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Abstract 

This paper deals with the production and preventive maintenance control problem for a 
multiple-machine manufacturing system. The objective of such a problem is to find the 
production and preventive maintenance rates for the machines so as to minimize the total cost of 
inventory/backlog, repair and preventive maintenance. A two-level hierarchical control model is 
presented, and the structure of the control policy for both identical and non-identical 
manufacturing systems is described using parameters, referred to here as input factors. By 
combining analytical formalism with simulation-based statistical tools such as experimental 
design and response surface methodology, an approximation of the optimal control policies and 
values of input factors are determined. The results obtained extend those available in existing 
literature to cover non-identical machine manufacturing systems. A numerical example and a 
sensitivity analysis are presented in order to illustrate the robustness of the proposed approach. 
The extension of the proposed production and preventive maintenance policies to cover large 
systems (multiple machines, multiple products) is discussed. 

Key words: Preventive Maintenance, Hierarchical Control, Flexible Manufacturing Systems, 
Simulation, Experimental Design, Response Surface Methodology (RSM). 

1. Introduction

The problem of controlling manufacturing systems with unreliable machines was formulated
as a stochastic control problem by Older and Suri (1980). Failure and repair processes were 
supposed to be described using homogeneous Markov processes. The related optimal control 
model falls under the category of problems studied previously by Rishel (1975). Similar 
investigations have resulted in the analytical solution of the one-machine one-product 
manufacturing system control problem obtained by Akella and Kumar (1986). In the case of non-
homogeneous Markov processes involving states and control-dependent transition rates, the 
control problem becomes more complex. In this sphere, Boukas and Haurie (1990) considered the 
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fact that the failure probabilities of a machine depend on its age, and they added the possibility of 
performing preventive maintenance to the existing models. The related age-dependent set of 
dynamic programming equations were solved numerically for a given manufacturing system. 
However, with the numerical scheme presented by Boukas and Haurie (1990), it remains difficult 
to obtain a general structure for the optimal control of a large class of manufacturing systems. A 
potential way of coping with such a difficulty is to develop heuristical methods based on the 
reduction of the size of the considered control problem. Hence, different approaches have been 
proposed in the existing literature with a view to deriving simple near-optimal control policies for 
manufacturing systems. 
 

The concept of hedging point policy, introduced by Kimemia and Gershwin (1983), is one of 
the simple ways available for finding suboptimal control policies in the production planning and 
maintenance scheduling of manufacturing systems. For further details on this concept, we refer 
the reader to the age-dependent hedging point concept presented by Boukas et al. (1995) and by 
Kenne and Gharbi (1999). Because of the computation of threshold levels, the derivation of 
suboptimal policies based on this concept seems to be difficult for a large class of manufacturing 
systems. Another approach is to develop hierarchical control methods based on the particular 
structure of the system. This can be done by using the singular perturbation approach. Such an 
approach mainly involves reducing the size of the control problem according to the discrepancy 
between the time scales of events involved. By replacing fast processes with their respective 
mean values, one can construct a deterministic limiting problem, which is computationally more 
tractable. Details on this approach can be found in Kokotovic et al. (1986), Lehoczky et al. 
(1991), Sethi and Zhang (1994) and Soner (1993). In this paper, we will first define the structure 
of the optimal control policies, both for identical and for non-identical machine manufacturing 
systems. Based on such structures, we will then extend the production and maintenance rates 
control model presented in Kenne and Boukas (2003) in order to determine the control policy in a 
more general case including non-identical machine manufacturing systems. The resulting 
structure is described through a set of parameters we call input factors. We resort to a 
combination of analytical and simulation-based experimental approaches to find an 
approximation of the optimal control policies for production and preventive maintenance by 
determining the values of input factors.   

 
In the proposed approach, the parameterized near-optimal control policy is used as an input for 

the simulation model. For each entry consisting of a combination of parameters, the cost incurred 
is obtained. It is from this relationship that the best control factor values are determined and a 
relationship between input factors and such a cost is given. The application of such an approach 
is motivated by the works of Kenne and Gharbi (1999) and Gharbi and Kenne (2000). We refer 
the reader to these works for a literature review on the applications of simulation and statistical 
methods such as experimental design and RSM in the sphere of manufacturing systems control. 

 

The remainder of the paper is organized as follows: In section 2, the optimal control problem 
is described both for identical and non-identical machine systems. The proposed control approach 
is described in section 3. The logic of the simulation model is described in section 4. In section 5, 
the experimental design approach and response surface methodology are outlined. A numerical 
example and a sensitivity analysis are also presented in section 5. Concluding remarks are 
presented in section 6. 

 

 

https://www.researchgate.net/publication/267670596_Experimental_design_in_production_and_maintenance_control_problem_of_a_single_machine_single_product_manufacturing_system?el=1_x_8&enrichId=rgreq-39a422a5-9fe2-46d9-9387-e386c047862f&enrichSource=Y292ZXJQYWdlOzI1MDcxODc0MztBUzoxNjU2ODY0NzUyMzk0MjRAMTQxNjUxNDE0Mjk0OA==
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2. Problem Statement 
 

In this section, we present an explicit formulation of the stochastic optimal control problem 
related to the production control and preventive maintenance scheduling of manufacturing 
systems with non-identical machines. Based on the large size of the optimality conditions 
obtained, we next present a singular perturbation form of the control model for multiple identical 
machine manufacturing systems. The structure of the control policy in such a situation is 
extended to define that policy in the case of non-identical machines, for which optimality 
conditions are difficult to solve. 

 
The system under study consists of m machines producing n different part types. The 

operational mode of machine i can be described by a stochastic process    mi1ti  . Such a 

machine is available when it is operational   1ti   and unavailable when it is under repair 

  2ti   or under preventive maintenance   3ti  . We then have    .3,2,1t ii   We 

can describe the manufacturing system mode by the random vector        t,,tt m1   with 

values in m1   . 

Let   m1 a,,aa   and   m1 ,, be the vectors of machine ages and preventive 

maintenance rates respectively. The process  t  is modelled by a continuous time Markov chain 

defined by machine ages and control dependent transition rates matrix  Q  defined as follows: 
 

      ,a,aQ  

with 

   

 cardMwith,M,,1,0,a
M

1

  

The transition rates    are derived from the combination of those of the dependent 

processes   m,,1i,ti  . 
 
Our approach is used when the rate of change in the machine states is much higher than the 

rate at which the cost is discounted. In this paper, we assume a constant demand rate without any 
loss of generality. Two time scales are then considered: the discounting cost event and the 
machine state process time scales. When the difference between the two time scales is very large, 
the time can be split. Thus, the transition rates for the system    can be expressed as   

 q1 , 

where  q  and the discount rates are of the same magnitude. The singular perturbation 

parameter   is used here to express the hierarchical structure of the proposed approach. 
With 1 , an equivalent deterministic problem can be derived from the formulation of the 
initial stochastic problem. Both control problems (stochastic and deterministic) are described by 
dynamic programming equations (DPE) presented later in this section. In order to increase the 
system capacity or the availability of the machines, we assume that the transition rate from the 
operational mode to the preventive maintenance mode for each machine is a control variable 
called   m,,1i,ti  . 

 
The system behaviour is described by a hybrid state comprising both a discrete and a 

continuous component. The discrete component consists of the discrete event stochastic process 
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 t , while the continuous component consists of continuous variables   n1 x,,xx   and 

  m1 a,,aa   corresponding to the inventory/backlog of products and the cumulative ages of 
machines. These state variables are described by the following differential equations: 
       x0xdtutx   (1) 
 
        a0atufta   (2), 
 
where x, a and d are given initial surplus or backlog, initial machine ages and demand rates 

vectors respectively. Let  a,xx~   and   ,uu~ . Let   n1 u,,uu   denote the vector of 

production rates. The set of feasible control policies   , is given by: 
 

 
        

 
mi0

t0and

uu,ztu,0tu,t,tu
K

i
maxi

ip

m

1i
ppp

n

1
i

mn




























 (3), 

where p  is the processing time of the part type p, and max  is the maximum preventive 

maintenance rate of each machine. 
 Let  u~,x~,G   be the instantaneous cost defined as follows: 

   B,cxcxcu~,x~,G    (4), 
 
where c+ and c- are costs incurred per unit produced parts for positive inventory and backlog 
respectively, x+ = (max (0, x1), …, max (0, xn))′, x

- = (max (-x1, 0), …, max (-xn, 0))′ and c  are 
given constants used here for preventive maintenance and repair activity costs. 
 Our objective is to control the production rate  u  and the preventive maintenance rate 

     u~policycontroltheor  so as to minimize the expected discounted cost given by: 

              0,a0a,x0xdtu,x~,Geu,x~,J pt

0
 (5), 

 

subject to constraints given by equations (1) to (4). The value function of such a problem is: 
 
  

 
  Bu~,x~,Jx~, inf

u~
 



  (6) 

 

The value function given by equation (6) is locally Lipschitz, convex and is the unique viscosity 
solution of the following HJB equations (see Kenne (1997) and Sethi and Zhang (1994)) 
 

  
 

       
1

1
, min . , , , ,

m

xu
x x G x u q x



        




       



      (7), 
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where     ,u d f u


    and  x~,vx 
  is the gradient of  v  in x~ . 

 mnm

i

i
lo

i
up

mn

1i

231
h

TT
pdim 













 




  (8), 

 
where i

i
lo

i
up handT,T  are the upper value, the lower value and the discrete step of the state 

variable iT . For each product j, j=1, …, n, the production rate uij, i=1, …, m, has three possible 
values  m

ij
j
i U,d

~
,0 ; this corresponds to 3m+n points for the set of uij. For each machine, the 

preventive maintenance rate is chosen between two values, 0 and max
j ; this gives 2m points for 

the m machines. The dimension dim, as in equation (8), is very large for a multiple-part, multiple-
machine manufacturing system. Given that there is no way to solve HJB equations (7) 
analytically, numerical methods based on dim are usually used to characterise the optimal control 
policy. A singular perturbation approach is used to define a hierarchical control scheme based on 
limiting probabilities and deterministic optimality conditions, as presented here in the case of 
identical machines. Such an approach is unusable in the case of non-identical machine 
manufacturing systems. 
 

For identical machines, let   0t,t   be a finite-state stochastic process corresponding to 

the number of operational machines at time t with values in  m,,1,0  . Our objective is to 

control the production rate u(t) and the preventive maintenance rate    

      uu~policycontroltheor  so as to minimize the expected discounted cost given by: 
 

              0,a0a,x0xdtu,x~,Geu,x~,J pt

0
 (9) 

 
The value function of the control problem considered is given by: 
 
  

 
   



 u~,x~,Jx~, inf
u~

 (10) 

 
Such a function is also locally Lipschitz, convex and is the unique viscosity solution of the 
following HJB equations: 
 

 
 

            











 








  x~,q
1

u~,x~,Gx~,ufx~,duminx~,
m

0
ax

u~
 (11) 

 
The optimal control policy       ,u  is the solution of HJB equations described by (11). Given 
the large size of (11) for multiple-machine, multiple-part type manufacturing systems, it is 
necessary here to proceed to the reduction of the system size through the limiting control 
problem. Such a problem is based on the stationary distribution of the stochastic process, which is 
computed here in terms of the mean values of the machine ages and preventive maintenance rates 
denoted by aM and   respectively. If ai and ωi, i=1, …,m are replaced in the model by aM and  , 
a constant transition rates matrix  ,aQ M  is obtained. The finite state Markov chain associated 
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to such a matrix is then homogeneous, with stationary or limiting probabilities  1 2, , , m       

given by:  

  
1

. 0 1
m

i
i

vQ and v


   (12) 

 
With these probabilities, the convergence property of the initial stochastic control problem to the 
limiting problem when 0 is established in Soner (1993). 
 

Based on the hierarchical model presented in Kenne (1997) and Kenne and Boukas (2003) 
stating that limiting probabilities are obtained for given , the overall optimization problem can 
be described by the following deterministic HJB equations: 
 

 
  
        







 









,x~Gx~dk

m

1
x~duminminx~

M
max

ajj

n

1j
x

.kKuk0
 (13) 

 
The structure of the stochastic control presented in Boukas and Haurie (1990) and Kenne (1997) 
provide a machine age-dependent control policy through the solution of (13). The construction of 
the corresponding stochastic control policy structure provides the following production and 
preventive maintenance policies: 
 
 Production Control Policy: The structure of the optimal production policy could be given 
by: 

 

  
 
 
 














jj

jjj

jj
j
max

j

txsi0

txsid

txsiu

x~u  (14), 

where Zj is the threshold value of product j and ij
max

ij
max

m

1i

j
max uwithuu  

  describing the 

maximum production rate of product j on machine i for a multiple-machine, multiple-product 
manufacturing system. 
 
 Preventive Maintenance Policy: The structure of the optimal machine age-dependent 

preventive maintenance policy depends on the mean age value aMi of the machine i and a 
parameter i , and is defined as follows: 

    


 


otherwise

ataif

0
x~ iMii

i
max

i  (15) 

 
Note that if ,0i  preventive maintenance actions are performed before the machine age reaches 

aMi; otherwise they are performed after aMi. The values and sign of i  depend mainly on the 
instantaneous cost parameters defined in equation (4) for a given manufacturing system. For such 
a system, a machine mean age value aMi is determined using simulation through off-line 
experiments. The following machine age-dependent breakdown probability distribution is used to 
describe the dynamics of any machine i. 
 

https://www.researchgate.net/publication/243092928_Singular_Perturbations_in_Manufacturing?el=1_x_8&enrichId=rgreq-39a422a5-9fe2-46d9-9387-e386c047862f&enrichSource=Y292ZXJQYWdlOzI1MDcxODc0MztBUzoxNjU2ODY0NzUyMzk0MjRAMTQxNjUxNDE0Mjk0OA==
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     taka iii  exp1  (16), 

 
where ,m,,1i,ki   are given constants and the machine age  tai  is defined as the number of 
parts produced since the last intervention on the machine (repair or preventive maintenance). A 
machine age increasing failure rate (IFR) is given by (16), with 1ki  . A well-known IFR, such 

as Weibull, can be recovered by choosing suitable values for ik . Note that the optimal control 

policy is well defined by parameters j  and i , which we call here input factors, for a given Mia . 

In the next section, we present a heuristical control approach used here to estimate the optimal 
values of such factors. The proposed approach is based on a combination of analytical and 
simulation models, experimental design and response surface methodology. 
 

3. Control Approach 
 

Results obtained from traditional methods of production and preventive maintenance 
scheduling of multiple-machine manufacturing systems are not generally enough to provide a 
comfortable level of desired performance. To improve these methods, the descriptive capacities 
of conventional simulation models are combined with analytical models, experimental design and 
response surface methodology. This approach has been successfully used in the cases of single-
machine and multiple-identical-machine manufacturing systems (see Kenne and Gharbi (1999) 
and Gharbi and Kenne (2000)). A block diagram of the resulting control approach is depicted in 
Fig.1.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Proposed control approach 
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The structure of the proposed control approach presented in Figure 1, consists of the following 
sequential steps: 

 
1. The Control problem statement of the manufacturing system, as in section 2, consists of the 

representation of the production planning and maintenance scheduling problem through a 
stochastic optimal control model based on control theory. Hence, the problem of the optimal 
flow control for the manufacturing system considered is described in this first step, which 
contains a specification of the objective of the study. That objective is to find the control 
variables (u, ω) called the production and preventive maintenance rates in order to improve 
the related output (i.e., the incurred cost). 

2. The optimality conditions, described by the HJB equations, are obtained from the problem 
statement of the previous step. It is shown in this step that the value function, representing the 
incurred cost, is the solution of the HJB equations, and the corresponding control policy 
(production and preventive maintenance rates) is optimal. When the rate of change in the 
machine states is much higher than the rate at which the cost is discounted, the time can be 
split, and the singular perturbation approach used to develop optimality conditions for both 
stochastic and deterministic control problems. The control policy of the stochastic problem is 
constructed from that one of the corresponding deterministic problem.  

3. The numerical methods are used in this step to solve the HJB equations of the limiting 
problem, given that there is no way of solving the equations analytically when it comes to real 
manufacturing systems (multiple-machine, multiple parts).  

4. The control factors Zj, j=1,…n for production planning and δi,  i=1,…m for preventive 
maintenance scheduling, describe the numerical control policy obtained, extended to the 
stochastic problem. 

5. The simulation model uses the near optimal control policy defined in the previous step as 
input for conducting experiments in order to evaluate the performances of the manufacturing 
system. Hence, for given values of the control factors, the cost incurred is obtained from the 
simulation model presented in section 4. 

6. The experimental design approach defines how the control factors can be varied in order to 
determine the effects of the main factors and their interactions (i.e., analysis of variance or 
ANOVA) on the cost through a minimal set of simulation experiments. 

7. The response surface methodology is then used to obtain the relationship between the 
incurred cost and significant main factors and interactions given in the previous step. The 
obtained regression model is then optimized in order to determine best values of factors called 
here Zj

* for production, and δi
* for preventive maintenance scheduling.  

8. The near-optimal control policy (u(Zj
*), ω(δi

*)) is then an improved age-dependent hedging 
point policy to be applied to the manufacturing system. The application of the proposed 
control approach gives the production and preventive maintenance rates described by 
equations (14) and (15) respectively for best values of factors Zj

* and δi
*.  

 

4. Simulation Model 

A discrete event simulation model that describes the dynamics of the system (1)-(2), is 
developed using the Visual SLAM language (Pritsker and O’Reilly, 1999). This model consists 
of several networks, each of which describes a specific task in the system (i.e., demand 
generation, control policy, states of the machines, inventory control..., etc.). The diagram of the 
proposed simulation model is shown in Fig. 2 with the following notation block descriptions: 
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Fig. 2: Diagram of simulation model 

1. The INITIALIZATION block initializes the variables (current surplus, production rates, 
incurred cost,…etc) 

2. The Demand Arrival block performs the arrival of a demand for product j at each dj
-1 

unit of time. A verification is then performed on the inventory value of product j, and 
the inventory or the backorder is updated. 

3. The CONTROL POLICY segment block is defined in the previous section (see 
equation (14) for the machine production rates). The control policy is defined by the 
output of the FLAG block. This block is used to permanently verify the variation in 
the stock level xj(t). If xj(t) > Zj, then the production rate is set to a zero value; 
otherwise the production rate is set to the demand rate (xj(t) = Zj) or to the maximum 
production rate (xj(t) < Zj). 

4. The PARTS PRODUCTION block performs the production of finished goods.  
5. The update the inventory block performs the variation of the inventory level when a 

finished goods production or a demand arrival occurs (i.e. production of finished 
goods increases inventory if there is no backorder or it satisfies the cumulative 
demands, and hence decreases backorders). Off-line runs of the simulation model, for 
a two-different-machine, one-part type manufacturing system, using control policy 
described by (14) for Zj =20 is illustrated in Fig. 3 for a product stock trajectory.  
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Fig. 3: A product stock trajectory (Zj=20). 

It is interesting to note that: (i) the inventory level increases to Zj and remains at this 
value; (ii) the inventory level decreases during repair or preventive maintenance 
times; (iii) the decreasing level of the inventory depends on the repair and the 
preventive maintenance times, which are different for each machine.  

6. The failure-repair block performs two functions: it defines the time-to-failure of each 
machine, and repairs broken ones. Using the breakdown probability distribution 
defined by (16), in Fig. 4, we present the machine age trajectories for two machines 
(k1= 10-4, k2= 2.10-4), obtained from off-line runs of the simulation model. For 
example, machine 1, from initial time to the first jump time (where the breakdown 
occurs), the machine age increases from zero to 65. The machine age is then set to 
zero during the repair time. When the machine is repaired, it produces parts and its 
age increases again. 
 

 

 

 

 

Figure 4: Machine age trajectory. 
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7. The preventive maintenance block defines the time at which we should send each 
machine out for preventive maintenance. The mean value of the ages at which 
machine i breakdowns occur is the mean age of machine i denoted here as (aMi). The 
preventive maintenance on that machine should be done around that age (see equation 
(15) for the machine preventive maintenance rates). We determine aMi through off-line 
simulation runs. For the example illustrated in Fig. 4, these values are: aM1 = 128 and 
aM2 = 89. The failure-repair, the preventive maintenance and the update the inventory 
blocks update the incurred cost block. 

8. The updates the incurred cost block calculates in a real time the cost of inventory, 
backlogs and corrective and preventive maintenance.  

 

5. Experimental Design and Response Surface Methodology 
 

 To illustrate the approach presented in this paper, we consider a two-machine, one-product 
manufacturing system.  

 The optimal flow control for the manufacturing system considered is formulated as in 
section 2, with optimality conditions given by HJB equations (11) and (13) for the two 
levels of the proposed hierarchical approach. 

 The optimal control policy is approximated by a heuristic control policy defined in terms 
of design factors, as in equations (14)-(15) for the machine production and preventive 
maintenance rates. The objective of the proposed approach is to find the best parameters 
of the control variables u(.) and (.) , (i.e., Z1 , δ1 and δ2 ), in order to improve the related 
output (i.e., the incurred cost). 

 The simulation model describes the dynamics of the system using the control policy 
parameterized by the factors Z1 , δ1 and δ2. These factors are considered as the input of 
such a model, and the corresponding incurred cost is defined as its output. 

 From the values of the input factors and the corresponding cost values, the experimental 
design approach determines input factors and/or their interactions that have significant 
effects on the output. 

 
 Significant factors or interactions are then considered as input of a response surface 
methodology, in order to fit the relationship between the cost and the input factors. The optimal 
values of the input factors, called Z1

*, δ1
* and δ2

* are determined from this estimated relation. The 
related machine age-dependent modified hedging point policy is then an improved hedging point 
policy to be applied to the manufacturing system. 
 
 Due to the convexity of the value function (see section 2), we selected a 33 response surface 
design. The experimental design is used to study and understand the effects that some parameters, 
namely Z1 , δ1 and δ2, for the manufacturing system, have on the performance measure (i.e., the 
cost). 
 

5.1 Numerical Example 
 

The following are the numerical values of the constants used previously: d=2; 1
maxU = 1.5; 

2
maxU = 1.6; c+=1; c-=10; c2

1= 60; c2
2= 50; c3

1= 100; c3
2=80; q12

1=0.015; q12
2= 0.022; q21

1=0.045; 

q21
2= 0.042; q31

1=0.181; q31
2=0.167; k1= 10-4; k2=2.10-4. Note that, in the case of non-identical 

machines, c2
i, and c3

i are used as repair and maintenance costs of machine i, respectively. In 
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addition, q12
i is the breakdown rate of machine i, and q21

i and q31
i are respectively the corrective 

and preventive maintenance rates for machine i. Based on off-line simulation runs, where the 
minimum and the maximum values of the factors were observed, the independent variable levels 
were chosen as in Table 1. 

 

Table 1:  
Level of independent variables 

Factor Low Level Center High Level Description 

Z1 10 30 50 Stock level 

δ1 -80 0 +80 Maintenance for M1 

δ 2 -60 0 +60 Maintenance for M2 

 
Three replications were conducted for each combination of the factors, and therefore, 81 (33 x 3) 
simulation runs were made. To reduce the number of replications, we used a variance reduction 
technique called common random numbers (Law and Kelton (2000)). We conducted some 
preliminary simulation experiments using 3 replications, and noticed that the variability allows 
the effects to be distinguished. 
 

5.2 Result Analysis 
 

The statistical analysis of the simulation data consists of the multifactor analysis of variance 
(ANOVA). This is done using a statistical software application, such as STATGRAPHICS, to 
provide the effects of the three independent variables (Z1 , δ1 and δ2) on the dependant variable 
(Cost). The ANOVA table corresponding to the generated data is illustrated in Table 2. From 
Table 2, as all the p-values are less than 5%, we conclude that the main factors Z1, δ1 and δ2, their 
quadratic effects, as well as their interactions are significant at the 0.05 level. The R-squared 
value of 0.9414 from the ANOVA table, states that 94% of the total variability is explained by 
the model (Montgomery (2001)). 
 
Table 2:  
ANOVA Table 
Source Sum of squares Df Mean Square F-Ratio P-Value 
A:Z1 2725.45 1 2725.45 458.53 0,0000 
B: d1 80.0371 1 80.0371 13.47 0.0005 
C:d2 503.709 1 503.709 84.74 0.0000 
AA 1608.54 1 1608.54 270.62 0.0000 
AB 583.469 1 583.469 98.16 0.0000 
BB 72.2547 1 72.2547 12.16 0.0009 
BC 97.0614 1 97.0614 16.33 0.0001 
CC 219.716 1 219.716 36.97 0.0000 
Blocks 38.8702 2 19.4351 3.27 0.0440 
Total error 410.125 69 5.94384   
Total (corr.) 6994.06 80    
R-squared = 94.1361 percent     
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The residual analysis was used to verify the adequacy of the model. A residual versus 
predicted value plot and normal probability plot were used to test the homogeneity of the 
variances and the residual normality, respectively. We conclude that the model is satisfactory, 
and there is no need for the transformation of response variables or for additional replications for 
the simulation model. The second order model is then given by:  
 
 Cost =     63.928 – 1.063 Z1 – 0.060 δ1 – 0.056 δ2 + 0.024 Z2

1 + 0.0025 Z1* δ1  

                                         + 0.0036 Z1* δ2+ 0.00031 δ1
2 + 0.00034 δ1* δ2 + 0.00097 δ2

2                          (17) 

Fig. 5: Estimated response surface 

 

 The near-optimal control policy to be applied to the manufacturing system considered is 
defined by the minimum of the cost function (17) located at Z1

*=22.99, δ1
*=12.36 and δ2

* = -
15.59 as shown in Fig. 5. A cost value of 51.76 is obtained with such a control policy. 
To crosscheck the validity of the solution, Z1

*=22.99, δ1
*=12.36 and δ2

* = -15.59 were used as 
input to the simulation model. The cost value obtained was 51.16, which falls in the 95% 

confidence interval (    
n

nS
tnX

,n

2

2
11



  = [50.39; 51.93] ), obtained using n=10 replications of 

the simulation model. Z1
*, δ1

* and δ2
* define the best-modified hedging point policy to be applied 

to the manufacturing system considered. With the aforementioned optimal values of the 
independent factors or input parameters, the cost is minimized and the corresponding control 
policy is the best approximation of the optimal control one. The following control policy is to be 
applied to the manufacturing system presented in this example: 

 If inventory level of product 1 is greater than 23, then the production rate is set to zero 
value;  

 If inventory level of product 1 is equal to 23, then produce at the demand rate;  
 If inventory level of product 1 is less than  23, then produce at the maximum production 

rate. 
 If the age of machine 1 is greater than 115.64 (aM1- δ1

*= 128-12.36), then send machine 1 
to preventive maintenance if the inventory level of product 1 is equal to 23. 

 If the age of machine 2 is greater than 104.59 (aM2- δ2
*= 89-(-15.59)), then send machine 

2 to preventive maintenance if the inventory level of product 1 is equal to 23. 
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5.3 Sensitivity Analysis. 

 
 A set of numerical examples are considered on the sensitivity of the obtained control policy 
with respect to inventory, backlog, corrective and preventive maintenance costs (i.e., c+ , c- , c2

i , 
c3

i ). The following variations, illustrated in Table 3, are explored and compared to a basic case. 
 Decreasing c+: this must result in a tendency to increase the stock level in order to avoid 

further backlog costs. 
 Increasing c+: this must result in a tendency to decrease the stock level in order to avoid 

further inventory costs. 
 Decreasing c-: this must result in a tendency to decrease the stock level in order to avoid 

further inventory costs. 
 Increasing c-: this must result in a tendency to increase the stock level in order to avoid 

further backlog costs. 
 Decreasing c2

i (corrective maintenance cost): this must result in a tendency to delay the 
preventive maintenance period (fewer preventive maintenance activities). 

 Increasing c2
i (corrective maintenance cost): this must result in a tendency to advance the 

preventive maintenance period (more preventive maintenance activities). 
 Decreasing c3

i (preventive maintenance cost): this must result in a tendency to advance the 
preventive maintenance period (more preventive maintenance activities). 

 Increasing c3
i (preventive maintenance cost): this must result in a tendency to delay the 

preventive maintenance period (fewer preventive maintenance activities). 
 
Table 3:  
Sensitivity analysis table 
c+ c- c2

1 c2
2 c3

1 c3
2 Z1

* δ1
* δ2

* Cost* Remark
1 10 60 50 140 120 22.99 12.36 -15.58 51.76 Basic case 

0.5 10 60 50 140 120 35.97 -23.81 -28.76 40.22 Z1
*increases 

1.5 10 60 50 140 120 10.96 46.20 -1.93 57.88 Z1
*decreases 

1 8 60 50 140 120 18.44 8.28 -14.57 49.26 Z1
*decreases 

1 12 60 50 140 120 26.04 18.26 -17.00 53.53 Z1
*increases 

1 10 55 50 140 120 23.32 5.62 -15.17 51.12 δ1
*decreases 

1 10 65 50 140 120 22.63 19.81 -16.04 52.38 δ1
*increases 

1 10 60 45 140 120 23.20 12.89 -18.72 50.71 δ2
*decreases 

1 10 60 55 140 120 22.77 11.75 -12.20 52.80 δ2
*increases 

1 10 60 50 130 120 22.25 27.81 -16.65 51.44 δ1
*increases 

1 10 60 50 150 120 23.53 1.22 -14.80 52.01 δ1
*decreases 

1 10 60 50 140 110 22.59 11.55 -9.58 51.57 δ2
*increases 

1 10 60 50 140 130 23.3 12.90 -19.99 51.92 δ2
*decreases 

 
 

Through the above analysis, it clearly appears that the results obtained make sense, and that 
the proposed approach is robust. 
 

In the second part of this section, we will discuss how to control more complex manufacturing 
systems. For an m machine, n products manufacturing system as in this paper, we obtain an m+n 
factors experimental design (i.e., one factor for each machine and product). For large values of m 
and n, a more appropriate experimental design must be explored, since the complete 3 m+n is very 
difficult to implement. In such a situation, a two-step design approach is recommended: 
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1. Use of two-level fractional factorial designs (i.e. 2f-p) as filter in order to eliminate non-
significant factors and/or interactions (Montgomery, 2001). 

2. Use of experimental design related to significant factors or interactions. The Box-Benhken 
or Box-Wilson central composite designs are commonly used at this level (Montgomery, 
2001). However, the Box-Wilson design is preferred because we reuse all the results of 
the experiments performed during the screening step. 

The proposed approach significantly reduces the number of simulation runs, and should gives rise 
to near-optimal control policies for more complex manufacturing systems. 
 

6. Conclusion 
 

In this paper, we have extended the concept of hedging point policy to the production and 
preventive maintenance control problem of a multiple, non-identical machine manufacturing 
system. The proposed approach was based on the combination of the hierarchical control model, 
simulation experiments, experimental design and RSM. First, we investigated a near-optimal 
control policy of a machine age dependent Markov process through the construction of the 
stochastic control policy from one of the dependant deterministic models. We then associated to 
such a policy parameters called independent variables. A simulation model was developed to 
describe the dynamic of the production system under the proposed modified hedging point policy. 
An experimental design approach was then used to investigate the effects of specific factors on 
the cost incurred during the production horizon. The proposed approach combines the simulation 
method with the statistical method to provide the estimation of the cost function related to the 
control problem considered. A response surface methodology was used to perform this function 
in terms of significant main factors and interactions given by the experimental design approach. 
From the estimation of the cost function, the best values of control parameters were easily 
computed.  
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