

≤ C̄

(

1 +
∥

∥

∥H i
∥

∥

∥

2

L2
FT

(Ω,C∞(D,Rq))

)

,(5.46)

∥

∥

∥(V 2, V̄ 2)− (V 1, V̄ 1)
∥

∥

∥

2

MD
γ [s,t]

≤ C̄
∥

∥

∥H2 −H1
∥

∥

∥

2

L2
FT

(Ω,C∞(C,Rq))
(5.47)

for some nonnegative constant C̄ only depending on the terminal time T , the region D.

Furthermore, for each c ∈ {0, 1, ...} and any s, t ∈ [0, T ] with s ≤ t, we have

E

[

∥

∥

∥V i(t)− V i(s)
∥

∥

∥

2

Cc(D,q)

]

≤ C(t− s),(5.48)

E

[

∥

∥

∥V̄ i(t)− V̄ i(s)
∥

∥

∥

2

Cc(D,qd)

]

≤ C(t− s).(5.49)

for some nonnegative constant C only depending on the terminal time T , the region D, and

the terminal random variable.

Proof. By applying the Itô’s formula and the similar proof as used for (5.13), we know

that the claims in (5.46)-(5.47) are true. Now, consider the B-SPDE (1.1) over [s, t] with

terminal condition V (t, x). Then, by (2.13)-(2.14), (5.26), (5.23) and (5.20), we know that

E

[

∥

∥

∥V i(t)− V i(s)
∥

∥

∥

2

Cc(D,q)

]

(5.50)

≤ C1

∫ t

s

(

1 +
∥

∥

∥V i(r)
∥

∥

∥

2

Ck+c(D,q)
+
∥

∥

∥DrV
i(r)

∥

∥

∥

2

Ck+c(D,qd)

)

dr

≤ C2(t− s)

(

∥

∥

∥(V i, V̄ i)
∥

∥

∥

2

MD
γ [0,T ]

+
∥

∥

∥(DV i,DV̄ i)
∥

∥

∥

2

ND
γ [0,T ]

)

≤ C3(t− s),

where C1 and C2 are some nonnegative constants.
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Furthermore, by using (5.26), (5.44) in Lemma 5.7, and the similar argument as used in

(5.50), we know that

E

[

∥

∥

∥V̄ i(t)− V̄ i(s)
∥

∥

∥

2

Cc(D,qd)

]

≤ C3E

[

∥

∥

∥V i(t)− V i(s)
∥

∥

∥

2

Cc(D,q)
+
∥

∥

∥DtV
i(t)−DsV

i(s)
∥

∥

∥

2

Cc(D,qd)

]

≤ C4

∫ t

s

(

1 +
∥

∥

∥V i(r)
∥

∥

∥

2

Ck+c(D,q)
+
∥

∥

∥DrV
i(r)

∥

∥

∥

2

Ck+c(D,qd)
+
∥

∥

∥DrDrV
i(r)

∥

∥

∥

2

Ck+c(D,qdd)

)

dr

≤ C5(t− s)

(

∥

∥

∥(V i, V̄ i)
∥

∥

∥

2

MD
γ [0,T ]

+
∥

∥

∥(DV i,DV̄ i)
∥

∥

∥

2

ND
γ [0,T ]

+
∥

∥

∥(DDV i,DDV̄ i)
∥

∥

∥

2

OD
γ [0,T ]

)

≤ C6(t− s),

where C4-C6 are some nonnegative constants. Finally, take C = max{C3, C6} sure that both

(5.48) and (5.49) are true. Hence, we complete the proof of Lemma 5.8. ✷

5.6 Representation Formulas

Concerning Algorithm 3.1, we first define the following quantities as j0 decreases from n0 to

1 for each c ∈ {0, 1, ...,M} and x ∈ D,

V
(c)
i1...ip,π,0

(tn0 , x) ≡ H
(c)
i1...ip

(x), V̄
(c)
i1...ip,π,0

(tn0 , x) = 0,(5.51)

V
(c)
i1...ip,π,0

(tj0−1, x) ≡ E
[

V
(c)
i1...ip

(tj0 , x) + L(c)
i1...ip

(tj0 , x, V (tj0 , x))∆
π
j0

∣

∣

∣Ftj0−1

]

,(5.52)

V̄
(c)
i1...ip,π,0

(tj0−1) ≡ 1

∆π
j0

E
[

V
(c)
i1...ip

(tj0 , x)∆
πWj0

∣

∣

∣Ftj0−1

]

(5.53)

+E
[

L(c)
i1...ip

(tj0 , x, V (tj0 , x))∆
πWj0

∣

∣

∣Ftj0−1

]

+J (c)
i1...ip

(tj0−1, x, Vπ(tj0−1, x)).

Then, we consider the following iterative procedure,

V
(c)
i1...ip,π,1

(t, x) = H
(c)
i1...ip,π,1

(tj0 , x)(5.54)

+

∫ tj0

t

(

J (c)
i1...ip

(s, x, Vπ,1(s, x))− V̄
(c)
i1...ip,π,1

(s, x)
)

dW (s)

for each t ∈ [tj0−1, tj0) and x ∈ D, where

H
(c)
i1...ip,π,1

(tj0 , x) = Vi1...ip(tj0 , x) + L(c)
i1...ip

(tj0 , x, V (tj0 , x))∆
π
j0 ,(5.55)

H
(c)
i1...ip,π,1

(tn0 , x) = H
(c)
i1...ip

(x).(5.56)

Note that the equation displayed in (5.54) for each j0 ∈ {n0, n0 − 1, ..., 1} is a B-SPDE with

terminal value H
(c)
i1,...,ip,π,1

(tj0 , x). Then, we have the following lemma.
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Lemma 5.9 Under conditions (3.29) and (2.11)-(2.14), there is a unique adapted and square-

integrable solution (V
(c)
i1...ip,π,1

(t, x), V̄
(c)
i1...ip,π,1

(t, x)) to the B-SPDE in (5.54) over t ∈ [tj0−1, tj0)

and x ∈ D for each c ∈ {0, 1, ...,M} and (i1, ..., ip) ∈ Ic. Moreover, we have

V
(c)
i1...ip,π,0

(t, x) = V
(c)
i1...ip,π,1

(t, x), t ∈ [tj0−1, tj0), x ∈ D,(5.57)

V̄
(c)
i1...ip,π,0

(tj0−1, x)(5.58)

=
1

∆π
j0

E

[

∫ tj0

tj0−1

(

V̄
(c)
i1...ip,π,1

(s, x)−J (c)
i1...ip

(s, x, Vπ,1(s, x))
)

ds

∣

∣

∣

∣

∣

Ftj0−1

]

+J (c)
i1...ip

(tj0−1, x, Vπ,1(tj0−1, x)).

Proof. Without loss of generality, we only consider the case that c = 0. Owing to conditions

(3.29), (2.11)-(2.14), and Theorem 2.1, we know that there is a unique adapted and mean-

square integrable solution (Vπ,1(t, x), V̄π,1(t, x)) to the B-SPDE in (5.54) over t ∈ [tj0−1, tj0)

and x ∈ D for each j0 ∈ {n0, n0 − 1, ..., 1}. Then, by taking the conditional expectations on

both sides of (5.54) at each time t and the independent increment property of the Brownian

motion, we know that the claim in (5.57) is true by a backward induction method in terms

of j0 = n0, n0 − 1, ..., 1.

Now, it follows from Lemma 5.6 that Hπ,1(tj0 , x) ∈ D1,2
∞

⋂

L2
Ftj0

(Ω, C∞(D,Rq)) for each

j0 ∈ {n0, n0 − 1, ..., 1}. Then, for each c ∈ {0, 1, ...}, x ∈ D, and (i1, ..., ip) ∈ Ic, it follows

from Lemma 5.2 that

H
(c)
i1...ip,π,1

(tj0 , x) = E
[

H
(c)
i1...ip,π,1

(tj0 , x)
]

+

∫ tjo

0
E
[

DtH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Ft

]

dW (t)(5.59)

with

E

[

∣

∣

∣E
[

DtH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Ft

]∣

∣

∣

2
dt

]

< ∞.

Thus, we know that

E
[

H
(c)
i1...ip,π,1

(tj0 , x)
]

= E
[

H
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Ftj0−1

]

(5.60)

−
∫ tj0−1

0
E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

dW (s).

Hence, it follows from (5.59) and (5.60) that

H
(c)
i1...ip,π,1

(tj0 , x) = E
[

H
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Ftj0−1

]

(5.61)

+

∫ tj0

tj0−1

E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

dW (s).

Now, for any set A ∈ Ftj0−1 , we have

E
[

H
(c)
i1...ip,π,1

(tj0 , x)∆
πWj0IA

]

= E

[

H
(c)
i1...ip,π,1

(tj0 , x)

∫ tj0

tj0−1

IAdW (s)

]

(5.62)
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= E

[

∫ tj0

tj0−1

IADsH
(c)
i1...ip,π,1

(tj0 , x)ds

]

= E

[

∫ tj0

tj0−1

IAE
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

ds

]

= E

[

IA

∫ tj0

tj0−1

E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

ds

]

,

where the second equality is obtained from the Malliavin integration by parts formula (see,

e.g., Theorem A.3.9 in page 283 of Biagini et al. [5]) and the third equality follows from the

tower property for conditional expectations owing to the square integrability and the Fubini’s

theorem. Hence, it follows from the definition of conditional expectation that

E
[

H
(c)
i1...ip,π,1

(tj0 , x)∆
πWj0

∣

∣

∣Ftj0−1

]

= E

[

∫ tj0

tj0−1

E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

ds

∣

∣

∣

∣

∣

Ftj0−1

]

.(5.63)

Therefore we have
∣

∣

∣

∣

∣

E

[

∫ tj0

tj0−1

(

E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

(5.64)

−
(

V̄
(c)
i1...ip,π,1

(s, x)− J (c)
i1...ip

(s, x, Vπ,1(s, x))
))

ds
∣

∣

∣Ftj0−1

]∣

∣

∣

≤
(

E

[

∫ tj0

tj0−1

(

E
[

DsH
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Fs

]

−
(

V̄
(c)
i1...ip,π,1

(s, x)− J (c)
i1...ip

(s, x, Vπ,1(s, x))
))2

ds

∣

∣

∣

∣

Ftj0−1

])1/2

=
(

E
[(

H
(c)
i1...ip,π,1

(tj0 , x)− E
[

H
(c)
i1...ip,π,1

(tj0 , x)
∣

∣

∣Ftj0−1

]

−
(

H
(c)
i1...ip,π,1

(tj0 , x)− V
(c)
i1...ip,π,1

(tj0−1, x)
))2

∣

∣

∣

∣

Ftj0−1

])1/2

= 0,

where the first inequality in (5.64) follows from the Hölder’s and Jensen’s inequalities; the first

equality in (5.64) follows from (5.54), (5.61), and the Itô’s isometry; the second inequality in

(5.64) follows from (5.54) and (5.57). Thus, it follows from (5.63)-(5.64), (5.53), and (5.57)

that (5.58) is true. Hence, we finish the proof of Lemma 5.9. ✷

5.7 Proof of Theorem 3.1

First, we note that the convention given in Remark 5.1 will be employed in the following

proof. Then, for each t ∈ [tj0−1, tj0), x ∈ X , and c ∈ {0, 1, ...,M}, we can obtain that

E

[

∥

∥

∥∆V (c)(t, x)
∥

∥

∥

2
]

≤ 5E

[

∥

∥

∥V (c)(t, x)− V (c)(tj0−1, x)
∥

∥

∥

2
]

(5.65)

+5E

[

∥

∥

∥V (c)(tj0−1, x)− V
(c)
π,0 (tj0−1, x)

∥

∥

∥

2
]
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+5E

[

∥

∥

∥V
(c)
π,0 (tj0−1, x)− V

(c)
π,1 (tj0−1, x)

∥

∥

∥

2
]

+5E

[

∥

∥

∥V
(c)
π,1 (tj0−1, x)− V

(c)
π,1 (t, x)

∥

∥

∥

2
]

+5E

[

∥

∥

∥V
(c)
π,1 (t, x)− V (c)

π (t, x)
∥

∥

∥

2
]

,

which implies that there is some nonnegative constant K0 such that

E

[

∥

∥

∥∆V (c)(t, x)
∥

∥

∥

2
]

≤ K0π.(5.66)

In fact, for the first and fourth terms on the right-hand side of (5.65), it follows from

(5.48) in Lemma 5.8 that there is some nonnegative constant K1 such that

E

[

∥

∥

∥V (c)(t, x)− V (c)(tj0−1, x)
∥

∥

∥

2
]

≤ K1π,(5.67)

E

[

∥

∥

∥V
(c)
π,1 (tj0−1, x)− V

(c)
π,1 (t, x)

∥

∥

∥

2
]

≤ K1π.(5.68)

For the third term on the right-hand side of (5.65), it follows from (5.57) in Lemma 5.9

that

E

[

∥

∥

∥V
(c)
π,0 (tj0−1, x)− V

(c)
π,1 (tj0−1, x)

∥

∥

∥

2
]

= 0 ≤ K1π.(5.69)

For the second term on the right-hand side of (5.65), it follows from (5.51)-(5.52), (2.11)-

(2.12), the Jensen’s inequality, and (5.48)-(5.49) that

E

[

∥

∥

∥V (c)(tj0−1, x)− V
(c)
π,0 (tj0−1, x)

∥

∥

∥

2
]

(5.70)

≤ K̄2

∫ tj0

tj0−1

(

‖V (s)− V (tj0)‖2Ck+c(D,q) +
∥

∥V̄ (s)− V̄ (tj0)
∥

∥

2
Ck+c(D,qd)

)

ds

≤ K2π,

where K̄2 and K2 are some nonnegative constants.

For the last term on the right-hand side of (5.65), it follows from (5.57) in Lemma 5.9,

Lemma 5.8, and Taylor’s Theorem that

E

[

∥

∥

∥V
(c)
π,1 (t, x)− V (c)

π (t, x)
∥

∥

∥

2
]

(5.71)

≤ E

[

∥

∥

∥V
(c)
π,0 (t, x)− V (c)(t, x)

∥

∥

∥

2
]

+ E

[

∥

∥

∥V (c)(t, x)− V (c)(t, ξ(x))
∥

∥

∥

2
]

≤ K̄2

∫ tj0

t

(

‖V (s)− V (tj0)‖2Ck+c(D,q) +
∥

∥V̄ (s)− V̄ (tj0)
∥

∥

2
Ck+c(D,qd)

)

ds

+K̄3πE

[

∥

∥

∥V (c+1)(t, ξ1(x))
∥

∥

∥

2
]

≤ K3π,
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where K̄3 and K3 are some nonnegative constants, ξ(x) and ξ1(x) along each sample path

are in some small neighborhoods centered at x. Therefore, it follows from (5.67)-(5.71) that

the claim in (5.66) is true.

Furthermore, for each t ∈ [tj0−1, tj0), x ∈ X , and c ∈ {0, 1, ...,M}, we have that

E

[

∥

∥

∥∆V̄ (c)(t, x)
∥

∥

∥

2
]

≤ 5E

[

∥

∥

∥V̄ (c)(t, x)− V̄ (c)(tj0−1, x)
∥

∥

∥

2
]

(5.72)

+5E

[

∥

∥

∥V̄ (c)(tj0−1, x)− V̄
(c)
π,0 (tj0−1, x)

∥

∥

∥

2
]

+5E

[

∥

∥

∥V̄
(c)
π,0 (tj0−1, x)− V̄

(c)
π,1 (tj0−1, x)

∥

∥

∥

2
]

+5E

[

∥

∥

∥V̄
(c)
π,1 (tj0−1, x)− V̄

(c)
π,1 (t, x)

∥

∥

∥

2
]

+5E

[

∥

∥

∥V̄
(c)
π,1 (t, x)− V̄ (c)

π (t, x)
∥

∥

∥

2
]

,

which implies that there is some nonnegative constant K̄0 such that

E

[

∥

∥

∥∆V̄ (c)(t, x)
∥

∥

∥

2
]

≤ K̄0π.(5.73)

In fact, for the first and fourth terms on the right-hand side of (5.72), it follows from

(5.49) in Lemma 5.8 that there is some nonnegative constant κ1 such that

E

[

∥

∥

∥V̄ (c)(t, x)− V̄ (c)(tj0−1, x)
∥

∥

∥

2
]

≤ κ1π,(5.74)

E

[

∥

∥

∥V̄
(c)
π,1 (tj0−1, x)− V̄

(c)
π,1 (t, x)

∥

∥

∥

2
]

≤ κ1π.(5.75)

For the third term on the right-hand side of (5.72), note that

E

[

(

X − E
[

X |Ftj0−1

])2
]

≤ E
[

(X − Y )2
]

(5.76)

for any two L2
Ftj0

(P )-integrable random variables X and Y . Then, it follows from (5.58) in

Lemma 5.9, the Hölder’s inequality, (5.76), (5.75), (2.12), and (5.68) that

E

[

∥

∥

∥V̄
(c)
π,0 (tj0−1, x)− V̄

(c)
π,1 (tj0−1, x)

∥

∥

∥

2
]

(5.77)

≤ 2

∆π
j0

E

[

∫ tj0

tj0−1

∥

∥

∥

(

V̄
(c)
π,1 (tj0−1, x)− J (c)(x, Vπ,1(tj0−1, x)

)

−
(

V̄
(c)
π,1 (s, x)− J (c)(x, Vπ,1(s, x)

)∥

∥

∥

2
ds

]

+
2

∆π
j0

E

[

∫ tj0

tj0−1

∥

∥

∥

(

V̄
(c)
π,1 (s, x)− J (c)(x, Vπ,1(s, x)

)

−E

[

∫ tj0

tj0−1

(

V̄
(c)
π,1 (s, x)− J (c)(x, Vπ,1(s, x)

)

∣

∣

∣

∣

∣

Ftj0−1

]∥

∥

∥

∥

∥

2

ds
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≤ 4

∆π
j0

E

[

∫ tj0

tj0−1

∥

∥

∥

(

V̄
(c)
π,1 (tj0−1, x)− J (c)(x, Vπ,1(tj0−1, x)

)

−
(

V̄
(c)
π,1 (s, x)− J (c)(x, Vπ,1(s, x)

)∥

∥

∥

2
ds

]

≤ κ1π

for some nonnegative constant κ1.

For the second term on the right-hand side of (5.72), it follows from (5.77), the special

form of the terminal variable in (5.54) , Lemmas 5.7-5.8, and the proof of the first three terms

in (5.65) that

E

[

∥

∥

∥V̄ (c)(tj0−1, x)− V̄
(c)
π,0 (tj0−1, x)

∥

∥

∥

2
]

(5.78)

≤ 2

(

E

[

∥

∥

∥V̄ (c)(tj0−1, x)− V̄
(c)
π,1 (tj0−1, x)

∥

∥

∥

2
]

+ E

[

∥

∥

∥V̄
(c)
π,1 (tj0−1, x)− V̄

(c)
π,0 (tj0−1, x)

∥

∥

∥

2
])

≤ 2

∫ tj0

tj0−1

E

[

∥

∥

∥V̄ (c)(s, x)− V̄
(c)
π,1 (s, x)

∥

∥

∥

2
]

ds+ κ̄2

∫ tj0

tj0−1

E

[

∥

∥

∥V (c)(s, x)− V
(c)
π,1 (s, x)

∥

∥

∥

2
]

ds

+κ̄2π

≤ κ2π,

where κ2 and κ̄2 are some nonnegative constants.

For the last term on the right-hand side of (5.72), it follows from Lemma 5.8, Taylor’s

Theorem, and the proof in (5.78) that

E

[

∥

∥

∥V̄
(c)
π,1 (t, x)− V̄ (c)

π (t, x)
∥

∥

∥

2
]

(5.79)

≤ E

[

∥

∥

∥V̄
(c)
π,1 (t, x)− V̄ (c)(t, x)

∥

∥

∥

2
]

+ E

[

∥

∥

∥V̄ (c)(t, x)− V̄ (c)(t, ξ(x))
∥

∥

∥

2
]

≤ κ̄2π + κ̄3πE

[

∥

∥

∥V (c+1)(t, ξ1(x))
∥

∥

∥

2
]

≤ κ3π,

where κ̄3 and κ3 are some nonnegative constants, ξ(x) and ξ1(x) along each sample path are

in some small neighborhoods centered at x. Therefore, it follows from (5.74)-(5.79) that the

claim in (5.73) is true.

Finally, the claim in (3.32) for Algorithm 3.1 follows from (5.66) and (5.73). Hence, we

finish the proof of Theorem 3.1. ✷
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