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Abstract

In the literature on transit planning, network timetabling and vehicle schedul-
ing are usually treated as separate problems. In this paper, we focus on
combining important features of these two steps and propose a simultane-
ous solution approach to redefine timetables with the objective of bringing
improvements to both quality of service and vehicle costs incurred. This
includes the objectives of quantity and quality of the transfers proposed,
evenness of the line headways, fleet size and length of the deadheads. The
model proposed for this simultaneous approach is adapted to the problem
faced by regulating authorities, encouraging intermodality and taking into
account a variety of practical features. We introduce an optimization proce-
dure based on Iterated Local Search and present computational experiments
carried out on data from a large existing transit network, showing substantial
improvements in both quality of service and level of resources compared to
the current practice.
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1. Introduction

Transit network timetabling and vehicle assignment are two key steps in
the process of transit network design (Ceder and Wilson, 1986; Guihaire and
Hao, 2008). Any solution approach to the combined problem (TVA) must
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take into account a set of constraints and optimization objectives including
in particular the quality of service (user side) and the resource utilization
(supplier side).

Basically, the timetabling problem consists in creating the timetable of
the line runs for the transit network. This problem has been the object
of studies for decades, and keeps challenging researchers on problem defini-
tion, modeling and solution methods (Wong and Leung, 2004; Cevallos and
Zhao, 2006). There exists many different approaches to this problem, tar-
geting mostly quality of service (Ceder et al., 2001; Jansen et al., 2002). It
has often been modeled as a Quadratic Semi-Assignment Problem (QSAP)
(Bookbinder and Désilets, 1992) which aims at minimizing the global trans-
fer waiting time of passengers in the network by setting the first departure
time of each line.

Timetabling-like problems can also be found in other transportation areas
like railway and aircraft, but the constraints and objectives considered are
often very different from those encountered in transit network systems.

The vehicle assignment problem, on the other hand, consists in assigning
vehicles to line runs and depots, thereby creating the so-called vehicle ser-
vices. Several aspects have been studied, considering different levels of com-
plexity, such as number of depots (Single Depot Vehicle Scheduling Problem
(Freling et al., 2001) or Multiple Depot Vehicle Scheduling Problem (Pepin
et al., 2009; Laurent and Hao, 2009; Hadjar et al., 2006; Laurent and Hao,
2009b)) or fleet homogeneity/heterogeneity.

Recent developments in transit planning include the multiplication of
proposals for the integration of steps such as transit network design and fre-
quencies setting (Zhao and Zeng, 2006) and timetabling (Zhao and Zeng,
2008) or vehicle and driver scheduling (Huisman et al., 2005; Laurent and
Hao, 2007, 2008). Each step has direct influence on the next one and tran-
sitively on all the following steps. Although it has been shown that these
integrations provide benefits, the simultaneous approach of timetabling and
vehicle assignment has not been much explored so far. While some studies in-
tegrate constraints on the number of available vehicles in the transit network
timetabling problem (Castelli et al., 2004), the first study that we are aware
of that considers the number of vehicles as an objective is (Chakroborty et
al., 2001), in which the case of a single transfer stop with multiple lines is
studied. In 2004, Fleurent et al. (2004) also mention including this objective
in their approach, though they hardly bring up their resolution method.

To better understand this part of the transit planning process, let us
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quickly describe the roles of each actor of the regulated market. Regulating
authorities define the transit network structure and timetables, with the
objective of securing a certain level of quality of service. Then they delegate
the actual transportation service by network portions (often consisting of
groups of geographically close lines) to transit operators through calls for
tender. The price to pay depends on one main factor, the number of vehicles
needed, and on a secondary one, the number of kilometers. Since this problem
is aimed at being addressed before the choice of one transit operator, details
concerning the fleet of vehicles and depot locations are not yet available.
The fleet is thus assumed to be homogeneous with unlimited capacity: one
assumes overcrowding is taken care of by the frequencies.

In this paper, we introduce a rich model and a heuristic solution approach
to the integrated problem of timetabling and vehicle assignment. Instead of
considering timetabling and vehicle assignment in a sequential way, we pro-
pose to tackle them simultaneously in the hope of offering improved solutions.
We integrate a set of realistic constraints and objectives within our model
and devise a heuristic solution method based on the Iterated Local Search
metaheuristics combined with an exact linear quasi-assignment algorithm.
The final goal of the work is to create a flexible decision-aid tool that en-
ables the human planner to favor or combine any set of criteria like quality
and number of transfer opportunities, headway evenness, number of vehicles
needed and length of deadheads.

The paper is organized as follows. In section 2, a description of the TVA
problem is presented, including definitions, input, output, constraints and
objectives. This description is associated to a formulation of the problem
as a constrained optimization problem. In section 3, we expose our solution
method. Results are presented and analyzed in sections 4, based on compu-
tational experiments carried out on a real transit network from the area of
Orléans, France.

2. Problem description and formulation

The problem considered in this paper can be informally described as
follows. Given a pre-defined lines network, including stops, line routes and
timetables; groups of lines sharing resources; period-dependent running times;
period-dependent expected headways with variation margins; and levels of
importance of the transfers; the goal is to define a synchronized network
timetable and create the associated vehicle services with respect to a set of
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imperative constraints and objectives. A network timetable is composed of
line timetables, which in turn correspond to the set of all arrival and de-
parture times for the stops served by each line run. A vehicle service is the
complete and ordered sequence of line runs it is assigned to.

In this section, we present the timetabling and vehicle assignment prob-
lem, its input, output, constraints and objectives. We start by a few defini-
tions:

• A line is an ordered and directional sequence of stops. A line run is
a trip on the line characterized by a departure time from its initial
terminal. An external line is any activity (e.g. a train line, a fac-
tory quitting) that can be connected with the transit network through
intermodal transfers.

• The headway of a line is the time separating the service of its main
stop by consecutive runs. It is the inverse of the frequency over a time
period.

• The turnaround time is the time needed by a vehicle at the end of a
line run to get ready for the next trip and possibly catch up with some
lateness.

• A deadhead is a trip without passengers that links consecutive line runs
on a given vehicle service.

In this section, we present our model for the combined transit network
timetabling and vehicle assignment problem as a constrained optimization
problem. This formulation allows us to formally state the problem and con-
stitutes a basis for developing our heuristic solution approach.

2.1. Notations

Set of line groups G, set of activities A (including the set of internal lines
L and the set of external linesM), set of line runs R, set of bus stops S, set
of transfers T , set of vehicles V , planning horizon H.

2.2. Input

• For each line l ∈ L :

– ml: main stop.

– Pl: set of homogeneous headway periods. For each p ∈ Pl:
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∗ btl,p, etl,p: time of beginning and end of the period.

∗ hl,p, vl,p : expected headway and allowed variation margin.

– ttl,s: turnaround time per final stop s ∈ S.

– gl: line group comprising l. Interlining is allowed inside line
groups.

– Rl and rαl , rωl : set of runs among which, first and last runs.

• For each line run r ∈ R:

– lr: internal line to which r belongs.

– Sr ⊂ S: set of served stops.

– S∗r ⊂ Sr: restricted set of important served stops.

– sαr , sωr : first and last stop.

– s+
r : stop following s.

– h←r,s, h
→
r,s: arrival and departure time for s ∈ Sr in the existing

timetable.

– str,s: stopping time per stop s ∈ Sr.

• For each external line m ∈M:

– s: connecting point with the network.

– Cm: set of arrivals at s or departures from s.

– h←m,c, h
→
m,c: arrival, departure time of c ∈ Cm.

• For each transfer t(a1, s1, a2, s2) ∈ T (with a1, a2 ∈ A, s1, s2 ∈ S):

– ilt: importance level.

– bwttc, [wtt], dwtte: minimal, ideal and maximal waiting time.

• dts,s′ : deadheading time between stops s and s′.

• rths,s′ : running time between s and s′ per time point h ∈ H.
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2.3. Output - Decision variables and values

The output of the TVA problem is defined by: transit lines timetables,
fleet size and vehicle services.

In most studies, (see e.g. Jansen et al. (2002)), the decision variables
for the timetabling problem are the line departure times, from which the
complete timetable can be deduced. Indeed, they consider fixed headways,
as well as fixed stopping and running times.

In this paper, we consider a more flexible model with variable headways,
fixed stopping times at stops and given period-dependent running times.
With this model, all arrival and departure times can be deduced for the rest
of the stops from the starting time of each line run.

• One decision variable is a line run on the timetable.

• The value of a decision variable is a (starting time, vehicle) pair (see
Figure 1). The domain of these values is discrete (unit of time is the
minute) and finite. The number of vehicles is at most equal to the
number of line runs.

• One configuration σ is the complete assignment of values to the set of
decision variables: σ : R → (H× V).

Figure 1: Timetable and Schedule coupling
Rectangles represent the decision variables, i.e. the line runs.

A configuration corresponds to the positioning of each line run on the
two-dimension space created by the fleet of vehicles and the time frame.

Additionally, a set of state variables is maintained to ease the calculation
of values related to transfers and headway evenness. They include the arrival
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and departure times of line runs for a restricted set of stops. This set is
composed of the main stop of the line, the first and last stop of each line
run, and the stops at which transfers can take place. ∀r ∈ R,∀s ∈ Sr, π←r,s ∈
H, π→r,s ∈ H.

The state variables related to vehicle resources include the size of the set
Vg of vehicles used in each line group g, and the sequences of line runs they
are assigned to. ∀v ∈ V ,Φ(v) = {R}n, n ∈ N.
We use r+

l (resp. r+
v ) to designate the run following run r on line l (resp.

service of vehicle v) and we use rαv and rωv to represent the first and last runs
vehicle v is assigned to.

2.4. Constraints

Our model considers eight types of constraints which are encountered in
a real timetabling and vehicle assignment problem.

• Stopping time for each stop and line run is equal to the one provided
in the initial timetable.

∀r ∈ R,∀s ∈ S∗r, π←r,s + str,s = π→r,s (1)

• Running time for each pair of consecutive stops in a given line run
matches the value provided per time period.

∀r ∈ R, ∀s, s+
r ∈ S∗r, π→r,s + rt

π→r,s

s,s+r
= π←

r,s+r
(2)

• The structure of each run in terms of sequence of served stops is iden-
tical to the one provided in the initial timetable.

∀r ∈ R,∀s ∈ S∗r, h→r,s ∈ H ⇔ π→r,s ∈ H (3)

• The sequences of runs for each line is identical to the one provided in
the initial timetable.

∀l ∈ L,∀r1, r2 ∈ Rl, (h→r1,ml > h→r2,ml)⇔ (π→r1,ml > π→r2,ml) (4)
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• The line daily bounds are respected: the first (resp. last) run of a line
cannot serve the main stop before (resp. after) the start (resp. end)
time of the first (resp. last) headway period of the line.

∀l ∈ L, (π→rαl ,ml ≥ btl,0) ∧ (π→rωl ,ml ≤ etl,|Pl|) (5)

• In any vehicle service, the time gap separating the arrival at the final
stop of a line run and the departure from the initial terminal of the next
line run is greater or equal to the turnaround time plus the deadheading
trip duration, leaving a positive or null remaining waiting time.

∀g ∈ G,∀v ∈ Vg, ∀r, r+
v ∈ Φ(v), π←

r+v ,s
α

r+v

− π→r,sωr ≥ ttlr,sωr + dtsωr ,sα
r+v

(6)

• Interlining occurs only inside line groups: each vehicle is assigned to
line runs belonging to the same line group.

∀v ∈ V ,∀r1, r2 ∈ Φ(v), glr1 = glr2 (7)

• The assignment is complete: a (starting time, vehicle) couple value
must be assigned to each line run.

∀r ∈ R, r = (π ∈ H, v ∈ V) (8)

2.5. Objectives

Our model integrates four realistic objectives that concern both the qual-
ity of service and the resource utilization. The associated costs are combined
in an aggregated weighted function (see Section 3.2.3).

2.5.1. Number and quality of transfer possibilities

In the literature, the objective of transfer quality is often the straight-
forward minimization of the total weighted transfer waiting times in the
network. This model is simple but fails to render an accurate vision of real-
ity.
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Figure 2: Cost Function for the Transfer Objective
The ideal time gap secures smooth transfers for most passengers.

Here, each transfer is characterized by a minimum, an ideal and a max-
imum time gap between arrival and departure (see Fleurent et al. (2004)).
The minimum gap includes the time needed by the users to reach the depar-
ture point and a buffer time to compensate small hypothetical delays. The
maximum waiting time defines the limit after which users will stop using the
connection.

For this objective, we define a nonlinear cost function of the waiting
time that favors the most heavily close-to-ideal waiting times (see Figure 2).
The cost is also weighted by the relative importance of the transfer, a value
assigned a priori by the expert human planner. We compute the transfer
cost for each couple of intersecting line runs. The cost function relative to
transfers is always negative, symbolizing the additional value brought to the
timetable by each additional transfer opportunity. The function is given by
the following formula (Formula 9) where σ is a candidate solution. Recall
that ilt are weights associated to the transfers.

cost1(σ) =
∑
t∈T

t=(l1,s1,l2,s2)

[
ilt ∗

∑
r1∈Rl1
r2∈Rl2

fTr(t, π←r1,s1 , π
→
r2,s2

)

]
(9)

where

fTr(t, h1, h2) =


decreasing over [−0.5;−1] if bwttc < h2 − h1 < [wtt]
increasing over [−1; 0[ if [wtt] < h2 − h1 < dwtte
0 o.w.

Only costs related to intramodal transfers are exposed in this formula for
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the sake of simplicity, but the actual cost1(σ) also includes, under the same
conditions, the costs concerning intermodal transfers.

2.5.2. Headway evenness

The cost relative to headway evenness can be computed as the sum of
the costs generated by all pairs of consecutive line runs’ arrival or departure
times from the main stop. However, timetables can have complex schemes
and all runs might not serve the line’s main stop. To deal with this case, we
estimate the arrival or departure time of the main stop if this stop were to be
included into the itinerary. This permits to consider runs that for instance
serve different branches of a line but are overlapping on other parts of the
route.

We focus here on the most common case, i.e. when consecutive runs
belong to the same headway period. The cost function penalizes the gap
between the observed interval and the expected one. It is correlated to the
size of this gap and to whether this gap respects the allowed variation margin
or not.

cost2(σ) =
∑
l∈L

[ ∑
r,r+l ∈Rl

fHw(l, r, r+
l )

]
(10)

We only present here the most common case of two consecutive line runs
serving the main stop during the same headway period p ∈ Pl. Let gapl,r,r+l
be the current headway, corresponding to π→

r+l ,ml
− π→r,ml .

fHw(l, r, r+
l ) =

[
gapl,r,r+l

− hl,p
vl,p

]2

(11)

2.5.3. Fleet size

The number of required vehicles represents the main objective to be min-
imized among those related to the vehicle resources. It is the sum of the
number of vehicles assigned to the line runs in each line group.

cost3(σ) =
∑
g∈G

|Vg| (12)
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2.5.4. Length of deadheading trips

Deadheads are the set of trips made by the vehicles between successive line
runs. They are to be avoided or minimized since they represent unproductive
time and gas consumption.

cost4(σ) =
∑
g∈G

∑
v∈Vg

[ ∑
r,r+v ∈Φ(v)

dtsωr ,sα
r+v

]
(13)

2.6. Modelization choices

The problem considered in this paper is intended to be realistic and
adapted to the planners’ needs. For this purpose, commonly available data is
used, such as period-dependent travel times and headways, and importance
level of transfers. Also, users are not captive and will not use a transfer
requiring more than a certain waiting time limit. This implies that both
number and quality (waiting time with regard to the ideal value) of transfer
opportunities need to be considered. Complex real-world timetable schemes
are handled, in which itineraries can vary among runs of the same line. This
includes skipping or adding stops in some runs, serving stops in variable or-
der, and lines with branches. Since we consider the perspective of regulating
authorities, information regarding the depots is unavailable. The deadheads
considered in this paper are thus limited to those linking line runs inside
vehicle services.

3. Solution Approach for Timetabling and Vehicle Assignment

3.1. General solution procedure

We base our solution approach on Iterated Local Search (ILS) (Lourenco
et al., 2002). Two neighborhoods are alternatively used during the ILS. At
each iteration, the timetable is altered and the optimal trip assignment is
recomputed.

3.2. Initial solution

Our ILS solution approach needs an initial solution. This initial solution
is built in two phases using a linear quasi-assignment model.

• First, a departure time is assigned to each line run of the network based
on the existing timetable.
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• Second, a vehicle is assigned to each line run through an exact algo-
rithm, i.e. (v1, v2, ..., v|R|) = argmin(v′1,v

′
2,...,v

′
|R|)∈(V×R)

(
w3 ∗ cost3(σ) +

w4 ∗ cost4(σ)
)
.

This linkage of runs can be modeled as a network-flow-based linear
quasi-assignment problem and solved optimally by an efficient Auction
algorithm (Freling et al., 2001). This algorithm consists in assigning
trips/source to trips/sink. Half the cost of a vehicle is hold by the
links between the source and trips and between trips and the sink. Our
model differs slightly from Freling et al.’s one in that we do not include
in this cost any value related to the deadheading time for pull-in and
pull-out trips, since information regarding the depots is unavailable.
The links joining trips are assigned a value depending on the feasibil-
ity of the connection, deadheading time involved and weight assigned
to this objective. The algorithm (AuctionAlgo) gives optimal results
in a very short time, especially on sparse networks. This fits well our
context of limited groups of lines for the vehicle assignment.

Considering that the time part of the assignment is based on the existing
timetable, constraints 1 to 5 are satisfied in essence. If we consider that
additionally the fleet size is a priori unlimited, constraint 8 is also respected.
This variable fleet size combined to our group-by-group exact assignment
method insures that the remaining constraints 6 and 7 apply. Therefore, the
initial solution is always feasible.

3.2.1. ILS Algorithm for TVA

The Iterated Local Search algorithm for TVA (Algorithm 1) relies on
two types of neighborhood relations that alternatively intensify and diversify
the search. The elements constituting the ILS algorithm are detailed in the
following subsections.
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Algorithm - ILS for TV A

σ ← GenerateInitialSolution(t← ET, v ← AuctionAlgo)
time← StartT imer(), nbIter ← 0, nbStagn← 0
σ ← Local Search(σ,RunShift)
bestσ ← σ
repeat
σ1 ← Perturbation(σ, LineShift)
σ ← Local Search(σ1, RunShift)
if (f1(σ) ≤ f1(bestσ))
bestσ ← σ

Update(nbIter, nbStagn)
until (time > maxTime or nbIter > maxIter or
nbStagn > maxStagn)
return σ

3.2.2. Configuration and search space

A configuration for the TVA problem is constituted by a (time, vehicle)
value for each line run (variable). The unconstrained associated search space

can be defined by S = (π ∈ H, v ∈ V)|R|, of size
(
|V| ∗ |H|

)|R|
. However,

our algorithm remains inside the feasibility domain, which is considerably
smaller, given the set of constraints defined in section 2.4. The two neigh-
borhoods used in the algorithm permit to explore different parts of this search
space, LineShift exploring a subpart of the space explored by RunShift (see
section 3.2.4).

3.2.3. Configuration evaluation

For the TVA problem, the evaluation function used by the ILS algorithm
consists in the following aggregated weighted function (Formula 14).

f1(σ) = w1 ∗ cost1(σ) + w2 ∗ cost2(σ) + w3 ∗ cost3(σ) + w4 ∗ cost4(σ) (14)

Typically, the weights are given by the human planner to reflect the rela-
tive importance that he would associate to each objective (cost). Notice that
changing the weights will impact the search behavior of the ILS algorithm.

3.2.4. Neighborhoods and moves

The two neighborhoods defined permit to explore the search space while
always remaining inside the feasibility domain.
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LineShift The LineShift move modifies the time value of a definite set of
variables and the vehicle values of none to all of the variables. A neighboring
solution can be obtained by shifting the departure time of all the runs of one
line by +/- n minutes. The vehicle assignment is then completely recomputed
on the neighboring timetable using the Auction algorithm (see section 3.2).

LineShift is an original neighborhood in the sense that it impacts both
the time and vehicle values of each run, an approach which is, as far as
we know, particular to our work. However, it has equivalents on the single
aspect of time assignments, and has been used in this partial form to address
transfer synchronization problems (see Jansen et al. (2002)).

In most studies, the variables used are the line global departure times.
Shifting the departure time of one line is equivalent to shifting the departure
times of all its runs. Our choice of variables defines a larger search space by
allowing the shifting of individual runs.

RunShift The RunShift move modifies the time value of one single
variable and the vehicle values of none to all of the variables. A neighboring
solution can be obtained by shifting the departure time of one line run by
+/- n minutes. The vehicle assignment is then completely recomputed on
the neighboring timetable using the Auction algorithm (see section 3.2).

RunShift is an original neighborhood in the same way that LineShift is,
due to its impact on both types of assignment. Additionally, it has sometimes
been suggested in its partial (time only) form as a possibility for future
research but not actually implemented in studies we are aware of. In our
algorithm, it is used during the intensification phase.

Note that in both neighborhoods, the time shift n ∈ N∗ is chosen ran-
domly inside a restricted interval defined to respect constraints 3, 4 and 5,
and also prevent large shifts, likely to impact the headway evenness objec-
tive very negatively. Note also that RunShift defines a larger neighborhood
than LineShift and a LineShift move can be considered as a combination
of several RunShift moves.

The neighborhood associated to LineShift is thus smaller than the one
associated to RunShift in terms of number of neighboring configurations.
On the opposite, the distance between neighboring configurations in terms
of number of decision variables being assigned a different value, is greater for
LineShift than for RunShift.
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3.2.5. Intensification and diversification mechanisms

The ILS algorithm alternates an intensification phase and an diversifi-
cation phase. The intensification phase is based on the larger (and faster)
RunShift neighborhood relation. At each iteration of the ILS algorithm, the
current solution is repeatedly replaced by a neighboring solution of better
quality according to the function defined by Formula 14. This intensification
phase stops when no improving neighbor is found after a prefixed number
maxStagn of consecutive tested moves.

At this point, the diversification is launched, which consists in perturbing
the best solution found during the intensification phase. More precisely, we
change the neighborhood from RunShift to the smaller LineShift. Since
moves using this neighborhood are likely to substantially modify a solution,
only one LineShift move is applied in order to avoid excessive deterioration
of the solution. This move is selected through a sampling process returning
the lowest-cost move among m generated ones. This diversification phase is
then followed by a new round of intensification phase that takes the perturbed
solution as its input.

3.2.6. Acceptation and stopping criteria

In the ILS for TVA, only moves of non-negative impact are accepted
during the intensification phase, while no condition applies during the per-
turbation phase. The stopping criteria of the whole ILS algorithm rely on
computational time maxTime, number of iterations maxIter, and number
of iterations without improvement maxStagn.

4. Experimentations and numerical results

In this section, we will assess the performance of our simultaneous ap-
proach. For this purpose, we perform experiments on a dataset from a real
transit network. For the purpose of comparison, we rely on two references:
the existing solution (i.e. the timetable and vehicle services used in the net-
work) and the solution obtained with a conventional sequential approach.

4.1. Experimental settings

Our experimentations are based on a real extra-urban transit network of a
large French area involving 3 medium-size cities and numerous villages. The
main numerical characteristics of this network on a typical day of operations
are summed up in Table 1.
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Each line is assigned to one of three different operators, represented here
by groups of 8, 16 and 26 lines. External activities include train and school
flows. Transfer types correspond to pairs of activities meeting at a stop
and thus between which transfers can hypothetically be generated. In our
extra-urban context, most of the lines run in a non-continuous pattern, with
peaks of activity between 7am and 9am, 12am and 2pm, and 5pm and 7pm.
Besides, major lines offer a more complete coverage of the day.

Lines Stops Groups Runs Ext. activities Transfers Types
Quantity 50 673 3 318 30 282

Table 1: Main numerical features of the data set representing a real transit network of a
large French area.

Our algorithm was coded in C++, compiled with VC++ 9.0, on a laptop
equipped with a 2.8 Ghz Intel(R) Pentium(R) 4 and 1.5Go RAM running
Windows XP. For these tests, we allow our ILS algorithm to run 300 minutes
of CPU time. This time limit is used in these tests as the unique stopping
criterion.

Regarding weights assigned to the objectives, we used the set of values
shown in Table 2. These weight values allow us to simulate scenarios where
the number of vehicles is considered to be a very important criterion from an
economic point of view, and headways and transfers are crucial from a quality
perspective. Deadheads are somewhat less important compared to the other
objectives. It should be clear other scenarios can be easily simulated with
different weighting strategies. The flexibility rendered by this mechanism
constitutes a simple, yet desirable feature of the decision-aid tool for the
human planner.

Fleet size Transfers Headway Deadheads
(cost1) (cost2) (cost3) (cost4)

Weights w1=1000 w2=50 w3=66.6 w4=1.25

Table 2: Set of weights used on the tests for each objective. It favors the fleet size pre-
dominantly, followed by quality of service (headways and transfers) and leaves deadheads
as a subordinate objective.
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4.2. References and criteria for comparison

Two solutions are used as our comparison reference: the existing solu-
tion (i.e. the current timetable and vehicle services used in the network)
and the solution obtained with a conventional sequential approach where
the timetabling and vehicle assignment problems are solved successively and
separately.

4.2.1. Initial solution used by the transit network

The time values of the existing solution correspond to the currently ap-
plied timetable. From this data, we deduce the cost related to the headway
evenness objective. This data combined with the real timetables of external
activities permit to compute the cost related to intermodal and intramodal
transfers.

The vehicle values of the initial solution, on the other hand, do not come
from the current schedules, since these data are highly confidential. The
initial vehicle assignment is thus computed using the Auction algorithm and
results in a fleet size of 91 (lower bound). It is possible that the transit
operators use in practice more vehicles than 91, however, fewer is impossible
without violating hard constraints.

The detail of these costs can be found for comparison purpose in Tables
3 (Column 3) and 4 (Row 3). In addition to being used as a reference for
comparison, the existing solution is also used as initial solution for our ILS
algorithm.

4.2.2. Sequential approach

The sequential approach consists in defining the network timetable first,
and then only, defining the vehicle services based on this timetable. Con-
cretely here, the model from section 2 is altered so that we solve two distinct
assignment problems one after the other.

In a first step, only time values are assigned to line runs. This is achieved
through the ILS method relying on RunShift and LineShift moves re-
stricted to changes of departure times of line runs. Therefore the evaluation
of these moves will be much more faster since it is no more necessary to call
the Auction algorithm. Consequently, the sequential algorithm permits to
generate a much greater number of moves during the same running time.

Only once this first step is achieved, does the second step take place,
through the assignment of vehicle values to the now fixed transit lines timetable.
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This is done almost instantly through one unique call to the Auction algo-
rithm.

Note that this sequential method, traditionally used in the literature
(Ceder and Wilson, 1986), considers, by essence, sets of objectives one af-
ter the other. This could be considered to be equivalent to a hierarchical
approach where the quality of service objectives would come before the re-
sources ones. This approach opposes our simultaneous approach in which a
weighted sum of all the objectives is used as the evaluation function.

4.2.3. Comparison criteria

We have defined two sets of comparison criteria.

• The quality of the solution according to the aggregated function (For-
mula 14, Section 2).

• The quality of the solution based on each objective: 1) the number
of vehicles, 2) the number of transfer opportunities, 3) the number of
problems spotted in the headway repartition (i.e. when the observed
headway does not fit into the allowed variation margin) and 4) the
number of minutes of deadheads.

4.3. Computational Results

For the purpose of simplicity, we will use Initial, SQ and SM to designate
respectively the existing solution, the sequential approach and our simulta-
neous approach.

4.3.1. Simultaneous approach vs. existing solution

Let us first observe the behavior of the simultaneous method on each
objective and analyze its performance with respect to the existing solution.
Figure 3 presents the evolution of the best weighted cost found for each of the
objectives along the search, the starting point corresponding to the values of
the existing solution.

It is observed from this figure that at the beginning of the process, sharp
cost reductions occur for the headways evenness and number of vehicles ob-
jectives. The improvements in the cost related to transfers are less massive at
first but continue to steadily impact the global quality of the solution during
a longer period. This may be linked to the structure of the evaluation of this
objective and the neighborhood mechanism employed, which gives only small
power to each move with respect to transfers. Focus has been put on the
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Figure 3: Evolution of the four weighted objective values (see Table 2) of the best solution
found by the ILS algorithm. The main objectives (cost1, cost2, cost3) benefit strongly
from the algorithm. The time point t=0s corresponds to the initial solution.

beginning of the process, since the improvements are much slower afterwards.
Indeed this figure also shows that the algorithm can be stopped much earlier
than the time limit used here (t=300min), and still provide great improve-
ment. For instance, at t=50min, the algorithm has achieved, on average,
96.6% of the improvement provided by the longer (t=300min) runs. Notice
that the evolution of each curve can be influenced through the tuning of the
objectives’ weights according to the human planner’s needs.

Table 3 presents in more details the results of our simultaneous approach
(Column 5, SM) in comparison with the initial solution (Column 3, Initial)
according to the aggregated cost function f1 (Row 1) together with the indi-
vidual weighted costs. In this Table, we show the average, minimal, maximal
value and standard deviation on 20 independent runs. Similarly, Table 4
focuses on the second comparison criterion according to each of the four ob-
jectives and presents the results found in the Initial solution (Row 3, Initial)
and those obtained by the simultaneous approach (Row 5, SM).

From these tables, we can observe that the simultaneous approach pro-
vides significant improvement compared with the existing solution on all but
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the last (and least important) objective. Both quality of service and level of
resources strongly benefit from the ILS for TVA. Most notably, the number
of vehicles drops by 28.35%, the number of transfers increases by 112.33%,
while the number of observed headways not fitting into the allowed variation
margin plummets by 75.72%. Only the value of the deadheads objective de-
teriorates due to its status of least important one, reflected in the weights
repartition.

Initial Sequential Simultaneous
ILS (SQ) ILS (SM)

Cost Avg 78763.8 27420.0 16732.5
f1(σ) Min - 25478.1 14869.9

Max - 29794.3 18441.6
StD - 1262.7 991.0

Vehicles Avg 91000.0 78706.0 65150.0
w3 ∗ cost3(σ) Min - 77000.0 62000.0

Max - 81000.0 67000.0
StD - 1213.0 1226.0

Transfers Avg -47373.1 -62648.7 -58716.6
w1 ∗ cost1(σ) Min - -64050.0 -61136.4

Max - -60606.3 -55732.1
StD - 883.6 1428.6

Headway Avg 33526.9 8420.1 7469.7
w2 ∗ cost2(σ) Min - 7551.1 6345.3

Max - 9206.8 8307.9
StD - 434.7 414.0

Deadheads Avg 1610.0 2942.7 2829.4
(internal) Min - 2603.8 2462.5
w4 ∗ cost4(σ) Max - 3138.8 3218.8

StD - 154.4 203.1

Table 3: Comparative results of the existing solution (Initial), sequential approach (SQ)
and the simultaneous approach (SM) according to the first type of comparison criteria: cost
function f1 and individual weighted costs (see Table 2). While both SM and SQ methods
achieve important improvements compared with the initial situation, the simultaneous
method clearly performs much better than the sequential one.

Vehicles Transfers Headway Deadheads
Avg Min Max StD Avg Min Max StD Avg Min Max StD Avg Min Max StD

Initial 91.0 - - - 180.0 - - - 131.0 - - - 1288.0 - - -
SQ 78.7 77 81 1.2 398.4 352 428 21.9 34.9 28 39 2.9 2354.2 2083 2511 123.5
SM 65.2 62 67 1.2 382.2 361 425 17.7 31.8 23 39 3.4 2263.5 1970 2575 162.5

Table 4: Comparative results of the existing solution (Initial), sequential approach (SQ)
and the simultaneous approach (SM) according to the second type of comparison crite-
ria. The simultaneous approach performs much better than the sequential one, notably
reducing the fleet size by 13.5 vehicles on average.
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4.3.2. Simultaneous approach vs. sequential approach

We now turn our attention to the comparison between the results of
SM and SQ by considering the results of Tables 3 and 4. From these ta-
bles, we can make one main observation: the simultaneous approach based
on the RunShift and LineShift neighborhoods outperforms the sequential
approach and permits to drastically reduce the size of the fleet size while
sensibly improving the quality of service. Let us analyze this difference with
more details.

Table 3 shows that on average, the best aggregated cost generated by SM
is f1 = 16732.5, while SQ attains 27420.0. This demonstrates the superiority
of the simultaneous approach towards the sequential method. Using the
second comparison criteria (see Table 4), the results obtained by SM are
14.84% better than those obtained by SQ on the number of vehicles, 2.37%
better on the number of headway irregularities, 7.04% better on the length
of deadheads, and 9% worse on the number of transfer opportunities. This is
remarkable given that both SQ and SM start from the same initial solution.

As predictable, we can see that in SQ, quality of service is strongly fa-
vored compared to the level of resources. Indeed, during the first assignment,
no resource considerations are taken into account, and thus fewer constraints
prevent the algorithm from creating and improving transfer opportunities.
This explains the better results on the transfer objective for SQ than for SM.
Once the transit timetable is fixed however, the fleet size is also implicitly
fixed, denying it its own relative weight in the objective function. The simul-
taneous approach permits to obtain a significantly smaller number of needed
vehicles: 65.2 instead of 78.7 for SQ (i.e. a reduction of 17.15%).

To conclude this section, we observe that the global quality (with respect
to the cost function) of the solution provided is far better with the simulta-
neous than with the sequential approach, due to the fact that the planner
can balance at will the set of objectives, while in the sequential case, the fleet
size is reduced to being a consequence of the decisions made separately and
previously on the quality of service objectives.

5. Conclusion

The problem treated in this paper constitutes a combination of steps often
treated sequentially in the transit planning process: timetabling and vehicle
assignment. These problems, although closely inter-related, have been rarely
considered simultaneously in the literature.
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We described a flexible model that includes important features of a real
transit network by considering a number of constraints and objectives relative
to both quality of service (number and quality of transfers, headway evenness)
and resource utilization (number of vehicles deployed, deadheading trips).
Based on this rich model, we devised an Iterated Local Search algorithm
which relies on two original neighborhoods and is combined with an Auction
algorithm.

We presented simulation results on a real transit network of a large French
area and compared the results with both the solution currently applied in the
network and the solution obtained with a conventional sequential method.
These experiments showed evidence that the simultaneous approach is a valu-
able alternative to the sequential method and permits to obtain improved
timetables and a reduced number of required vehicles.

The developed algorithm has been integrated into a commercial decision-
support system that is currently used by both urban and extra-urban transit
network planners. The commercial product includes additional constraints
such as fixed departure time for some line runs and mandatory transfer op-
portunities. It also permits to create completely new timetables without
initial existing timetable for some or all of the lines. It is used to prepare
simulations and proposals using different sets of weights for the objectives
and different sets of constraints. The product also allows the planner to
make any modification needed to the generated output. Such a flexibility is
crucial in preparation of calls for tender and discussions with transit opera-
tors. Instead of manually designing only one or two scenarios as it is often
still the case, planners can use the decision-support system to quickly and
efficiently generate, evaluate and compare varieties of new timetables and
vehicle schedules.

Despite the great complexity of the underlying problem, the study shows
that a simultaneous approach fits the planners’ needs and permits to obtain
solutions of better quality on the classical criteria. A path for future work
could be the integration to the solution method of additional features that
belong to steps both upstream (e.g. frequencies setting) and downstream
(e.g. depot assignment, crew scheduling) in the transit planning process.
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