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Abstract 

Although scheduling with deteriorating jobs and learning effect has been widely 

investigated, scheduling research has seldom considered the two phenomena 

simultaneously. However, job deterioration and learning co-exist in many realistic 

scheduling situations. In this paper we introduce a new scheduling model in which 

both job deterioration and learning exist simultaneously. The actual processing time of 

a job depends not only on the processing times of the jobs already processed but also 

on its scheduled position. For the single-machine case, we derive polynomial-time 

optimal solutions for the problems to minimize makespan and total completion time. 

In addition, we show that the problems to minimize total weighted completion time 

and maximum lateness are polynomially solvable under certain agreeable conditions. 

For the case of an m-machine permutation flowshop, we present polynomial-time 

optimal solutions for some special cases of the problems to minimize makespan and 

total completion time. 
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1. Introduction 

Pinedo (2002) pointed out that sequencing and scheduling is a form of 

decision-making that plays a crucial role in manufacturing and service industries. In 

the current competitive business environment, effective sequencing and scheduling 

have become a necessity for survival in the marketplace. However, conventional 

scheduling models routinely assume that job processing times are known and fixed 

throughout the period of job processing. This assumption may be unrealistic in many 

situations since the processing times of jobs might be prolonged due to deterioration 

or shortened due to learning over time. 

Kunnathur and Gupta (1990) pointed out that the temperature of an ingot, while 

waiting to enter a rolling machine, drops below a certain level, requiring the ingot to 

be reheated before rolling. Browne and Yechiali (1990) claimed that the time and 

effort required to put out a fire increase if there is a delay in the start of the 

fire-fighting effort. In such environments, a job that is processed later consumes more 

time than the same job if processed earlier. Scheduling in this setting is known as 

scheduling with deteriorating jobs, which was first independently introduced by 

Gupta and Gupta (1988) and Browne and Yechiali (1990). Since then, related models 

of scheduling with deteriorating jobs have been extensively studied from a variety of 

perspectives. Alidaee and Womer (1999) surveyed the rapidly growing literature, 
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while Cheng et al. (2004) gave a detailed review of scheduling problems with 

deteriorating jobs. 

On the other hand, Biskup (1999) pointed out that repeated processing of similar 

tasks improves workers’ skills, e.g., workers are able to perform setups, deal with 

machine operations or software, or handle raw materials and components at a faster 

pace. Heizer and Render (1999) and Russell and Taylor (2000) demonstrated through 

empirical studies that unit costs decline as firms produce more of a product and gain 

knowledge or experience in several industries. The impact of learning on productivity 

improvement in manufacturing was first discovered in the aircraft industry by Wright 

(1936), and it was subsequently observed to exist in many other industries in both the 

manufacturing and service sectors (Yelle, 1979). Biskup (1999) and Cheng and Wang 

(2000) are among the pioneers that brought the concept of learning into the field of 

scheduling. Many researchers have since devoted much effort to studying this nascent 

and vivid area of scheduling with learning effects. Recently, Biskup (2007) discussed 

some of the economic fundamentals of scheduling and learning, and presented a 

comprehensive review of research of scheduling with learning effects. 

Although the topics of deteriorating jobs and learning effect have been widely 

investigated in scheduling research recently, they have seldom been considered 

simultaneously. However, job deterioration and learning co-exist in many realistic 



 4 

scheduling situations. For example, Wang and Cheng (2007a) provided several 

real-life examples of processing environments involving task rotation where job 

deterioration is caused by forgetting effects, while the learning effect reflects that 

workers become more skilled to operate the machines through experience 

accumulation. Wang and Cheng (2007b) gave a practical example that the main stage 

in the production of porcelain crafts is to shape the raw material according to designs. 

Raw material, made up of clay and special coagulant, becomes harder with the lapse 

of time. It may result in increasing time to shape a craftwork. On the other hand, the 

productivity of the craftsmen can improve through increasing their proficiency in 

designs and operations. Wang (2007) pointed out that as the manufacturing 

environment becomes increasingly competitive, firms are moving towards shorter 

production runs and frequent product changes in order to offer faster services and 

provide customers with greater product varieties. The learning and forgetting that 

workers undergo in this environment have thus become increasingly important as 

workers tend to spend more time in rotating among tasks and responsibilities prior to 

becoming fully proficient in carrying out their operations. These workers are often 

interrupted by product and process changes that cause deterioration in their 

operational performance. 

Lee (2004) showed that the single-machine problems to minimize makespan and 
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total completion time are polynomially solvable under the learning and deteriorating 

scheduling models, in which the actual processing time of a job is a
jr jp trα=  or 

0( ) a
jr jp p t rα= + , where jα  is the rate of job deterioration, 0t ≥  is the starting 

time of processing the job, 0a ≤  is the learning index, and 0p  is the common basic 

processing time. Wang (2006) assumed that job processing times have the form: 

( ) a
jr jp t rα β= + , where jα  is the basic processing time and β  is the common 

deteriorating rate. He showed that several single-machine and flowshop problems are 

polynomially solvable. In addition, Wang (2007) studied a model in which the job 

processing times have the form: ( ( ) )a
jr jp p t rα β= + , where jp  is the basic 

processing time and ( )tα  is an increasing deterioration function with (0) 0α ≥ . He 

proved that the single-machine problems to minimize makespan and the sum of 

squared completion times are polynomially solvable. In addition, he showed that the 

problems to minimize the weighted sum of completion times and maximum lateness 

can be solved by the weighted shortest processing time (WSPT) rule and the earliest 

due date (EDD) rule for the case that all the jobs have a common basic processing 

time or the case that the basic processing times and the weights (or due dates) are 

agreeable. Furthermore, Wang and Cheng (2007a) studied the machine scheduling 

problems with the effects of deterioration and learning. In this model the processing 

times of jobs are defined as functions of their starting times and positions in a 
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sequence, i.e., ( ) a
jr j jp p t rα= + , where jp  is the basic processing time and jα  is 

the deterioration rate of job j. They introduced polynomial-time solutions for some 

single-machine problems and flowshop problems. Wang and Cheng (2007b) 

considered a model in which the actual processing time is 0( ) a
jp t rα+ , where 0p  is 

a common basic processing time, jα  is the growth rate, r is the scheduled position, 

and a is the learning index. They studied the single-machine problem to minimize 

makespan and showed that the schedule produced by the largest growth rate rule is 

unbounded for their model, although it is optimal for the scheduling problem with 

deteriorating jobs and no learning. 

In this paper we study a new scheduling model with deteriorating jobs and learning 

effects. Under the proposed model, the actual processing time of a job depends not 

only on the total normal processing times of the jobs already processed, but also on its 

scheduled position. The remainder of this paper is organized as follows. We present in 

the next section the solution procedures for the single-machine problems to minimize 

makespan, total completion time, total weighted completion time, and maximum 

lateness. In Section 3 we consider some special cases of the problems to minimize 

makespan and total completion time in the permutation flowshop environment. We 

conclude the paper in the last section. 
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2. Some single-machine problems 

A practical example that motivates the above scheduling model is the manual 

production of glass crafts by a skilled craftsman. Silicon-based raw material is first 

heated up in an oven until it becomes a lump of malleable dough from which the 

craftsman cuts pieces and shapes them according to different designs into different 

glass craft products. The initial time to heat up the raw material to the threshold 

temperature at which it can be shaped is long and so the first piece (i.e., job) has a 

long processing time, which includes both the heating time (i.e., the deterioration 

effect) and the shaping time (i.e., the normal processing time). The second piece 

requires a shorter time to re-heat the dough to the threshold temperature (i.e., a 

smaller deterioration effect). Similarly, the later a piece is cut from the dough, the 

shorter is its heating time to reach the threshold temperature. On the other hand, the 

pieces that are shaped later require shorter shaping times because the craftsman’s 

productivity improves as a result of learning. 

Formulation of the scheduling model with deteriorating jobs and learning effects in 

the single-machine case is as follows. There are n  simultaneously ready jobs to be 

processed on a single machine. Each job i  has a normal processing time ip  and a 

due date id . Due to the learning and deteriorating effects, the actual processing time 

of job j is modelled as 
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if it is scheduled in the rth position in a sequence, where ][lp  denotes the normal 

processing time of the job scheduled in the lth position in the sequence, 0 0p >  is a 

given parameter, and 1a  and 2a  denote the deteriorating and learning indices with 

1 0a <  and 02 <a . In this model, the actual processing time of a job becomes shorter 

if it is scheduled in a later position as a result of learning. On the other hand, due to 

the effect of deterioration, the actual processing time of a job becomes longer while 

awaiting processing. However, the rate of deterioration decreases with the waiting 

time. 

Before presenting the main results, we first present several lemmas that will be 

used in the proofs of the theorems in the sequel. The proofs of the lemmas are given 

in the Appendix. 
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We will prove the following theorem using the standard pairwise interchange method. 

Suppose that 1S  and 2S  are two given job schedules. The difference between 1S  

and 2S  is a pairwise interchange of two adjacent jobs i and j. That is,  

),,,(1 σσ ′= jiS  and ),,,(2 σσ ′= ijS , where σ  and σ ′  each denote a partial 

sequence.  It is said that 1S  dominates 2S  if the objective function under 1S  is 

less than that under 2S . Furthermore, we assume that there are r-1 jobs in σ . Thus, 

jobs i and j are the rth and (r+1)th job in 1S , whereas jobs j and i are scheduled in the 

rth and (r+1)th position in 2S . In addition, let A denote the completion time of the 

last job in σ . Under 1S , the completion times of jobs i and j are respectively 
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Similarly, the completion times of jobs j and i in 2S  are respectively 
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Thus, 1S  dominates 2S . Therefore, repeating this interchange argument for all the 

jobs not sequenced in the SPT order completes the proof of the theorem.            

 

Theorem 2. For the ∑
∑

∑
=

=

−

=

+

+
=

n

l
l

aa
n

l
l

r

l
l

jrj Cr
pp

pp
pp

1

1
0

1

1
][0

][ /)(/1 21  problem, the optimal 

schedule is obtained by sequencing jobs in the SPT order. 

Proof. The proof is similar to that of Theorem 1 and is omitted. 

 

Smith (1956) showed that sequencing jobs according to the WSPT rule provides an 

optimal schedule for the classical single-machine scheduling problem to minimize 

total weighted completion time, i.e., sequencing jobs in non-decreasing order of 

/j jp w , where jw  is the weight of job j. The following theorem shows that the 

WSPT order remains optimal for our scheduling model with deteriorating jobs and 
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Thus, repeating this interchange argument for all the jobs not sequenced in the WSPT 

order completes the proof of Theorem 3. 

 

Sequencing jobs according to the EDD rule provides an optimal sequence for the 

classical single-machine scheduling problem to minimize maximum lateness. We 
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schedule is obtained by sequencing jobs in non-decreasing order of id  (i.e., in the 

EDD order) if the job processing times and the due dates are agreeable, i.e., ji dd ≤  

implies ji pp ≤  for all jobs i and j. 

Proof. Suppose that ji dd ≤ . This implies that ji pp ≤ . Thus, it is seen from 

Theorem 1 that )()( 21 SCSC ij < . To show that 1S  dominates 2S , it suffices to 
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denote the lateness of jobs i and j under schedule 
k

S  for k= 1, 2, respectively. By 

definition, the lateness of jobs i and j in 1S  and jobs j and i in 2S  are respectively 
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Since ji pp ≤ , we have from Theorem 1 that 

 )()( 21 SCSC ij < .                                                   (15) 

From ji dd ≤ , we have 
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Since job i is processed before job j in S, we have from Equation (15) that 

 )()( 21 SLSL ii ≤ .                                                   (17) 
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From Equations (16) and (17), we have 

 )}(),(max{)}(),(max{ 2211 SLSLSLSL jiji ≤ . 

Thus, repeating this interchange argument for all the jobs not sequenced in the EDD 

rule completes the proof of Theorem 4. 

 

3. Flowshop problems 

Formulation of the scheduling model with deteriorating jobs and learning effects 

for the case of a flowshop is as follows. Suppose that there is a set of n jobs to be 

processed on m machines M1, M2, …, Mm. Each job j consists of m operations jO1 , 

jO2 , …, jmO , where jiO  has to be processed on machine Mi, i = 1, 2, …, m. The 

processing of operation jiO ,1+  can start only after jiO  has been completed. A 

machine can handle one job at a time and preemption is not allowed. The normal 

processing time of jiO  is denoted by pij. The actual processing time of job j on 

machine Mi if it is scheduled in the rth position in a sequence is 
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where 0ip  is a given parameter, 1a  and 2a  denote the deteriorating and the 

learning indices with 01 <a  and 02 <a . For a given schedule π , let ( )ij ijC C π=  

denote the completion time of operation ijO , and j mjC C=  denote the completion 

time of job j. For the traditional m-machine permutation flowshop problem, Pinedo 
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(2002) showed that if the normal processing times of any job on all the machines are 

identical, i.e., ij jp p= , then the completion time of the jth job in a given sequence S 

is as follows: 
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Similarly, in the m-machine permutation flowshop environment under the proposed 

model, if the normal processing times of any job on all the machines are identical, i.e., 

ij jp p= , then we can derive that the completion time of the jth job in a given 

sequence S is 

1 2

1

0 [ ]
1

[ ] [ ]
1

0
1

( ) ( )

k

lj
a al

j kn
k

l
l

p p
C S k p

p p

−

=

=

=

+
=

+

∑
∑

∑
                                                                    

1 2 1 2

1

0 [ ]
0 [1] 1

[1] [2] [ ]

0 0
1 1

( 1) max{ , ( ) 2 ,..., ( ) }

j

l
a a a al

jn n

l l
l l

p pp p
m p p j p

p p p p

−

=

= =

++
+ −

+ +

∑

∑ ∑
.    (20) 

Theorem 5. For the max

1
0

1

1
][0

][ /)(/ 21 Cr
pp

pp
ppFm aa

n

l
l

r

l
l

jrij

∑

∑

=

−

=

+

+
=  problem, an optimal 

schedule is obtained by sequencing jobs in the SPT order. 

Proof. Suppose that 1S  and 2S  are two job schedules. The difference between 1S  

and 2S  is a pairwise interchange of two adjacent jobs i and j, i.e.,  ),,,(1 σσ ′= jiS  

and ),,,(2 σσ ′= ijS , where σ  and σ ′  each denote a partial sequence. 

Furthermore, we assume that there are r-1 jobs in σ . Thus, jobs i and j are the rth 
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and (r+1)th job in 1S , whereas jobs j and i are scheduled in the rth and (r+1)th 

position in 2S . In addition, let A denote the completion time of the last job in σ . 

Under 1S , the completion time of job j is 
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p p p p

− −

= =

= =

+ + +
= + + +

+ +

∑ ∑

∑ ∑
 

1 2 1 2

1 1

0 [ ] 0 [ ]
1 1

[1]

0 0
1 1

( 1) max{ ,..., ( ) , ( ) ( 1) }

r r

l l i
a a a al l

i jn n

l l
l l

p p p p p
m p r p r p

p p p p

− −

= =

= =

+ + +
+ − +

+ +

∑ ∑

∑ ∑
.  (21) 

Similarly, the completion time of job i in 2S  is 

1 2 1 2

1 1
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2
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l l j
a a a al l
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+ + +
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∑ ∑
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1 2 1 2

1 1
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[1]
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r r

l l j
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l l
l l

p p p p p
m p r p r p

p p p p

− −

= =

= =

+ + +
+ − +

+ +

∑ ∑

∑ ∑
. (22) 

Suppose that ji pp ≤ . To show that 1S  dominates 2S , it suffices to show that 

)()( 21 SCSC ij ≤ . Since ji pp ≤ , 01 <a , and 02 <a , we have 

1 2 1 2
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l l
l l

p p p p
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≥
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,                               (23) 

 and  
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p p p p p
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= =
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+ +
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∑ ∑
.                       (24) 
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This implies that 

1 2 1 2

11

0 [ ] 0 [ ]
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[1]

0 0
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max{ ,..., ( ) , ( ) ( 1) }
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11
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= =
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+ +

∑ ∑

∑ ∑
.      (25) 

From Equations (21) and (22), we have 
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j in n
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p p p p

−−
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∑ ∑
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p p p p p
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+ + +
− + + +

+ +

∑ ∑
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1 2 1 2
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0 [ ] 0 [ ]
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[1]

0 0
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( 1) max{ ,..., ( ) , ( ) ( 1) }
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p p p p p
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= =

= =
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+ − +
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∑ ∑
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.   (26) 

Substituting 

1

0 [ ]
1

0
1

r

l
l

n

l
l

p p
t

p p
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=
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+
=

+

∑

∑
, j

i

p
p

λ = , 
0

1

i
n

l
l
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p p

=

=
+∑

, and wx
t

=  into Equation 

(26), we have 
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1 2 1 2
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0 [ ] 0 [ ]
1 1
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0 0
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( 1)(max{ ,..., ( ) , ( ) ( 1) }
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l l j
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p p p p p
m p r p r p

p p p p
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= =
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+ + +
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+ +

∑ ∑
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1 2 1 2

11

0 [ ] 0 [ ]
1 1

[1]

0 0
1 1

max{ ,..., ( ) , ( ) ( 1) })

jr

l l i
a a a al l

i jn n

l l
l l

p p p p p
p r p r p

p p p p

−−

= =

= =

+ + +
− +

+ +

∑ ∑

∑ ∑
.     (27) 

From Equation (25) and Lemmas 1 and 2, we have 

0)()( 12 ≥− SCSC ji .                                                 (28) 

Thus, 1S  dominates 2S . Therefore, repeating this interchange argument for all the 

jobs not sequenced in the SPT order completes the proof of the theorem. 

 

Theorem 6. For the ∑
∑

∑
=

=

−

=

+

+
=

n

l
l

aa
n

l
l

r

l
l

jrij Cr
pp

pp
ppFm

1

1
0

1

1
][0

][ /)(/ 21  problem, an optimal 

schedule is obtained by sequencing jobs in the SPT order. 

Proof. The proof is similar to that of Theorem 5 and is omitted.  

 

4. Conclusions 

The main contribution of this paper is to provide the optimal solutions for several 

scheduling problems where the phenomena of job deterioration and learning exist 

simultaneously. We showed that the single-machine problems are polynomially 

solvable if the performance criterion is makespan, total completion time, total 



 20 

weighted completion time, or maximum lateness. Moreover, we showed that the 

flowshop permutation problems are polynomially solvable under a certain condition. 

Further research may focus on other performance criteria or extension of the problems 

under study in this paper to other shop problems. 
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Appendix 

Lemma 1. 0)1()1()1()1(1 2121 1
1 ≥

+
+−

+
++ − aaaa

r
rx

r
rxxa  for 1 0a < , 02 <a , 

0≥x  and 1...,,2,1 −= nr . 

Proof. Let 2121 )1()1()1()1(1)( 1
1

aaaa

r
rx

r
rxxaxf +

+−
+

++= − . Taking the first 

derivative of )(xf  with respect to x, we have 

1 2 1 2 1 21 2 1
1 1 1 1

1 1 1( ) (1 ) ( ) ( 1) (1 ) ( ) (1 ) ( )a a a a a ar r rf x a x a a x x a x
r r r

− − −+ + +′ = + + − + − +  

21 )1()1()1( 2
11

aa

r
rxxaa +

+−= −  

0≥  

for 0≥x , 1 0a < , 02 <a , and 1...,,2,1 −= nr . Thus, this implies that )(xf  is a 

non-decreasing function on 0≥x . Since 0)1(1)0( 2 >
+

−= a

r
rf  for 02 <a  and 

1...,,2,1 −= nr , we have 

0)( >xf  

for 0≥x , 1 0a < , 02 <a , and 1...,,2,1 −= nr . This completes the proof. 

 

Lemma 2. 0])1()1(1[])1()1(1[ 2121 ≥
+

+−−
+

+− aaaa

r
rx

r
rx λλ  for  1 0a < , 02 <a , 

1≥λ , 0≥x , and 1...,,2,1 −= nr . 

Proof. Let ])1()1(1[])1()1(1[)( 2121 aaaa

r
rx

r
rxg +

+−−
+

+−= λλλ . Taking the first and 

second derivatives of )(λg  with respect to λ , we have                                        

2121 )1()1()1()1(1)( 1
1

aaaa

r
rxxa

r
rxg +

++
+

+−=′ −λλ  
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and 

21 )1()1()1()( 22
11

aa

r
rxxaag +

+−=′′ −λλ . 

Since 1 0a < , it implies that 0)( ≥′′ λg . Therefore, )(λg′  is a non-decreasing 

function for 1≥λ . From Lemma 1, we have  

1 2 1 21
1

1 1(1) 1 (1 ) ( ) (1 ) ( ) 0a a a ar rg x a x x
r r

−+ +′ = − + + + ≥ . 

Using the fact that )(λg ′  is a non-decreasing function for 1≥λ , this implies that 

( ) (1) 0g gλ′ ′≥ ≥ . 

Therefore, it also implies that )(λg  is a non-decreasing function for 1≥λ . Since 

0)1( =g , we have 

0)( ≥λg  

for 1≥λ , 0≥x , 1 0a < , 02 <a , and 1...,,2,1 −= nr . This completes the proof. 

 

Lemma 3. 0)1()1(])1()1(1[1 2121 1
1 ≥

+
++

+
+−+ − aaaa

r
rkxxa

r
rxk  for 1 0a < , 2 0a < , 

1k ≥ , 0≥x , and 1 , 2 , , 1r n= − . 

Proof. Let 2121 )1()1(])1()1(1[1)( 1
1

aaaa

r
rkxxa

r
rxkxf +

++
+

+−+= − . Taking the first 

derivative of )(xf  with respect to x , we have 

212121 )1()1()1()1()1()1()1()( 2
11

1
1

1
1

aaaaaa

r
rkxkxaa

r
rkxa

r
rxkaxf +

+−+
+

++
+

+−=′ −−−  

1 1 21 2
1 1

1[ (1 ) (1 )(1 ) ]( )a a ara k x a kx kx
r

− − +
= − + + + + . 

Since 1 0a < , 2 0a < , 1k ≥ , 0≥x , 21 11 )1()1( −− +≥+ aa kxx , and 1 , 2 , , 1r n= − , 
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we have 0)( >′ xf . This implies that )(xf  is a non-decreasing function for 0≥x . 

Since 0])1(1[1)0( 2 >
+

−+= a

r
rkf , we have 0)( >xf . This completes the proof. 

 

Lemma 4. 0])1()1(1[1])1()1(1[ 2121 >
+

+−−
+

+− aaaa

r
rkx

kr
rxk  for 1 0a < , 2 0a < , 

1k ≥ , 0≥x , and 1 , 2 , , 1r n= − . 

Proof. Consider the following function 

])1()1(1[1])1()1(1[)( 2121 aaaa

r
rkx

kr
rxkxf +

+−−
+

+−= . 

Taking the first derivative of )(xf  with respect to  x , we have 

2121 )1()1()1()1()( 1
1

1
1

aaaa

r
rkxa

r
rxkaxf +

++
+

+−=′ −− . 

Since 1 0a < , 1k ≥ , 0≥x , and 11 11 )1()1( −− +>+ aa kxx , we have 0)( >′ xf . This 

implies that )(xf  is a non-decreasing function for 1 0a < , 1k ≥ , 0≥x . Thus, 

0))1(1)(1()0()( 2 >
+

−−=≥ a

r
r

k
kfxf . 

This completes the proof. 

 

Lemma 5. 0])1()1(1[1])1()1(1[)1( 2121 >
+

+−−
+

+−+− aaaa

r
rkx

kr
rxk λλλ  for 

1 0a < , 2 0a < , 1k ≥ , 0≥x , 1≥λ , and 1 , 2 , , 1r n= − . 

Proof. Let ])1()1(1[1])1()1(1[)1()( 2121 aaaa

r
rkx

kr
rxkg +

+−−
+

+−+−= λλλλ . 

Taking the first and second derivatives of )(λg  with respect to λ , we have  

])1()1[(])1()1(1[1)( 2121 1
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r
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r
rxkg +
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+
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and  



 26 

21 )1()1()1()( 22
11

aa

r
rkxkxaag +

+−=′′ −λλ . 

Since 1 0a < , 2 0a < , 1k ≥ , 0≥x , 1≥λ , and 1 , 2 , , 1r n= − , we have 

0)( ≥λ′′g . This implies that )(λ′g  is a non-decreasing function for 1≥λ . From 

Lemma 3, we have 

0)1()1(])1()1(1[1)1()( 2121 1
1 ≥

+
++

+
+−+=′≥′ − aaaa

r
rkxxa

r
rxkgg λ . 

This implies that 0)( ≥λ′g  and )(λg  is a non-decreasing function for 1≥λ , too. 

Therefore, we have from Lemma 4 that 

0)1]()1(1[1])1()1(1[)1()( 2121 ≥
+

+−−
+

+−=≥ aaaa

r
rkx

kr
rxkgg λ . 

The proof is completed. 




