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Growing emphasis is currently given in decision modeling on process data to capture behavioral mech-
anisms that ground decision-making processes. Nevertheless, advanced applications to elicit such data
are still lacking. The Causal Network Elicitation Technique interview and card-game, both face-to-face
interviews, are examples of a behavioral process method to obtain individuals’ decision-making by elic-
iting temporary mental representations of particular problems. However, to portray and model these rep-
resentations into formal modeling approaches, such as Bayesian decision networks, an extensive set of
parameters has to be gathered for each individual. Thus, data collection procedures for large sample
groups can be costly and time consuming. This paper reports on the methodological conversion and
enhancement of the existing elicitation methods into a computer-based interface that allows to not only
uncover individuals’ mental representations but also to automate the generation of preference parameter
elicitation questions. Results of such studies can be used to understand individuals’ constructs and beliefs
with respect to decision alternatives, predict individuals’ decision behavior at a disaggregate level, and to
assess behavioral changes due to differences in contexts and constraints.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, many attempts have been made to under-
stand human activity and decision patterns using revealed and sta-
ted preference travel surveys. However, these types of data are
criticized for being inadequate to understand decisions processes
that precede the measured travel outcomes (Pendyala & Bricka,
2006). Revealed and stated preference data may very well answer
questions such as what, when, where, whose (or with whom) activ-
ity-travel plans are executed, but they cannot sufficiently explain
why and how a person comes to certain decisions (Bradley,
2006). Behavioral planning process data (e.g. Doherty & Miller,
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2000) are believed to shed light on individuals’ beliefs and con-
structs that ground behavioral phenomena from the viewpoint of
agents (Goulias, 2003).

To deepen the insight into the underlying decision mechanisms,
an elaborate computerized elicitation to capture individuals’ men-
tal representations (MRs) of decision problems is proposed based
on the Causal Network Elicitation Technique (CNET) (Arentze, Della-
ert, & Timmermans, 2008). This approach is similar to the laddering
technique, in which an in-depth interview protocol is conducted
using probing questions, such as what, how and why certain aspects
are important in a decision. Furthermore, decision contexts play an
important role in the evaluation of benefits, yielding different
weights in different contexts (Shafir, 2007). For example, in the
transportation field, contextual aspects such as weather conditions
affect individuals’ actual transport mode choices (e.g. Kusumastuti
et al., 2009). Thus, various contexts in decision mechanisms should
be captured to fully understand decisions, along with individuals’
pursued benefits and characteristics (or instruments) of decision
alternatives. The CNET interview protocol can reveal these inter-
connected sets of context–instrument–benefit. This approach has
been modified to suit a fun-shopping application to assess contex-
tual differences in the benefit activation (Kusumastuti et al., 2009).
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This research paper reports on the methodological conversion
of the face-to-face CNET interview protocol to an advanced com-
puter-based survey (CB-CNET), in which predefined variables are
shown as cues to respondents. The dynamic nature of the interface
enables us to ask different questions to respondents depending on
their previous selections. This procedure advances our knowledge
about the associations between contexts, instruments and benefits.
The protocol also captures different decision-making styles and
discerns MRs driven by habit or conscious consideration. More-
over, the interface has an automatic question generation feature
for parameters (i.e. probabilities and weights) based on the elicited
MRs, enabling these representations to be modeled as Bayesian
decision networks (DNs), an artificial intelligence technique that
supports decision-making. Unlike other artificial intelligence
methods (e.g. decision-tree) that commonly learn an aggregate
representation from survey data, Bayesian DN is able to model
every individual’s decision process separately. Thus, it is suited to
represent behavioral planning process data.

The automation of the computerized elicitation procedure and
respondents’ independent contribution can significantly reduce
interviewers’ bias (Grunert & Grunert, 1995; Russell et al., 2004).
Data collection can be administered easier and cheaper for large
sample groups (e.g. in group sessions). Just like a web-based sur-
vey, a computer survey enables extra design choices and reduces
data entry time (Booth-Kewley, Larson, & Miyoshi, 2007; Fan &
Yan, 2010). The CB-CNET interface has been successfully imple-
mented to assess 221 respondents’ fun-shopping travel decisions
in the city of Hasselt, Belgium, focusing on the transport mode
and location choices.

The remainder of this paper is structured as follows: the next
section presents some theoretical background regarding rational
decision-making theory, MRs and Bayesian DNs. Next, the CNET
interview protocol is explained and discussed, followed by the
description of the CB-CNET interface. Moreover, some results of
an individual’s MR obtained using the interface are presented. At
last, some conclusions are drawn and further research issues are
addressed.
2. Theoretical background

This study aims at developing an advanced computer interface
to investigate individuals’ decision-making processes, especially
when engaging in complex activities. These thought processes
are reflected in their MRs, activated temporarily when solving
problem tasks (Arentze et al., 2008). Furthermore, elicited aspects
and concepts in these representations can be modeled as Bayesian
DNs. Thus, the interface is grounded in the theory of decision-
making, MRs, and Bayesian DN. These concepts are elucidated in
the following subsections.
2.1. Rational decision-making theory and an example of individuals’
mental representations

Rational decision-making theory argues that when facing novel
or infrequent decision problems, an individual decision maker acti-
vates a complex and deliberate cognitive process to come up with
the best possible solution (Payne, Bettman, & Johnson, 1993). In
this process, a set of alternative actions is built and assessed based
on their instruments in relation to individual’s goals and pursued
benefits and occurring contexts (Fig. 1).

Decision alternatives ([a] in Fig. 1), also referred to as decision
strategies (e.g. Payne et al., 1993), represent a choice set of possible
actions or objects that can be used to resolve particular problems
(Arentze et al., 2008; Gärling, Laitila, & Westin, 1998). Examples
of transport mode alternatives to go fun-shopping to the city
centre are using car, bus, or bike. Contextual aspects ([b] in Fig. 1)
are described as any given circumstances, situations and con-
straints in the decision environment that cannot be controlled by
decision makers albeit strongly affecting choice outcomes (Arentze
et al., 2008). Many studies (e.g. Gärling & Axhausen, 2003; Gärling
et al., 2002; Schlich & Axhausen, 2003; Stern & Richardson, 2005)
have indicated the importance of contexts in people’s travel deci-
sions. These aspects can be natural forces such as weather condi-
tions and other constraints that have been categorized earlier by
Hägerstrand (1970) into capability, authority and coupling con-
straints. Instrumental aspects ([c] in Fig. 1) are defined as observable
characteristics of the decision alternatives. Existing studies
(Dellaert, Arentze, & Timmermans, 2008; Harte & Koele, 1997) re-
fer to this concept as attribute variables. Travel time, cost, etc. are
examples of the instruments of different transport options. Lastly,
benefits (or utilities) are explained as subjective estimated benefits
of alternatives concerning their instruments in the arisen contexts
([d] in Fig. 1), such as efficiency, comfort, etc. In the end, it is as-
sumed that decision makers sum-up these (partial) utilities and se-
lect an alternative that has the highest overall utility value.

During the decision processes, a decision maker activates a tem-
porary MR in his working memory based on his existing knowledge
(Kearney & Kaplan, 1997). Constructing a MR requires a decision
maker to recall, reorder and summarize relevant information in
his long-term memory (Cox, 1999). It may involve translating
and representing this information into other forms, supporting
coherent reasoning in a connected structure (Kolloffel, Eysink, &
de Jong, 2010; Tabachneck-Schijf, Leonardo, & Simon, 1997).

In the cognitive MR of travel decisions, different contexts, instru-
ments and benefits are linked and mapped in a causal network
(Arentze et al., 2008). The smallest component that composes an
individual’s MR is referred to as a cognitive subset, which is defined
as one unit of interconnected context–instrument–benefit aspects
(Kusumastuti, Hannes, Janssens, Wets, & Dellaert, 2010). One sub-
set can be linked to other subsets, creating a MR of a certain prob-
lem task.

However, not every travel decision is made consciously and
cautiously. In frequently repeated daily-travel such as commuting
to work or school, travel decisions are often made out of habit
(Hannes, Janssens, & Wets, 2008). This grounds the needs to regis-
ter another cognitive subset type in ‘‘normal’’ conditions (or usual
situations); i.e. normally (habit)–instrument–benefit.

The complexity of travel decisions occurs not only because of
the variety of aspects that people consider simultaneously during
the thought process but also because in many cases, different deci-
sions are interconnected. For instance, when planning a leisure-
shopping trip, an individual initially decides upon the transport
mode option before thinking about the exact location to go to, or
vice versa. In the example (Fig. 2), the transport mode choice
mainly depends on weather conditions (context). This happens be-
cause various vehicles offer different protection or shelter (instru-
ment) in case of bad weather and due to an individual’s pursued
benefit of having comfort (benefit). As a result, the first transport
mode subset {weather, shelter, comfort} in this MR is registered.
Using the same line of thought, the cognitive subsets for the loca-
tion choice is elicited and mapped. Detailed discussions can be
found in previous reports (e.g. Kusumastuti et al., 2010).

2.2. Modeling individuals’ mental representations using Bayesian
decision networks

A Bayesian DN is an extension of a Bayesian network (BN) that
combines probabilistic reasoning and utilities, allowing decision
makers to estimate expected utility values of choice alternatives.
This modeling approach enables us not only to model
interconnected variables in individuals’ MRs but also to represent



Fig. 1. A rational decision-making scheme.
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sequential decision-making. Both facets cannot be retained by
more common knowledge representations, such as a decision-tree
classifier model.

A BN is a directed-acyclic-graph (Korb & Nicholson, 2003). It
contains nodes that represent a random set of variables in a specific
field, and directed arcs that indicate inter-dependencies between
the linked nodes. The strength of these relationships relies on con-
ditional probability distributions of the joined nodes.

Building a Bayesian DN requires some steps: (1) determining
nodes and their states, (2) revealing the network structure, (3)
specifying conditional probabilities and utilities, and (4) evaluating
the decision network. These steps are detailed below successively.

2.2.1. Nodes and states
A Bayesian DN entails three types of nodes: chance, decision and

utility nodes. Chance nodes represent random variables of interest,
such as contexts, instruments, and benefits in individuals’ MRs. Each
chance node takes values (or states), either discrete or continuous.
The discrete values can be binary or Boolean values (e.g. true and
false), ordered values (e.g. low, medium, high), and integral values
(Korb & Nicholson, 2003).

All possible aspects (i.e. context, instrument, benefit) and states
used in this study have been identified and listed by the research-
ers from the results of preliminary in-depth studies. Furthermore,
all applied nodes are limited to discrete nodes, which means that
variables must hold one of their states at a time. For instance,
the contextual aspect of weather conditions has two states {bad,
good}, the instrumental aspect of vehicle’s speed contains three
states {low, medium, high}, and all benefits, such as having comfort,
entail two states {none, all}. Decision nodes represent the decisions
being made, and their states indicate the choice alternatives or
strategies used to solve the problem. At last, utility nodes symbolize
subjective utility functions and they do not have any states. When
there is more than one utility node in the network, the total utility
is the sum of all partial-utilities.

2.2.2. Network structure
The network structure signifies qualitative relationships be-

tween the defined nodes. An arc indicates a relation between two
linked nodes, and it goes from a parent node (‘‘cause’’) to a child node
(‘‘effect’’). When an arc goes to a decision node, it means that the par-
ent node is known before making a decision (Neapolitan, 2003).

In general, depending on the purpose of the study, the structure
of a network can directly be specified by researchers, experts, or
learned from a database. Since this study focuses on modeling indi-
viduals’ MRs at a disaggregate level, relevant aspects and network
structures should be determined by individuals as experts of their
daily-travel decisions. Modeling cognitive MRs as Bayesian DNs
has been previously discussed in literature (Hannes et al., 2010).
However, to have a better notion of the elicitation interface, this
model is detailed below.

The Bayesian DN allows us to model sequential decision-making,
thus it is suited to model individuals’ MRs of complex travel tasks
that typically consist of interconnected decisions. An arc between
two decisions is referred to as a precedence or no-forgetting link,
implying that a decision maker takes into account previous deci-
sion(s) when making the next one(s). The example of a simple net-
work with two sequential decisions can be seen in the example
(Fig. 3).

Suppose that a cognitive subset {weather, shelter, comfort} is
elicited by a respondent when considering the transport modes
{car, bus, bike} to go shopping. Weather {bad, good}, represents
weather conditions. Shelter {not needed, needed} symbolizes the
need to have a shelter, as different transport modes vary in that re-
spect. Logically, this need is driven by weather conditions, i.e.
when the weather is bad, the necessity to have shelter increases.
Comfort corresponds to the benefit that someone wants to gain
from using different transport modalities. Thus, its states of {none,
all} are also influenced by weather conditions. This subset is mod-
eled in Fig. 3a.

The shopping location decision is influenced by an individual’s
interest in a specific product as well as the number and size of goods
being purchased (Fig. 3b). Both contexts lead to the benefit of hav-
ing efficiency. In the model, we differentiate the efficiency gained in
different situations, e.g. [efficiency_1] and [efficiency_2], allowing us
to assess the impact of every context on the benefit level sepa-
rately. In the end, both benefits lead to the same partial utility of
having efficiency.

The applied modeling approach (Fig. 3) differs from the exist-
ing approaches in some respects. For instance, our model regards



Fig. 2. An example of an individual’s MR.
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the characteristics of the choice alternatives (instruments) as as-
pects known prior to making choices. Thus, they are parents of
the decision nodes. In contrast, other studies (e.g. Arentze
et al., 2008) consider these characteristics as the outcome of
decisions. Moreover, our proposed approach uses a fixed struc-
ture to model a cognitive subset, simplifying the automatic gen-
eration of Bayesian DNs.

2.2.3. Conditional probability and utility table
After all nodes and the network structure have been specified

and determined, the relationships between the linked nodes have
to be quantified in conditional probability tables (CPTs). Each
chance node contains a CPT, representing individuals’ belief of
occurrence of particular states given the combination of the par-
ents’ states. For example, consider comfort [C] {none [N], all [A]}
in the cognitive subset example of {weather, shelter, comfort} in
Fig. 3a. Since this node has weather [W] {bad [B], good [G]}) and
transport mode decision [TM] {car, bus, bike} as parents, the CPT of
having all comfort takes the joint values {P(C = A|W, TM)}. Suppose
that an individual estimates these values as {h0.5i, h0i, h1i, h1i,
h0.6i, h0i} (Fig. 3c), meaning that if a car is used when the weather
is good then the chance to gain the benefit of having comfort is 50%,
if a bus is used in that context, then the probability to acquire this
benefit drops to 0% (for instance because it is too hot inside the
bus), and so forth. It should be noted that the joint values of all
states in one node have to sum-up to 1. Therefore, the joint values
for having no comfort are {P(C = N|W, TM)} = 1 � {P(C = A|W, TM)}.

The example above shows that the probability assessments of
a node that has many parents (or when the parent nodes have
many states) are very large. Imagine a child node that has five
parents. If each node has two states, the CPT of this child node
requires 25+1 = 64 probabilities. Given the nature of this study
to individually model people’s travel behavior, respondents’ sub-
jective probability judgments are needed for the CPTs of each
individual’s Bayesian DN. This imposes a challenge to reduce
respondents’ burden. For this reason, each partial benefit vari-
able is linked to only one context (Fig. 3a and b), assuming that
there are no interactions between different contexts that lead to
the same desired benefits.

Each utility node has a utility table (UT). Since this type of nodes
does not contain any states, it directly describes the utilities of the
parents’ states. In the example above, the utility node COMFORT
has a benefit comfort as a parent, hence the utilities for having all
and no comfort are assessed by assuming that having no benefit al-
ways equals 0 while having all benefit is valued 100 (Fig. 3c). When
there are two identical benefits that lead to the same utility (e.g.
efficiency in Fig. 3b), these values are propagated equally (see the
UT EFFICIENCY in Fig. 3c).



Fig. 3. Modeling cognitive subsets.
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An individual may consider the importance of various utilities
in reality differently (Arentze et al., 2008; Dellaert et al., 2008).
For instance, a busy person may prioritize having efficiency over
comfort. Therefore, it is important to take the weight of partial-
utilities into account in the UT. For the sake of simplicity of the
example in Fig. 3, comfort and efficiency are weighted equally. How-
ever, the developed interface should allow for its assessments.

2.2.4. Evaluating decision networks
The Bayesian DN can be solved after all probabilities, utilities and

their weights are inputted in the CPTs and UTs. Compiling a Bayesian
DN combines utility and probability theories, allowing the expected
utility values (EU) of each decision alternative given any available
evidence (e) to be calculated (Korb & Nicholson, 2003).

EUðDjeÞ ¼
X

i

PðOije;DÞ � UðOijDÞ

e = evidence, D = non-deterministic decision alternative with possi-
ble outcome states Oi. UðOijDÞ = utility of each state of the out-
comes, given alternative D is taken. PðOije;DÞ = conditional
probability distribution over possible outcome states, given evi-
dence e is observed and action D is taken.

Examples of detailed calculations (Fig. 3e and f) are exemplified
only for modeling one subset of {weather, shelter, comfort}. The util-
ities of comfort {U(C|W, TM)} are shown in Fig. 3d. Using the CPT
and UT data (Fig. 3c) and the utility calculations (Fig. 3d), the EU
for the transport mode options are calculated.

The calculations (Fig. 3e) show that given an unknown state of
weather (50–50% chance that the weather is good or bad), taking
car maximizes the utility (75), followed by bike (50) and bus
(30). Additionally, some evidence can be entered in the network
based on some observations and accordingly the network can be
inferred. For instance, when the weather is (or expected to be)
bad (Fig. 3f), the EU of choosing bike drops to 0. Using the same
technique, the evidence that the weather is nice can also be en-
tered, resulting in the new EU of each decision option.

This example shows that a Bayesian DN can be used to predict
every individual’s travel behavior, assuming that people always
take the alternative that maximizes their utility. However, the
example is fairly simple since it allows for only one decision and
one subset. In reality, individuals’ MRs can be more complex with
multiple decisions and a number of subsets, as it will be addressed
later and shown in Fig. 9. To compute complex networks, Bayesian
software is commonly used, such as Hugin software (HUGIN
EXPERT, n.d.).

2.3. Conclusions

This section shows that the data collection procedure to capture
individuals’ MRs and model them as Bayesian DNs should be di-
vided into several parts. Firstly, the sequence of decision-making
should be identified. Furthermore, important aspects considered
when solving the decision problem have to be elicited and the
interconnection between them (i.e. the cognitive subsets) should
be specified. Next, the probabilities and utilities have to be col-
lected, as well as the utility weights. Since the whole elicitation
procedure is quite intense and demanding, it is important to keep
the balance between the sought-after information and respon-
dents’ burden. The developed computer interface takes these is-
sues into account.
3. Conventional elicitation techniques

This section discusses conventional elicitation techniques to ex-
tract individuals’ MRs, emphasizing on the hard and soft-elicitation
procedures. Following that, the CNET interview protocol is summa-
rized and the experience of using this protocol is explained
subsequently.

3.1. Soft vs. hard-elicitation techniques

The differences in elicitation techniques have been assessed be-
fore. For instance, Russell et al. (2004) have conducted a study to
compare soft and hard-laddering methods. Results show that differ-
ent approaches result in different network complexity levels. Sim-
ilarly, two CNET methods have been tested (Kusumastuti et al.,
2009). The fist method is the CNET interview, resembling the soft-
elicitation technique (Arentze et al., 2008). The second one is the
CNET card-game, akin to the hard-elicitation technique. Results sup-
port the existing research outcomes by Russell et al. (2004). Partic-
ipants’ MRs extracted from the CNET card-game are more complex
and elaborate than the ones derived from the CNET interview.

Results of these studies suggest that researchers should be
aware of the impact of elicitation methods on research outcomes.
The advantages and disadvantages of both elicitation techniques
have been previously discussed in the literature (e.g. Grunert &
Grunert, 1995; Russell et al., 2004). Additionally, respondents from
the preliminary study indicate that the CNET card-game is prefer-
able to the CNET interview because of the easiness, comprehen-
siveness, and the way it represents their actual thought
processes (Kusumastuti et al., 2009). Based on results of both CNET
techniques, the CB-CNET interface is developed to facilitate the
automation of the data collection procedure.

3.2. The CNET interview protocol

In brief, the CNET interview protocol is developed to reveal peo-
ple’s MRs in a face-to-face semi-structured interview setting
(Arentze et al., 2008), starting from the elicitation of cognitive sub-
sets (Kusumastuti et al., 2009). Firstly, participants are asked to or-
der the sequence of their decision-making. Afterwards, the
elicitation procedure begins by asking participants about consider-
ations that come to their mind when making the first decision. Any
open answers to this question are coded using a predefined code
list and categorized as contextual aspect, instrumental aspect or
benefit. Depending on the categorization of the elicited variables,
other probing questions of how and why such a variable influences
their decision choice are asked next. These questions continue until
a complete subset is elicited and recorded. Afterwards, an inter-
viewer goes back to the first question to ask about respondent’s
other thought factors.

3.3. Experiences with the CNET interview protocol

Previous study (i.e. Kusumastuti et al., 2009) reports that the
average time to complete the CNET interview is about 1 h per
respondent. However, eliciting the affecting factors in decisions
and their interconnections is not sufficient to model participants’
MRs as Bayesian DNs. The data has to be inputted and each respon-
dent’s Bayesian DN graph has to be drawn manually. Moreover,
parameters have to be gathered based on their unique networks,
preventing to capture such data immediately in face-to-face inter-
views. It means that post-questionnaires, designed for each indi-
vidual, are sent after the interviews. This whole procedure can
take at least 8 h of the researcher’s time to complete, added with
additional 2 h of participant’s time to answer the post-
questionnaire. The inability to ask parameter questions directly
in the interview may add-up respondents’ burden to recall the
decision problem and reactivate the MR. Overall, the whole proce-
dure is time consuming (Kusumastuti et al., 2009), enhancing the
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need to automate the entire process in a computer-based elicita-
tion interface.
Fig. 4. Summary of the elicitation stages in CB-CNET.
4. Computer-based elicitation technique

The increased use of computers in day-to-day life (Maxwell,
2001) enlarges the use of computer interfaces in survey question-
naires. Previous study reports that respondents prefer the com-
puter survey over the traditional paper-and-pencil administration
(Booth-Kewley, Edwards, & Rosenfeld, 1992). This may happen be-
cause of participants’ anonymity in the computer administration,
increasing the feeling of security and safety when answering per-
sonal and sensitive matters (Paperny, Aono, Lehman, Hammar, &
Risser, 1990), such as in a study related to drug uses, sexual prac-
tices and criminal offences (Donohue, Powell, & Wilson, 1999).

Computer administrated questionnaires are widely accepted
(e.g. Schriger, Gibbons, Langone, Lee, & Altshuler, 2001). Such com-
puter administrations give participants a greater control over the
tempo of the survey (Donohue et al., 1999), making it less stressful
than its traditional counterparts (Davis & Cowles, 1989). It pro-
vides standardization and reliability (Donohue et al., 1999), and of-
fers great flexibility of presentation (Booth-Kewley et al., 2007).
Therefore, it has been previously applied in memory interviews
involving children (Steward, Farquhar, Driskill, & Steward, 1996)
and people with poor literacy abilities (Barber, 1990). Because of
its degree of flexibility, the number of questions can be adjusted,
focusing solely on relevant questions based on respondents’ previ-
ous answers (Smith, Velikova, Wright, Lynch, & Selby, 2006).

Another major advantage of computer administration surveys is
its significant cost reduction in comparison to conventional sur-
veys (Weber et al., 2003). It eliminates possible errors, as well as
time and cost needed for data entry (Booth-Kewley et al., 2007;
Fan & Yan, 2010). Computer surveys can be administered easily
(Booth-Kewley et al., 2007), especially for large sample group,
and can provide direct results.

Eliciting individuals’ MRs using computers may grant the men-
tioned benefits in the previous paragraphs. For instance, the auto-
mation and anonymity of the data collection procedure can
minimize the interaction between researchers and respondents,
thus diminishing interviewers’ bias (Grunert & Grunert, 1995;
Russell et al., 2004). Furthermore, research is feasible to be admin-
istered for large sample groups at a lower cost. Both the data gath-
ering and data entry processes can be conducted faster. The
flexibility of the computer survey enables us to generate questions
automatically based on respondents’ variable selections, making it
more focused and diminishing researchers’ error.

It is concluded in the theoretical background that the comput-
erized interface to capture and model individuals’ MRs should be
divided into several stages, as it is detailed in Fig. 4. An additional
step is added in the interface to capture the individuals’ actual
preferences in different scenarios to enable model validations.
Some screenshots of the English version of the interface can be
seen in Fig. 5.
4.1. Research setting and scenario

The survey starts by asking the participants to give their per-
sonal information, such as their residence, education, and occupa-
tion. This data can be used to cluster the elicited MRs based on
socio-demographic characteristics. Afterwards, the research sce-
narios are explained to the respondents.

The CB-CNET is implemented to assess individuals’ travel
behavior when engaging in leisure-shopping activities in a city
centre. Hasselt, a typical European historic city in Belgium, is cho-
sen as a case study to implement the interface. Since Hasselt is
located in the Dutch speaking part of the country, the whole survey
is conducted in Dutch. The example of the scenario can be seen in
Fig. 6. A short description of the task is always shown in the inter-
face as a reminder throughout the whole survey (Fig. 5).

After this, the respondents are asked to reflect on two decisions:
how to get to the city centre (transport mode decision) and where
exactly to go to (shopping location decision). Following that, all
decision alternatives are explicated. The transport modes are
explained by reminding the respondents that they are living in
Hasselt outskirts. All respondents are recruited from this area (3–
10 km away from the city centre). They own at least a bike and a
driving license. A bus stop is located within walking distance of
their home, which is the case for everyone who lives near Hasselt.
Accordingly, different predefined transport mode options (i.e. car,
bus, and bike) can equally be considered. The location choices are
elucidated by showing a map of Hasselt city centre divided into
three zones, derived from results of a preliminary study on partic-
ipants’ mental map: the main shopping street, the expensive boutique
area and the gallery area.

4.2. Eliciting nodes and specifying network structure

The elicitation procedure begins after describing the research
setting and scenario. Initially, the participants are asked to rank
their decisions from the one that they think of first to last. Based
on this, the respondents are asked to contemplate their decision-
making, i.e. whether their decisions vary depending on certain cir-
cumstances, indicating heuristic or rational decision-making, or
whether a choice is made spontaneously, representing habitual



Fig. 5. Screenshots of the CB-CNET interface.
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Fig. 6. The example of the scenario.
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decision-making. This part is defined as the split-elicitation proce-
dure because based on respondents’ indications, different elicita-
tion paths are followed ([a] in Fig. 7).

Suppose that a respondent indicates that his transport choice
depends on some contexts then revealing these factors is targeted
next, forming situation models (Wyer, 2007). For instance, a partic-
ipant reasons that he bikes whenever the weather is nice and takes
his car if the time is limited. In this case, weather conditions and
time availability are registered as his influencing contexts. To elicit
these variables, participants are asked to sort out all contexts that
could affect their transport choices in a predefined list of contexts
([c–i] in Fig. 7). This list contains a wide variety of contextual as-
pects, ranging from coupling constraints (i.e. companionship), natu-
ral forces (e.g. weather conditions, wind, etc.), Travel Demand
Management measures (e.g. bus frequency, parking cost, bus fare,
etc.), to other contexts and constraints (time availability, parking
availability, etc.). In total, there are 27 and 16 contextual variables
for the transport and location decisions respectively. These prede-
fined variables are developed based on literature and preliminary
studies using the CNET interviews (Kusumastuti et al., 2009). To
ensure that all respondents have uniform interpretations of these
variables, the definition is shown in the interface whenever
respondents pass their mouse on one of them.

Each aspect is normally represented in a discrete node with 2–3
states. Cost-related variables usually have three states, such as
parking cost {free, h2 euro/hour, i2 euro/hour}. Consequently, the im-
pact of different pricing policies on individuals’ travel behavior can
be assessed in relation to other affecting contexts. The maximum
number of seven states is observed for a contextual aspect of hav-
ing information from others {no advice, positive advice for area 1, neg-
ative advice for area 1, + area 2, � area 2, + area 3, � area 3} in the
shopping location decision.

Afterwards, the respondents have to reveal the interconnected
benefits for each context ([d–i] in Fig. 7). For this purpose, 15 ben-
efits are shown in a predefined benefit list (e.g. having fun, physical
comfort, etc.). Next, the full cognitive subsets are elicited by
interrogating the intertwining instrument(s) for each selected con-
text–benefit ([e–i] in Fig. 7). The interface automatically generates
questions depending on respondents’ previous variable selections.
Here, short lists of instrumental aspects appear. These lists contain
various numbers of instruments depending on the chosen context.
They were identified using the CNET card-game method. For in-
stance, weather conditions connects with 15 instruments (the lon-
gest list) whilst tax and insurance links to three instrumental
aspects (the shortest list). After this procedure is completed, the
first cognitive subset type of {context, instrument, benefit} can be
registered.

When a respondent initially points out that he would directly
choose a certain transport mode regardless specific contexts, an-
other elicitation path is carried out to obtain the generalized repre-
sentations from values (Wyer, 2007) ([b–ii] in Fig. 7). The procedure
begins with extracting all pursued benefits from the chosen trans-
port mode, followed by revealing the linked instruments. The full
list of instruments is shown, containing 25 and 23 variables for
the transport and location choices respectively. As a result, the sec-
ond cognitive subset type of {normally, instrument, benefit} can be
noted down.

Additionally, participants are asked if they have other consider-
ations that are not presented in the lists. An additional question of
how participants are actually making a choice is also asked ([h] in
Fig. 7) to re-confirm their previous answers in the split-elicitation
page ([a] in Fig. 7). Detailed stages and explanations of the CB-
CNET elicitation part can be seen in Fig. 7.

4.3. Probabilities

Probabilities are assessed based on the relationships between
parent and child nodes. Theoretically, these probabilities are gath-
ered for each node. Practically, this is infeasible, considering the
amount of questions that respondents have to answer. Therefore,
some assumptions are made.

First, probabilities of certain contexts to occur should be as-
sessed based on individuals’ beliefs. However, these contexts are
observed or expected at the decision time. For instance, when
deciding upon the transport mode, an individual already has preli-
minary knowledge of the (expected) weather conditions during the
trip (bad or good), allowing some evidence to be set in the net-
work. The initial probabilities before evidence are distributed
equally across variable states, e.g. weather{bad, good} = h0.5, 0.5i.
Hence, the participants are not asked to indicate these values, solv-
ing the problem when participants’ initial probability knowledge is
lacking. Next, the probabilities of instruments rely on the context
states. However, from the previous calculation (Fig. 3), these values
are not used to calculate the EU of the choice alternatives. This im-
plies that any inputted values on these nodes will not change the
calculated results. Therefore, they are not collected. This node type
is elicited only to find out which attributes of the decision alterna-
tives are important to gain certain benefits in particular contexts.

The mentioned considerations let us focus solely on the proba-
bilities of benefits, based on contexts and decisions. Since the ben-
efits always have two states, the probabilities can be assessed only
for one state (see Section 2.2.3). The CB-CNET allows questions to
be generated automatically based on participants’ variable selec-
tions. For instance, when a benefit of having comfort {none, all} is
elicited due to weather conditions {bad, good} and the transport
mode options {car, bus, bike}, this question is asked:

‘‘Imagine that the weather is bad when you go fun-shopping in
Hasselt. In this case, how big is the chance that you will gain the
benefit of having comfort when you use car/bus/bike?’’

A sliding bar ranging from 0 to 100% is presented for each choice
alternative. Subsequently, a participant is asked to indicate the
probabilities of acquiring the benefit for another context state
(i.e. good weather). Similar questions are asked to capture benefit
values in a normal situation (habit).



Fig. 7. Elicitation of the network structure in CB-CNET.
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4.4. Weight of utility

The utility weights are calculated in two ways: (1) rating of sin-
gle-benefits and (2) rating of combined-benefits in a conjoint
experiment using fractional factorial design profiles. In the first
experiment, participants are asked to indicate the importance of
gaining benefits when they go shopping. Respondents can freely
indicate their answers in continuous response bars, ranging from
not important (0) to extremely important (100). Each value is di-
vided by the sum of the elicited benefit values, yielding each utility
weight. Results of Bayesian DNs using single-benefits can be com-
pared with the ones calculated using the experimental design.

Experimental designs, such as conjoint experiments, have been
used in industrial marketing, pricing and advertising (Gustafsson,
Herrmann, & Huber, 2003; Mahajan & Wind, 1992) to realistically
represent the way consumers make some trade-offs in their deci-
sion processes involving multi-attribute products or services
(Huber, 1987). This is done for instance by using full factorial
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design experiments. However, such a design requires a large num-
ber of runs, albeit having a small number of attributes. For in-
stance, a product is assessed based on five attributes (k), each
having two levels. This implies that the number of full-profiles to
measure is 2k = 25 = 32. Thus, the research can be costly and
respondents’ burden also grows. To solve this issue, a fraction of
the full factorial runs is used, commonly called as fractional facto-
rial design (FFD).

FFD allows us to economically assess ‘‘causal-effect’’ relation-
ships between factors in an experiment, because instead of running
32 full factorial designs a 1/2 fractional run of 18 or a 1/4 fractional
run of eight can also be sufficient. These designs should fulfill ade-
quate properties of being balanced and orthogonal, meaning that all
combinations of levels (or states), e.g. high [+] and low [�], appear
as frequently in the design and the correlations between all attri-
butes are ‘‘0’’. Nevertheless, it can only assess main-effects while
interaction-effects are assumed to be ‘‘0’’. The main-effect shows
the effect of single factors on the dependent variable and the inter-
action-effect indicates the effect of combined independent vari-
ables. In this study, FFD is used to calculate the partial-utility
weights. A detailed discussion is out of the scope of this paper.

FFD is written in a notation 2k�p
R , where two represents the num-

ber of attribute levels; k symbolizes the number of attributes, k � p
stands for the extent of fractionation, and R signifies the resolution.
The resolution indicates the shortest length of ‘‘word’’ in the gen-
erator set (see e.g. NIST/SEMATECH, n.d. for detailed explanations).
This study implements 27�3

IV design (Table 1), meaning that seven
benefits are assessed in the total number of 16 runs (profiles), each
benefit has two levels, and a resolution IV design is used. Such de-
signs can be obtained from other literature (e.g. Box, Hunter, &
Hunter, 1978; Montgomery, 2000; NIST/SEMATECH, n.d.).

The respondents are asked to value the profiles separately con-
cerning their chance to execute the leisure-shopping activity (0–
100%). Each profile contains combinations of seven benefit states.
These benefits are taken from the survey. Thus, the same FFD is
used for all participants, but the assessed benefits differ from one
respondent to another. The response column in Table 1 shows an
example of a respondent’s answers.

The total utility is calculated as the sum of the part-worth fac-
tors that construct it (Hair, Black, Babin, Anderson, & Tatham,
2005):

Total Utility ¼ part worth X1þ part worth X2þ � � �
þ part worth Xn

Part-worth utilities are calculated by firstly coding the levels
with effect coding (�1 and +1) and employing a linear regression
analysis next. Statistical software, e.g. SPSS (SPSS, n.d.), can be used
to obtain the regression equations.
Table 1
27�3

IV FFD design with response.

Profile X1 X2 X3 X4 X5 X6 X7 Response

1 + + + + + + + 1
2 + + + � + � � 0.1
3 + + � + � + � 0.49
4 + + � � � � + 0.07
5 + � + + � � � 0.34
6 + � + � � + + 0
7 + � � + + � + 0
8 + � � � + + � 0
9 � + + + � � + 0.13

10 � + + � � + � 0.12
11 � + � + + � � 0.79
12 � + � � + + + 0.08
13 � � + + + + � 0
14 � � + � + � + 0
15 � � � + � + + 0
16 � � � � � � � 0
Assessment ¼ C þ b1X1þ b2X2þ :::þ b7X7

C = constant represents basic use or average assessment of profiles,
Xn = benefits assessed, bi = estimated part-worth.

The example of the regression equation from the example in Ta-
ble 1 is shown below. Values (C, b1, . . ., b7) are taken from Table 2.
Partial-utilities are defined as factor importance or the effect of
attributes on the utility. To calculate these values, the range of
part-worth for each benefit is estimated, divided by the sum
of part-worth ranges, multiplied by 100% (Table 3).

Utility ¼ 0:195þ 0:055X1þ 0:153X2þ 0:16X3þ 0:149X4

þ 0:051X5þ 0:016X6� 0:35X7

A limitation of this study is the use of fixed seven-attribute FFD,
implying that when a respondent elicits less than seven benefits,
additional random benefits from the predefined list have to be
added to make the number of attributes in the design equals seven.
On the other hand, if more than seven benefits are selected,
respondents are asked to indicate the seven most important ones.

Traditional conjoint experiments using full-profiles are com-
monly used for less than 10 attributes (Hair et al., 2005). It is be-
lieved that the accuracy of full-profile designs reduces as the
number of attributes grows beyond 10 due to respondents’ fatigue,
memory limitation, and information overload (Pullman, Dodson, &
Moore, 1999). However, the maximum number of attributes that
one respondent can assess has never been determined (Pullman
et al., 1999). A benchmark of maximum 30 attributes is often used
(e.g. Green & Srinivasan, 1990). This study applies a seven-attri-
bute design because results of our pilot study show that respon-
dents tend to indicate 6–7 benefits. Moreover, our survey to 221
respondents supports this finding as the average number of se-
lected benefits equals seven.

4.5. Model validation

The last part of the survey is designed to gather sufficient data
for model validations. Respondents’ actual transport mode prefer-
ences are asked according to individuals’ initial selected contexts.
For instance, a respondent elicits weather conditions, time availabil-
ity, and companionship as contexts that affect his transport mode.
Thus, questions are asked, based on different schemes (see
Fig. 8). Ultimately, these preferences are compared with the Bayes-
ian DN results to check the model accuracy.

4.6. Compiling Bayesian DNs

An additional program is written to automate the generation of
Bayesian DNs from individuals’ elicited MRs. Specialized Bayesian
network software, i.e. Hugin Researcher 7.2 (HUGIN EXPERT,
n.d.), is used to compute all networks. An example of an individ-
ual’s Bayesian DN derived from CB-CNET can be seen in Fig. 9. This
example illustrates the use of a Bayesian DN to predict individuals’
travel behavior. Furthermore, behavioral changes due to some
influential contexts can be assessed. For instance, with no evi-
dence, the network predicts that taking the car yields the highest
utility value (53.30) ([a] in Fig. 9). However, when some evidence
is entered (i.e. there is plenty of time available, car is not available,
it is not a windy day, and the weather is good) the utility of taking
the bike increases (41.64) and the utility of taking the car decreases
(35.80) ([b] in Fig. 9).

4.7. Conclusions

This section details the development of the computer-based
elicitation technique, named the CB-CNET, and its application in
leisure-trip related decisions. This interface is used to gather data



Table 2
An example of regression coefficients.

Coefficientsa

Model Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

1 (Constant) .195 .067 2.898 .020
B1 .055 .067 .184 .817 .437
B2 .153 .067 .511 2.267 .053
B3 .016 .067 .054 .242 .815
B4 .149 .067 .499 2.211 .058
B5 .051 .067 .172 .762 .468
B6 .016 .067 .054 .242 .815
B7 �.035 .067 �.117 �.520 .617

a Dependent variable: response.

Table 3
An example to calculate factor importance of each benefit.

Estimating part-worths Calculating factor importance

Attributes Levels Estimated part-worth Range part-worth Factor importance (%)

X1 + 0.055 0.11 11.58
X1 � �0.055
X2 + 0.153 0.306 32.21
X2 � �0.153
X3 + 0.016 0.032 3.37
X3 � �0.016
X4 + 0.149 0.298 31.37
X4 � �0.149
X5 + 0.051 0.102 10.74
X5 � �0.051
X6 + 0.016 0.032 3.37
X6 � �0.016
X7 + �0.035 0.07 7.37
X7 � 0.035
Total range part-worth 0.95

Fig. 8. Validation scheme.

1008 D. Kusumastuti et al. / Computers in Human Behavior 27 (2011) 997–1011
from 221 respondents. The use of the interface significantly re-
duces the time to collect the data in comparison to the face-to-face
CNET interview protocol because the parameters can automatically
and directly be gathered during the survey. In average, the whole
survey lasts for about 2–3 h, per group session of about 20 respon-
dents, in comparison to the CNET interview that took about 10 h to
finish, per respondent.
5. General conclusions and discussions

The computerized approach (such as the CB-CNET) allowed us
to construct mental representations (MRs) interactively with
respondents, measure their preferences, and to generate an indi-
vidual level decision model. For this purpose, the CB-CNET protocol
is broken down into several stages and implemented in the inter-
face accordingly.
The first stage aims at eliciting aspects, constructs and beliefs
considered in the decision processes using probing questions and
elucidating the interconnections between them. They are repre-
sented in cognitive subsets, consisting of interconnected contexts,
benefits, and instruments. Accordingly, individuals’ MRs can be rep-
resented as decision models (i.e. Bayesian decision networks). In
the second stage, questionnaires are generated automatically to
gather probabilities and utilities based on the individuals’ network
structures. These values are obtained in the conditional probability
and utility tables and they are used to determine the strength of
relationships between the linked aspects. Subsequently, the utility
weights have to be set. The application allows two ways to gener-
ate utility weights based on rating experiments: using separate
assessments of single-utilities and evaluations of combined se-
ven-utilities in Fractional Factorial Design profiles. At last, the
interface generates some questions to investigate individuals’ ac-
tual preferences, enabling the constructed models to be validated.



Fig. 9. Example of an individual’s mental representation derived from the CB-CNET.
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Using a computer survey in this type of study has many advan-
tages not only because the questions can be automatically gener-
ated but also because interviewers’ bias can be lessened.
Moreover, data can be collected easier, quicker and cheaper for
large sample groups. The CB-CNET survey is applied to assess lei-
sure-shopping travel behavior in the city centre of Hasselt, in Bel-
gium, focusing on individuals’ transport mode and location choices.
This interface has successfully been applied to gather data from
221 people who are living in the outskirts of Hasselt.

There are some limitations in this study. For instance, the activ-
ity scheduling decision is given in the scenario, implying that par-
ticipants cannot opt not to go for leisure-shopping activities. The
model also assumes that there are no interaction-effects of various
contexts that yield the same pursued benefit. For instance a
respondent indicates that contextual aspects of weather conditions
{bad, good} and wind conditions {not windy, windy} are linked to the
same benefit of having comfort. Suppose the respondent indicates
that if the weather condition is good and it is windy then his chance
of having the benefit of comfort when biking is really low. However
when the weather is still good but it is not windy, the probability to
gain comfort increases when bike is used. Thus, there is interaction
between variable weather and wind conditions. The interactions
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between contextual aspects could be addressed in the future re-
search to improve Bayesian DN modeling accuracy. Additionally,
one way to calculate utility weights in the survey is using the fixed
seven-utility design. Needless to say, the later problem can be fixed
in future research if needed, based on results of calculations of cur-
rent data.

Some follow-up analyses on the Bayesian DN models derived
from the data of 214 respondents are conducted to calculate the
predictive accuracy of the models. Participants’ actual transport
mode choices in different scenarios as reported in the CB-CNET
survey data are used as a benchmark to calculate how well the
DN models predict the choices indicated by participants. Results
show that the accuracy of DN models is around 67%, implying that
in 67% of the cases these models can correctly predict participants’
transport mode and location choices under various contexts and
constraints. Additional analyses are done to compare the predic-
tion of Bayesian DN models to the decision-tree model. Both mod-
eling techniques use the MR data gathered using CB-CNET survey.
Results of this study are reported in an upcoming publication.
Moreover, the impact of time availability to perform leisure-shop-
ping activities on cognitive representations will be investigated. In
addition, future studies should investigate individuals’ travel
behavior when performing other activities. Undoubtedly, the CB-
CNET can be adapted to assess different activities as well.
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