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L1 scheme for solving an inverse problem

subject to a fractional diffusion equation ∗

Binjie Li, Xiaoping Xie and Yubin Yan

Abstract

This paper considers the temporal discretization of an inverse problem
subject to a time fractional diffusion equation. Firstly, the convergence
of the L1 scheme is established with an arbitrary sectorial operator of
spectral angle < π/2, that is the resolvent set of this operator contains
{z ∈ C \ {0} : |Arg z| < θ} for some π/2 < θ < π. The relationship
between the time fractional order α ∈ (0, 1) and the constants in the
error estimates is precisely characterized, revealing that the L1 scheme
is robust as α approaches 1. Then an inverse problem of a fractional
diffusion equation is analyzed, and the convergence analysis of a temporal
discretization of this inverse problem is given. Finally, numerical results
are provided to confirm the theoretical results.

Keywords: fractional diffusion equation, L1 scheme, convergence, inverse prob-
lem.

1 Introduction

Let 0 < T <∞ and let Ω ⊂ R
d (d = 1, 2, 3) be a bounded domain with Lipschitz

continuous boundary. Assume that A is the realization of a second-order partial
differential operator with homogeneous Dirichlet boundary condition in L2(Ω).
We consider the following fractional diffusion equation:

Dα
0+ y(t)−Ay(t) = f(t), 0 < t 6 T, with y(0) = 0, (1)

where 0 < α < 1, Dα
0+ is a Riemann-Liouville fractional differential operator of

order α, and f is a given function.
The L1 scheme is one of the most popular numerical methods for fractional

diffusion equations. Lin and Xu [18] analyzed the L1 scheme for the fractional
diffusion equation and obtained the temporal accuracy O(τ2−α) with 0 < α < 1,
where τ denotes the time step size. Sun and Wu [35] proposed the L1 scheme

∗Binjie Li: School of Mathematics, Sichuan University, Chengdu 610064, China, (libin-
jie@scu.edu.cn); Xiaoping Xie: School of Mathematics, Sichuan University, Chengdu 610064,
China, (xpxie@scu.edu.cn); Yubin Yan: Department of Mathematical and Physical Sci-
ences, University of Chester, Thorn- ton Science Park, Pool Lane, Ince, CH2 4NU, UK,
(y.yan@chester.ac.uk). Binjie Li was supported in part by the National Natural Science Foun-
dation of China (NSFC) Grant No. 11901410; Xiaoping Xie was supported in part by the
National Natural Science Foundation of China (NSFC) Grant No. 11771312; Dr. Yubin Yan
is the corresponding author.

1

http://arxiv.org/abs/2006.04291v2


and derived temporal accuracy O(τ3−α) with 1 < α < 2 for the fractional wave
equation. The analysis in the above two papers both assume that the underly-
ing solution is sufficiently smooth. However, Jin et al. [9] proved that the L1
scheme is of only first-order temporal accuracy for fractional diffusion equations
with non-vanishing initial value, and Jin et al. [13, Lemma 4.2] derived only
first-order temporal accuracy for an inhomogeneous fractional equation. This
phenomenon is caused by the well-known fact that the solution of a fractional
diffusion equation generally has singularity in time no matter how smooth the
data are, and it indicates that numerical analysis without regularity restrictions
on the solution is important for the fractional diffusion equation. Recently, Yan
et al. [41] proposed a modified L1 scheme for a fractional diffusion equation,
which has (2−α)-order temporal accuracy. For the L1 scheme with nonuniform
grids, we refer the reader to [34, 17]; we also note that analyzing the L1 scheme
with nonuniform grids for a fractional diffusion equation with nonsmooth initial
value remains to be an open problem.

Although the sectorial operator is considered, the theoretical results in [9, 41]
can not be applied to a fractional diffusion equation with an arbitrary sectorial
operator, since they require the spectral angle of the sectorial operator not to be
greater than π/4 (cf. [9, Remark 3.8]), that is the resolvent set of this operator
must contain {z ∈ C \ {0} : |Arg z| < 3π/4}. In our work, the analysis is
suitable for an arbitrary sectorial operator with spectral angle < π/2.

As the fractional diffusion equation is an extension of the normal diffusion
equation, the solution of a fractional diffusion equation will naturally converge to
the solution of a normal diffusion equation as α → 1−, and hence the L1 scheme
is expected to be robust as α → 1−. Recently, Huang et al. [6] obtained an α-
robust error estimate for a multi-term fractional diffusion problem. However,
to our best knowledge, the α-robust convergence of the L1 scheme with an
arbitrary sectorial operator is not available in the literature. Here we note that
the constants in the error estimates in [22, 10, 9, 41] all depend on α and that
the constants in the error estimates in [14] will clearly blow up as α → 1−. This
motivates us to develop new techniques to analyze the convergence of the L1
scheme with an arbitrary sectorial operator and to investigate the robustness of
the L1 scheme as α → 1−.

The theory of inverse problems for differential equations has been extensively
developed within the framework of mathematical physics. One important class
of inverse problems for parabolic equations is to reconstruct the source term,
the initial value or the boundary conditions from the value of the solution at the
final time; see [32, 33]. The time fractional diffusion equation is an extension
of the normal diffusion equation, widely used to model the physical phenomena
with memory effect. Hence, this paper considers the source term identification
of a time fractional diffusion equation, based on the value of the solution at
the final time. For the related theoretical results, we refer the reader to [7,
19, 28, 37, 38, 39] and the references therein. We apply the famous Tikhonov
regularization technique to this inverse problem and establish the convergence
of its temporal discretization that uses the L1 scheme.

The main contributions of this paper are as follows:

1. the convergence of the L1 scheme for solving time fractional diffusion
equations with an arbitrary sectorial operator of spectral angle < π/2 is
established;
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2. the constants in the derived error estimates will not blow up as α → 1−,
which shows that the L1 scheme is robust as α→ 1−;

3. the convergence analysis of a temporally discrete inverse problem subject
to a fractional diffusion equation is provided.

Moreover, a feature of the error estimates in this paper is that they immedi-
ately derive the corresponding error estimates of the backward Euler scheme,
by passing to the limit α→ 1−.

Before concluding this section, we would also like to mention two important
algorithms for solving fractional diffusion equations. The first algorithm uses
the convolution quadrature proposed by Lubich [20, 21]. Lubich et al. [22, 1]
firstly used the convolution quadrature to design numerical methods for frac-
tional diffusion-wave equations, and then Jin et al. [10, 11] further developed
these algorithms. The second algorithm employs the Galerkin methods to dis-
cretize the time fractional operators, which was firstly developed by McLean
and Mustapha [25, 30, 31, 29].

The rest of the paper is organized as follows. Section 2 introduces some
conventions, the definitions of A and A∗, the Riemann-Liouville fractional op-
erators and the mild solution theory of linear fractional diffusion equations.
Section 3 derives the convergence of the L1 scheme. Section 4 investigates an
inverse problem of a fractional diffusion equation and establishes the conver-
gence of a temporally discrete inverse problem. Finally, Section 5 performs
three numerical experiments to verify the theoretical results.

2 Preliminaries

Throughout this paper, we will use the following conventions: for each linear
vector space, the scalars are the complex numbers; H1

0 (Ω) is a standard complex-
valued Sobolev space, and H−1(Ω) is the usual dual space of H1

0 (Ω); L(L2(Ω))
is the space of all bounded linear operators on L2(Ω); for a Banach space B, we
use 〈·, ·〉B to denote a duality paring between B∗ (the dual space of B) and B;
for a Lebesgue measurable subset D ⊂ Rl, 1 6 l 6 4, 〈p, q〉D means the integral∫
D
pq, where q is the conjugate of q; for a function v defined on (0, T ), by v(t−),

0 < t 6 T , we mean the limit lims→t− v(s); the notations c×, d×, C× mean some
positive constants and their values may differ at each occurrence. In addition,
for any 0 < θ < π, define

Σθ := {z ∈ C \ {0} : −θ < Arg z < θ}, (2)

Γθ := {z ∈ C \ {0} : |Arg z| = θ} ∪ {0} (3)

Υθ := {z ∈ Γθ : −π 6 ℑz 6 π}, (4)

where Γθ and Υθ are so oriented that the negative real axis is to their left. For
the integral

∫
Γθ
v dz or

∫
Υθ
v dz, if v has singularity or is not defined at the

origin, then Γθ or Υθ should be deformed so that the origin is to its left; for
example, Γθ is deformed to

{z ∈ C : |z| > ǫ, |Arg z| = θ} ∪ {z ∈ C : |z| = ǫ, |Arg z| 6 θ},

where 0 < ǫ <∞.
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Riemann-Liouville fractional calculus operators. Assume that −∞ 6

a < b 6 ∞ and X is a Banach space. For any γ > 0, define

(
D−γ

a+ v
)
(t) :=

1

Γ(γ)

∫ t

a

(t− s)γ−1v(s) ds, a.e. t ∈ (a, b),

(
D−γ

b− v
)
(t) :=

1

Γ(γ)

∫ b

t

(s− t)γ−1v(s) ds, a.e. t ∈ (a, b),

for all v ∈ L1(a, b;X), where Γ(·) is the gamma function. In addition, let D0
a+

and D0
b− be the identity operator on L1(a, b;X). For j − 1 < γ 6 j, j ∈ N>0,

define

Dγ
a+ v := Dj Dγ−j

a+ v,

Dγ
b− v := (−D)j Dγ−j

b− v,

for all v ∈ L1(a, b;X), where D is the first-order differential operator in the
distribution sense.

Definitions of A and A∗. Let A : H1
0 (Ω) → H−1(Ω) be a second-order partial

differential operator of the form

Av :=

d∑

i,j=1

∂

∂xi

(aij(x)
∂

∂xj
v) + b(x) · ∇v + c(x)v, ∀v ∈ H1

0 (Ω),

where aij ∈ L∞(Ω), b ∈ [L∞(Ω)]d and c ∈ L∞(Ω) are real-valued. Assume that
A : H1

0 (Ω) → H−1(Ω) is a sectorial operator satisfying that




ρ(A) ⊃ Σω0
, (5a)

‖R(z,A)‖L(L2(Ω)) 6 M0 |z|−1 ∀z ∈ Σω0
, (5b)

〈Av, v〉H1

0
(Ω) 6 0, ∀v ∈ H1

0 (Ω), (5c)

where ρ(A) is the resolvent set of A, π/2 < ω0 < π, R(z,A) := (z −A)−1, and
M0 is a positive constant. Define the adjoint operator A∗ : H1

0 (Ω) → H−1(Ω)
of A by that

A∗v :=

d∑

i,j=1

∂

∂xj

(aij(x)
∂

∂xi
v)−∇ · (b(x)v) + c(x)v, ∀v ∈ H1

0 (Ω).

It is evident that

〈Av, w〉H1

0
(Ω) = 〈A∗w, v〉H1

0
(Ω) for all v, w ∈ H1

0 (Ω).

Solutions of the fractional diffusion equation. For any t > 0, define

E(t) :=
1

2πi

∫

Γω0

etzR(zα,A) dz. (6)

By (5b), it is evident that E is an L(L2(Ω))-valued analytic function on (0,∞).
Moreover, a direct computation gives the following two estimates (cf. Jin et
al. [10]): for any t > 0,

‖E(t)‖L(L2(Ω)) 6 Cω0,M0
tα−1, (7)

‖E′(t)‖L(L2(Ω)) 6 Cω0,M0
tα−2. (8)
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For any g ∈ L1(0, T ;L2(Ω)), we call

(Sg)(t) := (E ∗ g)(t) =
∫ t

0

E(t− s)g(s) ds, a.e. 0 < t 6 T, (9)

the mild solution to the following fractional diffusion equation

(Dα
0+ −A)w = g, with w(0) = 0, (10)

where the symbol ∗ denotes the convolution.
If g = vδ0 with v ∈ L2(Ω) and δ0 being the Dirac measure (in time) concen-

trated at t = 0, then we call

(S(vδ0))(t) := E(t)v, 0 < t 6 T, (11)

the mild solution to equation (10). Symmetrically, for any g ∈ L1(0, T ;L2(Ω)),
we call

(S∗g)(t) :=

∫ T

t

E∗(s− t)g(s) ds, a.e. 0 < t < T, (12)

the mild solution to the following backward fractional diffusion equation:

(Dα
T− −A∗)w = g, with w(T ) = 0. (13)

If g = vδT with v ∈ L2(Ω) and δT being the Dirac measure (in time) concen-
trated at t = T , then we call

(S∗(vδT ))(t) := E∗(T − t)v, 0 < t 6 T, (14)

the mild solution to equation (13). The above E∗ is defined by

E∗(t) :=
1

2πi

∫

Γω0

etzR(zα,A∗) dz, t > 0. (15)

Similarly to (7), (8), for any t > 0, we have

‖E∗(t)‖L(L2(Ω)) 6 Cω0,M0
tα−1, (16)

‖(E∗)′(t)‖L(L2(Ω)) 6 Cω0,M0
tα−2. (17)

Evidently, for any t > 0, E∗(t) is the adjoint operator of E(t) in the sense that

〈E(t)v, w〉Ω = 〈v, E∗(t)w〉Ω ∀v, w ∈ L2(Ω). (18)

Remark 2.1. By (7), a routine calculation (cf. [2, Theorem 2.6]) yields that

‖Sg‖C([0,T ];L2(Ω)) 6 Cα,q,ω0,M0,T ‖g‖Lq(0,T ;L2(Ω)) (19)

for all g ∈ Lq(0, T ;L2(Ω)) with q > 1/α.

Remark 2.2. For the above solution theory of fractional diffusion equations,
we refer the reader to [22, 26, 10].
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The L1 scheme. Let J ∈ N>0 and define tj := jτ for each j = 0, 1, 2, . . . , J ,
where τ := T/J . Define bj := j1−α/Γ(2 − α) for each j ∈ N. Assume that
g ∈ L1(0, T ;H−1(Ω)). Applying the L1 scheme [18] to problem (10) yields the
following discretization: seek {Wj}Jj=1 ⊂ H1

0 (Ω) such that, for any 1 6 k 6 J ,

b1Wk +

k−1∑

j=1

(bk−j+1 − 2bk−j + bk−j−1)Wj − ταAWk = τα−1

∫ tk

tk−1

g(t) dt (20)

in H−1(Ω), where Wj , 1 6 j 6 J , is an approximation of w(tj). Symmetrically,
applying the L1 scheme to problem (13) yields the following discretization: seek
{Wj}Jj=1 ⊂ H1

0 (Ω) such that, for any 1 6 k 6 J ,

b1Wk+

J∑

j=k+1

(bj−k+1−2bj−k+bj−k−1)Wj−ταA∗Wk = τα−1

∫ tk

tk−1

g(t) dt (21)

in H−1(Ω). For each 1 6 j 6 J , we will use Sτ,jg and S∗
τ,jg to denote the above

Wj and Wj , respectively, that is

Sτ,jg :=Wj , S∗
τ,jg := Wj . (22)

In addition, for each 1 6 j 6 J , we define

Sτ,j(vδ0) := Sτ,j(vδ̂0), S∗
τ,j(vδT ) := S∗

τ,j(vδ̂T ), (23)

where v ∈ H−1(Ω) and

δ̂0(t) :=

{
τ−1 if 0 < t < t1,

0 if t1 < t < T,
(24)

δ̂T (t) :=

{
0 if 0 < t < tJ−1,

τ−1 if tJ−1 < t < T.
(25)

3 Convergence of the L1 scheme

Theorem 3.1. Let 0 < α < 1. Let Sg and Sτ,jg be defined by (9) and (22),
respectively. Then we have the following estimates:

1. For any g ∈ L∞(0, T ;L2(Ω)),

max
16j6J

‖(Sg)(tj)− Sτ,jg‖L2(Ω) 6 Cω0,M0
τα
( 1
α

+
1− Jα−1

1− α

)
‖g‖L∞(0,T ;L2(Ω)).

(26)

2. For any v ∈ L2(Ω),

max
16j6J

j2−α‖S(vδ0)(tj)− Sτ,j(vδ0)‖L2(Ω) 6 Cω0,M0
τα−1‖v‖L2(Ω), (27)

J∑

j=1

‖S(vδ0)− Sτ,j(vδ0)‖L1(tj−1,tj ;L
2(Ω)) 6 Cω0,M0

τα
( 1
α

+
1− Jα−1

1− α

)
‖v‖L2(Ω).

(28)
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Remark 3.1. Assume that g ∈ L∞(0, T ;L2(Ω)). Passing to the limit α → 1−
in (20) and (26) yields that, for the parabolic equation

w′ −Aw = g, with w(0) = 0,

and the corresponding backward Euler scheme
{
W0 = 0,

Wk −Wk−1 − τAWk =
∫ tk
tk−1

g(t) dt, 1 6 k 6 J,

one has the error estimate, noting that limα→1
1−Jα−1

1−α = ln J ,

max
16j6J

‖w(tj)−Wj‖L2(Ω) 6 Cω0,M0
(1 + ln J)τ‖g‖L∞(0,T ;L2(Ω)).

Remark 3.2. Let us consider the following time fractional diffusion equation

Dα
0+(y − y0)(t) −Ay(t) = 0, 0 < t 6 T, with y(0) = y0,

where y0 ∈ L2(Ω) is given. Applying the L1 scheme to this equation yields the
following discretization: seek {Wj}Jj=1 ⊂ H1

0 (Ω) such that, for any 1 6 k 6 J ,

b1Wk +

k−1∑

j=1

(bk−j+1 − 2bk−j + bk−j−1)Wj − ταAWk = τα−1(bk − bk−1)y0

in H−1(Ω). Following the proof of [9, Theorem 3.1], we can use the technical
results in Subsection 3.1 to derive that, for any 1 6 j 6 J ,

‖y(tj)−Wj‖L2(Ω) 6 Cω0,M0
τt−1

j ‖y0‖L2(Ω).

The main task of the rest of this section is to prove the above theorem.

3.1 Some technical results

Define the discrete Laplace transform of {bj}∞j=1 by that

b̂(z) :=

∞∑

j=1

bje
−jz , z ∈ Σπ/2.

By the analytic continuation technique, b̂ has an analytic continuation (cf. [27,
Equation (21)])

b̂(z) =
1

2πi

∫ (0+)

−∞

ew−z

1− ew−z
wα−2 dw, z ∈ Σπ, (29)

where
∫ (0+)

−∞ means an integral on a piecewise smooth and non-self-intersecting
path enclosing the negative real axis and orienting counterclockwise, and 0 and
{z + 2kπi 6= 0 : k ∈ Z} lie on the different sides of this path. Define

ψ(z) := (ez − 1)2 b̂(z), z ∈ Σπ. (30)

For z = x+ iy ∈ C \ (−∞, 0], we have that (cf. [9, Equation (3.7)])

ℜ
(
e−zψ(z)

)
=

sin(π(1−α))
π

∫
∞

0

sα−2(1−e−s)(1+e−2x−s−e−x−s cos y−e−x cos y)

1− 2e−x−s cos y + e−2x−2s
ds.

(31)
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Lemma 3.1. For any L > 0, we have

sup
0<α<1

sup
z∈Σπ

−L6ℜz60
−π6ℑz6π

∣∣∣̂b(z)− zα−2
∣∣∣ = CL. (32)

Proof. For any z ∈ Σπ satisfying −L 6 ℜz 6 0 and 0 6 ℑz 6 π, by (29),
Cauchy’s integral theorem and the residue theorem we obtain

b̂(z) = zα−2 +
1

2πi

∫ 1−iπ

−∞−iπ

ew−z

1− ew−z
wα−2 dw +

1

2πi

∫ 1+i3π/2

1−iπ

ew−z

1− ew−z
wα−2 dw

+
1

2πi

∫
−∞+i3π/2

1+i3π/2

ew−z

1− ew−z
wα−2 dw

=: zα−2 +G(α, z).

A routine calculation verifies that G is continuous on

[0, 1]× {ξ ∈ C : −L 6 ℜξ 6 0, 0 6 ℑξ 6 π},

and so
sup

0<α<1
sup

−L6ℜz60
06ℑz6π

|G(α, z)| = CL.

It follows that
sup

0<α<1
sup
z∈Σπ

−L6ℜz60
06ℑz6π

∣∣∣̂b(z)− zα−2
∣∣∣ = CL.

Similarly,

sup
0<α<1

sup
z∈Σπ

−L6ℜz60
−π6ℑz60

∣∣∣̂b(z)− zα−2
∣∣∣ = CL.

Combining the above two estimates proves (32) and hence this lemma. �

Lemma 3.2. For any 0 < δ < π and L > 0, we have

inf
0<α<1

inf
δ6y6π

ℜ
(
e−iyψ(iy)

)
= Cδ, (33)

sup
0<α<1

sup
−L6ℜz60
δ6ℑz6π

∣∣∣∣
d

dz
(e−zψ(z))

∣∣∣∣ = Cδ,L. (34)

Proof. For any δ 6 y 6 π, we have, by (31) with z = 0 + iy,

ℜ
(
e−iyψ(iy)

)
=

sin(π(1− α))

π

∫ ∞

0

sα−2(1− e−2s)(1− cos y)

1− 2e−s cos y + e−2s
ds

>
sin(π(1− α))

π
(1 − cos δ)

∫ ∞

0

sα−2(1− e−2s)

1 + 2e−s + e−2s
ds,

=
sin(π(1− α))

π
(1 − cos δ)

[ ∫ 1

0

sα−2(1− e−2s)

1 + 2e−s + e−2s
ds+

∫ ∞

1

sα−2(1− e−2s)

1 + 2e−s + e−2s
ds
]
.
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In view of the two simple estimates

∫ 1

0

sα−2(1 − e−2s)

1 + 2e−s + e−2s
ds >

∫ 1

0

sα−2(e−2s2s)

4
ds =

∫ 1

0

sα−1(e−2s)

2
ds

>

∫ 1

0

sα−1(e−2)

2
ds =

e−2

2α

and
∫ ∞

1

sα−2(1− e−2s)

1 + 2e−s + e−2s
ds >

∫ ∞

1

sα−2 1− e−2

4
ds =

1− e−2

4(1− α)
,

we then obtain, for any δ 6 y 6 π,

ℜ
(
e−iyψ(iy)

)
>

sin(π(1 − α))

π
(1− cos δ)

(e−2

2α
+

1− e−2

4(1− α))

)
> Cδ.

This implies inequality (33).
Now let us prove (34). For any z ∈ C satisfying δ 6 ℑz 6 π, using the

residue theorem yields, by (29), that

b̂(z) =

∞∑

k=−∞

(z + 2kπi)α−2, (35)

and hence

b̂′(z) = (α− 2)
∞∑

k=−∞

(z + 2kπi)α−3.

A simple calculation then gives

sup
0<α<1

sup
−L6ℜz60
δ6ℑz6π

|e−z(ez − 1)2b̂′(z)| = Cδ,L.

In addition, Lemma 3.1 implies

sup
0<α<1

sup
−L6ℜz60
δ6ℑz6π

|(ez − e−z )̂b(z)| = Cδ,L.

Consequently, (34) follows from the equality

d

dz
(e−zψ(z)) = (ez − e−z )̂b(z) + e−z(ez − 1)2b̂′(z), z ∈ Σπ.

This completes the proof. �

Lemma 3.3. Assume that π/2 < θ0 < π. Then there exists π/2 < θ∗ 6 θ0
depending only on θ0 such that

e−zψ(z) ∈ Σθ0 for all z ∈ Σθ∗ with − π 6 ℑz 6 π (36)

and
|e−zψ(z)| > Cθ0 |z|α for all z ∈ Υθ∗ \ {0}. (37)
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Proof. Step 1. By (31), a simple calculation gives

ℜ
(
e−zψ(z)

)
> 0 for all z ∈ D1,

so that
e−zψ(z) ∈ Σπ/2 for all z ∈ D1, (38)

where
D1 = {z ∈ C : ℜz > 0, 0 6 ℑz 6 π, z 6= 0}.

Step 2. From (30) and (32) we conclude that there exists a continuous
function G on (0, 1)×D2, such that

e−zψ(z) = zα
(
1 + zG(α, z)

)
∀z ∈ D2 (39)

and that
sup

0<α<1
sup
z∈D2

|G(α, z)| = Cθ0 ,

where
D2 := {ξ ∈ C \ {0} : π/2 6 Arg(ξ) 6 θ0, 0 < ℑξ 6 π}.

Hence, there exists 0 < ǫ0 < π, depending only on θ0, such that

|Arg(1 + zG(α, z))| 6 (θ0 − π/2)/2 and |e−zψ(z)| > Cθ0 |z|α

for all z ∈ Σθ0 \ Σπ/2 with 0 < ℑz 6 ǫ0.

Since

Arg
(
e−zψ(z)

)
= Arg

(
zα(1 + zG(α, z))

)
(by (39))

= αArg(z) + Arg
(
1 + zG(α, z)

)
,

it follows that

e−zψ(z) ∈ Σθ0 and |e−zψ(z)| > Cθ0 |z|α

for all z ∈ Σ(θ0+π/2)/2 \ Σπ/2 with 0 < ℑz 6 ǫ0.
(40)

Step 3. Note that ǫ0 is a constant depending only on θ0. By (33) we have

inf
0<α<1

inf
ℜz=0

ǫ06ℑz6π

ℜ
(
e−zψ(z)

)
= Cθ0 .

From (34) we then conclude that there exists 0 < ǫ1 < π, depending only on θ0,
such that

inf
0<α<1

inf
−ǫ16ℜz60
ǫ06ℑz6π

ℜ
(
e−zψ(z)

)
= Cθ0 > 0.

It follows that

e−zψ(z) ∈ Σπ/2 and |e−zψ(z)| > Cθ0 for all

z ∈ Σ(θ0+π/2)/2 \ Σπ/2 with − ǫ1 6 ℜz 6 0 and ǫ0 6 ℑz 6 π.
(41)

Letting θ∗ := π/2 + arctan(ǫ1/π), by (38), (40) and (41) we obtain that

e−zψ(z) ∈ Σθ0 for all z ∈ Σθ∗ with 0 6 ℑz 6 π (42)
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and that

|e−zψ(z)| > Cθ0 |z|α for all z ∈ Υθ∗ with 0 < ℑz 6 π. (43)

Step 4. By the fact that

e−zψ(z) = e−zψ(z) for all z ∈ Σπ,

using (42) and (43) proves (36) and (37), respectively. This completes the
proof. �

By (30) and Lemma 3.1, a routine calculation gives the following lemma.

Lemma 3.4. Assume that π/2 < θ < π. Then

|ψ(z)− zα| 6 Cθ|z|α+1 (44)

for all z ∈ Υθ \ {0}.
Remark 3.3. In Lemma 3.3, we prove that for any given θ0 ∈ (π/2, π), we
can show that e−zψ(z) ∈ Σθ0 for z ∈ Σθ∗ with some π/2 < θ∗ 6 θ0. Therefore
our error estimates hold for any elliptic operator A where the resolvent set of
A lies in Σθ0 . The techniques used in the proof of Lemma 3.3 are new and may
be extended to consider the error estimates for the higher order L-type schemes.
Let us recall some available approach in literature for proving Lemma 3.3. In
Jin et al. [9] the authors use the following steps to show e−zψ(z) ∈ Σθ0 :

Step 1. Let z ∈ {z : Arg(z) = θ∗ = π/2} and prove that e−zψ(z) ∈ Σθ0 for
some suitable θ0 ∈ (π/2, π).

Step 2. By the continuity of e−zψ(z) with respect to θ∗, one may claim that
e−zψ(z) ∈ Σθ0 also for θ∗ ∈ (π/2, π) for θ∗ sufficiently close to π/2.

By using this approach, Jin et al. [9] show that θ0 = 3π/4 − ǫ, with ǫ > 0,
which implies that this approach do not work for the elliptic operator A where
the resolvent set of A lies in Σθ0 with θ0 < 3π/4. It seems also very difficult to
prove the similar results as in Lemma 3.3 for the higher order L-type scheme by
using the approach in [9]. Therefore the new techniques developed in the proof
of Lemma 3.3 may open a door to consider the numerical analysis for high order
L-type schemes for solving time fractional partial differential equations.

3.2 Proof of Theorem 3.1

By Lemma 3.3, there exists π/2 < ω∗ 6 ω0, depending only on ω0, such that

e−zψ(z) ∈ Σω0
for all z ∈ Σω∗ with −π 6 Im z 6 π (45)

and that
|e−zψ(z)| > Cω0

|z|α for all z ∈ Υω∗ \ {0}. (46)

Define
E(t) := τ−1E⌊t/τ⌋, t > 0, (47)

where ⌊·⌋ is the floor function and

Ej :=
1

2πi

∫

Υω∗

ejzR(τ−αe−zψ(z),A) dz, j ∈ N. (48)

Note that (5a) and (45) guarantee that the above Ej is well defined, and we
recall that ψ is defined by (30).
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Lemma 3.5. For any g ∈ L1(0, T ;L2(Ω)), we have

Sτ,jg =

∫ tj

0

E(tj − t)g(t) dt ∀1 6 j 6 J. (49)

Proof. Since the techniques used in this proof are standard in the theory of
Laplace transform, we only provide a brief proof; see [27, 8, 41] for more de-
tails. Extend g to (T,∞) by zero and define tj := jτ for each j > J . Define
{Wk}∞k=1 ⊂ H1

0 (Ω) by that, for any k > 1,

b1Wk +
k−1∑

j=1

(bk−j+1 − 2bk−j + bk−j−1)Wj − ταAWk = τα−1

∫ tk

tk−1

g(t) dt (50)

in H−1(Ω). By definition,

Sτ,jg =Wj , ∀1 6 j 6 J. (51)

The rest of this proof is divided into three steps.
Step 1. We prove that the following discrete Laplace transform of {Wk}∞k=1

is analytic on Σπ/2:

Ŵ (z) :=
∞∑

k=1

e−kzWk, z ∈ Σπ/2. (52)

Note first that we can assume that g ∈ L∞(0,∞;L2(Ω)). Since

sup
a>0

‖g‖
0H−α/2(0,a;L2(Ω)) <∞,

by the techniques to prove (75) and (78) we can obtain

sup
k>1

‖Wk‖L2(Ω) <∞.

Therefore, it is evident that Ŵ is analytic on Σπ/2.
Step 2. Let us prove that, for any 1 6 j 6 J ,

Wj =

J∑

k=1

τ−1

2πi

∫ 1+πi

1−πi

R(τ−αe−zψ(z),A)e(j−k)z dz

∫ tk

tk−1

g(t) dt. (53)

Multiplying both sides of (50) by e−kz and summing over k from 1 to ∞, we
obtain

(
(ez − 2 + e−z )̂b(z)− ταA

)
Ŵ (z) = τα−1

∞∑

k=1

∫ tk

tk−1

g(t) dte−kz, ∀z ∈ Σπ/2,

which, together with (30), yields

(e−zψ(z)− ταA)Ŵ (z) = τα−1
∞∑

k=1

∫ tk

tk−1

g(t) dte−kz, ∀z ∈ Σπ/2. (54)
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Hence, from (5a), (45) and the fact g|(T,∞) = 0, it follows that

Ŵ (z) = τ−1R(τ−αe−zψ(z),A)

∞∑

k=1

∫ tk

tk−1

g(t) dte−kz

= τ−1R(τ−αe−zψ(z),A)

J∑

k=1

∫ tk

tk−1

g(t) dte−kz

for all z ∈ Σπ/2 with −π 6 Im z 6 π. Therefore, (53) follows from the equality

Wj =
1

2πi

∫ 1+πi

1−πi

Ŵ (z)ejz dz,

which is evident by (52).
Step 3. By Cauchy’s integral theorem, we have, for any a > 1, when k > j+1,

∥∥∥
∫ 1+πi

1−πi

R(τ−αe−zψ(z),A)e(j−k)z dz
∥∥∥
L(L2(Ω))

=
∥∥∥
∫ a+πi

a−πi

R(τ−αe−zψ(z),A)e(j−k)z dz
∥∥∥
L(L2(Ω))

6 M0e
(j−k)a

∫ a+πi

a−πi

|dz|
τ−α|e−zψ(z)| (by (5b)). (55)

Since (31) implies

|e−zψ(z)| > Cα for all z ∈ C with ℜz > 1,

passing to the limit a→ ∞ in (55) yields

∫ 1+πi

1−πi

R(τ−αe−zψ(z),A)e(j−k)z dz = 0, for k > j + 1.

Thus from (53) we obtain

Wj =

j∑

k=1

τ−1

2πi

∫ 1+πi

1−πi

R(τ−αe−zψ(z),A)e(j−k)z dz

∫ tk

tk−1

g(t) dt

=

j∑

k=1

Ej−k

∫ tk

tk−1

g(t) dt =

∫ tj

0

E(tj − t)g(t) dt.

Here we have used the equality

∫ 1+πi

1−πi

R(τ−αe−zψ(z),A)e(j−k)z dz =

∫

Υω∗

R(τ−αe−zψ(z),A)e(j−k)z dz,

which can be easily verified by Cauchy’s integral theorem. By (51), this proves
(49) and thus completes the proof. �

Remark 3.4. In (49), we use the piecewise kernel function E(t) to express the
discrete solution Sτ,jg, which is different from the discrete solution expression
in literature [9, 41], where the authors assumed that the function g has more
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regularities at 0 and has the Taylor expansion at 0 and then applied the con-
volution techniques for obtaining the discrete solution. In our paper, we only
assume that g ∈ L∞(0, T ;L2(Ω)) and we did not use the convolution techniques
for obtaining the discrete solutions as in [9, 41]. One may use the similar idea to
consider more general function g; for example, g is a stochastic Wiener process

g = dW (t)
dt , where W is the Hilbert space valued cylindrical Wiener process.

Lemma 3.6. For any z ∈ Υω∗ \ {0},

‖ezR(τ−αzα,A)−R(τ−αe−zψ(z),A)‖L(L2(Ω)) 6 Cω0,M0
|z|1−ατα. (56)

Proof. We have

ezR(τ−αzα,A)−R(τ−αe−zψ(z),A)

=
(
τ−α

(
ψ(z)− zα) + (1− ez)A

)
R(τ−αzα,A)R(τ−αe−zψ(z),A)

= I1 + I2,

where

I1 := τ−α(ψ(z)− zα)R(τ−αzα,A)R(τ−αe−zψ(z),A),

I2 := (1− ez)AR(τ−αzα,A)R(τ−αe−zψ(z),A).

Note that (5b), (45) and (46) imply

‖R(τ−αzα,A)‖L(L2(Ω)) 6 CM0
|z|−ατα, (57)

‖R(τ−αe−zψ(z),A)‖L(L2(Ω)) 6 Cω0,M0
|z|−ατα. (58)

By (44), (57) and (58) we have

‖I1‖L(L2(Ω)) 6 Cω0,M0
|z|1−ατα.

Since

‖AR(τ−αzα,A)R(τ−αe−zψ(z),A)‖L(L2(Ω))

= ‖(τ−αzαR(τ−αzα,A)− I)R(τ−αe−zψ(z),A)‖L(L2(Ω))

6 Cω0,M0
|z|−ατα (by (57) and (58)),

we obtain
‖I2‖L(L2(Ω)) 6 Cω0,M0

|z|1−ατα.

Combining the above estimates of I1 and I2 proves (56) and hence this lemma.
�

Lemma 3.7. For any 1 6 j 6 J ,

‖E(tj)− E(tj−)‖L(L2(Ω)) 6 Cω0,M0
τα−1jα−2. (59)

Proof. Inserting t = tj into (6) yields

E(tj) =
1

2πi

∫

Γω∗

etjzR(zα,A) dz =
τ−1

2πi

∫

Γω∗

ejzR(τ−αzα,A) dz,
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so that from (47) and (48) it follows that

E(tj)− E(tj−) = I1 + I2,

where

I1 :=
τ−1

2πi

∫

Γω∗\Υω∗

ejzR(τ−αzα,A) dz,

I2 :=
τ−1

2πi

∫

Υω∗

e(j−1)z
(
ezR(τ−αzα,A)−R(τ−αe−zψ(z),A)

)
dz.

For I1, we have, by (5b),

‖I1‖L(L2(Ω)) 6 CM0
τ−1

∫ ∞

π/ sinω∗

ej cosω
∗r(ταr−α) dr

6 CM0
τα−1

∫ ∞

π/ sinω∗

ej cosω
∗rr−α dr

6 CM0
τα−1

∫ ∞

π/ sinω∗

ej cosω
∗rr1−α dr ( since r is lower bounded)

6 Cω0,M0
τα−1jα−2ejπ cotω∗

6 Cω0,M0
τα−1jα−2.

For I2, by (56) we obtain

‖I2‖L(L2(Ω)) 6 Cω0,M0
τ−1

∫ π/ sinω∗

0

e(j−1) cosω∗rr
(
ταr−α

)
dr

6 Cω0,M0
τα−1

∫ π/ sinω∗

0

e(j−1) cosω∗rr1−α dr

6 Cω0,M0
τα−1

∫ π/ sinω∗

0

ej cosω
∗rr1−α dr 6 Cω0,M0

τα−1jα−2.

Combining the above estimates of I1 and I2 yields (59) and thus concludes the
proof. �

Lemma 3.8. We have

‖E − E‖L1(0,T ;L(L2(Ω))) 6 Cω0,M0

( 1

α
+

1− Jα−1

1− α

)
τα. (60)

Proof. By (7) we have

‖E − E(t1)‖L1(0,t1;L(L2(Ω))) 6 Cω0,M0
ταα−1, (61)

and a straightforward calculation gives, by (8),

J∑

j=2

‖E − E(tj)‖L1(tj−1,tj;L(L2(Ω))) 6 τ‖E′‖L1(t1,T ;L(L2(Ω)))

6 Cω0,M0
τ

∫ T

t1

tα−2 dt = Cω0,M0
τα(1− Jα−1)(1 − α)−1. (62)
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It follows that

J∑

j=1

‖E − E(tj)‖L1(tj−1,tj ;L(L2(Ω))) 6 Cω0,M0
τα
(
α−1 + (1− Jα−1)(1 − α)−1

)
.

Further we have, by Lemma 3.7,

J∑

j=1

τ‖E(tj)− E(tj−)‖L(L2(Ω)) 6 Cω0,M0
τα

J∑

j=1

jα−2

6 Cω0,M0
τα(1 − Jα−1)(1 − α)−1.

Thus we get

‖E − E‖L1(0,T ;L(L2(Ω)))

6

J∑

j=1

(
‖E − E(tj)‖L1(tj−1,tj ;L(L2(Ω))) + τ‖E(tj)− E(tj−)‖L1(tj−1,tj ;L(L2(Ω)))

)

6 Cω0,M0
τα
(
α−1 + (1− Jα−1)(1 − α)−1

)
.

This proves (60) and hence this lemma. �

Finally, we are in a position to conclude the proof of Theorem 3.1 as follows.
By (9) and (49) we have

max
16j6J

‖(Sg)(tj)− Sτ,jg‖L2(Ω) 6 ‖E − E‖L1(0,T ;L(L2(Ω)))‖g‖L∞(0,T ;L2(Ω)),

so that (26) follows from (60). By (47) we see that E is piecewise constant, and
then by (23), (49) and (24) we obtain Sτ,j(vδ0) = E(tj−)v, 1 6 j 6 J . Hence,
a straightforward computation yields, by (11),

max
16j6J

j2−α‖S(vδ0)(tj)−Sτ,j(vδ0)‖L2(Ω)6 max
16j6J

j2−α‖E(tj)−E(tj−)‖L(L2(Ω))‖v‖L2(Ω),

J∑

j=1

‖S(vδ0)− Sτ,j(vδ0)‖L1(tj−1,tj ;L
2(Ω)) 6 ‖E − E‖L1(0,T ;L(L2(Ω)))‖v‖L2(Ω).

Therefore, (27), (28) follow from (59), (60), respectively. This completes the
proof of Theorem 3.1.

4 An inverse problem of a fractional diffusion

equation

4.1 Continuous problem

We consider reconstructing the source term of a fractional diffusion equation
from the value of the solution at a fixed time; more precisely, the task is to seek
a suitable source f to ensure that the solution of problem (1) achieves a given
value yd at the final time T . Applying the well-known Tikhonov regularization
technique to this inverse problem yields the following minimization problem:

min
u∈Uad

y∈C((0,T ];L2(Ω))

J(y, u) :=
1

2
‖y(T )− yd‖2L2(Ω) +

ν

2
‖u‖2L2(0,T ;L2(Ω)), (63)

16



subject to the state equation

(Dα
0+ −A)y = u, with y(0) = 0, (64)

where yd ∈ L2(Ω), ν > 0 is a regularization parameter, and

Uad :=
{
v ∈ L2(0, T ;L2(Ω)) : u∗ 6 v 6 u∗ a.e. in Ω× (0, T )

}
,

with u∗ and u∗ being two given constants.

Remark 4.1. We refer the reader to [32, 33] for the inverse problems of
parabolic partial differential equations, and refer the reader to [36, Chapter 3]
for the linear-quadratic parabolic control problems.

We call u ∈ Uad a mild solution to problem (63) if u solves the following
minimization problem:

min
u∈Uad

J(u) :=
1

2
‖(Su)(T )− yd‖2L2(Ω) +

ν

2
‖u‖L2(0,T ;L2(Ω)), (65)

where we recall that S is defined by (9).

Lemma 4.1. Assume that g ∈ Lq(0, T ;L2(Ω)) with q > 1/α. Then

〈(Sg)(T ), v〉Ω = 〈g, S∗(vδT )〉Ω×(0,T ) (66)

for all v ∈ L2(Ω).

Proof. By (9) and (19), Sg ∈ C([0, T ];L2(Ω)) and

(Sg)(T ) =

∫ T

0

E(T − t)g(t) dt,

so that

〈(Sg)(T ), v〉Ω =

〈∫ T

0

E(T − t)g(t) dt, v

〉

Ω

=

∫ T

0

〈E(T − t)g(t), v〉Ω dt.

Because (18) implies

〈E(T − t)g(t), v〉Ω = 〈g(t), E∗(T − t)v〉Ω, a.e. t ∈ (0, T ),

it follows that

〈(Sg)(T ), v〉Ω =

∫ T

0

〈g(t), E∗(T − t)v〉Ω dt = 〈g, S∗(vδT )〉Ω×(0,T ) (by (14)),

namely, (66) holds indeed. This completes the proof. �

Assume that q > 1/α and q > 2. By (19), (S·)(T ) is a bounded linear
operator form Lq(0, T ;L2(Ω)) to L2(Ω). Clearly, J in (65) is a strictly convex
functional on Lq(0, T ;L2(Ω)), and Uad is a convex, bounded and closed subset
of Lq(0, T ;L2(Ω)). By Lemma 4.1, a routine argument (cf. [36, Theorems 2.14
and 2.21]) yields the following theorem.
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Theorem 4.1. Problem (65) admits a unique mild solution u ∈ Uad, and the
following first-order optimality condition holds:





y = Su, (67a)

p = S∗
(
(y(T )− yd)δT

)
, (67b)

〈p+ νu, v − u〉Ω×(0,T ) > 0 for all v ∈ Uad. (67c)

Remark 4.2. Assume that u, y and p are defined in Theorem 4.1. By (67c)
we have u = f(p), where

f(r) :=






u∗ if r > −νu∗,

r if − νu∗
6 r 6 −νu∗,

u∗ if r < −νu∗.

(68)

Noting that f is Lipschitz continuous with Lipschitz constant 1/ν, we obtain

u′(t) = f ′(p(t))p′(t) in L2(Ω), a.e. 0 < t < T,

and hence ‖u′(t)‖L2(Ω) 6 ν−1‖p′(t)‖L2(Ω), a.e. 0 < t < T . It follows from
(67b), (14) and (17) that

‖u′(t)‖L2(Ω) 6 Cω0,M0
ν−1(T−t)α−2(‖y(T )‖L2(Ω)+‖yd‖L2(Ω)), a.e. 0 < t < T.

Since (67a), (9), (7) and the fact u ∈ Uad imply

‖y(T )‖L2(Ω) 6 Cu∗,u∗,ω0,M0,T,Ωα
−1, (69)

we conclude therefore that

‖u′(t)‖L2(Ω) 6 Cu∗,u∗,ω0,M0,T,Ων
−1(T − t)α−2(α−1 + ‖yd‖L2(Ω)), a.e. 0 < t < T.

(70)

Remark 4.3. Let uν be the mild solution of problem (65). A standard argument
yields that there exits yT ∈ L2(Ω) such that

‖(Suν)(T )− yT ‖L2(Ω) 6 Cu∗,u∗,T,Ω

√
ν. (71)

Since Uad is a convex, bounded and closed subset of Lq(0, T ;L2(Ω)), q > 1/α,
there exist u0 ∈ Uad and a decreasing sequence {νn}∞n=0 ⊂ (0,∞) with limit zero
such that

lim
n→∞

uνn = u0 weakly in Lq(0, T ;L2(Ω)).

As (S·)(T ) is a bounded linear operator from Lq(0, T ;L2(Ω)) to L2(Ω), we have
that (Suνn)(T ) converges to (Su0)(T ) weakly in L2(Ω) as n→ ∞, so that (71)
implies (Su0)(T ) = yT . Furthermore, a trivial calculation yields that u0 is a
mild solution of problem (63) with ν = 0.

4.2 Temporally discrete problem

Define

Wτ := {V ∈ L∞(0, T ;H1
0 (Ω)) : V is constant on (tj−1, tj) ∀1 6 j 6 J}.

18



For any g ∈ W ∗
τ , define Sτg ∈Wτ and S∗

τ g ∈ Wτ , respectively, by that

〈Dα
0+ Sτg, V 〉Ω×(0,T ) − 〈ASτg, V 〉L2(0,T ;H1

0
(Ω)) = 〈g, V 〉Wτ , (72)

〈(Dα
T− S

∗
τ g, V 〉Ω×(0,T ) − 〈A∗S∗

τ g, V 〉L2(0,T ;H1

0
(Ω)) = 〈g, V 〉Wτ , (73)

for all V ∈ Wτ . By (88) we have that

〈Sτf, g〉Ω×(0,T ) = 〈f, S∗
τ g〉Ω×(0,T ) ∀f, g ∈ L1(0, T ;L2(Ω)). (74)

A direct calculation yields that (cf. [12, Remark 3]), for any g ∈ W ∗
τ ,

(Sτg)(tj−) = Sτ,jg ∀1 6 j 6 J. (75)

Hence, from Theorem 3.1, we readily conclude the following two estimates: for
any g ∈ L∞(0, T ;L2(Ω)),

‖(Sg)(T )− (Sτg)(T−)‖L2(Ω) 6 Cω0,M0
τα
( 1
α
+

1− Jα−1

1− α

)
‖g‖L∞(0,T ;L2(Ω));

(76)
for any v ∈ L2(Ω),

‖S(vδ0)− Sτ (vδ̂0)‖L1(0,T ;L2(Ω)) 6 Cω0,M0
τα
( 1
α
+

1− Jα−1

1− α

)
‖v‖L2(Ω). (77)

Furthermore, we have the following stability estimate.

Lemma 4.2. Assume that g ∈ 0H
−α/2(0, T ;L2(Ω)). Then, for any 1 6 j 6 J ,

‖(Sτg)(tj−)‖L2(Ω) 6 Cατ
(α−1)/2‖g‖

0H−α/2(0,T ;L2(Ω)). (78)

Proof. We only prove (78) with j = J , since the other cases 1 6 j < J can be
proved analogously. Let v := (Sτg)(tj−). We have

‖v‖2L2(Ω) = 〈vδ̂T , Sτg〉Ω×(0,T )

= 〈Dα/2
T− D

−α/2
T− (vδ̂T ), Sτg〉Ω×(0,T )

= 〈D−α/2
T− (vδ̂T ),D

α/2
0+ Sτg〉Ω×(0,T ) (by (88))

6 ‖Dα/2
0+ Sτg‖L2(0,T ;L2(Ω))‖D−α/2

T− (vδ̂T )‖L2(0,T ;L2(Ω)),

where we recall that δ̂T is defined by (25). Since inserting V := Sτg into (72)
yields, by (88), (89) and (5c), that

‖Dα/2
0+ Sτg‖L2(0,T ;L2(Ω)) 6 Cα‖g‖

0H−α/2(0,T ;L2(Ω)),

it follows that

‖v‖2L2(Ω) 6 Cα‖g‖
0H−α/2(0,T ;L2(Ω))‖D−α/2

T− (vδ̂T )‖L2(Ω).

It suffices, therefore, to prove

‖D−α/2
T− (vδ̂T )‖L2(0,T ;L2(Ω)) 6 Cατ

(α−1)/2‖v‖L2(Ω). (79)
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To this end, we note that

‖D−α/2
T− (vδ̂T )‖2L2(0,T ;L2(Ω))

=

(‖v‖L2(Ω)

Γ(α/2)

)2

τ−2

∫ T

0

∣∣∣∣∣

∫ T

t

(s− t)α/2−1δ̂T (s) ds

∣∣∣∣∣

2

dt

=

(‖v‖L2(Ω)

Γ(α/2)

)2

τ−2(I1 + I2),

where

I1 :=

∫ T−τ

0

∣∣∣∣

∫ T

T−τ

(s− t)α/2−1 ds

∣∣∣∣
2

dsdt,

I2 :=

∫ T

T−τ

∣∣∣∣

∫ T

t

(s− t)α/2−1 ds

∣∣∣∣
2

dt.

A straightforward calculation gives

I1 = 4/α2

∫ T−τ

0

(
(T − t)α/2 − (T − τ − t)α/2

)2
dt

= 4/α2τ1+α

∫ T/τ

0

(
sα/2 − (s− 1)α/2

)2
ds

< 4/α2τ1+α

∫ ∞

0

(
sα/2 − (s− 1)α/2

)2
ds = Cατ

1+α

and

I2 = 4/α2

∫ T

T−τ

(T − t)α dt = Cατ
1+α.

Combining the above estimates of I1 and I2 proves (79) and hence this lemma.
�

Remark 4.4. We note that if the temporal grid is nonuniform, then (72) is not
equivalent to the L1 scheme for fractional diffusion equations. For the numerical
analysis of (72) with nonuniform temporal grid, we refer the reader to [15, 16].

Following the idea in [4], we consider the following temporally discrete prob-
lem:

min
U∈Uad

Jτ (U) :=
1

2
‖(SτU)(T−)− yd‖2L2(Ω) +

ν

2
‖U‖2L2(0,T ;L2(Ω)). (80)

Note that Uad is a convex, bounded and closed subset of L2(0, T ;L2(Ω)) and
that (Sτ ·)(T−) is, by (78), a bounded linear operator from L2(0, T ;L2(Ω)) to
L2(Ω). Hence, applying [36, Theorems 2.14 and 2.21] to problem (80) yields the
following theorem.

Theorem 4.2. Problem (80) admits a unique solution U ∈ Uad, and the fol-
lowing optimality condition holds:





Y = SτU, (81a)

P = S∗
τ

(
(Y (T−)− yd)δ̂T

)
, (81b)

〈P + νU, V − U〉Ω×(0,T ) > 0 for all V ∈ Uad, (81c)

where δ̂T is defined by (25).
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Theorem 4.3. Let u and y be defined in Theorem 4.1, and let U and Y be
defined in Theorem 4.2. Then

‖(y − Y )(T−)‖L2(Ω) +
√
ν‖u− U‖L2(0,T ;L2(Ω))

6 Cyd,u∗,u∗,ω0,M0,T,Ω

(
1

α
+

(
1− Jα−1

1− α

)1/2

+
1− Jα−1

1− α
τα/2

)
τα/2.

(82)

Proof. Since the idea of of this proof is standard (cf. [5, Theorem 3.4]), we only
provide a brief proof. Let us first prove that

‖(Su)(T )− (SτU)(T−)‖L2(Ω) +
√
ν‖u− U‖L2(0,T ;L2(Ω))

6 Cu∗,u∗,Ω‖S∗((y(T )− yd)δT )− S∗
τ ((y(T )− yd)δ̂T )‖1/2L1(0,T ;L2(Ω))

+ 2‖(Su)(T )− (Sτu)(T−)‖L2(Ω). (83)

By (67c) and (81c), we have

〈
S∗
(
(y(T )− yd)δT

)
+ νu, U − u

〉
Ω×(0,T )

> 0,
〈
S∗
τ

(
(Y (T−)− yd)δ̂T

)
+ νU, u− U

〉
Ω×(0,T )

> 0,

so that
ν‖u− U‖2L2(0,T ;L2(Ω)) 6 I1 + I2, (84)

where

I1 := 〈S∗
(
(y(T )− yd)δT

)
− S∗

τ

(
y(T )− yd)δ̂T

)
, U − u〉Ω×(0,T ),

I2 := 〈S∗
τ

(
(y(T )− Y (T−))δ̂T

)
, U − u〉Ω×(0,T ).

It is clear that

I1 6 Cu∗,u∗,Ω‖S∗((y(T )− yd)δT )− S∗
τ ((y(T )− yd)δ̂T )‖L1(0,T ;L2(Ω)),

by the fact that u, U ∈ Uad. A straightforward computation yields

I2 = 〈(y(T )− Y (T−))δ̂T , Sτ (U − u)〉Ω×(0,T ) (by (74))

= 〈y(T )− Y (T−), (Sτ (U − u))(T−)〉Ω (by (25))

= 〈(Su)(T )− (SτU)(T−), (Sτ (U − u))(T−)〉Ω (by (67a) and (81a))

= 〈(Su)(T )− (Sτu)(T−), (Sτ (U − u))(T−)〉Ω − ‖(Sτ (u − U))(T−)‖2L2(Ω)

6
1

2
‖(Su)(T )− (Sτu)(T−)‖2L2(Ω) −

1

2
‖(Sτ (u− U))(T−)‖2L2(Ω)

6 ‖(Su)(T )− (Sτu)(T−)‖2L2(Ω) −
1

2
‖(Su)(T )− (SτU)(T−)‖2L2(Ω).

Combining (84) and the above estimates of I1 and I2 gives (83).
Then, by the symmetric version of (77) we obtain

‖S∗((y(T )− yd)δT )− S∗
τ ((y(T )− yd)δ̂T )‖L1(0,T ;L2(Ω))

6 Cω0,M0
τα
(
1

α
+

1− Jα−1

1− α

)
‖y(T )− yd‖L2(Ω),
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so that (69) implies

‖S∗((y(T )− yd)δT )− S∗
τ ((y(T )− yd)δ̂T )‖L1(0,T ;L2(Ω))

6 Cu∗,u∗,ω0,M0,T,Ωτ
α

(
1

α
+

1− Jα−1

1− α

)
(1/α+ ‖yd‖L2(Ω))

6 Cyd,u∗,u∗,ω0,M0,T,Ω

(
1

α2
+

1− Jα−1

1− α

)
τα. (85)

We obtain from (76) that

‖(Su)(T )− (Sτu)(T−)‖L2(Ω) 6 Cu∗,u∗,ω0,M0,Ω

(
1

α
+

1− Jα−1

1− α

)
τα. (86)

Finally, combining (83), (85) with (86) gives

‖(Su)(T )− (SτU)(T−)‖L2(Ω) +
√
ν‖u− U‖L2(0,T ;L2(Ω))

6 Cyd,u∗,u∗,ω0,M0,T,Ω

(
1

α
+

(
1− Jα−1

1− α

)1/2

+
1− Jα−1

1− α
τα/2

)
τα/2,

which, together with (67a) and (81a), implies (82). This completes the proof.
�

Remark 4.5. Let yT be defined in Remark 4.3. Combining (71) and (82)
yields

‖yT − Y (T−)‖L2(Ω)

6 Cyd,u∗,u∗,ω0,M0,T,Ω

(
√
ν +

(
1

α
+

(
1− Jα−1

1− α

)1/2

+
1− Jα−1

1− α
τα/2

)

τα/2

)

.

5 Numerical experiments

This section performs three numerical experiments in one dimensional space to
verify the theoretical results, in the following settings: T = 0.1; Ω = (0, 1);
A = ∆; the space is discretized by a standard Galerkin finite element method,
with the space

Vh :=
{
vh ∈ H1

0 (0, 1) : vh is linear on
(
(m−1)/210,m/210

)
for all 1 6 m 6 210

}
.

Experiment 1. The purpose of this experiment is to verify (27) and (28). We
set v(x) := x−0.49, 0 < x < 1, and let

eT := ‖Sτ,J(vδ0)− Sτ∗,J∗(vδ0)‖L2(Ω),

el1 :=

J∗∑

j=1

T/J∗‖Sτ,⌈jJ/J∗⌉(vδ0)− Sτ∗,j(vδ0)‖L2(Ω),

where J∗ := 215, τ∗ = T/J∗, and ⌈·⌉ is the ceiling function. Table 1 shows that
eT /(τ

α−1Jα−2) will not blow up as α → 1−, which agrees well with (27). The
numerical results in Figure 1 illustrate that eT is close to O(τ), and this also

22



Table 1: eT /(τ
α−1Jα−2) of Experiment 1.

α J = 27 J = 28 J = 29

0.90 5.35e-3 5.19e-3 5.03e-3
0.95 5.13e-3 4.90e-3 4.74e-3
0.99 4.37e-3 4.10e-3 3.94e-3
0.999 4.10e-3 3.82e-3 3.66e-3

agrees well with (27). The numerical results in Figure 2 demonstrate that el1 is
close to O(τα), and this is in good agreement with (28).
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Figure 1: eT of numerical Example 1.
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Figure 2: el1 of numerical Example 1.

Experiment 2. The purpose of this experiment is to verify (26). To this end, we
set

f(t, x) := x−0.49, 0 < t < T, 0 < x < 1,

and define
e∞ := max

16j6J
‖Sτ,jf − Sτ∗,⌈jJ∗/J⌉f‖L2(Ω),

where J∗ = 215 and τ∗ = T/J∗. The numerical results in Figure 3 shows that
e∞ is close to O(τα), which is in good agreement with (26).
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Figure 3: e∞ of numerical Example 2.

Experiment 3. The purpose of this experiment is to verify Theorem 4.3, in the
following settings: a = 0; b = 10; ν = 10; yd :≡ 1. Discretization (80) is solved
by the following iteration algorithm (cf. [5, Algorithm 3.2]):

U0 := 0,

Uj = f(S∗

τ (((SτUj−1)(T−)− yd)δ̂T )), 1 6 j 6 k,

where f is defined by (68) and k is large enough such that

‖Uk − Uk−1‖L∞(0,T ;L∞(Ω)) < 10−12.

The “Error” in Figure 4 means

‖Y (T−)− Y ∗(T−)‖L2(Ω) + ‖U − U∗‖L2(0,T ;L2(Ω)),

where U∗ and Y ∗ are the numerical solutions with J = 215. The theoretical
convergence rate O(τα/2) is observed in Table 4.
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Figure 4: Numerical results of numerical Example 3.
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6 Appendix: Properties of the fractional calcu-

lus operators

Assume that −∞ < a < b <∞. Define

0H
1(a, b;L2(Ω)) := {v ∈ H1(a, b;L2(Ω)) : v(a) = 0},

0H1(a, b;L2(Ω)) := {v ∈ H1(a, b;L2(Ω)) : v(b) = 0},

where H1(a, b;L2(Ω)) is a standard vector valued Sobolev space. For each 0 <
β < 1, define

0H
β(a, b;L2(Ω)) := (L2(a, b;L2(Ω)), 0H

1(a, b;L2(Ω)))β,2,

0Hβ(a, b;L2(Ω)) := (L2(a, b;L2(Ω)), 0H1(a, b;L2(Ω)))β,2,

where (·, ·)β,2 means the interpolation space defined by the K-method (cf. [23]).
In addition, we use 0H

−β(a, b;L2(Ω)) and 0H−β(a, b;L2(Ω)) to denote the dual
spaces of 0Hβ(a, b;L2(Ω)) and 0H

β(a, b;L2(Ω)), respectively.
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Assume that 0 < γ < 1/2. For any v ∈ 0H
γ(a, b;L2(Ω)),

C0‖v‖0Hγ (a,b;L2(Ω)) 6 ‖Dγ
a+ v‖L2(a,b;L2(Ω)) 6 C1‖v‖0Hγ(a,b;L2(Ω)), (87)

where C0 and C1 are two positive constants depending only on γ. For any
v ∈ 0H

γ(a, b;L2(Ω)) and w ∈ 0Hγ(a, b;L2(Ω)),

〈D2γ
a+ v, w〉0Hγ(a,b;L2(Ω)) = 〈Dγ

a+ v,D
γ
b− w〉Ω×(0,T ) = 〈D2γ

b− w, v〉0Hγ(a,b;L2(Ω)). (88)

For any v ∈ 0H
γ(a, b;L2(Ω)),

cos(γπ)‖Dγ
a+ v‖2L2(a,b;L2(Ω)) 6

〈
Dγ

a+ v,D
γ
b− v

〉
Ω×(0,T )

6 sec(γπ)‖Dγ
a+ v‖2L2(a,b;L2(Ω)).

(89)

For the proof of (87) we refer the reader to [24, Section 3], and, for the proofs
of (88) and (89), we refer the reader to [3].
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