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A Fast Metaheuristi for Sheduling Independent Tasks withMultiple ModesMassimiliano Caramia � Stefano Giordani yAbstratWe onsider the following multi-mode task sheduling problem. Given are a set ofnon-preemptive and independent tasks, and a set of single unit dediated renewableresoures. At any time eah resoure an be used by a single task at most. Eah taskhas to be exeuted without preemption in one out of its possible exeution modes,where eah mode identi�es a subset of resoures simultaneously required by the taskfor its exeution. The aim of the problem is to �nd a mode assignment for eah task,and a non-preemptive shedule of the tasks to be exeuted in the assigned modes,suh that the total amount of resoures requested by tasks in any time period doesnot exeed the resoure availability, and the shedule length, i.e., the makespan, is min-imized. From the omplexity viewpoint this problem is NP-hard. Heuristi algorithmsfor sheduling tasks with multiple modes for the minimum shedule length riterioninvolve in general two distint phases, task mode assignment and task sheduling. Inthis paper we propose a novel two-phase approah metaheuristi based on strategiosillation and on a randomized hoie of the neighborhood of the loal searh to avoidbeing trapped in loal optima. The proposed approah simpli�es that one appearedin a previous work of the authors in whih an interval T -oloring graph model anda metaheuristi approah based on strategi osillation were provided. The perfor-mane of the proposed solution approah is ompared to that of known multi-modesheduling heuristis.Keywords: independent task sheduling; multi-mode; metaheuristi.�Dipartimento di Ingegneria dell'Impresa, Universit�a di Roma \Tor Vergata", Via del Politenio, 1 -00133 Roma, Italy. e-mail: aramia�disp.uniroma2.ityDipartimento di Ingegneria dell'Impresa, Universit�a di Roma \Tor Vergata", Via del Politenio, 1 -00133 Roma, Italy. e-mail: giordani�disp.uniroma2.it1



1 IntrodutionMulti-Mode Task Sheduling (MMTS) an be found in several real-life problems arisingin prodution systems with sare resoures. Basially, MMTS models those situationsin whih a task an be exeuted by means of di�erent resoure ombinations with on-sequently di�erent proessing times. For instane, if we onsider an assembly ell, anoperation an be exeuted either by using a fast mahine and a robot, or, alternatively, byusing a slower mahine, a worker, and an assembly tool. The time required to exeute theoperation depends on the amount and the type of resoures assoiated with its exeutionmode: the more powerful the resoures, the lower the exeution time.In this work, we study the following MMTS problem: given are a set T = f1; : : : ; ng ofn independent tasks (i.e., not related by preedene relations), and a set R= fR1; : : : ; Rrgof r single unit dediated renewable resoures. Eah task j has to be exeuted with-out preemption in one out of its possible mj � 1 exeution modes of the set Mj =fM1j ; : : : ;Mmjj g, where eah mode M ij = (Rij ; pij) identi�es the non empty subset Rij � Rof resoures simultaneously required by task j for pij � 1 time units if the task is exeutedwith that partiular mode M ij . The objetive is to �nd a mode assignment for eah task,and a shedule of the tasks to be exeuted in the assigned mode, suh that at any timeeah resoure is used by a single task at most, and the shedule length, i.e., the makespan,is minimized.The problem has been proved to be NP-hard (see e.g. Biano et al. 1995), and mostof the previous ontributions to this problem deal with the speial ase with only singleunit renewable resoures, like the one we address in this paper. The speial ase of theproblem with prespei�ed resoure alloation has been onsidered for example in Bianoet al. (1994). The more general ase with multiple exeution modes and with preedenerelations among tasks has been analyzed e.g. in Biano et al. (1998), Biano et al. (1999).Most of the approahes in the literature to solve MMTS are heuristis based on twodistint phases, i.e., task mode assignment and task sheduling. For instane, the ap-proah proposed in Biano et al. (1998) is a loal searh algorithm that, iteratively, �rstassigns a mode to every task by heuristially identifying the best among a restrited set oftask exeution modes, and then heuristially solves the task sequening problem with theassigned modes. Before a new iteration starts, the subset of andidate exeution modes2



of eah task is onveniently redued.By a study of the solution pro�le, we noted (see Setion 3.4.1) that the latter approahends up with a very few iterations, i.e., 2 or 3, and the CPU time for eah iteration tendsto beome huge for instanes with more than 300 tasks. Following these reasons, in thispaper we propose to overome these two drawbaks with a novel two-phase approah. Thelatter is a metaheuristi algorithm that extends a previous work by Caramia and Giordani(2007) on a heuristi approah to solve MMTS in whih the mode assignment and thetask sheduling features are managed in an integrated mehanism with mode assignmentembedded in sheduling. In partiular, in Caramia and Giordani (2007), the authorsmodelled MMTS as a graph interval T -oloring problem and proposed a solution approahbased on strategi osillation (Glover 2000). This algorithm (alled SOAR) uses a multiplerestart strategy to diversify the searh, a randomized hoie of the neighborhood of theloal searh to avoid being trapped in loal optima, and strategi osillation to intensifythe searh.The approah we propose in this work has two main motivations: �rstly, even if SOARhas an overall better performane than the two-phase approah in Biano et al. (1998),that indeed, as stated above, was oneived for the more general situation where tasks arerelated by preedene relations, it tends to onsume a large amount of omputing timesine the interval T -oloring problem is de�ned on a graph with O(n �m) verties, being nthe number of tasks and m the maximum number of modes required by a task; seondly,the performane of SOAR is quite sensitive to the parameter setting. The new proposedapproah tends to overome these two drawbaks of SOAR while preserving its overallgood behavior patterns. On the one hand, we designed the new approah reformulatingthe strategi osillation based algorithm without using the graph model, and, on the otherhand, we made some of the parameters self-adaptive. For this reason, this approah anbe interpreted as a simpli�ation of the approah in Caramia and Giordani (2007).The performane of the proposed new metaheuristi is ompared to the algorithms inBiano et al. (1998), and Caramia and Giordani (2007).The remainder of the paper is organized as follows. In Setion 2, we desribe theproposed algorithm and, in Setion 3, we show omputational results of the proposedalgorithm and the omparison to the two ompeting approahes disussed above.3
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Figure 1: Flow hart of the funtionalities of the proposed algorithm.2 The proposed algorithmThe proposed metaheuristi approah is based on strategi osillation (see, e.g., Glover2000), and on a randomized hoie of the neighborhood to esape from loal minima.Strategi osillation operates by alternating destrutive and onstrutive phases, whereeah solution generated by a onstrutive phase is partially dismantled by a destrutivephase, after whih a new onstrutive phase builds a new solution starting from the partialsolution obtained after the previous destrutive phase. The main bloks of the algorithmare depited in Figure 1.In the Initialization phase, the algorithm �nds a greedy starting solution. Then, inan iterative fashion, it applies the Intensi�ation phase that is in harge to improve theurrent best solution by moving from the urrent solution to a new solution. In doing thatit destroys part of the former solution removing at random some of the tasks, and thenit ompletes this partial solution �rst by assigning new exeution modes to the removedtasks and then by resheduling these tasks with the new assigned modes as soon as possiblein a greedy manner. If the urrent best solution is not improved within a given numberq of iterations the urrent loal searh phase is interrupted, and the algorithm appliesthe Diversi�ation phase, to avoid being trapped into a loal optimum, by �nding a newgreedy solution, and by starting a new loal searh phase from this latter solution.4



Table 1: Algorithm pseudoode1: set frequeny(M ij) = 0, 8j 2 T , i = 1; : : : ;mj ; set iteration = improving iteration =02: assign a mode Mhjj to eah task j arbitrarily3: order tasks arbitrarily4: shedule tasks aording to the ordering and the modes assigned5: let z� be the urrent makespan6: store the urrent solution7: zpre = z�Main loop8: while not stopping rule do fINTENSIFICATION PHASEg9: hoose a subset K of T at random10: inrease frequeny(Mhjj ), 8j 2 K11: remove all tasks j 2 K12: shedule tasks j 2 T nK respeting all inompatibilities13: for j 2 K do14: assign a new mode Mhjj to task j at random, aording to a given probabilitydistribution15: end for16: shedule tasks j 2 K aording to non-inreasing values of their duration17: inrease iteration ount18: let z be the urrent makespan value19: if z < z� then20: update z� and improving iteration = iteration21: else22: if z�zprezpre � � then23: store the urrent solution24: zpre = z25: else26: restore the previously stored solution27: z = zpre28: end if29: end if30: if improving iteration + intensify � iteration then fDIVERSIFICATIONPHASEg31: for j 2 T do32: assign mode Mhjj to task j at random aording to a probability distributionthat gives more hane to modes with lowest frequeny(Mhjj ) values33: end for34: order tasks arbitrarily35: shedule tasks aording to the ordering and the modes assigned36: frequeny(M ij) = 0, 8j 2 T , i = 1; : : : ;mj37: if z < z� then38: update z�39: end if40: set improving iteration = iteration41: end if42: end while 5



The algorithm stops its exeution if a ertain stopping riterion is met (e.g., a givennumber of iterations has been exeuted).Referring to Table 1 where a pseudoode desription of the proedure is given, thealgorithm operates in detail as follows. It starts with the Initialization phase with atwofold aim: one is to perform some initialization, and the other is to �nd a startingshedule. Referring to the former point, the algorithm initializes to zero three ounters:one denoted as frequeny(M ij), that ounts the number of times a mode i assigned totask j is disarded during the urrent loal searh phase; another ounter is iterations,that ounts the overall iterations performed by the algorithm during its progress. The lastounter is improving iteration, that aounts for the iteration at whih the algorithmfound the urrent best solution ahieved so far. At Steps 2 and 3, the algorithm �rstassigns a mode Mhjj 2 Mj to eah task j at random, and then �nds an ordering of thetasks, also in this ase at random. At step 4, aording to this ordering and the assignedmodes, the algorithm shedules tasks greedily at their earliest starting time. At Step 5,the algorithm alulates the makespan z� of the resulting shedule, being the best (unique)value found so far. At Steps 6 and 7, the urrent solution and its value are stored.Steps from 9 to 42 represent the main body of the algorithm and are repeated untila stopping rule, represented by a pre�xed number of iterations or a ertain CPU time, ismet. In partiular, at Step 9, the algorithm hooses a subset K of tasks, whose ardinalityis related to another parameter 0 � � � 1, i.e., jKj = � � n, that will be introdued laterin the experimental analysis setion.The hoie of the K tasks is made at random, and is based on a parameter � req(j)that onsiders, for eah task j 2 T , the best improvement in terms of resoure requirementwith respet to the urrent mode assignment; that is, if task j is urrently exeuted withmode Mhjj we have � req(j) = maxM ij2Mj(phjj � jRhjj j � pij � jRij j):Note that � req(j) � 0. Now, jKj tasks are hosen with a Montearlo mehanism, byassigning to eah task j 2 T a probability equal toprob(j) = � req(j)Pj2T � req(j) :One these tasks have been seleted, we inrease by one the frequeny ounter of the6



modes assoiated with them, i.e., frequeny(Mhjj ) where j 2 K and hj is its urrentlyassigned mode.At Steps 11 and 12, the algorithm �rst removes from the urrent shedule the tasks inK, and then reates a partial shedule of the remaining jT nKj tasks by sheduling thelatter as soon as possible aording to the ordering previously established.For eah task j 2 K (see Steps 13-15), the algorithm assigns a new mode Mhjj basedon the probability prob(M ij) = 1pij �jRij jPM i0j 2Mj 1pi0j �jRi0j j ;meaning that, for task j, the lower the resoure usage of a mode, the higher the probabilitywith whih it is assigned to j.At Step 16, the tasks in K are greedily sheduled aording to non-inreasing valuesof their proessing times. We note that the priority rule used to shedule tasks in K anbe di�erent from the shortest proessing time rule adopted, and the hoie we made isbeause this rule, on average, gave the best performane.One the algorithm �nds a solution, it alulates the objetive funtion value z (Step18) and then if this represents an improvement on the best solution z� found so far (Step19), it updates z� = z (Step 20). The algorithm an aept or disard the urrent solutionbased on its relative distane from the previous aepted solution (see Steps 22-28) ofvalue zpre: indeed, the urrent solution is rejeted if the urrent z value is very poor withrespet to the previous solution value, i.e., whenz � zprezpre > �;where � � 0 is a given aeptane threshold. In other words, � = 0 means that thealgorithm moves only to non-worse solutions, and � = +1 indiates that the algorithmaepts all solutions regardless of their quality. Note that if z � zpre, solution z is alwaysaepted regardless of its value and the � parameter value.If z� has not been improved within the last intensify iterations, the algorithm haltsthe urrent loal searh, and exeutes the Diversi�ation phase; otherwise, the algorithmprogresses in the urrent loal searh with a new Intensi�ation phase. In the Diversi�-ation phase (see Steps from 30 to 41), the algorithm randomly determines a new greedysolution. In partiular, a new mode is assigned to eah task j 2 T at random with7



a Montearlo mehanism, giving more hane to those modes the with lowest values offrequeny. Following a random task order, and aording to the assigned modes, thealgorithm shedules tasks greedily at their earliest starting time. Then, from that greedysolution a new loal searh is started, after having reset the ounters frequeny(M ij) tozero.3 Experimental analysisThe proposed algorithm is named FAST beause it is able to �nd very good solutions invery limited running times. An extensive experimentation on FAST and on the algorithmsused for omparisons, that is, the two-phase approah algorithm in Biano et al. (1998),denoted as TPA, and algorithm SOAR in Caramia and Giordani (2007) has been arriedout. In this setion, we provide our �ndings.The setion is divided into four subsetions: in the �rst one, we give implementationdetails and the struture of the test problems used for the experimentation; in the seondone, we analyze the performane of FAST in order to set its parameters; the latter twosubsetions are devoted to the omparison of FAST to SOAR and TPA, respetively; inpartiular, we begin the last subsetion analyzing the performane of di�erent versions ofalgorithm TPA in order to selet the best one, whih will be used in the omparison toour algorithm.3.1 Implementation detailsAll the algorithms have been implemented in the C language and exeuted on a PCwith 2.93 GHz Intel Celeron proessor and 256MB RAM. For testing the performane ofthe algorithms we have de�ned di�erent instane lasses haraterized by the followingparameters:� Number of tasks, n = 50; : : : ; 500;� Maximum number of task modes, m = 2; : : : ; 5;� Number of available (single unit) resoures, r = 10;� Maximum number of resoures requested by a task exeution mode, � = 2; 5; 8;8



� Maximum duration of a task, pmax = 10.Eah lass is then identi�ed by four parameters, i.e., (n;m; r; �). For instane, the lass(100,4,10,5) ollets instanes with 100 tasks, at most 4 modes for eah task, and eahmode an require at most 5 resoures out of 10. In partiular, for eah lass type (n;m; r; �)we generated at random 5 instanes with n tasks where the numbermj of exeution modesfor task j is uniformly distributed in the range [1;m℄, the number jRij j of resoures requiredby task j in the mode M ij is uniformly distributed in the range [1; �℄, and duration pij isuniformly distributed in the range [1; pmax℄. For eah instane, the results of FAST areobtained by running the algorithm 5 times and taking the average value.3.2 Tuning the parameters of FASTIn this subsetion we analyze the performane of FAST , with the aim of setting the valuesof its parameters.We have arried out a wide variety of test runs to tune the algorithm parameters ofthe Intensi�ation phase, whih are:� intensify: the maximum number of onseutive iterations of the Intensi�ationphase without improvement w.r.t. the best solution found so far;� �: the ratio (in perentage) between jKj and n, that ontrols the neighborhood sizein the loal searh of the Intensi�ation phase;� �: the aeptane threshold of a non-improving solution w.r.t. the previous aeptedsolution in the loal searh of the Intensi�ation phase.We start by analyzing the pro�le of the solution values found by the algorithm withdi�erent values of intensify and show the behavior of the algorithm: we stopped the algo-rithm after 1500 iterations. In Figures 2 and 3, we show the makespan values ahieved byFAST over time when � = 0, � = 0:02 and intensify is �xed to 200 and 80, respetively,for a single run of FAST over one instane in the lass (150; 5; 10; 5). In partiular, the�gures show the iteration ount and the makespan values when the Diversi�ation phaseis exeuted and the algorithm restarts the loal searh phase with a new random initialsolution; moreover, the minimum (\y min" in the �gures), maximum (\y max" in the�gures) and average (\y mean" in the �gures) values of the shedule lengths found by the9



algorithm during its exeution are also shown (\x max" in the �gures is the maximumnumber of iterations allowed). At the beginning, in both the two ases, the algorithmstarts and exeutes a large amount of iterations without any diversi�ation and �nds agood solution: with intensify = 200, this phase lasts 828 iterations and the best solutionfound is not improved in the remaining iterations; with intensify = 80, this phase lastsa smaller number of iterations equal to 373, and the best solution found is suessivelyimproved after the �rst Diversi�ation phase.
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and the results are listed in Table 2 where we report the average makespan and the averageCPU time (in seonds) among the instanes of the same lass (CPU times reported are thetimes when the best solution values were found); moreover, the average values among allthe experimented instanes over inreasing intensify values are plotted in Figure 5. The�gure shows the trade-o� between the e�etiveness and the eÆieny of the algorithm,and how for inreasing intensify values the e�etiveness inreases while the eÆienydereases.Table 2: Average makespan and CPU time values over the instane lasses (� = 0:02;� = 0).instane lass intensify = 80 intensify = 200 intensify = 600 intensify = 2000makespan CPU makespan CPU makespan CPU makespan CPUn m r � (se) (se) (se) (se)50 2 10 2 48.0 0.8 48.2 1.0 48.0 1.4 48.0 1.650 2 10 5 83.8 2.2 87.0 3.2 85.8 5.8 87.4 4.850 2 10 8 158.6 4.0 156.8 3.6 156.6 5.6 157.8 6.650 4 10 2 37.4 2.2 36.2 3.6 36.0 6.4 36.0 4.450 4 10 5 64.2 4.8 62.4 6.0 62.4 13.8 60.6 14.450 4 10 8 91.8 21.6 90.6 19.0 88.2 12.8 89.0 28.4100 2 10 2 93.8 0.6 90.6 4.0 89.0 4.6 89.0 8.2100 2 10 5 175.4 13.6 170.6 6.4 167.4 19.6 165.8 33.2100 2 10 8 270.4 8.4 268.0 26.6 261.2 25.4 261.4 39.0100 4 10 2 66.4 7.6 63.8 18.6 61.8 24.0 61.2 37.0100 4 10 5 139.6 15.6 135.0 48.0 131.6 76.2 129.2 114.0100 4 10 8 195.6 46.2 188.2 79.4 182.2 119.4 182.4 181.2200 2 10 2 159.2 24.8 155.8 32.6 153.4 28.6 151.4 67.8200 2 10 5 338.6 26.2 334.2 71.6 327.0 128.2 323.8 241.8200 2 10 8 514.8 21.2 507.0 123.4 499.2 231.4 495.0 406.4200 4 10 2 126.2 120.4 123.4 43.0 119.0 118.2 116.6 222.0200 4 10 5 268.2 96.2 258.4 157.0 252.0 539.8 246.2 944.4200 4 10 8 381.0 129.8 376.8 260.4 372.2 858.4 370.4 1537.2
3.2.1 Changing parameter values dynamiallyFrom the e�etiveness point of view, we experimentally obtained better results with� = 0:02 and � = 0, that is, with a very narrow neighborhood and only improvementmoves in the Intensi�ation phase. Nevertheless, we also experimented that with a widerneighborhood (i.e., with � = 0:3) and aepting also non-improvement moves within agiven threshold (i.e., with � = 0:03), we were able to reah a good solution in a shortertime. From this onsideration, we deided to vary � and � dynamially within the al-gorithm run, adopting a sort of variable neighborhood searh with a variable thresholdaepting strategy. The idea is to divide eah loal searh phase into 2 sub-phases: in12
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Table 3: Average makespan and CPU time values for di�erent �1 values and �1 = 0.�1 = 0instane lass �1 = 0:1 �1 = 0:3 �1 = 0:6n m r � makespan CPU(se) makespan CPU(se) makespan CPU(se)300 2 10 2 235.6 87.4 235.8 166.0 236.0 103.0300 2 10 5 492.4 160.8 483.2 187.2 494.6 93.2300 2 10 8 769.4 187.0 767.2 186.0 782.4 116.0300 4 10 2 187.0 92.0 186.2 97.0 187.0 101.0300 4 10 5 389.8 123.0 393.8 131.8 397.0 106.6300 4 10 8 593.6 208.0 605.0 134.0 606.4 118.0500 2 10 2 379.8 150.0 389.4 145.0 394.0 95.4500 2 10 5 862.2 117.2 841.2 117.2 855.4 66.4500 2 10 8 1318.4 138.0 1311.0 138.0 1327.2 91.4500 4 10 2 328.0 119.0 317.6 89.0 323.6 94.2500 4 10 5 674.2 137.2 672.6 154.2 673.6 153.8500 4 10 8 1021.0 157.0 1007.0 86.2 988.8 120.0Table 4: Average makespan and CPU time values for di�erent �1 values and �1 = 0:05.�1 = 0:05instane lass �1 = 0:1 �1 = 0:3 �1 = 0:6n m r � makespan CPU(se) makespan CPU(se) makespan CPU(se)300 2 10 2 235.2 105.0 240.2 93.4 233.6 110.0300 2 10 5 474.6 190.4 469.0 142.6 476.8 121.4300 2 10 8 778.4 158.0 779.0 155.0 780.4 167.0300 4 10 2 186.0 117.0 182.0 115.0 186.8 113.0300 4 10 5 392.6 133.0 388.0 141.8 390.6 139.6300 4 10 8 602.6 202.0 608.8 132.0 606.8 146.0500 2 10 2 387.6 191.0 362.5 119.8 388.2 129.0500 2 10 5 841.2 202.4 851.6 120.6 856.0 108.4500 2 10 8 1327.2 97.8 1310.8 82.6 1312.0 124.0500 4 10 2 317.6 116.0 279.8 132.2 310.6 103.0500 4 10 5 671.6 167.4 626.6 90.4 691.8 142.4500 4 10 8 1035.0 116.0 1005.8 84.0 1023.8 45.0
�2 = 0:02 and �2 = 0. By analysing the results in these tables, we note that most of thebest results are obtained when �1 = 0:3 and �1 = 0:05.In the following, we ompare the algorithm version with dynami parameters (witht0 = 20 seonds, � = 0:1, �1 = 0:3, �1 = 0:05, �2 = 0:02 and �2 = 0) and the versionwith �xed parameters, where we do not vary � and �, that is, when only sub-phase 2 is14



Table 5: Average makespan and CPU time values for di�erent �1 values and �1 = 0:2.�1 = 0:2instane lass �1 = 0:1 �1 = 0:3 �1 = 0:6n m r � makespan CPU(se) makespan CPU(se) makespan CPU(se)300 2 10 2 235.0 99.2 235.2 120.4 231.6 117.6300 2 10 5 490.8 145.8 497.4 149.4 490.8 114.6300 2 10 8 789.4 184.0 783.4 258.2 785.6 182.0300 4 10 2 187.6 120.0 186.6 103.6 185.4 118.4300 4 10 5 395.4 139.4 393.0 140.8 389.6 159.6300 4 10 8 607.8 120.6 601.6 142.6 605.2 199.4500 2 10 2 389.6 159.4 386.6 106.0 388.0 115.0500 2 10 5 848.2 147.2 847.2 191.8 839.4 162.8500 2 10 8 1334.2 132.4 1322.6 113.4 1315.6 91.6500 4 10 2 317.4 135.2 314.6 116.4 315.4 127.6500 4 10 5 668.0 125.4 677.0 84.8 677.8 43.0500 4 10 8 1008.0 121.2 997.4 145.8 1016.8 93.2
exeuted (i.e., t0 = 0, �2 = 0:02 and �2 = 0).
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Figure 6: Best solution values found with t0 = 0 and t0 = 20 seonds, respetively, on aninstane in the lass (500; 2; 10; 8).Figure 6 shows the makespan pro�le of the two versions during the �rst stages of theirexeution obtained by running one the two algorithms on one large instane belongingto the lass (500; 2; 10; 8); the �gure shows that in the �rst 20 seonds, the algorithmimplemented with dynami parameters is able to ahieve better solutions w.r.t. the �xedparameters version, and, moreover, that a good solution is obtained very soon (within15



Table 6: Average makespan values and CPU times omparison using �xed vs dynamivalues of � and �.instane lass �xed parameters dynami parametersn m r � makespan CPU(se) makespan CPU(se)300 2 10 2 232.8 106.8 240.2 93.4300 2 10 5 488.2 144.8 469.0 142.6300 2 10 8 790.6 146.0 779.0 154.8300 4 10 2 191.4 107.4 182.0 115.4300 4 10 5 396.6 144.4 388.0 141.8300 4 10 8 609.2 148.0 608.8 131.8500 2 10 2 390.2 128.6 362.5 119.8500 2 10 5 848.2 154.2 851.6 120.6500 2 10 8 1320.8 141.0 1310.8 82.6500 4 10 2 323.2 117.4 279.8 132.2500 4 10 5 685.0 172.6 626.6 90.4500 4 10 8 996.0 174.4 1005.8 84.0
3 seonds). For instanes with 300 and 500 tasks, Table 6 shows the omparison of theresults obtained by the two algorithms with 200 seonds of time limit over all the instanes.3.3 The omparison between FAST and SOARIn this subsetion we ompare our algorithm FAST with the dynami parameters dis-ussed in the previous subsetion to algorithm SOAR in Caramia and Giordani (2007).The omparison has been arried using the same set of test instanes (the 10 randominstanes used in Caramia and Giordani 2007) and the same mahine. Table 7 shows theaverage values of the best solutions (olumn denoted makespan) and the orrespondingomputing times, in seonds, to �nd them (olumn denoted CPU), ahieved by the twoapproahes on instanes with n = 50, 100 and 150 tasks.The experimentation is made by running SOAR and FAST with a time limit equalto 500 seonds and 100 seonds, respetively, to assess that FAST is indeed often able toimprove SOAR solutions in redued omputing time. By the results listed in the table itan be seen that FAST is able to improve the quality of the solution given by SOAR inmany ases and espeially for the instanes with a large number of tasks; also the CPUtime needed to �nd the best solutions within the given time limits shows that FAST onaverage is faster than SOAR. In partiular, for instanes with 50 tasks we have an averagemakespan of 73.7 for both the algorithms and an average CPU time of 34.7 seonds for16



Table 7: Makespan omparison between FAST and SOAR algorithms on instanes rang-ing from 50 to 150 tasks.instane lass SOAR FASTn m r � makespan CPU(se) makespan CPU(se)50 5 10 2 33.8 29.4 33.8 82.450 4 10 2 31.4 194.2 33.7 11.350 3 10 2 36.2 110.1 36.2 36.750 2 10 2 51.3 73.4 52.0 4.550 5 10 5 73.4 279.7 73.4 27.650 4 10 5 61.2 79.4 59.1 4.050 3 10 5 55.4 114.7 56.3 19.950 2 10 5 86.5 2.3 84.2 33.250 5 10 8 85.7 3.4 85.7 34.450 4 10 8 127.4 16.6 129.1 41.050 3 10 8 120.2 61.2 119.8 39.650 2 10 8 122.1 18.1 121.0 82.2100 5 10 2 59.8 92.5 59.8 31.6100 4 10 2 68.3 57.4 68.3 10.0100 3 10 2 64.8 175.3 62.2 34.3100 2 10 2 105.0 21.4 104.2 14.0100 5 10 5 155.2 101.3 153.7 31.4100 4 10 5 133.0 67.0 131.2 26.7100 3 10 5 150.6 21.4 151.8 25.4100 2 10 5 161.3 56.3 159.1 8.3100 5 10 8 189.6 11.5 193.4 4.6100 4 10 8 221.8 31.5 218.5 69.0100 3 10 8 242.6 57.4 234.4 88.1100 2 10 8 236.5 107.0 234.1 30.6150 5 10 2 92.1 49.5 92.1 52.1150 4 10 2 110.0 62.2 109.3 31.5150 3 10 2 105.3 129.5 106.3 45.6150 2 10 2 145.1 53.6 141.7 53.2150 5 10 5 228.0 164.3 228.0 60.2150 4 10 5 197.2 123.7 207.2 16.4150 3 10 5 213.6 11.7 211.0 2.2150 2 10 5 258.2 14.6 247.6 18.4150 5 10 8 270.1 8.2 270.1 80.3150 4 10 8 321.6 4.6 315.6 47.2150 3 10 8 366.2 198.0 365.4 73.8150 2 10 8 377.0 3.2 365.2 13.9
FAST and 81.9 seonds for SOAR. For instanes with 100 tasks our algorithm ahievedan average makespan of 147.6 with respet to 149.0 of SOAR, and an average CPU timeof 31.2 seonds ompared to the 66.7 seonds of SAOR. Finally, on instanes with 15017



tasks, FAST produed an average makespan of 221.6 with an average CPU time of 41.2;SOAR, instead, ahieved an average makespan of 223.7 and an average CPU time of 68.6seonds on the same instane set.3.4 The omparison between FAST and TPAIn this subsetion we ompare the performane of FAST (with dynami parameters) andalgorithm TPA proposed in Biano et al. (1998). Preliminary, we onduted an analysisof the performane of di�erent versions of TPA, in order to selet the best one used forthe omparison with FAST .3.4.1 Experimental analysis of di�erent versions of TPAAlgorithm TPA is a loal searh algorithm based upon a heuristi investigation of the spaeof task mode assignments, and upon heuristially solving the task sheduling problem fora given mode assignment. The algorithm, at eah iteration, �rst assigns a mode to eahtask and then �nds a feasible shedule for the tasks with the assigned modes by greedilysheduling the tasks aording to a sequening rule. Before exeuting a new iteration, avariation phase is exeuted for reduing the spae of possible mode assignments. Di�erentversions of TPA were proposed by the authors, aording to the riterion seleted in thevariation phase, the spei� heuristi for the assignment phase, and the sequening rulesadopted in the sheduling phase.We tested algorithm TPA onsidering the mode exhange (ME), and the ritial path(CP ) riteria for the variation phase; moreover, we onsider three sequening rules forthe sequening phase, that is: longest proessing time (LPT ); shortest proessing time(SPT ); maximum degree of ompetition (MDC); �nally, for the mode assignment phase,we onsider the assignment MR proedure that greedily selets a mode for eah taskminimizing the usage of the most used resoure, whih seems to perform better withrespet to the other ones provided in Biano et al. (1998).In Table 8, we report the performane of the two-phase algorithm implemented withdi�erent sequening rules, and with the ME riterion for the variation phase, that exper-imentally performs better than the CP riterion.For eah instane lass with n = 50; 100; 150, the table lists the average solution values,and the average CPU times in seonds to �nd the best solutions, for eah sequening rule18



Table 8: Performanes of TPA implemented with di�erent sequening rules and with theME variation riterion.instane lass LPT SPT MDCn m r � makespan CPU (se) makespan CPU (se) makespan CPU (se)50 2 10 2 51.0 0.0 48.8 0.0 48.8 0.050 2 10 5 100.2 0.0 102.8 0.0 101.2 0.250 2 10 8 169.4 0.0 168.4 0.0 169.2 0.050 3 10 2 44.2 0.0 44.0 0.0 42.6 0.050 3 10 5 95.6 0.0 95.2 0.0 92.4 0.250 3 10 8 139.8 0.0 140.4 0.0 142.6 0.050 4 10 2 38.8 0.0 39.8 0.0 40.4 0.050 4 10 5 79.6 0.0 82.0 0.0 81.2 0.050 4 10 8 101.8 0.0 102.0 0.0 103.4 0.050 5 10 2 37.0 0.0 35.8 0.0 35.6 0.050 5 10 5 83.4 0.0 85.2 0.0 82.4 0.250 5 10 8 113.0 0.0 113.4 0.0 112.8 0.0100 2 10 2 92.8 0.4 95.2 0.4 92.6 0.4100 2 10 5 190.4 0.4 189.8 0.2 189.8 0.6100 2 10 8 302.0 0.2 306.8 0.4 301.8 0.6100 3 10 2 72.4 0.2 72.8 0.2 73.6 0.2100 3 10 5 159.6 0.2 161.2 0.2 161.6 0.2100 3 10 8 240.0 0.2 243.0 0.4 239.6 0.2100 4 10 2 68.6 0.2 68.6 0.4 68.2 0.2100 4 10 5 151.0 0.2 157.2 0.4 153.8 0.4100 4 10 8 215.6 0.2 218.0 0.2 216.0 0.4100 5 10 2 62.6 0.8 63.2 0.2 62.8 0.2100 5 10 5 132.4 0.0 133.8 0.4 131.4 0.4100 5 10 8 192.2 0.4 193.8 0.6 195.4 0.4150 2 10 2 119.0 1.4 122.4 1.4 119.6 1.2150 2 10 5 287.4 2.0 292.8 1.8 288.2 1.6150 2 10 8 425.8 2.0 427.0 1.6 433.8 1.8150 3 10 2 99.8 1.4 99.8 1.6 98.4 1.0150 3 10 5 241.8 1.8 246.4 1.6 246.0 1.4150 3 10 8 363.6 2.4 367.0 1.6 368.2 1.8150 4 10 2 96.0 1.8 97.0 1.6 97.2 1.2150 4 10 5 221.0 1.8 221.8 1.6 220.2 1.6150 4 10 8 322.0 1.8 325.8 2.0 322.8 2.0150 5 10 2 86.6 1.2 86.6 1.8 86.8 1.2150 5 10 5 188.6 1.6 192.8 1.4 188.2 1.4150 5 10 8 293.4 1.8 294.6 2.0 298.6 1.4
adopted in the TPA algorithm; on average, the LPT sequening rule performs better thanthe other ones.The omputation time is small and not larger than 2 seonds on average. Indeed, the19



algorithm gets stuk in a loal optimum very soon (i.e., after 2 or 3 iterations). Never-theless, for larger instanes, that is when n � 300, the exeution time of the algorithmgrows very fast, e.g., the algorithm needs about 30 seonds per iteration when n = 300,and about 160 seonds when n = 500.3.4.2 FAST vs. TPAIn the following, we report the results for the omparison between FAST and TPA. Inpartiular, aording to the analysis reported above, the version of TPA used for theomparison is the one with the ME variation riterion, the LPT sequening rule, and theMR proedure for the mode assignment phase. The results are listed in Tables 9 and 10.Table 9: Makespan omparison between FAST and TPA on instanes with 50 and 100tasks. instane lass TPA FASTn m r � makespan CPU(se) makespan gap CPU(se)50 5 10 2 37.0 0.0 32.2 -13.0% 8.450 4 10 2 38.8 0.0 35.8 -7.7% 5.250 3 10 2 44.2 0.0 41.2 -6.8% 1.450 2 10 2 51.0 0.0 48.6 -4.7% 0.450 5 10 5 83.4 0.0 68.0 -18.5% 18.650 4 10 5 79.6 0.0 61.6 -22.6% 12.050 3 10 5 95.6 0.0 80.0 -16.3% 8.050 2 10 5 100.2 0.0 88.2 -12.0% 5.050 5 10 8 113.0 0.0 95.0 -15.9% 56.250 4 10 8 101.8 0.0 89.0 -12.6% 28.250 3 10 8 139.8 0.0 122.8 -12.2% 14.650 2 10 8 169.4 0.0 158.0 -6.7% 11.2100 5 10 2 62.6 0.4 59.4 -5.1% 17.6100 4 10 2 68.6 0.2 62.2 -9.3% 34.0100 3 10 2 72.4 0.0 70.2 -3.0% 16.0100 2 10 2 92.8 0.2 88.2 -5.0% 4.0100 5 10 5 132.4 0.6 116.0 -12.4% 39.0100 4 10 5 151.0 0.2 130.2 -13.8% 44.4100 3 10 5 159.6 0.2 140.8 -11.8% 20.4100 2 10 5 190.4 0.6 166.0 -12.8% 6.4100 5 10 8 192.2 0.4 165.4 -13.9% 48.6100 4 10 8 215.6 0.4 183.2 -15.0% 93.0100 3 10 8 240.0 0.2 211.4 -11.9% 38.4100 2 10 8 302.0 0.8 260.6 -13.7% 26.6Columns makespan list the average values of the makespan. Columns CPU report20



the average CPU times in seonds to �nd the best solutions. Finally, olumn gap reportsthe average relative di�erene �makespan(FAST )�makespan(TPA)makespan(TPA) �, in perentage, betweenthe makespan values provided by FAST and TPA.Table 10: Makespan omparison between FAST and TPA on instanes with 200, 300 and500 tasks. instane lass TPA FASTn m r � makespan CPU(se) makespan gap CPU(se)200 5 10 2 115.6 8.6 116.8 1.0% 106.8200 4 10 2 123.2 4.0 120.4 -2.3% 71.0200 3 10 2 134.2 5.0 131.6 -1.9% 81.0200 2 10 2 155.8 5.4 152.8 -1.9% 53.0200 5 10 5 249.2 5.2 233.2 -6.4% 152.8200 4 10 5 280.4 5.8 261.6 -6.7% 112.2200 3 10 5 314.2 4.2 290.8 -7.4% 131.2200 2 10 5 361.2 6.0 325.8 -9.8% 126.6200 5 10 8 369.6 5.8 336.4 -9.0% 158.6200 4 10 8 420.2 6.6 388.4 -7.6% 164.4200 3 10 8 469.0 7.2 427.4 -8.9% 129.0200 2 10 8 544.2 6.8 504.0 -7.4% 159.8300 5 10 2 161.0 26.4 155.0 -3.7% 92.6300 4 10 2 180.8 20.8 182.0 0.7% 115.4300 3 10 2 195.0. 27.4 197.2 -1.1% 80.4300 2 10 2 231.2 27.2 240.2 3.9% 93.4300 5 10 5 350.2 29.2 348.6 -0.5% 106.8300 4 10 5 388.4 22.6 388.0 -0.1% 141.8300 3 10 5 450.4 26.6 440.6 -2.2% 148.6300 2 10 5 512.0 29.4 469.0 -8.4% 142.6300 5 10 8 556.4 29.6 551.0 -1.0% 104.2300 4 10 8 621.0 31.2 608.8 -2.0% 131.8300 3 10 8 684.8 32 659.8 -3.7% 130.2300 2 10 8 828.2 31.6 779.0 -5.9% 154.8500 5 10 2 256.4 110.6 250.0 -2.5% 113.8500 4 10 2 286.6 197.8 279.8 -2.4% 132.2500 3 10 2 306.8 195.8 305.4 -0.5% 112.0500 2 10 2 368.2 172.6 362.5 -1.6% 119.8500 5 10 5 580.2 141.2 592.6 2.3% 163.2500 4 10 5 621.6 124.6 626.6 0.8% 90.4500 3 10 5 708.8 136.2 722.8 2.0% 127.0500 2 10 5 840.4 184 851.6 1.3% 120.6500 5 10 8 877.6 134.6 862.4 -1.7% 168.2500 4 10 8 993.0 134.8 1005.8 1.3% 84.0500 3 10 8 1141.8 162 1134.4 -0.6% 90.2500 2 10 8 1329.0 205 1310.8 -1.4% 82.6
21



Results in Tables 9-10 show that the makespan values of FAST are on average 12:4%less than those of TPA on instanes with 50 tasks, and 10:6% on instanes with 100 tasks.For larger instanes this gap redues to the following values: 5:7% when n = 200, 2:0%when n = 300, and 0:3% when n = 500. We note that this gap redution has not to beinterpreted as a negative outome of FAST : indeed, while TPA halts when it gets stukin a loal optimum, our algorithm has a stopping riterion of 200 seonds regardless ofwhat is the number tasks; therefore, a larger time limit ould lead to even better solutionvalues for instanes with 300 and 500 tasks.4 ConlusionsIn this paper we proposed a novel two-phase approah metaheuristi for multi-mode tasksheduling. The algorithm exploits onepts like strategi osillation and variable neigh-borhood searh. Indeed, it adopts an intensi�ation phase in whih �rst uses a wideneighborhood for a ertain number of iterations, and then, if no improvement is met, itpasses to a narrow neighborhood to re�ne the searh. A multi-start mehanism is imple-mented to diversify solutions. The performane of the proposed solution approah hasbeen ompared to that of two known multi-mode sheduling heuristis, showing how it isable to produe often better results in a very limited omputing time.Referenes[1℄ L. Biano, P. Dell'Olmo, M.G. Speranza, Nonpreemptive Sheduling of IndependentTasks with Prespei�ed Proessor Alloations, Nav. Res. Log. 41 (1994) 959{971.[2℄ L. Biano, P. Dell'Olmo, M.G. Speranza, Sheduling Independent Tasks with MultipleModes, Dis. Appl. Math. 62 (1995) 35{50.[3℄ L. Biano, P. Dell'Olmo, M.G. Speranza, Heuristis for Multi-Mode Sheduling Prob-lems with Dediated Resoures, Eur. J. of Oper. Res. 107 (1998) 260{271.[4℄ L. Biano, P. Dell'Olmo, S. Giordani, M.G. Speranza, Minimizing Makespan in aMultimode Multiproessor Shop Sheduling Problem, Nav. Res. Log. 46 (1999) 893{911. 22



[5℄ M. Caramia, S. Giordani, A New Approah for Sheduling Independent Tasks withMultiple Modes, J. of Heuristis DOI 10.1007/s10732-007-9062, in press, 2007.[6℄ F. Glover, Multi-Start and Strategi OsillationMethods - Priniples to Exploit Adap-tive Memory, in: M. Laguna, J.L. Gozales Velarde, eds., Computing Tools for Mod-eling, Optimization and Simulation: Interfaes in Computer Siene and OperationsResearh, Kluwer Aademi Publishers, Amsterdam, 2000, pp. 1{24.
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