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Abstract

We develop a lowest-order nonconforming virtual element method for planar linear elasticity, which can be viewed
as an extension of the idea in Falk (1991) to the virtual element method (VEM), with the family of polygonal
meshes satisfying a very general geometric assumption. The method is shown to be uniformly convergent for the
nearly incompressible case with optimal rates of convergence. The crucial step is to establish the discrete Korn’s
inequality, yielding the coercivity of the discrete bilinear form. We also provide a unified locking-free scheme both
for the conforming and nonconforming VEMs in the lowest order case. Numerical results validate the feasibility
and effectiveness of the proposed numerical algorithms.

Keywords: Virtual element method, Linear elasticity, Locking-free, Reduced integration technique, discrete
Korn’s inequality.

1. Introduction

The linear elasticity problem is of fundamental importance in elastic mechanics. The design and analysis of
its numerical algorithms can help to solve or analyze more complex engineering problems. The Lamé constant
λ characterizing the compressibility of the underlying materials poses a challenge for numerical computations.
For small λ, this problem can be treated as the Poisson equation in vector form. However, when it tends to
infinity or the material is nearly incompressible, it becomes difficult to design a low order finite element methods
(FEMs) with parameter-free or locking-free convergence. For this reason, several methods or techniques have
been developed in the literature to tackle with this problem. One can refer to [11, 22, 25] and the references
therein for details.

The virtual element method (VEM) is a new numerical method proposed in recent years as a generalization
of the finite element method on polygonal or polyhedral meshes (cf. [1, 4, 6]). Compared with the FEM, it may
be much easier to construct a locking-free virtual element due to the flexibility of the construction of the virtual
element spaces. The conforming VEMs for the linear elasticity problem are first proposed in [5], where a locking-
free analysis is carried out for the virtual element spaces of order k ≥ 2. The order requirement is to ensure the
so-called discrete inf-sup condition and the optimal convergence. For the lowest-order case, a Bernardi-Raugel
type VEM can be found in [29], where the uniform convergence is achieved by adding extra degrees of freedom
so that the inf-sup condition can be satisfied easily. Nonconforming VEMs for the linear elasticity problems are
first introduced in [31] for the pure displacement/traction formulation in two or three dimensions. The proposed
method is robust with respect to the Lamé constant for k ≥ 2, which, however, may be unstable for k = 1 since
the discrete Korn’s inequality fails in the lowest-order case. For this reason, the authors in [24] present two kinds
of lowest-order VEMs with consistent convergence, in which the first one is achieved by introducing a special
stabilization term to ensure the discrete Korn’s inequality, and the second one can be seen as an extension of the
idea of Kouhia and Stenberg suggested in [23] to the virtual element method. Some other VEMs for elasticity
problems in two and three dimensions can be found in [2, 3, 7, 9, 13, 16, 17, 19, 26, 27, 30].

In this paper, we intend to generalize the idea in [18] to construct a lowest-order nonconforming locking-free
VEM for solving the linear elasticity problems. The technique is referred to as the reduced integration technique
in the literature of FEMs (cf. [22, 25, 11]), which is shown to be effective to construct parameter-free methods for
both the conforming and nonconforming finite elements.
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We end this section by introducing some notations and symbols frequently used in this paper. For a bounded
Lipschitz domain D, the symbol (·, ·)D denotes the L2-inner product on D, ‖ · ‖0,D denotes the L2-norm, and | · |s,D
is the Hs(D)-seminorm. For all integer k ≥ 0, Pk(D) is the set of polynomials of degree ≤ k on D. For the
vector-valued functions or spaces, we use the bold symbols, such as u, v, L2(Ω), H1(Ω), etc. Moreover, for any
two quantities a and b, “a . b” indicates “a ≤ Cb” with the hidden constant C independent of the mesh size, and
“a h b” abbreviates “a . b . a”.

2. The pure traction problem of linear elasticity

Let Ω ⊂ R2 be a convex polygonal domain. Given an external force f , the pure traction problem of linear
elasticity is to find the displacement field u = (u1, u2)ᵀ such that −div σ(u) = f in Ω,

σ(u)n = 0 on ∂Ω,
(2.1)

where n denotes the exterior unit vector normal to ∂Ω. The constitutive relation for linear elasticity is

σ(u) = 2µε(u) + λ(divu)I,

where σ = (σi j) and ε = (εi j) are the second order stress and strain tensors, respectively, satisfying εi j = 1
2 (∂iu j +

∂ jui), λ and µ are the Lamé constants, I is the identity matrix, and div u = ∂1u1 + ∂2u2. Note that the problem
(2.1) is solvable if the following compatibility condition is satisfied:∫

Ω

f · vdx = 0, v ∈ RM(Ω) := {v ∈ H1(Ω) : ε(v) = O}.

We introduce the space

V = H̃
1
(Ω) :=

{
v ∈ H1(Ω) :

∫
∂Ω

vds = 0,
∫

Ω

rot vdx = 0
}
, (2.2)

where rot v = ∇ × v = ∂1v2 − ∂2v1, which is slightly different from the usually used space Ĥ
1
(Ω) given by (cf.

[10])

V = Ĥ
1
(Ω) :=

{
v ∈ H1(Ω) :

∫
Ω

vds = 0,
∫

Ω

rot vdx = 0
}
, (2.3)

with the first constraint replaced by an integrand on the whole domain Ω. The choice here is considered for two
reasons, one is to ensure the interpolation of the VEM function lies in the underlying virtual element space, and the
other is to make the terms associated with Lagrange multipliers computable in the implementation. One can refer
to Subsection 5.1 for details. For the pure traction problem, it is well-known that the following Korn’s inequality

|v|1 ≤ C‖ε(v)‖0 (2.4)

holds for all v ∈ Ĥ
1
(Ω). One can prove that it is also valid for v ∈ H̃

1
(Ω) by checking the proof of Theorem

11.2.12 in [10], where only the second constraint of (2.2) is utilized, and the first constraint is just to remove the
additive constant vector in RM(Ω).

Let f ∈ L2(Ω). The variational formulation of (2.1) is to find u ∈ V such that

a(u, v) = ( f , v), v ∈ V, (2.5)

where
a(u, v) = 2µ(ε(u), ε(v)) + λ(div u, div v), (2.6)

and
( f , v) =

∫
Ω

fvdx.

For ease of presentation, we introduce the following notations:

aµ(u, v) = (ε(u), ε(v)), aλ(u, v) = (div u, div v).
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In view of the Korn’s inequality (2.4), one easily derives the the boundedness and coercivity of a(·, ·):

a(v,w) ≤ C|v|1|w|1, v,w ∈ V,

a(v, v) ≥ C|v|21, v ∈ V,

which imply that the problem (2.1) has a unique solution by the Lax-Milgram lemma.
It is also well known that the regularity estimate

‖u‖2 + λ‖divu‖1 . ‖ f‖0 (2.7)

holds for any convex polygonal domain Ω, see [11] for example.

3. The locking-free virtual element method for the pure traction problem

In this section, we propose a locking-free virtual element method by using the reduced integration technique.
This is the generalization of the locking-free finite element method introduced in [18] to the context of the virtual
element methods.

3.1. Mesh assumption and the virtual element space
Let {Th} be a family of decompositions of Ω into polygonal elements. The generic element is denoted by

K with diameter hK = diam(K). For clarity of presentation, we first work on meshes satisfying a strong mesh
assumption than the one given in [14, 12]:

C0. For each element K, there exist positive constant γ1, γ2 independent of hK such that (cf. [4])

• K is star-shaped with respect to a disc in K with radius ≥ γ1hK ;

• the distance between any two vertices of K is ≥ γ2hK .

Fig. 1: The refined element satisfying the mesh assumption C0. The small quadrilateral element of the fine mesh and the large polygonal
element of the original mesh are denoted by E and K, respectively.

Under the above assumption, one easily finds that the mesh can be refined by connecting the barycenter of the
disc with the midpoints of the edges of K as depicted in Fig. 1. The resulting finer mesh will be denoted by T ∗h
with generic element given by E.

In this paper, we consider the lowest order nonconforming virtual element space defined on the finer mesh T ∗h .
To this end, let’s briefly review the construction proposed in [4]. The local virtual element space on E is defined
as

V1(E) =
{
v ∈ H1(E) : ∆v = 0 in E, ∂nv|e ∈ (P0(e))2, e ⊂ ∂E

}
. (3.1)

The corresponding degrees of freedoms (d.o.f.s) are:

• χi ∈ χ: the moments of v on every edge of E,

χi(v) =
1
|e|

∫
e

vds, e ⊂ ∂E.
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Let e ⊂ ∂E be the common edge for elements E = E− and E+, and let v be a scalar function defined on e. We
introduce the jump of v on e by [v] = v−−v+, where v− and v+ are the traces of v on e from the interior and exterior
of E, respectively. For the boundary edge e, set [v]|e = v|e. We define the global virtual element space Vh for the
pure traction problem by

Vh =
{
vh ∈ L2(Ω) : vh|E ∈ V1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗,0h ,∫

∂Ω

vhds = 0,
∫

Ω

roth vhdx = 0
}
, (3.2)

where roth is the piecewise version of rot and E∗,0h denotes the set of interior edges of T ∗h .
Let vI be the interpolation of v ∈ Vh. One can check that∫

∂Ω

vIds = 0,
∫

Ω

roth vIdx = 0

by using the integration by parts, which shows vI ∈ Vh. For later use, we also introduce the conforming virtual
element space

Vc
1(E) =

{
v ∈ H1(E) : ∆v = 0 in E, v|e ∈ (P1(e))2, e ⊂ ∂E

}
. (3.3)

The global conforming virtual element space is defined as

V0
h = {v ∈ H1

0(Ω) : v ∈ Vc
1(E), E ∈ T ∗h }, (3.4)

with d.o.f.s given by the values at the vertices of T ∗h .

3.2. The virtual element method based on the reduced integration technique
For the standard lowest-order nonconforming VEMs on the coarse mesh Th, the discrete Korn’s inequality

may be invalid. We remark that when Th is a triangulation of Ω, the nonconforming virtual element is exactly the
Crouzeix-Raviart element. In this case, the discrete Korn’s inequality does not hold as proved in [18] by using
a dimension-counting argument. For this reason, Falk replaces the piecewise strain tensor εh by a new operator
ε∗h, and derive a modified finite element method with consistent convergence. The technique is referred to as the
reduced integration technique in [11].

In this subsection, we intend to apply the reduced integration technique to the nonconforming VEMs, so as to
derive a parameter-free numerical method. Let εh be the piecewise strain tensor defined on the fine mesh T ∗h . One
can check that

εh(u) = ∇hu −
1
2

roth u X, X =

[
0 −1
1 0

]
,

where ∇h and roth are the piecewise version of ∇ and rot, respectively. The main idea is to replace the operator
roth by the L2 projection Π0roth, which is defined on the coarse mesh Th, not on the fine mesh T ∗h . Let ΠK

0 rot =

Π0roth|K , where K ∈ Th. The desired operator is then piecewise defined as follows: ΠK
0 rot : V1(K)→ P0(K), v 7→ ΠK

0 rot v,∫
K ΠK

0 rot vpdx =
∫

K rot vpdx, p ∈ P0(K),
(3.5)

where V1(K) = Vh|K . By the continuity of the d.o.f.s, one has∫
K

rot vdx =

∫
∂K

v · tKds, v ∈ V1(K),

where tK = (−n2, n1)ᵀ is the anti-clockwise tangential along ∂K. It is evident that the above integration can be
computed by using the given d.o.f.s on the fine mesh. We finally introduce the adaptation of εh as

ε∗h(v) = ∇hv −
1
2

Π0roth v X, X =

[
0 −1
1 0

]
, v ∈ Vh. (3.6)

A direct calculation gives

(∇hv,Π0roth w)K =

∫
K

(−∂2v1 + ∂1v2)Π0roth wdx

=

∫
K

roth vΠ0roth wdx = (Π0roth v,Π0roth w)K ,
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and similarly,
(∇hw,Π0roth v)K = (Π0roth w,Π0roth v)K .

We thus obtain

(ε∗h(v), ε∗h(w))K = (∇hv,∇hw)K +
1
4

(Π0roth v,Π0roth w)K

−
1
2

(∇hv,Π0roth w)K −
1
2

(∇hw,Π0roth v)K

= (∇hv,∇hw)K −
1
2

(Π0roth v,Π0roth w)K . (3.7)

Let ΠE
1 : H1(E)→ (P1(E))2 be the elliptic projection of ∇, which satisfies (∇ΠE

1 v,∇p)E = (∇v,∇p)E , p ∈ (P1(E))2,∫
∂E ΠE

1 v ds =
∫
∂E v ds.

(3.8)

Then we are able to introduce a discrete bilinear form with respect to aµ(v,w) as:

aµ,h(v,w) =
∑
K∈Th

aK
µ,h(v,w),

where
aK
µ,h(v,w) =

∑
E⊂K

(
(∇ΠE

1 v,∇ΠE
1 w)E + S E(v − ∇ΠE

1 v,w − ∇ΠE
1 w)

)
−

1
2

(ΠK
0 rot v,ΠK

0 rot w)K

and
S E(v,w) = χ(v) · χ(w)

is the stabilization term frequently used in the literature of VEMs.
As usual, the second term of (2.6) is discretized by

aλ,h(v,w) =
∑

E∈T ∗h

aE
λ,h(v,w), aE

λ,h(v,w) = (ΠE
0 div v,ΠE

0 div w)E ,

where the L2 projection ΠE
0 div is defined as ΠE

0 div : V1(E)→ P0(E), v 7→ ΠE
0 div v,∫

E ΠE
0 div vpdx =

∫
E div vpdx, p ∈ P0(E).

(3.9)

The locking-free nonconforming VEM of the variational problem (2.5) is: find uh ∈ Vh such that

ah(uh, vh) = 〈 f h, vh〉, vh ∈ Vh, (3.10)

where
ah(uh, vh) = 2µaµ,h(uh, vh) + λaλ,h(uh, vh), (3.11)

and the approximation of the right hand side is given by (cf. [31])

〈 f h, vh〉 = ( f , Phvh), (3.12)

where
Phvh|E =

1
|∂E|

∫
∂E

vhds.

3.3. Coercivity of the discrete bilinear form

We first present an equivalence formula described as follows.

Theorem 3.1. For all v ∈ Vh, there holds

aK
µ,h(v, v) h ‖ε∗h(v)‖20,K .
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Proof. According to the norm equivalence for the nonconforming virtual element functions, we have (cf. [15, 21])

‖χ(v − ΠE
1 v)‖l2 h |v − Π∇1 v|1,E .

By definition of the elliptic projection,

aK
µ,h(v, v) h

∑
E⊂K

(
(∇ΠE

1 v,∇ΠE
1 v)E + (∇(v − ΠE

1 v),∇(v − ΠE
1 v)

)
−

1
2

(ΠK
0 rot v,ΠK

0 rot v)K

=
∑
E⊂K

(∇v,∇v)E −
1
2

(ΠK
0 rot v,ΠK

0 rot v)K

= (∇hv,∇hv)K −
1
2

(ΠK
0 rot v,ΠK

0 rot v)K .

The desired formula follows from (3.7).

For the coercivity of the proposed VEM, it remains to establish a discrete version of the Korn’s inequality (2.4)
described in Theorem 3.2. The key step is to prove the following result.

Lemma 3.1. Let p ∈ P0(Th) be piecewise constant on the coarse mesh Th, satisfying
∫

Ω
pdx = 0. Then there

exists a conforming virtual element function v ∈ V0
h defined on the fine mesh T ∗h such that∫

Ω

divvqdx =

∫
Ω

pqdx, q ∈ P0(Th)

and
‖v‖1 ≤ C‖p‖0,

where the constant C is independent of v and p.

Proof. According to the well-known Lemma 11.2.3 in [10], there exists u ∈ H1
0(Ω) such that

div u = p, ‖u‖1 ≤ C‖p‖0.

Then we only need to prove that there exists v ∈ V0
h such that∫

Ω

div vqdx =

∫
Ω

div uqdx, q ∈ P0(Th),

or equivalently, ∫
K

div vdx =

∫
K

div udx, K ∈ Th. (3.13)

We construct the function v by determining its d.o.f. values in V0
h. For the vertex and the center of the disc (cf.

Fig. 1), denoted by a, we define
v(a) = u(a).

For the middle point z of an edge e in the coarse mesh, let z1 and z2 be the endpoints of e. We define

v(z) =
2
|e|

∫
e

uds −
u(z1) + u(z2)

2
.

One easily finds that v ∈ V0
h satisfies ∫

e
vds =

∫
e

uds, e ⊂ ∂K, K ∈ Th,

which implies (3.13) by using the integration by parts.
Let I0

hu be the interpolation of u in V0
h. The triangle inequality gives

|v − u|1,K ≤ |v − I0
hu|1,K + |u − I0

hu|1,K , K ∈ Th.

By the standard interpolation error estimates,

h−1
K ‖u − I0

hu‖0,K + |u − I0
hu|1,K . |u|1,K .

6



Let χc be the d.o.f vector on K. According to the inverse inequality and norm equivalence in [14], and the definition
of v, we obtain

|v − I0
hu|1,K . h−1

K ‖v − I0
hu‖0,K h ‖χc(v − I0

hu)‖l2 =
( n∑

i=1

(v(zi) − u(zi))2
)1/2

,

where zi are the midpoints of the edges of K and n is the number of the edges. For fixed z = zi, let e be the
corresponding edge with endpoints z1 and z2. Since I0

hu is piecewise linear along ∂K, we have

v(z) − u(z) =
2
|e|

∫
e

uds −
u(z1) + u(z2)

2
− u(z)

=
2
|e|

∫
e

uds −
2
|e|

∫
e

I0
huds =

2
|e|

∫
e
(u − I0

hu)ds,

which along with the Cauchy-Schwarz inequality and the trace inequality (cf. [10, 14]) yields

|v(z) − u(z)| . h−1/2
e ‖u − I0

hu‖0,e . h−1
K ‖u − I0

hu‖0,K + |u − I0
hu|1,K .

The desired estimate follows by combining the previous inequalities.

With the help of Lemma 3.1, We are in a position to prove the discrete Korn’s inequality following a similar
argument in [18, Theorem 6.1]. Considering that this problem is in the context of VEMs, we still give the proof
for the sake of completeness.

Theorem 3.2. For all v ∈ Vh, there exists a constant C independent of v such that

|v|1,h ≤ C‖ε∗h(v)‖0,h.

Proof. By definition, we have for all τ ∈ L2(Ω),∫
Ω

ε∗h(v) : τdx =

∫
Ω

(
∇hv −

1
2

Π0rothv X
)

: τdx.

Using Lemma 3.1, we may choose τ = ∇hv − curl z, where

curl z =

[
∂2z1 −∂1z1
∂2z2 −∂1z2

]
, z = (z1, z2)ᵀ

and z ∈ V0
h satisfies ∫

Ω

divzqdx =

∫
Ω

rothvqdx, q ∈ P0(Th); ‖z‖1 ≤ C‖rothv‖0. (3.14)

Then
‖τ‖0 ≤ ‖∇hv‖0 + ‖curl z‖0 ≤ C(‖∇hv‖0 + ‖rothv‖0) ≤ C‖∇hv‖0 = C|v|1,h. (3.15)

Using the integration by parts and noting that div(curl z) = 0, one has∫
Ω

∇hv : curl zdx =
∑

E∈T ∗h

∫
∂E

v ·
∂z
∂s

ds +
∑

E∈T ∗h

∫
E

v · div(curl z)dx =
∑

E∈T ∗h

∫
∂E

v ·
∂z
∂s

ds = 0,

where the summation vanishes since on the boundary edges z = 0, while on interior edges, contributions from
adjoining elements cancel by the continuity of the d.o.f.s. Here we have used the fact that the tangential derivatives
of z are polynomials of degree 0 by the definition of V0

h. According to the L2 orthogonality of ∇hv and curl z and
(3.14), we obtain∫

Ω

ε∗h(v) : τdx =

∫
Ω

(
∇hv −

1
2

Π0rothv X
)

: (∇hv − curl z)dx

=

∫
Ω

∇hv : ∇hvdx −
1
2

∫
Ω

Π0rothv X : (∇hv − curl z)dx

=

∫
Ω

∇hv : ∇hvdx −
1
2

∫
Ω

Π0rothv(rothv − div z)dx

=

∫
Ω

∇hv : ∇hvdx −
1
2

∫
Ω

Π0rothv(rothv − rothv)dx = ‖∇hv‖20 = |v|21,h,

7



which together with the estimate of (3.15) yields

‖ε∗h(v)‖0 ≥

∫
Ω
ε∗h(v) : τdx

‖τ‖0
≥ C|v|1,h,

as required.

We now have the following coercivity result for the discrete bilinear form.

Theorem 3.3. For all v ∈ Vh, there holds
|v|21,h . ah(v, v).

Proof. This is a direct consequence of Theorems 3.1 and 3.2 according to the definition of the discrete bilinear
form, see Eq. (3.11).

3.4. Error analysis of the VEM

Following the similar arguments in [5, 31], we can derive an abstract lemma for error analysis described as
follows.

Lemma 3.2. Let uh ∈ Vh be the solution of the discrete problem (3.10) and u the weak solution of problem (2.1).
Then under the mesh assumption C0, for any piecewise polynomial uπ ∈ (Pk(T ∗h ))2, there holds

|u − uh|1,h . |u − uI |1,h + |u − uπ|1,h + λ‖divu − Π0divu‖0 + ‖ f − f h‖V′h
+ Eh, (3.16)

where uI is the interpolation of u in Vh, and

‖ f − f h‖V′h
= sup

v∈Vh

|( f , vh) − 〈 f h, vh〉|

|vh|1,h
, Eh = sup

vh∈Vh

|a(u, vh) − ( f , vh)|
|vh|1,h

.

Proof. By setting δh = uh−uI and using the triangle’s inequality, it suffices to bound |δh|1,h. According to Theorem
3.3, we have the coercivity

|δh|
2
1,h . ah(δh, δh).

The rest of the argument is standard, so we omit it for simplicity. One can refer to Theorem 6.1 in [31] for
details.

With the help of the abstract lemma, we are able to derive the following estimate.

Theorem 3.4. For all f ∈ L2(Ω), let uh ∈ Vh be the solution of the discrete problem (3.10) and u the weak
solution of problem (2.1). There holds

|u − uh|1,h . h‖ f‖0.

Proof. According to the interpolation and the projection error estimates, one easily obtains

|u − uI |1,h + |u − uπ|1,h . h‖ f‖0,

where uπ can be chosen as the piecewise L2 or elliptic projection. By the regularity estimate (2.7),

λ‖divu − Π0divu‖0 . hλ‖divu‖0 . h‖ f‖0.

The estimates of the last two terms in (4.7) can be found in [31]. This completes the proof.

Remark 3.1. Using the standard duality argument, we may conclude that

‖u − uh‖0 . h2‖ f‖0

for the convex polygonal domain Ω.
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(a) refineType=1 (b) refineType=2 (c) refineType=3

Fig. 2: Three types of mesh refinement

4. Some discussions

4.1. More general mesh assumption

It is obvious that the lowest-order nonconforming virtual element on triangular meshes is exactly the Crouzeix-
Raviart finite element. In this case, if the mesh refinement in Fig. 1 or Fig. 2 (a) is replaced by the second one in
Fig. 2, then our method is reduced to the one given by Falk in [18].

Our analysis also applies for the mesh assumption given in [14, 12] (even more general mesh assumptions),
where each polygon admits a virtual quasi-uniform and regular triangulation. In this case, we refine the mesh as
in Fig. 2 (c) by just adding midpoints on each edges, giving rise to a new mesh with each polygon having hanging
nodes or collinear edges. It is evident that the construction in Lemma 3.1 is still valid, which therefore implies the
locking-free property and the optimal rates of convergence.

4.2. The VEM in the enhancement virtual element space

We can also consider the problem in the frequently used space Ĥ(Ω) (see Eq. (2.3)). To this end, we first
introduce a lifting space

Ṽ1(E) =
{
v ∈ H1(E) : ∆v ∈ (P0(E))2, ∂nv|e ∈ (P0(e))2, e ⊂ ∂E

}
with the degrees of freedom

• the moments 1
|e|

∫
e vds, e ⊂ ∂E;

• the moments 1
|E|

∫
E vdx.

and define the elliptic projection ΠE
1 as before. One easily finds that the redundant moments on each element

are not involved in the computation of ΠE
1 . We therefore introduce an enhancement virtual element space as (cf.

[1, 31])

W1(E) =
{
v ∈ Ṽ1(E) :

∫
E

vdx =

∫
E

ΠE
1 vdx

}
, (4.1)

with the global space given by

Wh =
{
vh ∈ L2(Ω) : vh|E ∈W1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗,0h ,∫

Ω

vhds = 0,
∫

Ω

roth vhdx = 0
}
, (4.2)

which obviously shares the same d.o.f.s with Vh, i.e., the moments 1
|e|

∫
e vds, e ∈ E∗h. Our analysis still holds in

such case since the first constraint is not used in the proof of the discrete Korn’s inequality in Theorem 3.2.
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4.3. The locking-free VEM for the pure displacement problem
The linear elasticity problem in the pure displacement formulation is −div σ(u) = f in Ω,

u = 0. on ∂Ω.

The locking-free VEM has the same formulation as the one given in (3.10). One just needs to replace the global
nonconforming virtual element space by

Uh =
{
vh ∈ L2(Ω) : vh|E ∈ V1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗h

}
, (4.3)

where E∗h denotes the set of all edges in T ∗h . According to the continuity of the d.o.f.s, one easily obtains∫
Ω

roth vhdx = 0 (4.4)

for all vh ∈ Uh, which is the crucial constraint in establishing the discrete Korn’s inequality in Theorem 3.2. For
this reason, the arguments in Subsection 3.3 still hold, naturally leading to the robustness with respect to the Lamé
constant and the optimal rates of convergence.

4.4. A unified locking-free scheme both for the conforming and nonconforming VEMs
In the literature of VEMs, the local bilinear form (div v, div w)E of the continuous variational problem is usually

approximated by (ΠE
0 div v,ΠE

0 div w)E as in (3.9), which, however, is proved to be locking-free only for k ≥ 2 in
[5] for the conforming VEMs. By using the reduced integration technique, we in [20] proposed a conforming
locking-free VEM in the lowest order case, where

∑
E⊂K

(ΠE
0 div v,ΠE

0 div w)E is replaced by (ΠK
0 div v,ΠK

0 div w)K ,

with ΠK
0 div defined as  ΠK

0 div : V1(K)→ P0(K), v 7→ ΠK
0 div v,∫

K(ΠK
0 div v)p dx =

∫
K(div v)p dx, p ∈ P0(K),

(4.5)

which is similar to the definition of ΠK
0 rot given in (3.5). Inspired by the above treatments in (3.5) and (4.5), we

intend to propose a unified locking-free scheme both for the conforming and nonconforming VEMs described as
follows.

Let Sh be the global virtual element space. For clarity, we list the choices of Sh in the following:

1. Nonconforming VEMs
• Pure traction problem in the original space (cf. (3.1) and (3.2))

Sh = Vh =
{
vh ∈ L2(Ω) : vh|E ∈ V1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗,0h ,∫

∂Ω

vhds = 0,
∫

Ω

roth vhdx = 0
}
.

• Pure traction problem in the enhancement space (cf. (4.1) and (4.2))

Sh = Wh =
{
vh ∈ L2(Ω) : vh|E ∈W1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗,0h ,∫

Ω

vhds = 0,
∫

Ω

roth vhdx = 0
}
.

• Pure displacement problem (cf. (4.3))

Sh = Uh =
{
vh ∈ L2(Ω) : vh|E ∈ V1(E), E ∈ T ∗h ,

∫
e
[vh]ds = 0, e ∈ E∗h

}
.

2. Conforming VEMs
• Pure traction problem in the original space (cf. (3.3) and (3.2))

Sh = Vc
h =

{
vh ∈ H1(Ω) : vh|E ∈ Vc

1(E), E ∈ T ∗h ,
∫
∂Ω

vhds = 0,
∫

Ω

rot vhdx = 0
}
.
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• Pure traction problem in the enhancement space

Sh = Wc
h =

{
vh ∈ H1(Ω) : vh|E ∈Wc

1(E), E ∈ T ∗h ,
∫

Ω

vhds = 0,
∫

Ω

rot vhdx = 0
}
,

where
Wc

1(E) =
{
v ∈ H1(E) : ∆v ∈ (P0(E))2,

∫
E

vdx =

∫
E

ΠE
1 vdx

}
.

• Pure displacement problem (cf. (3.4))

Sh = Uc
h = V0

h = {v ∈ H1
0(Ω) : v ∈ Vc

1(E), E ∈ T ∗h }.

The unified locking-free VEM of the variational problem (2.5) is: find uh ∈ Sh such that

ah(uh, vh) = 〈 f h, vh〉, vh ∈ Sh, (4.6)

where
ah(uh, vh) = 2µaµ,h(uh, vh) + λaλ,h(uh, vh),

with
aK
µ,h(v,w) =

∑
E⊂K

(
(∇ΠE

1 v,∇ΠE
1 w)E + S E(v − ∇ΠE

1 v,w − ∇ΠE
1 w)

)
−

1
2

(ΠK
0 rot v,ΠK

0 rot w)K ,

aK
λ,h(v,w) = (ΠK

0 div v,ΠK
0 div w)E , S E(v,w) = χ(v) · χ(w).

The approximation of the right hand side is the same as (3.12).
Let us briefly analyze the locking-free property and the optimal error estimates. For the bilinear form aK

µ,h(v,w),
the crucial step is to establish the discrete Korn’s inequality in Theorem 3.2 so as to ensure the coercivity in Lax-
Milgram lemma, which has been justified for the nonconforming methods. For the conforming methods, it is
obvious that the constraint (4.4) holds for all cases, thus yielding the Korn’s inequality. With the help of the
coercivity, we can derive the following abstract lemma following a standard calculation.

Lemma 4.1. Let uh ∈ Vh be the solution of the discrete problem (4.6) and u the weak solution of problem (2.1).
Then for all uI ∈ Sh and for any piecewise polynomial uπ ∈ (Pk(T ∗h ))2, there holds

|u − uh|1,h . |u − uI|1,h + |u − uπ|1,h + λ‖divu − Π0divuI‖0 + ‖ f − f h‖V′h
+ Eh, (4.7)

where

‖ f − f h‖V′h
= sup

v∈Vh

|( f , vh) − 〈 f h, vh〉|

|vh|1,h
, Eh = sup

vh∈Vh

|a(u, vh) − ( f , vh)|
|vh|1,h

.

For the second term aK
λ,h(v,w), the fundamental idea is to prove that there exists a VEM function uI ∈ Sh such

that
ΠK

0 divuI = ΠK
0 divu, |u − uI|1,h . h|u|2,

where u ∈ H2(Ω) is the exact solution. The above result is trivial for the nonconforming methods since we can
take uI = uI to be the interpolation of u in Sh. For the conforming methods, please refer to [20]. Thus, the
regularity estimate (2.7) yields

λ‖divu − Π0divuI‖0 = λ‖divu − Π0divu‖0 . λh‖divu‖0 . h‖ f‖0,

as required.

5. Numerical examples

In this section, we report the performance of our proposed virtual element method by testing the accuracy and
the robustness with respect to the Lamé constant λ. For simplicity, we only consider the nonconforming VEMs.
One can refer to [20] for the test of the conforming methods. Unless otherwise specified, the domain Ω is taken
as the unit square (0, 1)2, and the Lamé constants are set as λ = 1010 and µ = 1. All examples are implemented
in MATLAB R2019b. Our code is available from GitHub (https://github.com/Terenceyuyue/mVEM) as
part of the mVEM package which contains efficient and easy-following codes for various VEMs published in the
literature. The subroutine elasticityVEM NCreducedIntegration.m is used to compute the numerical solutions and
the test script main elasticityVEM NCreducedIntegration.m verifies the convergence rates.
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Fig. 3: The uniform triangular (left) and unstructured polygonal (right) meshes.

5.1. Implementation of the proposed VEM
The discrete variational problem is given by (3.10), where the constraints∫

∂Ω

uhds = 0 and
∫

Ω

roth uhdx = 0

are not naturally imposed. To do so, we introduce Lagrange multipliers βi ∈ R and consider the augmented
variational formulation: Find (uh, β1, β2, β3) ∈ Vh × R × R × R such that

ah(uh, vh) + β1
∫
∂Ω

uh,1ds + β2
∫
∂Ω

uh,2ds + β3
∫

Ω
rot uhdx = 〈 f h, vh〉, vh ∈ Vh,

µ1
∫
∂Ω

vh,1ds = 0, µ1 ∈ R,
µ2

∫
∂Ω

vh,2ds = 0, µ2 ∈ R,
µ3

∫
Ω

roth vhdx = 0, µ3 ∈ R,

(5.1)

where uh = (uh,1,uh,2)ᵀ and vh = (vh,1, vh,2)ᵀ.
Let ϕi, i = 1, · · · ,N be the nodal basis function of Vh, where N is the dimension of Vh. Then we can write

uh =

N∑
i=1

χi(u)ϕi =: ϕᵀχ(u).

Plug the above equation in (5.1), and take vh = ϕ j. We have

N∑
i=1

ah(ϕi,ϕ j)χi + β1
∫
∂Ω
ϕi,1ds + β2

∫
∂Ω
ϕi,2ds + β3

∫
Ω

rot ϕidx = 0, j = 1, · · · ,N,
N∑

i=1

∫
∂Ω
ϕi,1dsχi = 0,

N∑
i=1

∫
∂Ω
ϕi,2dsχi = 0,

N∑
i=1

∫
Ω

roth ϕidxχi = 0.

Let
A =

(
ah(ϕ j,ϕi)

)
N×N

, d1 =
( ∫

∂Ω

ϕi,1ds
)

N×1
, d2 =

( ∫
∂Ω

ϕi,2ds
)

N×1
, d3 =

( ∫
Ω

roth ϕidx
)

N×1

and
f =

(
〈 f h,ϕi〉

)
N×1

.

The linear system can be written in matrix form:
A d1 d2 d3
dᵀ

1 0
dᵀ

2 0
dᵀ

3 0



χ
β1
β2
β3

 =


f
0
0
0

 .
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5.2. The pure traction problem in the original space
We first solve the pure traction problem on two different kinds of meshes. One is the uniform triangulation

and the other is the unstructured polygonal mesh as shown in Fig. 3.

Example 5.1. The right-hand side f and the boundary conditions are chosen in such a way that the exact solution
is

u(x, y) =

[
(−1 + cos 2πx) sin 2πy
−(−1 + cos 2πy) sin 2πx

]
+

1
1 + λ

sin πx sin πy
[
1
1

]
.

Note that for the pure traction problem the solutions are unique only up to an additive function in RM(Ω),
which affects the evaluation of the errors in the L2 norm. For this reason, we replace the exact solution by u − p
so that the constraints in (2.2) are satisfied, where p ∈ RM(Ω) is given by

p = c0

[
1
0

]
+ c1

[
0
1

]
+ c2

[
−y
x

]
with

c2 =
1
2

∫
Ω

rot udx,

c1 =
1
|∂Ω|

( ∫
∂Ω

u2ds − c2

∫
∂Ω

xds
)
,

c0 =
1
|∂Ω|

( ∫
∂Ω

u1ds + c2

∫
∂Ω

yds
)
.

(a) Polygonal mesh

(b) Triangular mesh

Fig. 4: Numerical and exact solutions of Example 5.1 with refineType=1.

Let u be the exact solution of (2.1) and uh the discrete solution of the proposed VEM (3.10). Since the
VEM solution uh is not explicitly known inside the polygonal elements, as in [8] we will evaluate the errors by
comparing the exact solution u with the elliptic projection ΠE

1 uh. In this way, the discrete H1 and L2 errors are
quantified by

ErrH1 =

 ∑
E∈T ∗h

|u − ΠE
1 uh|

2
1,E


1/2

and ErrL2 =

 ∑
E∈T ∗h

‖u − ΠE
1 uh‖

2
0,E


1/2

,
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respectively.
To test the accuracy of the proposed method we first consider a sequence of polygonal meshes, which is a

Centroidal Voronoi Tessellation of the unit square in 32, 64, 128, 256 and 512 polygons. These meshes are
generated by the MATLAB toolbox - PolyMesher introduced in [28]. For λ = 1010 and µ = 1, we report the
nodal values of the elliptic projection ΠE

1 uh,1 in Fig. 4 (a), where the first type of mesh refinement in Fig. 2 (a) is
used. The convergence order of the errors against the mesh size h is shown in Fig. 5 (a). We also report the results
for triangulation in Fig. 4 (b) and Fig. 5 (b). Generally speaking, h is proportional to N−1/2, where N is the total
number of elements in the mesh. For each fixed λ and µ the convergence rate with respect to h is estimated by
assuming Err(h) = chα, and by computing a least squares fit to this log-linear relation. As observed in Fig. 5, the
convergence rate is linear with respect to the H1 norm, and the VEM ensures the quadratic convergence for the L2

norm for different values of λ, which is consistent with the theoretical prediction in Theorem 3.4.
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(b) Triangular mesh

Fig. 5: The convergence rate of Example 5.1 with refineType=1

We now consider the last two types of mesh refinement in Fig. 2 and only report the numerical results for
triangular meshes. As observed in Tab. 1 and Tab. 2, the optimal rates of convergence are achieved for both
subdivisions in the nearly incompressible case.

Tab. 1: Convergence rate of Example 5.1 w.r.t. L2 norm for triangulation with refineType=2

λ\h 1/5 1/10 1/15 1/20 1/25 Rate

100 1.1208e-01 2.9679e-02 1.3421e-02 7.6091e-03 4.8911e-03 1.95
102 1.0645e-01 2.8443e-02 1.2860e-02 7.2846e-03 4.6791e-03 1.94
104 1.0640e-01 2.8434e-02 1.2856e-02 7.2822e-03 4.6775e-03 1.94
106 1.0640e-01 2.8434e-02 1.2855e-02 7.2821e-03 4.6775e-03 1.94
108 1.0640e-01 2.8434e-02 1.2855e-02 7.2820e-03 4.6777e-03 1.94

Tab. 2: Convergence rate of Example 5.1 w.r.t. L2 norm for triangulation with refineType=3

λ\h 1/5 1/10 1/15 1/20 1/25 Rate

100 3.0839e-01 7.6958e-02 3.4534e-02 1.9499e-02 1.2500e-02 1.99
102 2.9286e-01 7.2817e-02 3.2637e-02 1.8411e-02 1.1795e-02 1.99
104 2.9265e-01 7.2761e-02 3.2611e-02 1.8396e-02 1.1785e-02 1.99
106 2.9265e-01 7.2760e-02 3.2611e-02 1.8396e-02 1.1785e-02 1.99
108 2.9265e-01 7.2760e-02 3.2611e-02 1.8396e-02 1.1785e-02 1.99

Example 5.2. We further investigate the impact of Lamé constant λ to solve a completely incompressible problem.
The exact solution is given by

u1 = − sin3(πx) sin(2πy) sin(πy), u2 = sin(2πx) sin(πx) sin3(πy).
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One can check that div u = 0 and f is independent of λ.

We test the performance of our VEMs for polygonal meshes and triangulations with λ = 1010 and µ = 1 fixed.
The error orders are shown in Fig. 6, from which we observe that the optimal rates of convergence are achieved
for both subdivisions in the completely incompressible limiting problem.
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Fig. 6: The convergence rate of Example 5.2 with refineType=1

5.3. The pure traction problem in the enhancement space

(a) Solutions
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(b) Convergence rate

Fig. 7: Numerical result of the VEM in the enhancement space (4.2) for distorted polygonal meshes with refineType=3.
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We can also test the performance for the VEM in the enhancement space (4.2). In the implementation of (5.1),
one just needs to replace the integrands on ∂Ω with the ones on Ω. We still consider Example 5.1 and present the
numerical result in Fig. 7. Similar behaviours are observed, which confirms the discussion in Section 4.

5.4. The problem with mixed boundary conditions
Example 5.3. The proposed virtual element method also applies to the pure displacement problem or the problem
with mixed boundary conditions: 

−div σ(u) = f in Ω,

σ(u)n = g1 on Γ,

u = g2 on ∂Ω\Γ.

We still consider the exact solution in Example 5.2 with Dirichlet boundary condition imposed on y = 0 and
repeat the numerical simulation for the distorted mesh as shown in Fig. 8. We remark that in this case there is no
need to introduce the Lagrange multipliers βi.
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Fig. 8: A distorted rectangular mesh

Let (ξ, η) be the coordinates on the original mesh. The nodes of the distorted mesh are obtained by the
following transformation

x = ξ + tc sin(2πξ) sin(2πη), y = η + tc sin(2πξ) sin(2πη),

where (x, y) is the coordinate of new nodal points; tc, taken as 0.1 in the computation, is the distortion parameter.

Tab. 3: Convergence rate of Example 5.3 w.r.t. L2 norm for quadrilateral distorted mesh with refineType=2

λ\h 1/5 1/10 1/15 1/20 1/25 Rate

102 6.7057e-02 2.1470e-02 9.8523e-03 5.6095e-03 3.6112e-03 1.82
108 6.7205e-02 2.1516e-02 9.8757e-03 5.6234e-03 3.6204e-03 1.82

Fig. 9 (a) and (b) display the simulation results for the first type of mesh refinement on quadrilateral distorted
mesh and general polygonal distorted mesh, respectively. The numerical solutions are well matched with the exact
ones as observed. The errors in the L2 norm for the second and third types of mesh refinement are listed in Tab. 3
and Tab. 4, respectively. Despite the very distorted meshes, we can still obtain almost second-order convergence
for different values of λ.

Tab. 4: Convergence rate of Example 5.3 w.r.t. L2 norm for quadrilateral distorted mesh with refineType=3

λ\h 1/5 1/10 1/15 1/20 1/25 Rate

102 1.5715e-01 5.0710e-02 2.3895e-02 1.3758e-02 8.9081e-03 1.78
108 1.5730e-01 5.0792e-02 2.3943e-02 1.3789e-02 8.9297e-03 1.78

16



(a) Rectangular mesh

(b) Polygonal mesh

Fig. 9: Numerical and exact solutions of Example 5.3 for distorted mesh with refineType=1.

Tab. 5: Convergence rate of Example 5.1 w.r.t. L2 norm for the unified locking-free scheme (Polygonal meshes with refineType=1)

λ\h 1/5 1/10 1/15 1/20 1/25 Rate

100 6.7235e-02 3.6869e-02 1.8102e-02 9.4467e-03 4.7476e-03 1.88
102 6.9307e-02 3.8020e-02 1.8849e-02 9.8457e-03 4.9499e-03 1.87
104 6.9387e-02 3.8072e-02 1.8875e-02 9.8609e-03 4.9582e-03 1.87
106 6.9387e-02 3.8072e-02 1.8875e-02 9.8611e-03 4.9583e-03 1.87
108 6.9387e-02 3.8072e-02 1.8875e-02 9.8611e-03 4.9583e-03 1.87

5.5. The unified locking-free scheme
For the unified locking-free scheme, the subroutine elasticityVEM NCreducedIntegration.m can be modified

with slight changes. The new M-function is elasticityVEM NCUniformReducedIntegration.m and the test script
main elasticityVEM NCUniformReducedIntegration.m verifies the convergence rates. We still consider Example
5.1 with numerical results presented in Tab. 5, from which we observe a similar behaviour as that of the original
VEMs.

6. Conclusions

We proposed a locking-free nonconforming VEM in the lowest order case for solving the linear elastic prob-
lems, which is an evolution of the locking-free finite element in [18] to general polygonal meshes by using the
reduced integration technique. The parameter-free property and the optimal error estimate are established. A
unified scheme both for the conforming and nonconforming VEMs is also constructed. Numerical results are
consistent with theoretical findings. The proposed method can be adapted to a mixed formulation, as was done in
[18].
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