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Abstract: This paper presents the results of a natural experiment investigating the effects of
instructional conditions and experience on the adoption and sustained use of a learning tool. The
experiment was conducted with undergraduate students, enrolled into four performing art courses
(N=77) at a research intensive university in Canada. The students used the video annotation software
CLAS for course-based self-assessment on their performances. Although existing research offers insights
into the factors predicting students’ intentions of accepting a learning tool, much less is known about
factors that affect actual adoption and sustained tool use. The study explored the use of CLAS amongst
undergraduate students in four courses across two consecutive semesters. Trace data of students’ tool
use, graph-based measures of metacognitive monitoring, and text cohesion of video annotations were
used to estimate the volume of tool use and the quality of the learning strategy and learning products
created. The results confirmed that scaffolding (e.g., graded activity with instructional feedback) is
required to guide students’ initial tool use, although scaffolding did not have an independent significant
effect on the quantity of tool use. The findings demonstrated that the use of the tool is strongly
influenced by the experience an individual student gains from scaffolded conditions. That is, the
students sustained their use of the learning tool in future courses even when the tool use was not
graded nor was instructional feedback provided. An important implication is that students’ tool use is
not solely driven by motivation —rather, it is shaped by instructional conditions and experience with the
tool use.

Keywords: learning technology adoption; instructional scaffolding; self-regulated learning; learning
analytics



1 Introduction

Despite the many reported benefits of technology for facilitating student learning and engagement
(Chen, Lambert, & Guidry, 2010; Lépez-Pérez, Pérez-Lopez, & Rodriguez-Ariza, 2011), studies have
identified that a great majority of students (above 60%) can be classified as limited learning technology
users (Lust, Elen, & Clarebout, 2013; Lust, Juarez Collazo, Elen, & Clarebout, 2012). The observed limited
use is not simply a function of poor course design. The authors also noted a lack of student engagement
with technologies even when learning tools are specifically embedded into course designs that follow
pedagogically sound and empirically validated principles (Lust et al., 2013, 2012). Essentially, there is an
educational challenge to first motivate students to accept the learning tool and second, to sustain their
use of it.

Much research has been undertaken to understand the conditions for promoting student acceptance
and long term adoption of learning tools (Cheung & Vogel, 2013; Edmunds, Thorpe, & Conole, 2012;
Escobar-Rodriguez & Monge-Lozano, 2012). Most prominent in this area has been the technology
acceptance model (TAM). The TAM was first proposed by Davis (1989) and comprises of two primary
factors that are perceived to contribute to technology adoption: perceived ease of use and perceived
usefulness (Sanchez & Hueros, 2010). The explanatory power of this model is further extended when
additional constructs are incorporated such as self-efficacy, enjoyment, and learning goal orientation.
These additional constructs provide additional explanatory power beyond that of TAM to better
understand student use of technical systems (Yi & Hwang, 2003). However, while there is much to learn
from these studies, the adopted constructs tend to explain factors influencing students’ intentions to
accept using learning tools, rather than their actual adoption (Clarebout, Elen, Collazo, Lust, & Jiang,
2013). Moreover, there is limited understanding of the conditions and pedagogical approaches that
sustain students’ use of educational technology, especially when the use of a certain tool is optional and
not assessed.

1.1 Learning Tool Use as Self-Regulated Learning

Contemporary research investigating student use of education technologies is increasingly situated
within the context of self-regulated learning (SRL) (Trevors, Duffy, & Azevedo, 2014). As originally
suggested by Azevedo (2005), SRL provides a robust theoretical framework to inform the study of
technology-enabled learning (in computer-based learning environments). In this paper, we have
adopted SRL as a framework to understand the conditions that sustain students’ use of a learning
technology. In particular, we incorporated Winne and Hadwin’s model of self-regulated learning (Winne,
2006; Winne & Hadwin, 1998). This model considers five elements: conditions, operations, products,
evaluations and standards (COPES) — that collectively influence self-regulatory processes of learning
(Winne, 1996). According to the COPES model, learners use tools (cognitive, digital or physical) to
operate on raw information (e.g., watching video recordings of a lecture) in order to construct products
of their learning (e.g., recall of information introduced in the video recordings). To regulate their
learning process, students evaluate the products of their learning (e.g., quality of their recall) and the
effectiveness of their learning strategies according to internal (e.g., whether video watching results in
satisfying information recall within the time budgeted for learning) or external standards (e.g., whether
they received a passing mark on a quiz that accompanied the video). Consistent with modern



educational psychology, the Winne and Hadwin model (1998) deems learners as active agents in the
learning process. As active and constructive participants, learners monitor their learning and choose the
tools they are going to adopt and the standards they will follow to evaluate the products of their
learning (Winne, 1996) as a part of their metacognitive control and monitoring. This decision making
process is based on internal (e.g., experience with tools, epistemic beliefs, and prior knowledge) and
external (e.g., tasks mandating the use of a tool) conditions (Winne, 2011; Winne & Hadwin, 1998).
Thus, certain conditions are required for learners to select and regularly use a particular learning tool.

As previously posited by Winne (2006) and empirically validated in several studies conducted by
Clarebout et al. (2013), there are generally four main conditions that influence learners’ decisions
regarding tool selection and use. First, learners need to be aware of the value of the tool and its
availability in their learning environment. Second, learners need to recognize that the tool can be
applied to the specific task at hand. Third, even if the learners are cognizant of the benefits of the tool
for the assigned task, they need to have sufficient skills to utilise the selected tool effectively. Finally,
learners need sufficient motivation to invest the time necessary to use the tool. These conditions can
explain why certain tools are not always adopted by learners despite having a positive prior experience
(Sarfo, Elen, Clarebout, & Louw, 2010). In this context, Clarebout et al. (2013) proposed that learners
first need to have some prior experience with a tool before their conceptions of it can be used as a
predictor of future use.

1.2 Instructional Conditions for the Sustained Use of a Learning Tool

In this paper, we accept and extend Clarebout et al.’s (2013) proposition to further suggest that for a
tool to have sustained use, learners must first be exposed to the learning tool; and second, gain a level
of proficiency in its use. In the absence of any previous experience with a tool or if a learner is only
familiar with it in alternate contexts (i.e., transfer across contexts can be challenging (Perkins, 1985)), it
is unlikely that learners will be able to recognize the value of the tool. That is, two of the conditions
suggested by Winne (2006), value and awareness of a tool, are not met. We posit that in order to meet
these conditions and facilitate learners’ ability to effectively use a tool, a level of scaffolding is required
to guide learners in their initial use of the tool and how it can be applied to a particular learning task
(Azevedo & Hadwin, 2005; Beed, Hawkins, & Roller, 1991). The effects of the instructional conditions on
learners’ decision making and technology acceptance is well-documented in the literature (Azevedo,
Moos, Greene, Winters, & Cromley, 2008; Cho & Kim, 2013; Garrison & Cleveland-Innes, 2005; McGill &
Klobas, 2009; Trigwell, Prosser, & Waterhouse, 1999). Based on this literature, we suggest that a
learner’s initial experience with a tool, should:

e have at least one task where the use of the tool is required to complete a course task and the
task assessed (mandated in the course design); and

e be accompanied with guidance and feedback on how the student can use the tool effectively in
order to complete the assigned learning tasks.

To establish a sustained level of use of a particular tool, additional conditions need to be met. First, as
recognized by the research on educational technology acceptance and illustrated by TAM, learners need
to perceive the tool as easy to use and useful in order to preserve their intention to use the tool in the



future (Sanchez & Hueros, 2010). This is particularly important when the use of a tool is optional. In
other words, a tool must be intuitive to use without an extensive learning curve or extraneous cognitive
load that could create an added layer of complexity impeding a student’s ability to complete an assigned
task (Devolder, van Braak, & Tondeur, 2012; Kirschner, Sweller, & Clark, 2006).

Second, learners need to be able to transfer the use of a tool to new contexts (Salomon & Perkins,
1989). As suggested by Winne (2006), learners need to be able to recognize when a tool can be
appropriately applied to complete a new task. If a student’s previous experience with a tool is similar to
the new task, they are more likely to adopt the tool again to complete the requested task. However, if
the context is significantly different, then the student’s selection of the same technology is less likely.
Winne (2006) describes this as a mediation deficiency. That is, a situation when learners are “unable to
assemble bridging information between tools and to-be-learned information” (Winne, 2006, p. 7). The
study reported in this paper focuses on the sustained tool use in similar tasks rather than on the transfer
across different contexts.

1.3 Measurement of the Use of Educational Technology

Studies on the adoption and effects of educational technology on self-regulated learning have primarily
been based on measures of learner operations, as defined in the COPES model (Winne, 1996, 2006).
These measures have tended to rely on learners’ self-reports of their perceptions; use, and degree of
use of a particular tool or learning approach (Clarebout et al., 2013; Lust et al., 2012; Sanchez & Hueros,
2010; Yi & Hwang, 2003). While SRL studies have often relied on self-report methodologies (e.g., think
aloud protocols and surveys), alternate options are rapidly emerging such as the analysis of captured
trace data from learners’ interactions with educational technology (Azevedo, 2015). The analysis of trace
data to inform learning, teaching, and research has recently amplified due to a growing interest in the
fields of learning analytics and educational data mining (Baker & Yacef, 2009; Gasevi¢, Dawson, &
Siemens, 2015; Gasevic, Mirriahi, Long, & Dawson, 2014; Siemens & Gasevi¢, 2012). Typical measures
derived from a learner’s trace data include the frequency and time spent on the various operations
performed with learning technologies. For example, in the context of self-regulated learning, Cho and
Shen (2013) found that a student’s ability to regulate social interaction with others (Cho & Jonassen,
2009) was a significant predictor of the amount of time spent online in a learning management system
(LMS). Similarly, Jeske, Backhaus, and Stamov RoRBnagel (2014) noted that trace-based variables, such as
time spent and frequency of navigation through a sequence of resources in an online lesson, were sound
proxies of motivation and self-regulation strategies that mediated the association between learning
experience and test performance in an controlled experiment.

To date, there has been limited research that has investigated the effects of conditions associated with
the COPES model (Winne, 1996, 2006) on technology use and acceptance. While internal conditions
have been studied, such as self-efficacy, goal-orientation, and prior knowledge (Cho & Shen, 2013;
Clarebout et al., 2013; Jeske et al., 2014), the effects of external conditions have received limited
research attention. As posited in the COPES model (Winne, 1996, 2006), external conditions (e.g.
grading of learners’ self-assessments or sharing the self-assessments with peers) can have significant
effects on the standards the learners use to evaluate the products of their learning and the learning
strategies they chose to apply. While, the quantity of the products of learning and the adopted learning
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strategies may remain consistent, the quality of learning can be markedly different. For example, in an
online software engineering course, Gasevi¢, Adesope, Joksimovi¢, and Kovanovi¢ (2015) demonstrated
that the quality of a learner’s discourse (operationalized as cognitive presence) significantly improved
after changes to the instructional design and resources had been made to include scaffolding learner
participation in a discussion forum. However, the authors noted that the quantity of the discussion
remained at the same level as previous course iterations. Similarly, Kuhn (1995) suggested that learners
do not increase their usage of a newly acquired learning strategy’, but rather apply this strategy in a
more effective manner. In other words, when a strategy is effectively applied, the quantity remains
consistent while the quality of the learning product increases (Malmberg, Jarveld, & Kirschner, 2014).
Hence, we posit that:

i) the instructional conditions provide learners with an opportunity to experience an
educational technology (or its tools). This experience influences a learner’s motivation to use
this technology in future similar learning contexts;

i) the instructional conditions influences both the quality of learning products created and how
the operations (i.e., strategy) manifest.

1.4 Research Questions
To address the propositions outlined above, this paper reports on the results of an empirical study that
aimed to address the following research questions:

RQ1. What is the effect of the instructional conditions at the course level (assessed vs. non-assessed) on
students’ extent of use of a learning tool in terms of count of annotations produced, quality of
learning products created, and learning strategy followed?

RQ2. What is the effect of a students’ prior experience with a learning tool on their future adoption in
terms of counts of annotations produced, quality of learning products created, and learning
strategy followed under different instructional conditions?

These questions aim to investigate the effects of different instructional conditions and experience on
the three main dimensions: i) count of annotations created, ii) the quality of learning products created,
and iii) learning strategy adopted in the use of video annotation software for self-assessment purposes.
Therefore, both research questions are operationalized according to these three research dimensions
and the results section is organized accordingly.

2 Method

2.1 Study Setting

The research design can be described as a natural experiment (Dunning, 2012). This approach was
driven by situating the study within the context of the courses available for student enrolment at a
research-intensive higher education institution in North America. As such, the researchers had no

! According to Malmberg, Jarveld, & Kirschner (2014, p. 4), a learning strategy is defined as “a coordinated set of
study tactics that are directed by a learning goal, and that are aimed at acquiring a new skill or gaining
understanding (Alexander, Graham, & Harris, 1998; Weinstein, 1988; Winne, 2001; Zimmerman, 1998)".
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control over the experimental assighnment of the study participants. Rather, the study was conducted in
an ecologically valid setting whereby the assignment to the experimental conditions was performed
through the participants’ enrolment in the courses used in the study. The trace data logged by the video
annotation software called the Collaborative Lecture Annotation System (CLAS) (Mirriahi & Dawson,
2013; Risko, Foulsham, Dawson, & Kingstone, 2013), were incorporated for further analysis. The
experimental conditions were determined by the instructional conditions associated with each of the
courses involved in the study.

2.2 Materials

The study participants used CLAS, a web-based application for annotating videos of student
performances. The design of CLAS extends other previously established video annotation software such
as Microsoft Research Annotation System (MRAS) (Bargeron, Gupta, Grudin, & Sanocki, 1999), Media
Annotation Tool (MAT) (Colasante & Fenn, 2009), and Digital Video Digital University (DiViDu) (Hulsman,
Harmsen, & Fabriek, 2009). Informed by the design of prior video tools and associated research in this
domain resulted in the CLAS software being perceived by learners as easy to learn, easy to use, and
useful for their studies (Risko et al., 2013). This validation by Risko et al. of the software’s perceived ease
of use, ease of learning and perceived usefulness addressed an important proposition voiced in the
theoretical background for this study.

In terms of user functionality, CLAS has two forms of annotation features: i) time-stamped annotations
that offer students and instructors with opportunities to create time-stamped notes that are associated
to a specific part of a video; these notes can be accessed later for review (Dawson, Macfadyen, Risko,
Foulsham, & Kingstone, 2012; Risko et al., 2013); ii) general annotations that are not associated to any
specific part of a video, but allow users to post a general note or summary of the video (ibid). Both types
of annotations can be either private or collaborative offering an opportunity to share annotations
among peers. Furthermore, CLAS has a feature for visualizing the position of time-stamped annotations.
CLAS has additional features for performing operations on the video such as pause playing, resume
playing, rewind, and fast forward — as is common for contemporary video players. All these operations
are recorded by CLAS in log files and thus, each operation performed in CLAS has time-stamped trace
data that can be used for research (Mirriahi & Dawson, 2013). CLAS does not allow for direct
downloading of the videos. Hence, students can only view and annotate the videos while using the CLAS
software. This increases the accuracy of the trace data collected by CLAS, as users cannot interact with
the videos used in the specific courses outside of the educational software.

2.3 Procedures

The study included four undergraduate courses in the performing arts discipline offered in the
2012/2013 academic year. The first two courses (Course 1 and Course 2) were offered in the first
semester (Fall 2012), while the other two courses (Course 3 and Course 4) were offered in the second
semester (Winter 2013). In all four courses, video recordings of students’ own performances were
available for viewing and annotating through the CLAS software. In Course 1, the videos were of group
performances and there was no graded requirement for students to make an annotation or general
comment. The videos in the three other courses instead focused on students’ individual performances.



That is, for Course 1, all enrolled students annotated the same three videos (i.e., three group
performances). Further, as this was a group-based activity, the students had an option to share their
annotations with their peers. While the use of CLAS in Course 1 was optional, in Course 2 students’ use
of CLAS was directly assessed (i.e. a course requirement). Students had access to review four video
recordings of their individual performances through the CLAS software.

Of the four courses, general annotations on three of them were graded and instructor feedback
provided. For the fourth video, formative feedback on the general annotation was provided only.
Overall, students made time-stamped annotations and one general annotation per video summarizing
their overall reflections on their performance. Furthermore, Course 2 was a prerequisite for both Course
3 and Course 4 that were offered in the following semester. The requirements and instructional
conditions for the use of CLAS in Course 3 were identical to those of Course 2 including graded general
annotations. The only difference was that Course 3 included an additional video recorded performance
for students to view, annotate, and submit a general reflective summary on CLAS. Course 4 was similar
to Courses 2 and 3 in terms of the number of video recordings of the individual performances (i.e., four
video recordings were accessible through CLAS). However, for Course 4, students did not receive a grade
nor formative feedback on their general self-reflective annotations posted in the CLAS system. The
course requirements and relationship between the courses and the non-graded/graded general
annotations are specified in Table 1 and Figure 1.

Table 1. The numbers of student performance videos and the type of performance recorded in the four

courses
Course Number of videos requested to annotate | Type of performance
Course 1 3 Group
Course 2 4 Individual
Course 3 5 Individual
Course 4 4 Individual
|
Semester 1 | Semester 2
_____________ | o o ==
|
Course 1 1 Course 3
(non-graded, social) 1 (graded, individual)
|
Course 2 ! ~ Course 4
(graded, individual) ; “1 (non-graded, individual)

Labels of the groups of the students created based on the courses they were enrolled in:

Course 1a — students who took course 1 but did not take Course 2 (n=23) Course 2e — students who took Course 2, but did not take Course 3 (n=29)

Course 1b — students who took Courses 1 and 2 (n=8) Course 2f — students who took Courses 2 and 4 (n=11)

Course 2a — students who took Course 2, but did not take course 1 (n=32)  Course 3a — students who took Course 3, but did not take Course 2 (n=10)
Course 2b — students who took Courses 1 and 2 (n=8) Course 3b — students who took Courses 3 and 2 (n=18)

Course 2c — students who took Course 2, but did not take Course 3 (n=22)  Course 4a — students who took Course 4, but did not take Course 2 (n=9)
Course 2d — students who took Course 2 and 3 (n=18) Course 4b — students who took Courses 4 and 2 (n=11)




Figure 1. The courses included in the study and the groups of students formed based on their enrolment
in individual courses

Throughout the paper, we refer to the notion of instructional conditions whereby we distinguish
between non-graded and graded conditions. In the graded condition, the instructors looked at the
specificity of goals set by the students in their reflections. Specificity of goals is an indicator of students’
recognition of the points to be improved upon in their future work. An example of the sentences of
specific goal that instructors expected to see is given in this quote extracted from the students’
annotations: “I think for my next lab my goals shall be to try to make eye contact with everyone at least
once.” An example of a less specific reflection would be a simple observation of the own behavior
without any specific goal set for the future work: “I still continue to have problems with making eye
contact.” Moreover, instructors provided students with formative feedback on their performance and
reflections in the graded instructional condition. For example, in cases where students missed
something in their reflections, the instructor would provide feedback of this type:

“You are most successful when you are truly assertive in your music making. The
beginning of the lab, you did not really have a clear picture of the tempo that you
wanted. In conducting recits, you have to be super clear in exactly what you want and
lead the ensemble. If you just beat time, it won't be successful.

Part of this leadership comes from having a very clear picture of exactly what you want.”

In the non-graded condition, students did not receive grades nor formative feedback from their
instructors.

2.4 Sample

The students enrolled in Courses 1-4 were included in the study. All the students were already enrolled
in a degree program in performing arts directly linked to the courses included in the study. The sample
had 77 unique students (42 female). The average age at the time of enrolment was 22.1 with standard
deviation of 2.82. Each course had a different number of students enrolled: Course 1 (N=31), Course 2
(N=40), Course 3 (N=28), and Course 4 (N=20). Since the study was a natural experiment where students
had the option to enroll into any course, as per the university program regulations, some students were
enrolled in more than one course included in the study. The numbers of students enrolled in Courses 1-4
and their overlaps are outlined in Figure 1.

In order to account for a possible confounding effect, we report the students’ grade point averages
(GPAs) as they are commonly used as proxies of students’ ability and predictors of future performance
(Elias & MacDonald, 2007; Grove, Wasserman, & Grodner, 2006). The GPA values could also indicate the
differences in skills for self-regulated learning, as typically higher academic performance is associated
with higher skills for self-regulated learning (Greene & Azevedo, 2009). Table 2 reports the results of the
comparison between the groups of students in the study and their grade point averages (GPAs) at the
end of the academic year. Since the study was conducted as a natural experiment, the control for
important confounders was not possible in the experimental assignment. The only significant difference
identified was between Course 2c and Course 2d. Students with a higher GPA in Course 2 were more



likely to enroll in Course 3 (Table 2). This could potentially confound the comparisons between students
in groups Course 2c and Course 2d, i.e., between the students within the same experimental condition —
the first experience with the graded learning tool use. However, this had no effect on the investigation
of research question RQ2 where these groups are investigated. No significant difference between those
students (Course 2d) and other students in Course 3 (Course 3b) were observed in the GPA values, and
thus, equivalency is preserved with respect to research question RQ2 that investigated sustained tool
use under the same instructional conditions in two courses (e.g., graded general annotations in the first
and subsequent courses).

Table 2. The comparison of the GPA values between the identified groups in the study.

Avs.B Avs.B
Bvs.C Cvs.D

A B C D

Course 1a Course 1b Course 2a Course 2b

U=300.50, z=-.646, | U=105.50, z=1.05,
78.80 85.33 81.62 85.33 p=.519, r=-0.09 p=.294, r=.19
(75.00, 89.05) (81.38, 88.72) (72.35, 85.74) (81.38, 88.72) U=176.50, z=1.64,

N/A p=.101, r=.26
Course 2c Course 2d Course 3a Course 3b
U=142.00, z=1.30, | U=310.00, z=3.05,
75.35 85.57 80.37 85.57 p=.193, r=.23 p=.002, r=.48
(66.43, 84.83) (81.96, 86.88) (75.36, 88.88) (81.96, 86.88) X U=111.00, z=1.01,
N/A
p=.314, r=.19
Course 2e Course 2f Course 4a Course 4b
U=92.00, z=-.38, U=178.00, z=.58,
83.10 84.70 78.05 84.70 p=.704, r=-.06 p=.565, r=.09
(72.60, 86.13) (80.50, 87.10) (70.60, 88.00) (80.50, 87.10) X U=47.00, z=.77,
N/A
p=.441, r=.18

Legend: ’ Comparison of the students in repeated measures could not be done, as those were the same
students with a single GPA value (prior to entering to the academic year in which all the courses were
offered).

2.5 Variables

2.5.1 Independent variables

Instructional conditions and experience (both binary variables) were used as independent effects, i.e.,
fixed effects according to the terminology of the method used in our analyses (c.f., Section 2.6). Student
enrollment into Course 2 and Course 3 represents the graded instructional condition, whereby Courses
1 and 4 represent the non-graded instructional condition. Enrollment and completion of Course 2 was
an indicator of experience with the tool gained in the graded condition with formative feedback. That is,
the students who moved from Course 2 to either Course 3 or Course 4 had prior experience with the
tool. Otherwise, all other students in all four courses were considered not to have any prior tool
experience. It should be noted that some students completed Course 2 in a previous year when the
video annotation software was not used. These learners (according to Figure 1, those are the students in
groups Course 3a and Course 4a) were considered without experience in Courses 3 and 4. The
connection between the distribution of the students according to the fixed effects (instructional
conditions and experience) and the groups identified in Figure 1 is shown in Table 3.



Table 3. The connection between the distribution of the students according to the fixed effects
(instructional conditions and experience) and the groups identified in Figure 1

Instructional Conditions
Graded Non-graded
Experience Course 3b Course 4b
No experience Course 2a-e, Course 3a Course 1a-b, Course 4a

2.5.2 Dependent variables
The following three groups of dependent variables were used in the study.

Operations on video. Counts of annotations created by the students are used as the primary dependent
variable to investigate our research questions. This is due to the fact that the tool used in the study
(CLAS) was designed for video annotation and the amount of its use is primarily focused on its main
functionality — creating video annotations; i.e., we used the variable that represented the count of video
annotations created by a student in a course. Given that the courses differed in the number of videos
the students were requested to work with as shown in Table 1, we also used another variable that
represented the relative count of annotations a student created per video in a course. This variable is
computed by dividing the count of video annotations created by the number of videos students were
required to work in a given course.

Several other secondary dependent variables were used to understand the patterns of interaction with
videos under different instructional conditions and with differences in experience. These variables
represented the occurrences of events recorded by CLAS in each course including the counts of pause,
rewind and fast forward events. Similarly, the total time (minutes) when the play button was activated
indicating time likely spent watching each video was used. The effects of these variables are reported in
Appendix B.

Learning products. To assess the quality of learning products (i.e., time-stamped video annotations and
general video annotations), we used the two frameworks and tools for text analysis most commonly
used in educational psychology: Linguistic Inquiry and Word Count (LIWC) (Tausczik & Pennebaker,
2009) and Coh-Metrix (McNamara, Graesser, McCarthy, & Cai, 2014). From the suite of LIWC variables,
we adopted word count (WC). This variable was selected, as it is commonly shown to be a good proxy
for higher levels of cognitive processing (Joksimovié, Gasevié, Kovanovié, Adesope, & Hatala, 2014;
Tausczik & Pennebaker, 2009). Moreover, in addition to the counts of annotations, this variable was also
an important indicator of the sustained use of the tool (especially relevant for research question 2). That
is, a measure of the effort put into the creation of the annotations can be derived from the length of
text (word count). In addition, we also wanted to study the length of the self-assessments in each
course as a ratio of word counts per self-assessment annotation (WC/Ann). As suggested by Gasevic,
Mirriahi, and Dawson (2014), this ratio can provide an insight into the quality of individual annotations
rather than the entire text of all annotations together.
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Coh-Metrix is a well-known toolkit built on the computational linguistic techniques (Graesser,
McNamara, & Kulikowich, 2011; McNamara et al., 2014). Coh-metrix is used for the analysis of
characteristics of language and discourse. Numerous studies have shown that Coh-Metrix measures can
be applied to identify qualitative differences in formal textual documents and discourse (McNamara et
al., 2014). The Coh-Metrix offers over 100 measures that cover different dimensions of language and
discourse such as genre, cohesion, and syntax. Measures of linguistic complexity, characteristics of
words, and readability scores are also available in Coh-Metrix. Given the large number of the Coh-Metrix
measures, a principal component analysis was applied to the 53 measures of Coh-Metrix in a study of
37,520 texts available in the Touchstone Applied Science Association corpus (Graesser et al., 2011). The
principal component analysis revealed that eight principal components explained 67.3% of the variance.
The top five principal components explained over 50% of the variability. The z-scores of principal
components are commonly used in the literature. The components identified are well associated with
multilevel theoretical frameworks of cognition and comprehension (Graesser & McNamara, 2011;
Kintsch, 1998; Perfetti, 2000; Snow, 2002). This makes the components suitable for research in learning-
related studies. In this study, we used the following five principal components of Coh-Metrix (Dowell,
Cade, Tausczik, Pennebaker, & Graesser, 2014, pp. 126-127):

= “Narrativity. The extent to which the text is in the narrative genre, which conveys a story, a
procedure, or a sequence of episodes of actions and events with animate beings. Informational texts
on unfamiliar topics are at the opposite end of the continuum.

= Deep Cohesion. The extent to which the ideas in the text are cohesively connected at a deeper
conceptual level that signifies causality or intentionality.

= Referential Cohesion. The extent to which explicit words and ideas in the text are connected with
each other as the text unfolds.

= Syntactic Simplicity. Sentences with few words and simple, familiar syntactic structures. Polar
opposite are structurally embedded sentences that require the reader to hold many words and ideas
in their working memory.

= Word Concreteness. The extent to which content words are concrete, meaningful, and evoke mental
images as opposed to abstract words.”

The values of these five variables were first computed for each individual annotation. Next, we
calculated a mean value for each of these five variables for every student enrolled in the course. The
calculated mean values for each student in each course were used in the analyses.

Learning strategy. To evaluate students’ learning strategies when using a video annotation tool for self-
assessment, we created transition graphs based on the trace data of the recorded learning activities
within CLAS (Hadwin, Nesbit, Jamieson-Noel, Code, & Winne, 2007; Malmberg et al., 2014; Winne,
Gupta, & Nesbit, 1994). Transitions graphs were created based on a contingency matrix where rows and
columns accounted for all possible events. The rows represented the start and the columns represented
the end points of the transition edges. Originally, all the cells in the matrix had values of zero. If an
event, A, was followed by an event B, number 1 was recorded in the cell representing the intersection of
row A and column B. For each future appearance of this transition, the number in the cell was
incremented by 1. In this way, we created weighted and directed transition graphs.
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For the purposes of the study, we distinguished between events based on the temporal parts of the
videos they were associated with. This was consistent with the findings of Gasevi¢ et al. (2014) and Mu
(2010) who reported that students’ operations were unevenly distributed across each video. Specifically,
we distinguished between time-stamped events (annotations, pause, rewind, and fast-forward) based
on the quartiles of the videos they were associated with. For example, if a time-stamped annotation was
associated with the 12 second mark of a 100 second long video, the event type was annotation in
quartile 1. Similarly, if a participant rewound to second 34 of a 100 second long video, the event type
was rewind in quartile 2. According to these rules, we created a transition graph for each student in our
sample. These graphs consistent of 19 possible nodes — four event types for time-stamped annotations,
pause, rewind, and forward events, one for general annotation, one for non-stop watching, and one for
end of video watching.

The transition graphs, described above, were used to investigate students’ self-regulated learning
processes when using CLAS. In this instance, we were particularly interested in the level of students’
metacognitive monitoring of their own learning. Metacognitive monitoring is the key activity for learning
success, since it is commonly used for evaluation of the learning product and learning strategy (Winne,
2001; Winne & Hadwin, 1998). Azevedo et al. (2008) found that the higher levels of metacognitive
monitoring were associated with an increase of feeling of knowing, judgment of learning, and
monitoring of progress toward goals. Moreover, Greene and Azevedo (2009) found that monitoring
activity was a “key SRL process when developing an understanding of a complex science topic using
hypermedia” (p. 18). According to Hadwin et al. (2007) and Winne et al. (1994), a graph-theoretic
measure of density — a ratio between the actual number of edges between nodes in a graph and all
possible edges in the graph — can be used to assess metacognitive monitoring in learning strategies
followed by learners. Specifically, Hadwin et al. (2007,) posit that “participants with lower overall
densities have formed some distinct and regular studying patterns whereas participants with higher
densities are experimenting with tactics and strategies. That is, these latter students are engaged in
more metacognitive monitoring and, hence, more active SRL [self-regulated learning]” p. 114.

2.6 Analysis

Given the nested structure of our data (students within a course) and potential problem of correlated
data due to grouping (Seltman, 2012), we relied on linear mixed models to address the research
questions. Mixed-effects modeling provides a robust and flexible approach that allows for a wide set of
correlation patterns to be modeled and is recommended method for studying similar datasets (Pinheiro
& Bates, 2009; Seltman, 2012). Mixed-effects models include a combination of fixed and random effects
and can be used to assess the influence of the fixed effects on dependent variables after accounting for
any extraneous random effects. Fixed effects correspond to the numerical or categorical variables that
are of primary interest and represent fixed, repeatable levels among which comparisons are to be made.
Random effects are categorical variables that represent variability among subjects, a random selection
from a larger population to which the results can be extended.

Mixed-effects modeling was used to examine the association between the two factors (instructional
conditions and previous experience) and the dependent variables. In order to assess this association for
each of the dependent variables above and beyond the random effects, we built three models for each
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of the dependent variables — null model, fixed model, and final model (Table 4 in in Appendix AError!
Reference source not found.). The null model initially included the random effect only (student within a
course). However, in some cases, we were not able to fit the model with such a structure of random
effects. In such cases (i.e. videos annotated, pause, rewind, word count, word count per annotation, and
deep cohesion), we specified student as a random effect instead and were able to fit the model.
Moreover, in some cases (i.e., time watched, narrativity, and referential cohesion), we could not fit the
model even with the revised random effect. On the other hand, a fixed model included condition and
experience as fixed effects, while the final model included condition, experience, and interaction
between condition and experience, as fixed effects. Intraclass correlation coefficient (ICC) (Raudenbush
& Bryk, 2002), second-order Akaike information criterion (AlCc), and likelihood ratio test (Hastie,
Tibshirani, & Friedman, 2011) were used to decide on the best fitting model (Table 4 in Appendix A). We
also estimated an effect size (R?) for each model as goodness-of-fit measure, calculating the variance
explained using the method suggested by Xu (2003).

Linear mixed-effects models were conducted using R v.3.0.1 software for statistical analysis with
package Ime4 (Bates, Maechler, Bolker, & Walker, 2015). The hypotheses specify the direction of the
effect, however two-tailed tests were used for significance testing with an alpha level of .05.

3 Results

The results in this section are organized according to the three main dimensions used to operationalize
the two research questions that aimed to investigate the effects of instructional conditions (research
question RQ1) and experience (research question RQ2) on the adoption of a learning tool.

3.1 Counts of annotations

The likelihood ratio test for counts of annotations models yielded significantly better fit of the final
model (i.e., the model that included fixed, interaction, and random effects) than the null and fixed
models. The model showed significant effects of previous experience F(1, 114.94) = 11.54, p < .001) and
the interaction of instructional condition and experience (F(1, 114.94) = 4.10, p = .045) on the number of
the counts of annotations created. The effect of instructional condition (F(1, 2.96) = 2.52, p =.212) was
interestingly not significant though. The estimated mean values, calculated as a result of this model, are
shown in Figure 2a. These results indicate that the students with previous experience tended to create
significantly more annotations than those students who encountered the tool for the first time. There
was no significant difference between the students in the counts of annotations created when they
were in the graded conditions compered when they were in the non-graded condition. However, the
significant interaction effect showed that the students with and without experience had different trends
in annotation counts when they were in the non-graded versus graded conditions. While there was no
difference in counts of annotations between the students with and without experience in the graded
condition, this difference was significant between students with and without experience in the graded
condition.
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Figure 2. Effects of instructional conditions and experience with the video annotation tool on i) total
counts of annotations created and b) counts of annotations per video

The likelihood ratio test for counts of annotations per video models yielded significantly better fit of the
final model (i.e., the model that included fixed, interaction, and random effects) than the null and fixed
models. The significant fixed effects in this model were consistent with those find in the model for the
total count of annotation (discussed in the previous paragraph). That is, the effects of experience (F(1,
26.17) = 25.59, p < 0.001) and interaction of experience and instructional condition (F(1, 26.17) = 4.85, p
= 0.036) were significant, while the effect of instructional conditions was not significant(F(1, 2.24) =
12.34, p = 0.061). The estimated mean values, calculated as a result of this model, are shown in the
diagram in Figure 2b. Given that the same significant effects were also found for counts of annotations,
the interpretation of the results for counts of annotations per video is the same as stated for counts of
annotations in the previous paragraph. Moreover, as shown in Table 4 in Appendix A and consistent
with the results of the fixed effects for the count of annotations per video model, the random effect
student within a course explained about 69%, while the course itself explained only 9% of the variability
in the model.

The results reported in Appendix B showed similar trends with other secondary depended variables
about amount of operations performed to interact with video available in the video annotation tool.

3.2 Quality of learning products

The likelihood ratio test for the count of words models unveiled a significantly better fit of the fixed
model (i.e., the model that included fixed and random effects) than the null and final models. The model
showed significant effects of previous experience (F(1, 88.44) = 53.60, p < .001) and instructional
condition (F(1, 99.82) = 59.90, p < .001) on the number words per annotation. The estimated mean
values of count of words written by students in their annotations, calculated as a result of this model,
are shown in the diagram in Figure 3a. These findings indicate that the students with previous
experience had significantly more words in their annotations than those students who encountered the
tool for the first time. The students who were in the graded condition used significantly more words in
their annotations compared to the students in the non-graded condition.
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Figure 3. Effects of instructional conditions and experience with the video annotation tool on word
counts in annotations and words per annotation

The likelihood ratio test for the words per annotation models revealed a significantly better fit of the
fixed model (i.e., the model that included fixed and random effects) than the null and final models. The
model showed significant effects of previous experience (F(1, 39.73) = 7.02, p =.012) and instructional
condition (F(1, 43.70) = 19.74, p < .001) on the number of words per annotation. The estimated mean
values, calculated as a result of this model, are shown in the diagram in Figure 3b. Based on these
results, it could be concluded that the students with previous experience tended to use significantly
more words per annotation than those students who encountered the tool for the first time. The
students who were in the graded condition used significantly more words per annotation compared to
the students in the non-graded condition.

The likelihood ratio test for the deep cohesion models showed a significantly better fit of the final model
(i.e., the model that included fixed, interaction, and random effects) than the null and fixed models. The
model showed non-significant effect of instructional conditions (F(1, 53.78) = 1.15, p = .289), while
experience (F(1, 54.54) = 6.75, p = .012) and interaction of experience and instructional condition (F(1,
111.13) = 6.11, p = 0.015) had significant effects on the scores of deep cohesion of the text in the
annotations. The estimated mean values of deep cohesion in students annotations, calculated as a result
of this model, are shown in the diagram in Figure 4a. Based on these results, it could be concluded that
the students with previous experience tended to have annotations with the higher scores of deep
cohesion than those students who encountered the tool for the first time. The students who were in the
graded conditions had no different scores of deep cohesions for annotation compared to the students in
the non-graded condition. The significant interaction effect indicates however that there was a different
pattern of deep cohesion in annotations between students with and without experience in different
(graded vs. non-graded) instructional conditions. While there was no difference in deep cohesion
between students with and without experience in the graded condition, this difference between
students with and without experience in the non-graded condition was significant.

The likelihood ratio test for the syntactic simplicity models produced a significantly better fit of the fixed
model (i.e., the model that included fixed and random effects) than the null and final models. The model
showed non-significant effects of both instructional conditions (F(1, 2.19) = 3.51, p =.191) and
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experience (F(1, 21.65) = 1.54, p = .229) on the scores of syntactic simplicity of the text in the
annotations. The estimated mean values for syntactic simplicity of the text in the students’ annotations,
calculated as a result of this model, are shown in the diagram in Figure 4b. Based on these results, it
could be concluded that the students with previous experience did not have different annotations with
respect to syntactic simplicity than those students who encountered the tool for the first time. The
students who were in the graded conditions had no different scores of syntactic simplicity for
annotation compared to the students in the non-graded condition.

The likelihood ratio test for the word concreteness models yielded a significantly better fit of the fixed
model (i.e., the model that included fixed and random effects) than the null and final models. The model
showed non-significant effects of both instructional conditions (F(1, 3.04) = 0.46, p = .544) and
experience (F(1, 52.02) = 0.03, p = .859) on the scores of word concreteness of the text in the
annotations. The estimated mean values, calculated as a result of this model, are shown in the diagram
in Figure 4c. Based on these results, it could be concluded that the students with previous experience
did not have different annotations with respect to word concreteness than those students who
encountered the tool for the first time. The students who were in the graded conditions had no different
scores of word concreteness for annotation compared to the students in the non-graded condition.
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Figure 4. Effects of instructional conditions and experience with the video annotation tool on the Coh-
Metrix scores of deep cohesion, syntactic simplicity and word concreteness

The likelihood ratio test for the referential cohesion and narrativity models did not yield significantly
better fit of the fixed and final models than the null models.
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3.3 Learning strategy

The likelihood ratio test for the density models showed a significantly better fit of the fixed model (i.e.,
the model that included fixed and random effects) than the null and final models. The model showed
non-significant effects of both instructional conditions (F(1, 2.97) = 6.49, p = .085) and experience (F(1,
115.95) = 0.71, p = .400) on the density of their transition graphs. The estimated mean values, calculated
as a result of this model, are shown in the diagram in Figure 5. Based on these results, it could be
concluded that the students with previous experience did not have different annotations with respect to
word concreteness than those students who encountered the tool for the first time. The students who
were in the graded conditions had no different scores of word concreteness for annotation compared to
the students in the non-graded condition. Interestingly though, Moreover, as shown in Table 4 in
Appendix A, the random effect of course explained about 43.1% of the variability in the model. This can
probably shed some light why the estimated mean values of density (Figure 5) were different between
the courses with graded vs. non-graded instructional conditions.
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Figure 5. Effects of instructional conditions and experience with the video annotation tool on density of
transition graphs

4 Discussion

4.1 Discussion of the Results in Relation to the Research Questions

The results reported in the previous section support the importance of integrating a learning tool with
an assessed instructional condition when students encounter the tool for the first time (research
guestion RQ1). This offers some evidence for our proposition that providing a scaffold is necessary
(Azevedo & Hadwin, 2005; Beed et al., 1991) for guiding students towards proficient use of a tool in
order to meet Winne’s (2006) first three conditions for tool adoption — awareness of the tool
availability, mapping to a task, and skill to use the tool. Only once these conditions are met, students will
likely use the tool extensively. There was an observed increase in the counts of annotations between
graded vs. non-graded condition (Figure 2). Although it was anticipated that instructional conditions
(graded vs. graded) would have a significant effect on the count of annotations produced by the
students (RQ1), this effect was not found to be significant in the results reported in Section 3.1. Rather
and somewhat counter-intuitively, the effects of experience with the tool use and interaction of
instructional conditions and experience were significant (RQ2).
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The results showed that experience consistently had a significant effect on the quality of learning
products and indicators of deep learning. The significant effects of both instructional conditions and
experience were found on three measures of the quality of learning products (Section 3.2), namely,
counts of words, words per annotation, and deep cohesion. The effects of these findings are illustrated
in the diagrams shown in Figure 3 and Figure 4. It is interesting to observe that the students in the
graded instructional condition with no-prior experience produced almost the same count of words in
their annotations as their counterparts with experience in the non-graded condition (see Figure 3a). A
similar pattern is observed for words per annotation as shown in Figure 3b. This finding is important,
since word count has already been reported as a proxy of deep engagement into knowledge
construction. For example, Joksimovic et al. (2014) found that higher levels of cognitive presence were
significantly associated with higher counts of words in messages exchanged in asynchronous online
discussions. This finding is consistent with essay grading research that demonstrates that the word
length of an essay is the strongest predictor of the final essay grade (Page & Petersen, 1995). Somewhat
surprisingly, the findings for deep cohesion did not reveal any significant effects of instructional
condition, rather the significant effects were found for experience and interaction of experience and
instructional conditions. Namely, the scores of deep cohesion for the students with experience in the
non-graded conditions were even higher than those of the students without experience in the graded
condition. An opposite pattern is found for students without experience in the non-graded condition
and who had the lowest scores of deep condition. Scores of deep cohesion for students in the graded
condition regardless of their experience remained on the same level. It should be noted that deep
cohesion is an indicator of deeper conceptual level that signifies causality or intentionality (Graesser et
al., 2011). Moreover, low scores of deep cohesion are also a sign of a low degree of goal-oriented
connectives of the text in annotations with students’ self-assessments (Graesser et al., 2011). Therefore,
the results of this study suggest that prior experience with the tool use is a critical factor for
engagement into deep learning levels. This is also consistent with the previously referenced work by
Malmberg et al. (2014) on learning strategy adoption which indicates that although the quantity of the
strategy use remains consistent with experience, the quality of the learning product increases.

There was an evident, though statistically non-significant, decline (Section 3.3) in the measures of
metacognitive monitoring when the assessed instructional condition was removed (see Figure 5).
According to our theoretical background, the decrease in metacognitive monitoring in this study was a
result of the changed standards driven by the instructional conditions. The lower metacognitive
monitoring can be explained by the reduced need to pay attention to the details observed in the videos
in order to accurately describe the observations in annotations as shown by the drop of pause, rewind,
and fast forward events in Course 4. This may have led to the decrease in the density of the graphs used
for modelling the learning strategy. However, in spite of the similar numbers of annotations created and
guantity of text, this lessening of metacognitive monitoring could reduce the level of students’
understanding of the study topics as shown by Greene and Azevedo (2009). Therefore, additional
scaffolding and instructional strategies are required in order to maintain the level of metacognitive
monitoring. Research on externally-facilitated regulated learning offers some guidance for how to
address this issue. For example, feedback on students’ annotations or rubrics for self, peer, or
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instructor-assessment can help guide the quality of annotations. Moreover, sharing the annotations
with peers seems to be another promising instructional strategy (Hulsman & van der Vloodt, 2015).

In contrast to the existing literature, the current study showed that grading of students use of a
technology is not only a significant factor influencing uptake but also stimulates longer term adoption
and approaches to studying. The prevalent assumption that the technology use is driven by grading is
also consistent with the literature that emphasizes assessment as the strongest prompt for learning
(Boud, 1995; Eisner, 1993). That is, what will be assessed and how it will be assessed guides students’
learning and motivation in formal education. For example, Wormald and Schoeman (2009) showed that
increasing the assessment weight of the anatomy course in a medical school had a significant positive
impact on students’ motivation to learn the subject of anatomy. In the current study, we showed that
such assessment prompts (i.e., graded condition in our study) can also be used to scaffold students’
approach to studying and that such initial scaffolds have a long term effect. That is, students maintained
the use of the tool to aid their learning even though the instructional conditions changed (graded to
non-graded).

4.2 Limitations

Future studies should collect further demographic data about students (e.g., disciplinary background,
ethnic background, and language proficiency) and study whether and if so, to what extent these
variables confound the findings reported in this study. Future studies should also account for the effects
of individual differences — e.g., motivation to use technology, self-efficacy about the subject matter
and/or technology, achievement goal orientation (Elliot, Murayama, & Pekrun, 2011), approaches to
learning(Biggs, Kember, & Leung, 2001), and metacognitive awareness (Duncan & McKeachie, 2005) —
that are found to be significant covariate of the adoption of learning tools (Clarebout et al., 2013).

An avenue of investigation for future studies would be to attempt to replicate the extent the findings of
this study apply to other tools and technologies. Future studies could examine the extent to which the
specific study tactic that was supported by the use of the tool can have an effect on future adoption. In
the current study, we looked at how a technology can support student self-assessment. It could be the
case that technology-task fit plays a critical role (McGill & Klobas, 2009) and the findings reported in this
paper are only generalizable to the extent to which a tool effectively supports a study tactic of high
value for the completion of specific learning tasks.

4.3 Implications for Research

This study provides further insight and evidence into existing body of research on learning tool use as a
self-regulated learning process. The theoretical model adopted for the study (Lust et al., 2013; Winne,
2006) explains the rationale for the decisions that students made when using the tool under differing
instructional conditions. Moreover, the study showed the importance of having more advanced
measures of learning processes that can account for important factors affecting self-regulation of
students’ tool use. In particular, the use of the COPES model was found to be highly beneficial for
informing the definition of the types of measures used in the study. The COPE model allowed for the
theoretically-grounded interpretation of the results and the relationships observed between individual
variables. With these two theoretical groundings, self-regulated learning and COPES, future studies

19



concerning tool use should focus more on the learning aspects of the tools rather than just the various
usability factors that are common in research on technology acceptance (Davis, 1989). Of course, these
factors are well-established in technology acceptance research (e.g., perceived ease of use, learning, and
usefulness) and are potentially important internal conditions — as per the COPES model. However, their
role can and should be more closely investigated according to the model theorized in this paper.
Likewise, the effects of other individual differences (e.g., self-efficacy to use a tool, achievement goal-
orientation or epistemic beliefs) under alternate instructional conditions are another important avenue
for future research.

To advance our understanding of learning tool use as a self-regulated learning process, it is important to
develop measures that can allow for the study of learning products and learning strategies as well as
their association with conditions and standards associated with specific learning situations. Text analysis
(e.g., Coh-Metrix) and the analysis of temporal associations between events of different learning
operations are highly relevant (e.g., transition graphs used in this paper or process and sequence mining
suggested by Reimann, Markauskaite, & Bannert (2014) and Winne (2014). Moreover, the investigation
of the more dynamic measures of individual differences such as the use of trace data to track
achievement goal orientation (Zhou & Winne, 2012) affords more granular insights into the internal
conditions that may explain why, when, and how students use particular learning tools.

The importance of longitudinal studies to address the question whether and when certain scaffolds can
gradually be removed is stressed by the differences revealed in the results related to research question
RQ2 (Course 2 vs. Course 3 and Course 2 vs. Course 4). As common for research on instructional
scaffolding, the problem of finding a point in time when a scaffold can be faded out is essential (Brown,
Collins, & Duguid, 1989). If a scaffold remains despite students’ improved skills in using a learning tool,
an extraneous cognitive load can be created and an expertise reversal effect triggered (Kalyuga, 2007).
Therefore, future research needs to address this issue by investigating students’ use of a learning tool
across several courses where different types of scaffolds are gradually faded out. This is relevant in the
context of this study, as students’ scores of deep cohesion were the highest in the non-graded
instructional condition after gaining experience with the tool use in the previous course. Adaptive
scaffolding should also be investigated in the future in order to accommodate the needs of students
with different levels of experience with and skills to use the tool, since that can be encountered
commonly in course enrollments, as shown in the present study.

4.4 Implications for Practice

The major implication for practice from this study’s findings is that tool use and sustained adoption is
not only driven by student motivation. The study results indicate that when students are introduced to a
new learning tool, the tool use should initially be scaffolded and integrated into the course design with
assessment and instructor feedback about the learning products created with the tool. In subsequent
courses, the tool use should continue to be scaffolded and be accompanied with either instructor or
peer feedback, especially in situations where the use of the tool is not summatively assessed. This
practice will help sustain higher levels of metacognitive monitoring, which are critical components for
learning success.
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Appendix A

Table 4. Inferential statistics for the model fit assessment

2

Model X df R AlCc Icc
marg. cond. student course
Videos annotated
null 0 .165 365.508
fixed 41.940"" 2 282 402 331.691
full 4345 1 .307 .439 329.801 .19
Annotations
null 0 712 1065.563
fixed 10.603" 2 302 870  1047.699
full 4.254° 1 .341 .854 1039.414 231 .547
Annotations per video
null 0 724 611.464
fixed 20.286 2 438 892 592.977 684 123
full 6.083" 1 .430 .884 586.832 .687 .090
Time watched
null 0 .378 2320.858
fixed 4.227 2 .025 .435 2290.939
full 0373 1 .026 450 2276.006
Pause
null 0 0 1378.878
fixed 1313 2 .011 .039 1367.352
full 6.541" 1 .066 .165 1354.425 .105
Rewind
null 0 .080 1295.973
fixed 1.276 2 .011 .140 1285.954
full 0.034" 1 .050 .258 1275.715 219
Fast’
null - - - - - -
fixed = - - - - -
full - - - - - -
Word count
null 0 .065 2049.023
fixed 87.105 2 497 627 1942.597 .259
full 0.475 1 499 .616 1930.541
Word count per annotation
null 0 .856 1006.966
fixed 20.633" 2 .004 .923 985.320 .92
full  0.850 1 .003 922 981.745
Narrativity*
null 0 .690 256.384
fixed 4.963 2 .042 .831 261.369
full 2751 1 .061 .657 261.831
Deep cohesion
null 0 .369 284.802
fixed 7.821 2 .051 .463 285.893
full 6.168" 1 .102  .502  282.644 .445
Referential Cohesion’
null 0 .0002 149.963
fixed 3.945 2 .033 .034 156.703
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full 1344 1 .042 .042 159.267

Syntax simplicity
null 0 .706 214.936
fixed 6.112 2 .060 .749 219.151 .718 .015
full 0329 1 .061 .732 222.163
Word concreteness'
null 0 .716 308.818
fixed 0.860 2 .010 .691 315.321 .654 .052
full 5.619" 1 .057 .657 313.639
Density
null 0 .645 -290.276
fixed 6.676° 2 388  .652  -280.717 431
full 0.013 1 438 .604 -295.207

Legend: Models written in the boldfaced font found to be best fit. "The null model had the
best fit of the three models. That is, the dependent variable is explained by individual
characteristics rather than fixed and interaction effects. *Although the full model was
better than the fixed one according to the )(2 test, the fixed model is kept as the ful model
had ICC score of O for the level of course. ¥ Model could not be fitted and the variance for
the random effects is O.

Note: In cases of videos annotated, pause, rewind, word count, word count per
annotation, and deep cohesion, models were built with student as a random effect.
Models for time watched, narrativity, and referential cohesion could not be fitted with
either student or student within a course random effects. All other models included
student nested within a course as a random effect specification.

Appendix B

This appendix reports on the results of the hierarchical mixed model analysis on the secondary
dependent variables used as proxies of the amount of the learning tool use; the primary dependent
variable was count of annotations created by learners and was reported in the main body of paper text.

The likelihood ratio test for videos annotated models yielded significantly better fit of the final model
(i.e., the model that included fixed, interaction, and random effects) than the nul/l model. The model
showed significant effects of previous experience (F(1, 72.68) = 15.80, p < .001), instructional condition
(F(1, 73.86) = 19.94, p < .001), and the interaction of instructional condition and experience (F(1, 110.89)
=4.29, p < .041) on the number of videos watched. The estimated mean values, calculated as a result of
this model, are shown in the diagram in Figure 6a. Observing these results, it could be concluded that
the students with previous experience with the tool use tend to annotate more videos, than those
students who encounter the tool for the first time. Likewise, the students who were in the graded
instructional condition annotate more videos than those who were in the non-graded condition.
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Figure 6. Effects of instructional conditions and experience with the tool on the total number videos
annotated, time spent watching videos, and counts of pause and rewind events

The likelihood ratio test for the videos annotated models yielded significantly better fit of the final
model (i.e., the model that included fixed, interaction, and random effects) than the null and fixed
models. The model showed significant effects of previous experience (F(1, 72.68) = 15.80, p < .001),
instructional condition (F(1, 73.86) = 19.94, p < .001), and the interaction of instructional condition and
experience (F(1, 110.89) = 4.29, p = .041) on the number of videos watched. The estimated mean values,
calculated as a result of this model, are shown in the diagram in Figure 6b. Observing these results, it
could be concluded that the students with previous experience with the tool use tended to annotate
more videos, than those students who encounter the tool for the first time. Likewise, the students who
were in the graded instructional condition annotated more videos than those who were in the non-
graded condition.

The likelihood ratio test for the rewind models yielded significantly better fit of the final model (i.e., the
model that included fixed, interaction, and random effects) than the null and fixed models. The model
showed a non-significant effect of previous experience (F(1, 79.60) = 15.80, p = .213) and significant
effects of instructional condition (F(1, 81.51) = 4.50, p = .036), and the interaction of instructional
condition and experience (F(1, 103.36) = 6.70, p = .011) on the count of pause events. The estimated
mean values, calculated as a result of this model, are shown in the diagram in Figure 6¢c. Observing these
results, it could be concluded that the students with previous experience with the tool use did not have
more pause events than those students who encounter the tool for the first time. Likewise, the students
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who were in the graded instructional condition had more pause events than those who were in the non-
graded condition.
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