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Abstract

We study the problem of proposing Condition-Based Maintenance policies for

machines and equipments. Our approach combines an optimization model

and input parameters estimation from empirical data.

The system deterioration is described by discrete states ordered from the

state “as good as new” to the state “completely failed”. At each periodic

inspection, whose outcome might not be accurate, a decision has to be made

between continuing to operate the system or stopping and performing its

preventive maintenance. This decision-making problem is discussed and we

tackle it by using an optimization model based on the Dynamic Programming

and Optimal Control theory.

We then explore the problem of how to estimate the model input param-

eters, i.e., how to adequate the model inputs to the empirical data available.

The literature has not explored the combination of optimization techniques

and model input parameters, through historical data, for problems with im-

perfect information such as the one considered in this work. We develop our

formulation using the Hidden Markov Model theory.

We illustrate our framework using empirical data provided by a mining

company and the results show the applicability of our models. We conclude

by pointing out some possible directions for future research on this field.
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Resumo

O foco deste trabalho é a definição de poĺıticas ótimas de manutenção pre-

ventiva em função da condição do equipamento. Propomos uma abordagem

que combina um modelo de otimização com um modelo de estimação de

parâmetros a partir dos dados de campo.

A condição do sistema é descrita por estados discretos ordenados do “tão

bom quanto novo” até o estado “completamente falhado”. A cada inspe-

ção, cujo resultado pode ser impreciso, uma decisão é tomada: continuar

a operação ou efetuar a manutenção preventiva. Este problema de tomada

de decisão é analisado e propomos um algoritmo de otimização baseado em

Programação Dinamica-Estocástica e Controle Ótimo.

Em seguida, exploramos o problema de como estimar as entradas do mo-

delo, ou seja, como adequar os parâmetros de entrada em função dos dados

dispońıveis. Até o momento, a literatura não apresentou uma técnica que

lida com otimização e estimação de parâmetros de entrada (usando dados

históricos) para problemas com informação imperfeita como o considerado

neste trabalho. Desenvolvemos nossa abordagem usando os Modelos Ocultos

de Markov.

Ilustramos a aplicação dos modelos desenvolvidos com dados de campo

fornecidos por uma empresa de mineração. Os resultados mostram a apli-

cabilidade da nossa abordagem. Conclúımos o texto apresentando posśıveis

direções para pesquisa futura na área.
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Resumo Estendido

Uma poĺıtica de manutenção baseada na condição e estimação de parâmetros

de entrada para sistemas sujeitos à deterioração e a inspeções periódicas.

Introdução

As atividades ligadas à manutenção de máquinas e equipamentos são essen-

ciais ao bom funcionamento de uma indústria. Dentre essas atividades

destacam-se os programas de manutenção preventiva que visam otimizar o

uso e a operação dos equipamentos e máquinas (que serão referidos neste

texto como “sistemas”) através da realização de intervenções planejadas.

O objetivo destas intervenções é reparar os sistemas antes que os mesmos

falhem1, garantindo, portanto, o funcionamento regular e permanente da

atividade produtiva. Se por um lado a necessidade da manutenção preventiva

é clara, por outro a programação de tais intervenções não é tão evidente. Uma

grande dificuldade reside na elaboração de um planejamento que determine

quando realizar a Manutenção Preventiva (PM).

Manutenção Preventiva pode ser classificada em dois tipos: Manutenção

Programada (SM) – ou manutenção baseada no tempo – e Manutenção

Baseada na Condição (CBM) – ou manutenção preditiva. No primeiro caso

assume-se que o sistema assume apenas dois estados – não-falhado e falhado

– e a manutenção é realizada em intervalos de tempos pré-estabelecidos,

embora não necessariamente iguais. Um exemplo deste tipo de poĺıtica

1Entendemos falha como a incapacidade do sistema executar as operações as quais lhe
foram designadas, em condições bem definidas.

vi



de manutenção é a Manutenção Preventiva Programada. No segundo caso

(CBM), procura-se usar a informação da condição do sistema, através da

análise de sintomas e/ou de uma estimativa do estado de degradação, visando

determinar o momento adequado de realizar a manutenção. Assim, a CBM

considera que o sistema possui múltiplos estados de deterioração, indo do

“tão bom quanto novo” até o falhado. Mais informações podem ser obti-

das em (Bloom, 2006; Nakagawa, 2005; Wang and Pham, 2006; Pham, 2003;

Smith, 1993; Moubray, 1993)

Propomos nesta dissertação um modelo para formular poĺıticas CBM em

sistemas cuja condição pode ser estimada. Esta estimação pode ser incerta

(não perfeita), já que a hipótese de conhecimento da condição real do sis-

tema quase sempre não é fact́ıvel. Uma poĺıtica dita a forma com que as

ações devem ser escolhidas ao longo do tempo em função das informações co-

letadas. Exploramos este problema usando cadeias de Markov e Programação

Dinâmica-Estocástica (SDP).

Além do modelo de otimização, propõe-se uma técnica para estimação dos

parâmetros de entrada (do modelo de CBM). Isto é feito usando a teoria dos

Modelos de Markov Ocultos (HMM). A combinação da técnica de estimação

com o modelo de otimização apresenta certa novidade pois, dentro da bibli-

ografia consultada, a grande maioria dos modelos de CBM não discute como

calcular seus parâmetros a partir dos dados de campo.

Assim, a principal contribuição deste trabalho situa-se na junção de um

modelo de CBM com um modelo de inferência dos parâmetros de entrada,

enfoque que ainda não foi explorado na literatura. Esta contribuição torna-se

clara no exemplo de aplicação fornecido.

Um Modelo de Manutenção Baseada na Con-

dição

Assumindo que a condição do sistema pode ser discretizada em estados, as-

sociamos cada estado a um ńıvel de degradação. Periodicamente, obtém-se

uma estimação da condição, sendo que esta estimação pode ser imperfeita
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(diferente do verdadeiro estado do sistema). Nossas outras hipóteses são:

1. O sistema é colocado em serviço no tempo 0 no estado “tão bom quanto

novo”;

2. Todos reparos são perfeitos, ou seja, após o reparo o sistema volta à

condição “tão bom quanto novo”;

3. O tempo é discreto com relação a um peŕıodo fixo T , ou seja: Tk+1 =

Tk +T , onde k = 1, 2, . . . representa k-ésimo tempo amostrado. Repre-

sentaremos o instante de tempo Tk por k;

4. No instante k, o sistema é inspecionado a fim de medir sua condição.

Isto pode ser feito medindo uma variável do sistema como vibração

ou temperatura. Assume-se que a variável monitorada é diretamente

relationada com o modo de falha que é analisado;

5. No instante k, uma ação uk é tomada: ou uk = C (continuar a operação

do sistema) ou uk = S (parar e realizar a manutenção). Assim, o espaço

de decisão é U = {C, S};

6. Falhas não são imediatamente detectadas. Ou seja, se o sistema falha

em [k − 1, k), isto será detectado apenas no instante k.

Nós consideramos dois horizontes:

• Horizonte de curto prazo: desde o ińıcio da operação do sistema (k = 0)

até a parada do sistema (uk = S).

• Horizonte de longo prazo: definido como os horizontes de curto prazo

acumulados ao longo do tempo.

Como assume-se reparo perfeito, otimizar no curto prazo garante a otimização

em longo prazo. Assim, nós reiniciamos k toda vez que o sistema é parado

(uk = S). Após o reparo, o sistema volta à condição “tão bom quanto novo”,

k é “setado” em 0 e o sistema volta a operar. Nosso foco consiste então em

otimizar o horizonte de curto prazo.
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Considere que o sistema possua vários estágios de deterioração 1, 2, . . . , L,

ordenados do estado “tão bom quanto novo” (1) até o estado completamente

falhado (L). A evolução ao longo do tempo da condição do equipamento

segue um processo estocástico. Se nenhuma ação é tomada e sob a hipótese

de que o estado futuro depende apenas do estado presente (i.e., o passado

encontra-se “embutido” no presente), esta evolução caracteriza um processo

estocástico markoviano.

Seja então {Xk}k≥0 uma cadeia de Markov onde Xk denota o estado do

sistema no instante k e {Xk} modela a deterioração do sistema ao longo

do tempo. Assim, o espaço de estado de Xk é X = {1, 2, . . . , L} o qual

associamos uma distribuição de probabilidade definida como

aij = Pr[Xk+1 =j|Xk= i, uk=C] = Pr[X1 =j|X0 = i, u0 =C],

sendo que
∑L

j=i aij = 1, ∀i, j. Vamos expressar essas probabilidades na

forma matricial. Para tal, seja: A ≡ [aij].

Seja g(·) uma função de custo do sistema definida como o custo a ser

pago no instante k caso o sistema se encontre no estado xk e caso a ação

tomada for uk. Esta função representa o custo operacional do sistema, o

custo esperado em caso de indisponibilidade devido a falhas (lucro cessante),

além dos custos de manutenção preventiva e corretiva. Logo:

• Para xk ∈ 1, . . . , L−1 tem-se:

– uk = C (continuar a operar): g(xk, uk) representa o custo opera-

cional, que pode ser escrito em função do estado do sistema;

– uk = S (parar e efetuar a manutenção preventiva): g denota o

custo esperado da manutenção preventiva (incluindo o lucro ces-

sante), que também pode ser escrito em função do estado do sis-

tema;

• Para xk = L (falhado):
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– uk = S: g(·) descreve o custo esperado de manutenção corretiva

incluindo o custo de indisponibilidade durante o reparo;

– uk = C: g(·) representa o custo de indisponibilidade no peŕıodo

[k, k+1), geralmente uma decisão não ótima pois implica em não

mais operar o sistema.

Utilizando os conceitos acima enunciamos a Definição 1, que descreve as

caracteŕısticas de um problema dito bem-definido. Assumiremos que o prob-

lema satisfaz esta definição. A Fig. 3.4 mostra a cadeia de Markov de um

problema bem-definido. Pierskalla and Voelker (1976) provaram que sempre

existe uma regra de reparo ótima. Entretanto, para calculá-la é necessário

conhecer o estado do sistema Xk a qualquer instante. Como assumimos que

temos apenas uma leitura da condição do sistema, precisamos utilizar esta

informação para estimar Xk.

Assim, definimos uma medida de condição Zk que tem distribuição de

probabilidade condicionada em Xk (veja a Fig. 3.5). Denotamos o espaço

de estados de Zk por Z = {1, 2, . . . , L}, onde a condição observada 1 repre-

senta “o sistema parece estar no estado 1” e etc.. Seja bx(z) a probabilidade

Pr[Zk = z|Xk = x]. Por conveniência, expressaremos essas probabilidades

na forma matricial: B ≡ [bx(z)]. Nota-se que Zk representa a ligação entre o

estado do sistema e a(s) variável(is) que monitora(m) o sistema. Conseqüen-

temente, uma etapa de classificação é necessária convertendo cada valor de

medida a um valor de Z. No Caṕıtulo 5 apresentamos exemplos de classi-

ficação.

Definimos um vetor de informação Ik que armazena a condição estimada

(Zk) desde o ińıcio da operação até o instante k. Logo, Ik tem tamanho k e

pode ser escrito como

I1 = z1 (1)

Ik = (Ik−1, zk), k = 2, 3, . . . . (2)
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Usando este vetor nós podemos criar um estimador para Xk em qualquer

instante k. Este estimador é escrito como

X̂k = arg max
x∈X

Pr[Xk = x|Ik]. (3)

Uma maneira de calcular a probabilidade apresenta acima é indicada na Eq.

4.1. Vamos chamar os parâmetros do modelo (A,B) por Ψ. Logo, nesta

dissertação, qualquer sistema pode ser integralmente representado pelo seu

Ψ e sua função de custo g(·).
A poĺıtica CBM ótima µ é um mapeamento entre a informação dispońıvel

e a ação a ser tomada, ou seja,

uk = µ(Ik) =

{
C, if X̂k < r,

S, if X̂k ≥ r,

sendo r ∈ X o estado limite de operação (ou a regra de reparo). Determinar

este limite consiste em resolver o horizonte de curto-prazo. Para tal, pre-

cisamos de um algoritmo que minimize o custo acumulado, que é resultado da

soma dos custos em cada estágio k e influenciado pelas decisões tomadas. Re-

solvemos este problema usando Programação Dinâmica Estocástica (SDP).

Para encontrar a regra de reparo ótima r, vamos primeiro definir J como

o custo total de operação do sistema até a sua parada, ou seja, a soma de

g(·) até uk = S. Sob uma dada poĺıtica µ, J é escrito como

Jµ = lim
N→∞

E

[
N∑
k=1

αkg(Xk, uk)

]
, (4)

sendo α ∈ [0, 1] o fator de desconto usado para descontar os custos futuros.

O caso mais complexo é quando temos α = 1 pois a soma da Eq. 4 pode

não convergir. Entretanto, na Proposição 2 mostramos que isso não acontece

se o problema for bem definido e, logo, sempre teremos uma solução. Para
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encontrar a poĺıtica ótima, decompomos a Eq. 4 na seguinte equação de SDP

Jk(Ik) = min
uk

{
E
[
g(Xk, uk)|Ik, uk

]
+ (5)

αE
[
Jk+1(Ik, Zk+1)|Ik, uk

]}
, k = 1, 2, . . . .

Usamos na equação acima um procedimento chamado de redução de um

problema de informação imperfeita em um problema de informação perfeita.

Isso é posśıvel usando o estimador definido na Eq. 3.

Resolvemos a Eq. 5 utilizando um algoritmo de iteração de valor (VI).

Bertsekas (2005); Sutton and Barto (1998); Puterman (1994) descrevem com

detalhes este procedimento. O Algoritmo 1 apresenta os passos do VI. Como

sáıda temos a regra de reparo r que, combinado com o estimador X̂k, repre-

senta a poĺıtica CBM ótima.

Como descrito anteriormente, como assumimos reparo perfeito (hipótese

2), resolvendo o horizonte de curto prazo de forma ótima garante que otimi-

zamos também o horizonte de longo prazo, já que o último é resultado dos

horizontes de custo prazo acumulados ao longo do tempo.

A segunda parte desta dissertação se dedica a estimar os parâmetros do

modelo de otimização, ou seja, Ψ.

Inferência dos Parâmetros do Modelo

Busca-se agora adequar os parâmetros de entrada do modelo CBM para sua

aplicação em um dado sistema. Assim, estamos interessados em encontrar

uma técnica que utiliza os dados dispońıveis e nos dê a melhor estimação

posśıvel.

A motivação para o uso dos Modelos de Markov Ocultos (HMM) vem da

habilidade deles de diferenciar mudanças na leitura da condição do sistema

que podem ser causadas por alterações no sistema (exemplo: degradação)

ou flutuações na medição (exemplo: precisão da medição). Além disso, exis-

tem métodos computacionais eficientes para o cálculo das verossimilhanças
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devido, em particular, ao maduro uso dos HMMs em processamento de

sinais. Mais informações a respeito podem ser encontradas em (Rabiner,

1989; Ephraim and Merhav, 2002; Dugad and Desai, 1996; Baum et al.,

1970).

Considere O o conjunto de toda informação dispońıvel sobre o sistema.

O pode ser visto como um conjunto de M seqüências de observação, ou seja,

O = {O1, O2, . . . , OM}, onde Om representa uma seqüência de leitura da

condição do sistema e pode ser escrita como Om = {z1, z2, . . . , zN}, onde N é

o tamanho da seqüência e zn é a condição do sistema observada no instante

n.

A estimação dos parâmetros de entrada Ψ = (A,B) é um problema no

qual, dado a informação dispońıvel O, deseja-se definir Ψ como uma função

destes dados. Ou seja, desejamos encontrar Ψ que maximiza a Pr[O|Ψ].

Este problema é conhecido na literatura de HMM como problema 3. Para re-

solvê-lo, assume-se que temos uma estimativa inicial (“palpite”) sobre Ψ, que

chamaremos de Ψ0. Este problema pode ser resolvido numericamente apli-

cando um conjunto de fórmulas conhecidas como fórmulas de Baum-Welch

em homenagem a seus autores.

Primeiro, definimos as seguintes variáveis:

• forward: αn(x) = Pr[Z1 = z1, Z2 = z2, . . . , Zn = zn, Xn = x|Ψ];

• backward: βn(x) = Pr[Zn+1 = zn+1, Zn+2 = zn+2, . . . , ZN = zN , XN =

x|Ψ].

Seja γn(x) a probabilidade do sistema estar no estado x no instante n

dado a seqüência de observações On, ou seja, γn(x) = Pr[Xn = x|On,Ψ].

Usando a regra de Bayes tem-se

γk(x) = Pr[Xk = x|On,Ψ] =
Pr[Xk = x,On|Ψ]

Pr[On|Ψ]
=
αk(x)βk(x)

Pr[On|Ψ]
.

Seja agora ξk(i, j) a probabilidade de o sistema estar no estado i no in-

stante k e realizar a transição para j em k+1, ou seja, ξk(i, j) = Pr[Xk =

i,Xk+1 = j|On,Ψ], o que implica em (usando a regra de Bayes):
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ξk(i, j) =
Pr[Xk = i,Xk+1 = j, On|Ψ]

Pr[On|Ψ]
=
αk(i)aijbj(Zk+1)βk+1(j)

Pr[On|Ψ]
.

Finalmente, sejam āij e b̄x(z) os estimadores de aij e bx(z) respectiva-

mente. Podemos escrever estes estimadores como:

• āij =
K−1∑
k=1

ξk(i, j)/
K−1∑
k=1

γk(i)

• b̄x(z) =
K∑

k=1
zk=z

γk(x)/
K∑
k=1

γk(x)

Através da aplicação das fórmulas de Baum-Welch, Ψ é ajustado de forma

a aumentar a Pr[O|Ψ] até alcançar um valor máximo. Isto é feito da seguinte

maneira:

1. Usando o palpite inicial Ψ0, aplicamos as fórmulas de Baum-Welch

para a primeira seqüência de dados O1. Como resultado, obtém-se as

estimações āij e b̄x(z), que chamaremos de Ψ1.

2. Voltamos ao passo 1 usando agora como entrada a estimação dos parâmetros

atual (Ψ1) e a próxima seqüência de dados (O2).

O Algoritmo 2 apresenta a aplicação sucessiva das fórmulas de Baum-

Welch como descrito acima. Ao final, Pr[O|Ψ] terá seu valor máximo. Este

máximo representa o máximo da função de verossimilhança e pode ser local

ou global, sendo que no último caso temos a melhor estimação posśıvel com

os dados dispońıveis.

Um Exemplo de Aplicação

Para ilustrar a metodologia apresentada neste trabalho, aplicamos as técnicas

discutidas usando dados de campo. O equipamento estudado é movido a

energia elétrica e o principal modo de falha consiste em uma degradação
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interna que afeta a produtividade do processo. Esta falha pode ocorrer se a

corrente elétrica consumida ultrapassa um valor fixado pelo fabricante. Em

caso de ocorrência da falha em estudo, o equipamento pode até funcionar em

modo degradado mas a degradação terá sido grande e um reparo complexo

será necessário para rejuvenescer o equipamento.

Vamos definir o estado falhado (L) como o estado onde será necessário

executar o reparo complexo para colocar o sistema no estado 1 (“tão bom

quanto novo”). A falha analisada pode ser vista como oculta pois ela não

implica necessariamente em parada do sistema. Assume-se que outros mo-

dos de falha não são relevantes para este estudo. A partir da análise do

equipamento e tendo em vista limitações técnicas, foi definido que a corrente

elétrica é o parâmetro monitorado, que será medido todo dia (peŕıodo de

amostragem T ).

Os dados de campos foram obtidos a partir do histórico de funcionamento

de 3 equipamentos distintos mas em condições de operação similares. Os

dados são compostos por um total de 11 séries de leitura de corrente ao

longo do tempo, todas se iniciando com o sistema no estado “tão bom quanto

novo”. Duas destas séries terminam com o sistema sofrendo uma manutenção

preventiva (como discutido na Fig. 3.1a) e as demais séries terminam com a

falha do equipamento.

A função de custo g(xk, uk) é apresentada na Tab. 5.2. Lembramos que

ela representa o custo a ser pago por estar no estado xk e tomar a decisão

uk, em cada época de decisão k. A Fig. 5.5 apresenta os dados de campo

e a Tab. 5.1 mostra o passo de classificação, onde transformamos o valor

do parâmetro de controle (θk) em medida de condição (Zk). O resultado é

apresentado na Fig. 5.6.

A discussão completa do exemplo de aplicação é apresentada no Cap. 5.

Nele discutimos passo a passo as etapas das técnicas discutidas do trabalho

e ilustramos seus pontos chaves.
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Conclusão e Pesquisa Futura

Neste trabalho discutimos a formulação de poĺıticas de manutenção baseada

na condição (CBM) para sistemas sujeitos à deterioração e a inspeções peri-

ódicas. O sistema é representado por um processo de Markov com estados

discretos e levou-se em consideração que a estimação da condição do sis-

tema pode não ser perfeita. Apresentamos também uma discussão sobre a

estimação dos parâmetros tanto de um ponto de vista teórico quanto prático.

O resultado principal da dissertação é uma técnica que combina um mo-

delo de otimização e um modelo de inferência a partir dos dados históricos

do sistema. Este fato foi ilustrado com a aplicação da metodologia proposta

em um problema industrial, no qual discutimos passo a passo as etapas apre-

sentadas. Os resultados sugerem uma aplicação industrial viável que reflete

a realidade encontrada pelos gestores responsáveis pela tomada de decisão

em manutenção.

Um ponto que acreditamos relevante do nosso trabalho é que conseguimos

realizar a estimação dos parâmetros do modelo de forma consistente. Alguns

artigos na literatura já tinham apontado uma potencial aplicação dos Mo-

delos de Markov Ocultos (HMM) para modelar a evolução da condição dos

sistemas em manutenção. Nós expandimos esta idéia propondo um modelo

de otimização via Programação Dinâmica Estocástica (SDP) que combina

uma etapa de estimação de parâmetros usando os HMMs. Acreditamos que

esta combinação é interessante e pode motivar mais pesquisas na área.

Existem extensões e refinamentos que provavelmente merecem ser explo-

rados. Como trabalhos futuros, acreditamos que nossa metodologia pode

ser melhorada considerando algumas sofisticações como uso de reparos inter-

mediários além do reparo perfeito, renovação estocástica e uso de inspeção

aleatória ou seqüencial. Naturalmente, estes refinamentos podem aumentar

a complexidade e assim podem requerer uma forma diferente de processar os

dados históricos a fim de estimar os parâmetros do modelo.

xvi



Contents

Acknowledgments ii

Agradecimentos ii

Abstract iv

Resumo v

Resumo Estendido vi

Contents xvii

List of Figures xix

List of Tables xxi

List of Abbreviations xxii

List of Symbols xxiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Problem Addressed . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions of this Dissertation . . . . . . . . . . . . . . . . 3

1.4 An Overview of the Dissertation . . . . . . . . . . . . . . . . . 3

xvii



Contents

2 Basic Concepts 4

2.1 Reliability and Maintenance . . . . . . . . . . . . . . . . . . . 4

2.2 Optimal Maintenance Models . . . . . . . . . . . . . . . . . . 5

2.3 Related Research on Preventive Maintenance Under Risk for

Single-unit Systems . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . 12

3 A Model for Condition-Based Maintenance 20

3.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . 20

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 24

3.4 Model Analytical Properties . . . . . . . . . . . . . . . . . . . 32

4 Inference of Model Parameters 35

4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . 35

4.2 Model Parameters Estimation . . . . . . . . . . . . . . . . . . 36

4.3 Estimation Properties . . . . . . . . . . . . . . . . . . . . . . 39

5 An Application Example 44

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Initial Parameters Estimation . . . . . . . . . . . . . . . . . . 46

5.3 Testing-Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion, Suggestions for Future Research 56

Bibliography 61

xviii



List of Figures

3.1 Condition measurement cycles: up to a preventive mainte-

nance (a) and up to a failure (b). . . . . . . . . . . . . . . . . 21

3.2 The CBM approach proposed in this paper. . . . . . . . . . . 22

3.3 Long-run horizon optimization. . . . . . . . . . . . . . . . . . 23

3.4 The Markov chain that denotes the system condition evolu-

tion (Xk). The probabilities aij:j>i+1,i<L have been omitted for

succinctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 System state evolution (Xk) and its estimation (Zk). . . . . . 27

3.6 Stochastic Shortest-Path associated with the problem. . . . . . 30

4.1 Baum-Welch optimal convergence for some random data (10

runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Baum-Welch suboptimal convergence for some random data

(10 runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Baum-Welch suboptimal convergence for some random data

(1 run). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Baum-Welch optimal convergence for some random data (10

runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 The initial guess (Ψ0) of the transition and observation matrices. 46

5.2 The reliability function for the system (Ψ0) if no control is

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 The failure rate function for the system (Ψ0) if no control is

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xix



List of Figures

5.4 The distribution of the time to failure (τ(1, L)) for the system

(Ψ0) if no control is applied. . . . . . . . . . . . . . . . . . . . 48

5.5 The data series (total: 11) used in our application example. . . 48

5.6 The same data of Fig. 5.5 after discretization. . . . . . . . . . 49

5.7 The reliability (top) and failure rate (middle) functions, and

the distribution of time to failure (bottom) for ΨA if no control

is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Scenario 1: condition observed (top) and state estimation

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Scenario 3: condition observed (top) and state estimation

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.10 The same data of Figure 5.5 after new discretization (Table

5.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.11 Scenario 4: condition observed and state estimation. . . . . . . 55

xx



List of Tables

5.1 Classification of the parameter measurement. . . . . . . . . . . 45

5.2 The cost function gA. . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Some n-step transition probability matrices if no control is

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 ΨA: the initial estimation of the matrices A (above) and B

(below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Threshold state (r) computation and optimal action. . . . . . 50

5.6 ΨB: the matrices A (above) and B (below) updated (ΨA +

Fig. 5.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Updating Ψ after occurrence of shock (A above and B below). 53

5.8 Classification of the parameter measurement. . . . . . . . . . . 54

xxi



List of Abbreviations

CBM: Condition Based Maintenance

CM: Corrective Maintenance

HHM: Hidden Markov Model

LP: Linear Programming

MDP: Markov Decision Process

PI: Policy Iteration

PM: Preventive Maintenance

RCM: Reliability Centered Maintenance

RTF: Run To Failure

SDP: Stochastic Dynamic Programming

SM: Scheduled Maintenance

TBM: Time Based Maintenance

VI: Value Iteration

xxii



List of Symbols

k The kth time instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

L Number of deterioration states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Xk System state at epoch k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Zk Condition Measured at epoch k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

uk Action taken at epoch k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Ik Information vector at epoch k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

X̂k Estimated system state at epoch k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A Transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B Condition measurement matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Ψ System model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

g Immediate (or step) cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

µ Optimal policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

r Optimal threshold state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

J Short-run horizon expected cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

O Recorded data compounded by observation sequences . . . . . . . . . . . . . 36

Om mth observation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Ψ0 Initial guess of the Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ΨN Estimation of Ψ after running N observation sequences . . . . . . . . . . . 38

xxiii



Chapter 1

Introduction

1.1 Background

Maintenance plays a key role in industry competitiveness. The activities

of maintaining military equipments, transportation systems, manufacturing

systems, electric power generation plants, etc., often incur high costs and

demand high service quality. Consequently, the study of Preventive Main-

tenance (PM) has received considerable attention in the literature in the

past decades. PM means to maintain an equipment or a machine (here-

after denoted as “system”) on a preventive maintenance basis rather than a

“let-it-fail-then-fix-it” basis, commonly known as run-to-failure (RTF).

Preventive Maintenance can be classified into two categories: Scheduled

Maintenance (SM) (also known as time-based maintenance) and Condition-

Based Maintenance (CBM) (or predictive maintenance). The first category

considers the system as having two states: non-failed and failed, while the

second considers a multi-state deteriorating system. The aim of a SM pol-

icy is to derive a statistically fixed “optimal” interval, at which one should

intervene in the system (Wang et al., 2008).

Barlow and Hunter (1960) published one of the first papers on SM and

since then a large theory has been developed in this field. For example, we

can cite the Reliability Centered Maintenance, which is an optimized way to

formulate and apply SM policies (Bloom, 2006). However, a SM policy may

not take into account variations in environmental conditions and applications
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Chapter 1: Introduction

of individual systems, which might not follow population-based distributions.

Moreover, the SM policy does not include the system condition’s status when

the latter is available.

The CBM approach, which is growing in popularity since the 1990s, high-

lights the importance of maintenance policies that rely on the conditions (past

and present) of systems. In fact, the term CBM denotes monitoring for the

purpose of determining the current “health status” of a system’s internal

components and predicting its remaining operating life. In other words, on a

CBM policy, we try to assess the system’s condition and use this information

to propose a more accurate maintenance policy.

1.2 The Problem Addressed

This dissertation proposes a CBM policy and input parameters estimation for

deteriorating systems under periodic inspection. Thus, we assume that the

system deterioration is described by discrete states ordered from the state “as

good as new” to the state “completely failed”. At each periodic inspection,

whose outcome might not be accurate, a decision has to be made between

continuing to operate the system or stopping and performing its preventive

maintenance.

This problem is modeled using the Markov chains theory that, in combi-

nation with Stochastic-Dynamic Programming, leads to an optimal solution.

An optimal solution is a rule determining when the system should be main-

tained, based on its inspection result, in order to minimize its operation

cost. We consider that the preventive repair is perfect, that is, it brings back

the system to the state “as good as new”. In order to apply our optimiza-

tion model, we have formulated an estimation technique using the Hidden

Markov Models. This estimation allows us to infer about the optimization

model parameters using the historical data of the system.

In this context, this dissertation develops a framework combining an op-

timization model and input parameters estimation from empirical data.

2
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1.3 Contributions of this Dissertation

The aim of this dissertation is threefold: i) to propose a model to formu-

late optimal CBM policies; ii) to develop a procedure for model parameters

estimation; and iii) to illustrate our approach with an empirical example.

Our main contribution lies in the fact that we combine an optimization

model and a technique for estimating the model input parameters based on

system historical data. We believe our approach fills a commonly noticed

gap in the literature namely, the fact that most of CBM models do not

discuss the model input parameters. Hence, the literature has not explored

the combination of optimization techniques and model input parameters,

through historical data, for problems with imperfect information such as the

one considered in this dissertation.

We argue that our approach is more realistic as far as the estimation

of model inputs parameters is concerned. This dissertation also provides a

practical discussion using empirical data.

1.4 An Overview of the Dissertation

This dissertation is organized into five chapters. Chapter 2 includes a brief

survey of the vast literature in the field of optimal maintenance. This chapter

highlights the diversity of approaches proposed to tackle maintenance prob-

lems. We also provide in this chapter a brief discussion of the mathematical

concepts used in this dissertation.

In Chapter 3 we formally state the problem we are concerned with and we

propose an algorithm for CBM policies construction. In Chapter 4 we discuss

the estimation of the input parameters of the model developed in the previous

chapter by using Hidden Markov Models and we present an algorithm to

estimate these input data. In Chapter 5 we provide an application example

of this study using data provided by a zinc mining company. Finally, in

Chapter 6, we conclude this dissertation by discussing the “pros” and “cons”

of our methodology and pointing out some suggestions for future research.
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Chapter 2

Basic Concepts

This chapter provides a briefly description of the maintenance optimization.

Different maintenance policies are presented. We also introduce some mathe-

matical concepts used in this dissertation.

2.1 Reliability and Maintenance

Reliability engineering studies the application of mathematical tools, spe-

cially statistics and probability, for product and process improvement. In

this context, researchers and industries are interested in investigating the

systems deterioration and how to tackle this phenomenon in order to opti-

mize some quantity.

Any system can be classified as repairable and nonrepairable: a nonre-

pairable system being a system that fails only once and is then discarded.

This work addresses to repairable systems. Since the system can be repaired,

it may be wise to plan these repairs, i.e, to plan the maintenance actions.

We are interested in certain quantities for analyzing reliability and main-

tenance models. In general, for a given system, we aim to consider three:

reliability, availability and maintainability.

Reliability: is defined as the probability that a system will satisfactorily

perform its intended function under given circumstances for a speci-

fied period of time. Usually, the reliability of a repairable system is

measured by its failure intensity function, which is defined as follows
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lim
∆t→0

Pr[Number of failures in (t, t+ ∆t] ≥ 1]

∆t
.

With this function we can obtain the mean time between failures (MTBF)

representing the expected time that the next failure will be observed.

Availability: it means the proportion of time a given system is in a func-

tioning condition. The straightforward representation for availability

is as a ratio of the expected uptime value to the expected values of the

uptime plus downtime, i.e.,

A =
E[Uptime]

E[Uptime] + E[Downtime]
.

Maintainability: is defined as the probability of performing a successful

perfect repair within a given time. The mean time to repair (MTTR)

is a common measure of the maintainability of a system and it is equals

to E[Downtime] under some assumptions.

For additional information on this topic, the reader is referred to (Bloom,

2006; Nakagawa, 2005; Wang and Pham, 2006; Pham, 2003).

2.2 Optimal Maintenance Models

The rise of optimal maintenance studies is closely correlated to the beginning

of Operations Research in general which was developed during the Second

World War. For example, during this time, a researcher called Weibull fo-

cused on approximating probability distributions to model the failure me-

chanics of materials and introduced the well-known Weibull distribution for

use in modeling component lifetimes.

The literature about optimal maintenance models (continuous or discrete

time) can be classified as follows (Sherif and Smith, 1981):

1. Deterministic models

2. Stochastic models

5
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1 Under risk

2 Under uncertainty

a Simple (or single-unit) system

b Complex (or multi-unit) system

i Preventive Maintenance (periodic1, sequential2)

ii Preparedness Maintenance (periodic, sequential, opportunistic3)

Several Applied Mathematics and Computational techniques, such as Op-

erations Research, Optimization and Artificial Intelligence, have been em-

ployed for analyzing maintenance problems and obtaining optimal mainte-

nance policies. We can cite the Linear Programming, Nonlinear Program-

ming, Mixed-Integer Programming, Dynamic Programming, Search tech-

niques and Heuristic approaches.

We define now the concepts of corrective and preventive maintenance.

After that we introduce some optimal maintenance models.

2.2.1 Corrective and Preventive Maintenance

Maintenance can be classified into two main categories: corrective and pre-

ventive (Wang and Pham, 2006). Corrective Maintenance (CM) is the main-

tenance that occurs when the system fails. CM means all actions performed

as a result of failure, to restore an item to a specified condition. Some texts

refer to CM only as repair. Obviously, CM is performed at unpredictable

time points since the system’s failure time is not known.

Preventive maintenance (PM) is the maintenance that occurs when the

system is operating. PM means all actions performed in an attempt to retain

an item in specified condition by providing systematic inspection, detection,

and prevention of incipient failures.

1In a periodic PM policy, the maintenance is performed at fixed intervals.
2A sequential PM policy means to maintain the system at different intervals.
3Opportunistic Maintenance explores the occurrence of an unscheduled failure or repair

to maintain the system.

6
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Both CM and PM can be classified according to the degree to which

the system’s operating condition is restored by maintenance action in the

following way (Wang and Pham, 2006):

1. Perfect repair or perfect maintenance: maintenance actions which re-

store a system operating condition to “as good as new”. That is, upon

a perfect maintenance, a system has the same lifetime distribution and

failure intensity function as a new one.

2. Minimal repair or minimal maintenance: maintenance actions which

restore a system to the same level of the failure intensity function as

it had when it failed. The system operating state after the minimal

repair is often called “as bad as old” in the literature.

3. Imperfect repair or imperfect maintenance: maintenance actions which

make a system not “as good as new” but younger. Usually, it is as-

sumed that imperfect maintenance restores the system operating state

to somewhere between “as good as new” and “as bad as old”.

We briefly present now the characteristics of each optimal maintenance

model family.

2.2.2 Deterministic Models

These models are developed under some assumptions, we cite the followings:

• The outcome of every PM is not random and it restores the system to

its original state.

• The system’s purchase price and the salvage value are function of the

system age.

• Degradation (aging, wear and tear) increases the system operation cost.

• All failures are observed instantaneously.

7



Chapter 2: Basic Concepts

The optimal policy for deterministic models is a periodic policy (Sherif

and Smith, 1981) and hence the times between PMs are equal. Charng (1981)

presents a short discussion on this kind of model, which is is also known as

age-dependent deterministic continuous deterioration.

2.2.3 Stochastic Models Under Risk

Risk is a time-dependent property that is measured by probability. For a

system subject to failure, it is impossible to predict the exact time of failure.

However, it is possible to model the stochastically behavior of the system

(e.g. the distribution of the time to failure).

Some of these models will be presented in Section 2.3.

2.2.4 Stochastic Models Under Uncertainty

We deal here with failing systems under uncertainty, i.e., neither the exact

time to failure nor the distribution of that time is known. These problems

are harder since less information is available. Literature reports methods

such as (Sherif and Smith, 1981):

• Minimax techniques: applied when the system is new or failure data

are not known;

• Chebychev-type bounds: applied when partial information about the

system (such as failure rate) is known;

• Bayesian techniques: applied when subjective beliefs about the system

failure and non-quantitative information are available.

Since this dissertation does not deal with this type of problem, this topic

will not be covered.

2.2.5 Single-unit and Multi-unit Systems

A simple (single-unit) system is a system which can not be separated into

independent parts and has to be considered as a whole. However, in practice,

8
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a system may consist of several components, i.e., the system is compounded

by a number of subsystems.

In terms of reliability and maintenance, a complex (multi-unit) system

can be assumed to be a single-unit system only if there exists neither eco-

nomic dependence, failure dependence nor structural dependence. If there is

dependence, then this has to be considered when modeling the system. For

example, the failure of one subsystem results in the possible opportunity to

undertake maintenance on other subsystems (opportunistic maintenance).

This dissertation considers only single-unit systems or multi-unit systems

which can be analyzed as a single-unit one.

2.2.6 Preventive Maintenance Under Risk

In this case we are interested in modeling the system deterioration in order

to diagnose the best time to carry out a preventive maintenance. Since this

is the focus of this work, we will dedicate the Section 2.3 to cover this theme.

2.2.7 Preparedness Maintenance Under Risk

In preparedness maintenance, a system is placed in storage and it replaces

the original system only if a specific but unpredictable event occurs. Some

maintenance actions may be taken while the system is in storage and the

objective is to choose the sequence of maintenance actions resulting in the

highest level of system “preparedness for field use”.

For instance, when the system is in storage, it can be submitted to a

long-term cold standby and an objective would be to choose the maintenance

actions providing the best level of preparedness (or readiness to use).

2.3 Related Research on Preventive Mainte-

nance Under Risk for Single-unit Systems

Firstly we wish to classify the models into two categories: the first considers

the system as having two states: non-failed and failed; the second considers

9
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a multi-state deteriorating system.

For each category, we discuss the five families of maintenance strategies

according to Lam and Yeh (1994):

1. Failure maintenance (Run-To-Failure): no inspection is performed. The

system is maintained or replaced only when it is in the failed-state.

2. Age maintenance: the system is subject to maintenance or replacement

at age t (regardless the system state) or when it is in the failed-state,

whichever occurs first. The block replacement policy is an example.

3. Sequential inspection: the system is inspected sequentially: the infor-

mation gathered during inspection is used to determine if the system

is maintained or the system is scheduled for a new inspection to be

performed some time later.

4. Periodic inspection: a special case of sequential, when the period of

inspection is constant.

5. Continuous inspection: the system is monitored continuously and when-

ever some threshold is reached the system is maintained.

2.3.1 Main Strategies for Two-states Systems

This family of models usually utilizes the following assumptions:

• The time to failure is a random variable with known distribution.

• The system is either operating or failed and failure is an absorbing

state: the system only can be regenerated if a maintenance action is

performed.

• The intervals between successive regeneration points are independent

random variables, i.e., the time between failures are independent.

• The cost of an maintenance action is higher if it is undertaken after

failure than before.

10
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Sherif and Smith (1981); Wang and Pham (2006) indicate that failure

maintenance is the optimal policy recommended for systems with a constant

failure intensity function (exponential). On the other hand, for a system with

increasing failure intensity function (weibull or gamma for some parameters)

should be maintained or not in function of its age.

The act of using reliability models to plane the maintenance actions is

the essence of the Reliability-Centered Maintenance (RCM) (Smith, 1993;

Moubray, 1993; Bloom, 2006).

2.3.2 Main Strategies for Multi-states Systems

For multi-state degrading systems, the system is considered to be subject to

failure processes which increase the system degradation and random shocks.

In this case, we are not only interested in obtaining the system reliability

model but also to obtain expressions about the system states by calculating

probabilities (Wang and Pham, 2006).

The most common approach is using Markov chains (continuous and dis-

crete time) to describe the system. In such approach, the system condition is

classified by a finite number of discrete states, such as in Refs. (Kawai et al.,

2002; Bloch-Mercier, 2002; Chen et al., 2003; Chen and Trivedi, 2005; Gong

and Tang, 1997; Gürler and Kaya, 2002; Chiang and Yuan, 2001; Ohnishi

et al., 1994). The purpose of these models is to determine an action to be

carried out at each state of the system (repaired/replaced) in order to obtain

a minimum expected maintenance cost.

In terms of the condition measurement, the literature considers sequential

checking such as studied in (Bloch-Mercier, 2002; Gürler and Kaya, 2002),

or periodic inspection, such as in (Chen et al., 2003; Gong and Tang, 1997;

Chen and Trivedi, 2005; Ohnishi et al., 1994); perfect inspection, such as

in (Bloch-Mercier, 2002; Chen and Trivedi, 2005; Chen et al., 2003; Chiang

and Yuan, 2001) or imperfect inspection, such as in (Gong and Tang, 1997;

Ohnishi et al., 1994).

The act of considering the system to be multi-state is related to Condition-

Based Maintenance (CBM) since these models generally deals with multi-

11
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state systems (Valdez-Flores and Feldman, 1989).

2.4 Mathematical Tools

In this section we briefly introduce some mathematical concepts used in this

dissertation. We do not aim to cover these topics comprehensively but just

provide a short introduction to them.

2.4.1 Reliability and Statistics

We introduce in this section some statistical terminology for common used

in reliability engineering. For the purposes of this section, let T be a non-

negative continuous random variable which denotes the first failure time of

the system. T has a given probability distribution f(t); the cumulative distri-

bution F (t) is called the failure distribution and it describes the probability

of failure prior the time t, i.e.,

F (t) = Pr[T ≤ t]. (2.1)

The reliability function is defined as R(t) = 1−F (t), which is the proba-

bility that the system will continue working past time t. The failure rate (or

hazard function) is defined as follows

λ(t) =
R(t)−R(t+ ∆t)

∆t ·R(t)
=

Pr[t < T ≤ t+ ∆t|T > t]

∆t
, (2.2)

when ∆→ 0. It can be shown that λ(t) = f(t)
R(t)

.

This concepts are applied for systems called non-repairable as well as for

repairable system when the repair is perfect or the system is simply replaced

by a new one. We briefly discuss the two most common models for the failure

time. For further information on this topic please check (Rigdon and Basu,

2000; Nakagawa, 2005; Wang and Pham, 2006).

12
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Exponential model

In this model, T is assumed to follow an exponential distribution with a

parameter θ. Hence, we have

f(t) =
1

θ
exp(−t/θ) and F (t) = 1− exp(−t/θ).

This model has the main features:

1. The memoryless property, i.e., Pr[T ≤ t + a|T ≤ t] = Pr[T ≤ a] =

exp(−a/θ);

2. A constant failure rate, i.e, λ(t) =
f(t)

R(t)
= 1/θ;

3. The expected time to failure (MTTF) is E[T ] = θ.

Weibull model

Here we assume that T a weibull distribution with the parameters η and α.

Hence,

f(t) =
η

α

(
t

α

)η−1

exp

(
−
(
t

α

)η)
and F (t) = 1− exp

(
−
(
t

α

)η)
.

The main properties of this model are:

1. The failure rate is λ(t) =
η

α

(
t

α

)η−1

;

2. The MTTF is E[T ] = αΓ
(

1 + 1
η

)
, where Γ is the gamma function

defined as follows for a a > 0:

Γ(a) =

∫ ∞
0

xa−1e−xdx.

13
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2.4.2 Markov Chains

Consider a system that can be in any one of a finite or countably infinite

number of states. Let X denote this set of states. Without loss of generality,

assume that X is a subset of the natural numbers ({1, 2, 3, . . . }). X is called

the state space of the system. Let the system be observed at the discrete

moments of time k = 0, 1, 2, . . ., and let Xk denote the state of the system

at epoch k.

If the system is non-deterministic we can consider {Xk} (k ≥ 0) as ran-

dom variables defined on a common probability space. The simplest way to

manipulate {Xk} is to suppose that Xk are independent random variables,

i.e., future states of the system are independent of past and present states.

However, in most system in the practice, this assumption does not hold.

There are systems that have the property that given the present state,

the past states have no influence on the future. This property is called the

Markov property and one of the most used stochastic processes having this

property is called Markov chain. Formally, the Markov property is defined

by the requirement that

Pr[Xk+1 = xk+1|X0 = x0, . . . , Xk = xk] = Pr[Xk+1 = xk+1|Xk = xk], (2.3)

for every k ≥ 1 and the states x0, . . . , xk+1 each in X. The conditional

probabilities Pr[Xk+1 = xk+1|Xk = xk] are called the transition probabilities

of the chain.

We call the system’s initial state as ω which is defined by

ω(x) = Pr[X0 = x], x ∈ X. (2.4)

ω is hence the initial distribution of the chain. If the conditional probabilities

depicted in equation 2.3 are constant in time, i.e.,

Pr[Xk+1 = j|Xk = i] = Pr[X1 = j|X0 = i], i, j ∈ X, k ≥ 0. (2.5)

14
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the Markov chain is called time-homogeneous. Let us call these probabilities

as

aij = Pr[Xk+1 = j|Xk = i], i, j ∈ X, k ≥ 0. (2.6)

We define the matrix A ≡ [aij] which is called the transition probabilities

matrix of the (time-homogeneous) chain.

The Markov chains are well-known in the literature mainly because their

study is worthwhile from two viewpoints. First, they have a rich theory and,

secondly, there are a large number of systems that can be modeled by Markov

chains. Further information on this topic can be found in (Hoel et al., 1972;

Grimmett and Stirzaker, 2001; Cassandras and Lafortune, 2009).

2.4.3 Hidden Markov Models

In the previous section, we have assumed that we know the system’s state

(Xk) any time, i.e., the Markov chain is observable. Indeed, this assumption

has allowed us to state the transition probabilities matrix A (equation 2.6)

that, in combination with the initial distribution of the chain, allows us

to predict future behavior of the system (e.g. the Chapman-Kolmogorov

equation). However, this assumption may not be reasonable for some systems

in the practice.

Actually, it is quite common to find a system in which we do not have the

directly access to its state. In other words, Xk is unknown or hidden. In this

case, we want to be able to handle this constraint by creating a way to assess

Xk. For this purpose, there have been models which focus on estimating Xk

based on observations.

A Hidden Markov Model (HMM) is a discrete-time finite-state homoge-

neous Markov chain ({Xk} in our case) observed through a discrete-time

memoryless invariant channel. Through this “channel”, we observe a finite

number of outcomes. Without loss of generality, let us assume that the

number of outcomes and states of the Markov chain are the same. Let this

number be L. Hence, each observation corresponds to a state of the system

being modeled.
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We denote the set of these observations as Z = {z1, z2, . . . , zL} and we

define the observation probability distribution as

bx(z) = Pr[Zk = z|Xk = x], z ∈ Z, x ∈ X, k ≥ 0. (2.7)

It is assumed that this distribution does not change over time, i.e., bx(z) is

the same for every k ≥ 0. These probabilities can be written in a the matrix

form: B ≡ bx(z). Hence, a HMM is fully represented by its probability

distributions A, B and ω. For convenience, we define the notation:

Ψ = (A,B, ω). (2.8)

There are three basic problems in HMM that are very useful in practical

applications. These problems are:

Problem 1: Given the model Ψ = (A,B, ω) and the observation sequence

O = z1, z2, · · · , zk, how to compute Pr[O|Ψ] (i.e., the probability of

occurrence of O)?

Problem 2: Given the model Ψ = (A,B, ω) and the observation sequence

O = z1, z2, · · · , zk, how to choose a state sequence I = x1, x2, · · · , xk so

that Pr[O, I|Ψ]4 is maximized (i.e., best “explain” the observations)?

Problem 3: Given the observation sequence O = z1, z2, · · · , zk, how do we

adjust the HMM model parameters Ψ = (A,B, ω) so that Pr[O|Ψ] is

maximized?

While problems 1 and 2 are analysis problems, problem 3 can be viewed as

a synthesis (or model identification or inference) problem.

The HMMs have various applications and one is pattern recognition such

as speech and handwriting. For example, there is a known technique in Signal

Processing called the Viterbi Algorithm which efficiently tackles the problem

2. For additional information on this topic, the reader is referred to (Dugad

and Desai, 1996; Ephraim and Merhav, 2002; Rabiner, 1989; Grate, 2006).

4Which represents the joint probability of the state sequence and observation sequence
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2.4.4 Applying Control in Markov Chains: Markov

Decision Process

So far, we have considered Markov chains having fixed transition probabili-

ties. If we can change these probabilities then we will change the evolution

of the chain. In some situations we might be interested in how to induce the

system to follow some behavior in order to optimize some quantity. It can

be performed if we can “control” the transition probability of the system.

We call the act of controlling the transition probability by applying con-

trol in Markov chains. Let us call the control applied at the time k by uk ∈ U ,

U being the control space, i.e, the set of all possible actions. We rewrite Eq.

2.6 taking into account the control as follows

aij(u) = Pr[Xk+1 = j|Xk = i, uk = u], i, j ∈ X, u ∈ U, k ≥ 0, (2.9)

with
∑

j∈X aij(u) = 1, i ∈ X, u ∈ U . The control follows a policy denoted

by π, which is nothing but the strategy or a plan of action. In general, a

policy is developed using the feedback, i.e., the policy is a plan of actions for

each state xk ∈ X at the time k. Hence, a policy can be written as

π = {µ0, µ1, . . . , µk, . . .} , (2.10)

where µk maps each state to an action, i.e., µk : xk 7→ uk ⇒ uk = µk(xk). In

this case, it is assumed that the Markov chain is observable. If µk are all the

same, π is called a stationary policy.

Different policies will lead to different probability distributions. In a

optimal control context, we are interested in finding the best or optimal

policy. To this end, we need to compare different policies, which can be done

by specifying a cost function. Let us assume the cost function is additive.

Thus, the total cost until k = n is calculated as follows

n∑
k=0

g(xk, uk), (2.11)
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where g(x, u) is interpreted as the cost to be paid if Xk = x and uk = u

at the time k. g(x, u) is referred to as immediate or one period cost. If the

chain (or the system evolution) stops at the time N , there is no action to be

taken when k = N and we rewrite Eq. 2.11 as follows

N−1∑
k=0

g(xk, uk) + g(xN), (2.12)

g(xN) is called the terminal cost.

Notice that Xk and the actions uk all depend on the choice of the policy π.

Furthermore, g(xk, uk) is a random variable. If we deal with a finite horizon

problem, for any horizon N , we write the system cost under the policy π as

Jπ(x0) = E

[
N−1∑
k=0

g(xk, uk) + gN(xN)

]
, (2.13)

where x0 is the initial state. For an infinite horizon problem, we have

Jπ(x0) = lim
N→∞

E

[
N∑
k=0

g(xk, uk)

]
. (2.14)

Let an optimization problem be the minimization of the expected cost

J . Then, the optimal policy π∗ is that one which minimizes J , i.e., Jπ∗ =

minπ Jπ. This is a sequential decisions problem that can be tackled using

Dynamic Programming (DP). We will use the term Stochastic Dynamic Pro-

gramming (SDP) to reinforce the stochastic character of our problems. SDP

decomposes a large problem into subproblems and it is based on the Principle

of Optimality proposed by Bellman5. Under this result, the solution of the

general problem is compounded by the solutions of the subproblems.

An explicit algorithm for determining an optimal policy can be developed

using SDP. Let Jk(xk) be the cumulated cost at time k for all states xk. Then,

Jk(xk) = min
uk∈U

E [g(xk, uk) + Jk+1(xk+1)] , k = 0, 1, . . . , (2.15)

5In Proposition 1, for the purposes of this result, we recall the definition of this principle.
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is the optimal cost-to-go from state xk to state xk+1. The function Jk(xk)

is referred to as the cost-to-go function in the following sense: the equation

states a single-step problem involving the present cost g(xk, uk) and the future

cost Jk+1(xk+1). The optimal action uk is then chosen and the problem is

solved. Of course, Jk+1(xk+1) is not known.

For convenience, let us assume a finite horizon problem. Hence, JN(xN) =

g(xN) is known and it can be used to obtain JN−1(xN−1) by solving the

minimization problem in Eq. 2.15 over uN−1. Then JN−1(xN−1) is used to

obtain JN−2(xN−2) and so on. Ultimately, we obtain J0(x0) which will be

optimal cost. This is a backward procedure.

Some attention is required when working with infinite horizon because

the Eq. 2.11 can be infinite or undefined when n→∞. Under some circum-

stances, the infinite horizon problem does have solution. We illustrate some

of such scenarios:

Optimal stopping time (stochastic shortest path): it is assumed that

there exist state x and action u such that g(x, u) = 0.

Expected discounted cost: we use a discounting factor to discount future

values. Hence, Eq. 2.14 is replaced by

Jπ(x0) = lim
N→∞

E

[
N∑
k=0

αkg(xk, uk)

]
, α ∈ (0, 1). (2.16)

Expected average cost: a policy is evaluated according to its average cost

per unit of time. Hence, Eq. 2.14 is replaced by

Jπ(x0) = lim
N→∞

1

N
E

[
N∑
k=0

g(xk, uk)

]
. (2.17)

Further information on this topic can be found in (Bellman, 1957; Bert-

sekas, 2005; Sutton and Barto, 1998; Puterman, 1994).
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Chapter 3

A Model for Condition-Based

Maintenance

3.1 Introduction and Motivation

In this chapter we formulate an optimization model for CBM. Our goal is to

determine a CBM policy for a given system in order to minimize its long-run

operation cost.

3.2 Problem Statement

We assume that the system’s condition can be discretized in states and that

each state is associated with a possible degradation degree. Periodically, we

have an estimation of the condition, which can be obtained by inspection or

by the use of sensor(s) or other devices used to monitor the system. The

estimation can be imperfect, that is to say, different from the true system

condition. Other assumptions are:

1. The system is put into service in time 0 in the state “as good as new”;

2. All repairs are perfect (for example, by replacing the system), that is,

once repaired, the system turns back to the state “as good as new”.

We do not consider the minimal-repair possibility;
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3. The time is discrete (sampled) with respect to a fixed period T , i.e.,

Tk+1 = Tk + T , where k = 1, 2, . . . is the kth sample time. In order to

shorten the notation, we denote hereafter the instant time Tk as k ;

4. At the instant k, the system is inspected in order for its condition

to be estimated. This inspection may be performed by measuring a

system’s variable, e.g., vibration or temperature. The system’s variable

monitored is directly related to the failure mode being analyzed;

5. At the instant k, an action uk is taken : either uk = C (continue the

system’s operation, i.e., it is left as it is) or uk = S (stop and perform

the maintenance), i.e., the decision space is U = {C, S};

6. Failures are not instantaneously detected. In other words, if the system

fails in [k − 1, k), it will be detected only at the epoch k. This is not

restrictive since we can overcome this assumption by choosing a small

period T .

In our CBM framework, the model parameters are adjusted and the de-

cisions are made based on the history of the system condition. The data

set can be separated basically into two groups, distinguished by the kind of

maintenance stop. We call each of these groups as a cycle of measurement.

The first cycle consists of a sequence of condition records from the system’s

start up until the occurrence of a failure (marked as “b” in Fig. 3.1). The

second cycle (“a” in the same figure) terminates at a preventive maintenance

action. Since the corrective maintenance is carried out upon failure, they are

considered in the first case.

Figure 3.1: Condition measurement cycles: up to a preventive maintenance
(a) and up to a failure (b).
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The notion of cycles is particularly important in our approach. Each

measurement cycle is compounded by the condition measurements gathered

from system operation start-up until stop, upon maintenance action. We

call that the short-run horizon. On the other hand, we have the long-run

horizon, which is composed by the measurement cycles cumulated over time.

Fig. 3.2 presents a diagram which illustrates our approach.

Figure 3.2: The CBM approach proposed in this paper.

We start by performing the initial parameters estimation and we compute

the optimal operating threshold based on this estimation. As time evolves,

at each decision epoch k, we have a condition measurement, which is used to

estimate the system state, and an action is taken based on this estimation.

If uk = S, we end a cycle carrying out a parameters re-estimation and a new

optimal threshold computation. k is reset to 0 and we start a new cycle.

3.2.1 Short-run and Long-run Optimization

As introduced in last paragraph, we consider a double time frame:

• Short-run horizon: from system start-up (k = 0) until system stop

(uk = S).

• Long-run horizon: defined as the short-run horizons cumulated over

time.
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Since we assume perfect repair (assumption 2, Section 3.2) by solving

optimally the short-run model we also guarantee the long-run cost minimiza-

tion. This is the subject of the following results.

Proposition 1 (The structure of the long-run horizon problem). The optimal

solution of the long-run horizon problem can be divided into various optimal

sub-solutions, each sub-solution being the optimal solution of the associated

short-run horizon problem.

Proof. Under the assumption of perfect repair, we are able to slice the long-

run horizon problem in various short-run horizon problems, all short-run

problems having the same structure (however they might have different Ψ’s

because of re-estimation step). Figure 3.3 illustrates that procedure. Notice

that we reset k whenever a repair is carried out (uk = S). Thus, the system

is brought back to the state 1 (“as good as new”) and we set k = 0 at the

same time the system operation restarts.

Figure 3.3: Long-run horizon optimization.

The Bellman’s Principle of Optimality states that “an optimal policy

has the property that whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision” (Bellman, 1957). In other words, given

an optimal sequence of decisions, each subsequence must also be optimal.

The principle of optimality applies to a problem (not an algorithm) and a

problem satisfying this principle has the so-called Optimal Substructure.

The long-run horizon problem has the Optimal Substructure and, by

the Bellman’s Principle of Optimality, the optimal solution of the long-run

necessarily contains optimal solutions to all subproblems (short-run).
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Corollary 1 (Long-run horizon optimization). Solving optimally (cost min-

imization) the short-run horizon implies in long-run optimization.

Proof. Since all short-run horizon problem (subproblems of the long-run hori-

zon problem) have the same structure, by finding the solution of the short-run

problem we get the long-run solution.

Alternative proof:

Let {µ1, µ2, · · · , µm, · · · } be the optimal policy for the long-run horizon

problem. Then µm is the optimal policy of the mth short-run horizon (Propo-

sition 1).

If µm was not an optimal policy of the mth short-run horizon, we could

then substitute it by the optimal policy for the mth short-run horizon, µ∗m.

The result is a better policy for the long-run horizon problem. This contra-

dicts our assumption that {µ1, µ2, · · · , µm, · · · } is the optimal policy for the

long-run horizon problem.

Thus, we focus the rest of the chapter on optimizing the short-run horizon.

3.3 Mathematical Formulation

Consider a multi-state deteriorating system subject to aging and sudden fail-

ures, with states in deteriorating order from 1 (as good as new) to L (com-

pletely failed) . If no action is taken the system is left as it is (uk = C). We

assume that the system condition evolution is a Markovian stochastic process

and, since we consider periodic inspections, we can model the deterioration

using a discrete-time Markov chain.

For this purpose, let {Xk}k≥0 be the Markov chain in question, where

Xk denotes the system condition at epoch k and {Xk} models the system

deterioration over time. The {Xk} state space is X = {1, 2, . . . , L} with the

associated probability transition aij(uk =C), simply denoted as aij, defined

as
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aij = Pr[Xk+1 =j|Xk= i, uk=C] = Pr[X1 =j|X0 = i, u0 =C],

subject to
∑L

j=i aij = 1, ∀i, j. For convenience, we express these probabilities

in matrix form: A ≡ [aij] .

Let g(·) be the cost of the system at each period, written as function of the

system’s state (Xk) and the decision taken (uk). This function denotes the

expected operational system’s cost, the expected unavailability cost incurred

upon failure and/or maintenance actions and the expected maintenance ac-

tion costs themselves, as follows:

• For xk ∈ 1, . . . , L−1 we have:

– uk = C (continue to operate, i.e., do nothing): g(xk, uk) represents

the operational system’s cost, which can be written in terms of the

system’s state;

– uk = S (stop the operation and perform the preventive main-

tenance): g symbolizes the expected preventive maintenance cost

(including the unavailability cost), which can be written as a func-

tion of the system’s state: in general, the poorer the condition the

higher the cost;

• For xk = L (failed):

– uk = S: g(·) describes the expected corrective maintenance cost,

including the unavailability cost carried out during the repair;

– uk = C: g(·) represents the unavailability cost over period [k, k+1),

generally a non-optimal decision, since it implies that the system

no longer operates.

Now we introduce the following definition:

Definition 1 (Well-defined problem). A problem is well-defined if it satisfies

the following conditions:
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1. the system condition can be improved only by a maintenance interven-

tion. That is, A entries can be written as

aij =

{
Pr[Xk+1 =j|Xk= i, uk=C], if j ≥ i,

0, otherwise.
(3.1)

2. if no maintenance action is taken, there is a positive probability that

the state L will be reached after p periods (L is reachable), i.e.,

Pr[Xp = L|X0 = 1] > 0, with uk = C, ∀k < p.

This condition, together with the first, implies that L is also an absorb-

ing state if uk = C, ∀k < p.

3. the unavailability cost incurred by the system non-operation is higher

than the corrective maintenance cost, i.e.,

g(Xk = L, uk = C) > g(Xk = L, uk = S).

Fig. 3.4 illustrates the Markov chain of a well-defined problem. It reflects

the wear out deterioration. Once the system is deteriorated, its condition

cannot be improved over time (unless by a maintenance intervention). More-

over, the probabilities aiL, ∀i ∈ {1, . . . , L − 2}, denotes the sudden failure.

Hereafter, it is assumed that the problem is well-defined.

Figure 3.4: The Markov chain that denotes the system condition evolution
(Xk). The probabilities aij:j>i+1,i<L have been omitted for succinctness.
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Under Definition 1, it can be shown that there exists an optimal repair

rule (Pierskalla and Voelker, 1976). To calculate it, we need to know the

system state Xk at any time. Since we do not have access to the information

about the system condition (i.e., Xk is unobservable), we shall estimate it.

This is the subject of the next subsection.

3.3.1 Modeling the incomplete information

We deal with this problem by creating a condition measurement Zk , which

has its probability distribution conditioned on Xk (see Fig. 3.5). We denote

the space state Zk by Z = {1, 2, . . . , L}, i.e., the observed condition 1 rep-

resents “the system appears to be in the state 1”, and so on. Let bx(z) be

the probability Pr[Zk = z|Xk = x]. For convenience, we define the matrix

B ≡ [bx(z)] .

Figure 3.5: System state evolution (Xk) and its estimation (Zk).

The computation of Zk establishes a link between the system state and the

system monitoring measurement(s). Consequently, a classification step is

required to connect the measurement(s) to each value of Z. Hence, the

choice would depend on the case being analyzed1.

We define an information vector, Ik , which retains the condition estima-

tion (Zk), from the system start-up up to k, i.e., the condition measurement

history of the actual cycle. Hence, Ik has size k and can be written recursively

as follows

1In Chapter 5 we provide examples of classification.
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I1 = z1 (3.2)

Ik = (Ik−1, zk), k = 2, 3, . . . .

Using this vector, we are able to estimate2 the system state Xk at any

time k. A straightforward estimator is the following:

X̂k = arg max
x∈X

Pr[Xk = x|Ik]. (3.3)

An approach to compute this probability will be presented in Section 4.2

(Eq. 4.1). In order to homogenize the notation for HMM, let’s denote the

model parameters (A,B) by Ψ3 . Hence, in this dissertation, any system can

be fully represented by Ψ and its cost function g(·).
The optimal CBM policy µ is a mapping from available information to

the actions, i.e.,

uk = µ(Ik) =

{
C, if X̂k < r,

S, if X̂k ≥ r,

where r ∈ X is the optimal threshold state (or repair rule). This is a se-

quential problem where each action will result in an immediate cost g(·),
carried out along the period [k, k + 1) and, in addition, the chosen action

impacts the evolution of the system over time. We call this subproblem as

short-run model. As discussed in Section 3.2, this model can be viewed as a

cycle, which starts at the beginning of the operation (k = 0) and terminates

whenever uk = S.

Solving the short-run model requires an algorithm to minimize the cumu-

lative cost resulting from a sequence of decisions. We solve this problem by

2In the Control Theory, this estimation is known as system state estimator.
3In HMM theory, Ψ is defined as (A, B, ω), where ω represents the probability distri-

bution of the state X0. Because of assumption 1, we have Pr[X0 = 1] = 1 and so we can
ignore ω.
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using the Stochastic Dynamic Programming (SDP). Similar results can be

obtained by using a partially observable Markov Decision Process approach.

3.3.2 Finding the optimal threshold state (short-run

model)

Let J be the system operation cost over time until stop, i.e., the sum of g(·)
until uk = S. We intend to find the CBM policy µ which minimizes J , i.e.,

J∗ = minµ Jµ, where Jµ represents the system expected cost under the policy

µ and can be written as follows

Jµ = lim
N→∞

E

[
N∑
k=1

αkg(Xk, uk)

]
, (3.4)

where α ∈ [0, 1] is the discount factor, used to discount future costs. The

infinite horizon model considered in Eq. 3.4 can be, recalling that µk : Ik 7→
uk, decomposed into the following SDP equation

Jk(Ik) = min
uk

{
E
[
g(Xk, uk)|Ik, uk

]
+ (3.5)

αE
[
Jk+1(Ik, Zk+1)|Ik, uk

]}
, k = 1, 2, . . . .

A “basic” SDP equation would require the knowledge of the system state

which, in our case, is unknown. Nevertheless, by combining the system esti-

mator presented in equation 3.3, we can write the SDP equation as pointed

out in equation 3.5. This procedure is called reduction an imperfect infor-

mation problem to a perfect one.

Two algorithms are well known to solve infinite horizon SDP: value itera-

tion (VI) and policy iteration (PI). In fact, VI is a special formulation of the

PI algorithm (Bertsekas, 2005; Sutton and Barto, 1998; Puterman, 1994). If

we are considering a short period T (e.g., a day), the time value of money

is not relevant, and the discount factor (α) can be fixed in 1. In this case,
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the VI method may require an infinite number of iterations. However, the

method converges finitely under special circumstances. Under definition 1

our problem can be reduced to a Stochastic Shortest-Path (SSP) problem

and, using this fact, we can guarantee the convergence of the VI algorithm,

for α = 1, which will be discussed in the proposition 2. For α < 1, the

convergence is straightforward.

Proposition 2 (Convergence of the value iteration algorithm). Suppose that

the problem is well-defined. Then, the VI algorithm converges with probability

1, since the action uk=S will be taken with finite k.

Proof. Under definition 1, we are able to write the problem as a Stochas-

tic Shortest-Path (SSP) problem (Bertsekas, 2005; Bertsekas and Tsitsiklis,

1991), where the system states are nodes. A SSP problem is a problem in

which the state space {1, 2, . . . , n, t} is such that the node t is a goal (target)

state that is absorbing and cost-free (i.e., Pr[Xk+1 = t|Xk = t] = 1 and

g(t, u) = 0, ∀u), and the discount factor α = 1.

In order to write our problem as a SSP problem, let the states 1, . . . , L be

the nodes 1, . . . , n and create the target node t. This target can be reached

from each state whenever the action u = S is taken (see Fig. 3.6).

Figure 3.6: Stochastic Shortest-Path associated with the problem.

This SSP problem has all cost positives (i) and, with probability 1, the

node t will be reached (ii). Under these two points, it can be shown that the

VI algorithm converges to an optimal and stationary policy (Bertsekas and

Tsitsiklis, 1991; Sutton and Barto, 1998; Bertsekas, 2005), in terms of a SDP

model.
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This algorithm can be used to calculate the optimal repair rule, i.e., deter-

mine the operation threshold r.

3.3.3 The value iteration algorithm

The VI algorithm consists in calculating successive approximations for J∗

through the recursive equations

Jk+1(i) = min
u

E
[
g(Xk+1, u) + Jk(Xk+1)|Xk = i, uk = u

]
= min

u

∑
j∈X

aij(u)(g(j, u) + Jk(j)), (3.6)

for all i ∈ X. For an arbitrary value of J0, the sequence {Jk}k≥1 converges

to J∗, i.e., |Jk+1(i) − Jk(i)| → 0, ∀i ∈ X, under the same conditions that

guarantee the existence of J∗ (Sutton and Barto, 1998; Bertsekas, 2005).

Algorithm 1 Value iteration algorithm

1: J(i)← 0, ∀i ∈ X . begin with an arbitrary J
2: repeat
3: ∆← 0
4: for all i ∈ X do . for all states
5: v ← J(i)

6: J(i)← min
uk

∑
j∈X

pij(u)(g(j, u) + Jk(j))

7: ∆← max(∆, |v − J(i)|)
8: until ∆ < ε . precision shall

9: return µ(i) = arg min
u

∑
j∈X

pij(u)(g(j, u) + J(j))

In addition to the optimal operation threshold r, VI algorithm outputs

the expected cost to termination (J(i)) which, in a SSP context, means that

the state t was reached. In our CBM problem, this cost indicates the expected

cost until the end of a cycle.
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3.4 Model Analytical Properties

In this section we discuss some analytical properties of our CBM model.

Proposition 3 (Our CBM model contemplates both constant and increasing

failure rate in the short-run horizon). In the short-run horizon, if no control

is applied (uk = C, ∀k), the system failure rate is constant or increases over

time.

Proof. If the probabilities a1x = 0 for 2 ≤ x ≤ L−1 we have a constant prob-

ability to failure (a1L) and then a constant failure rate, which is a particular

case. The general case (increasing failure rate) has been proved in 1965 by

Barlow and Proschan4.

In Chapter 5 we provide an illustration of this proposition (page 46).

Despite the Proposition 3 and considering the long-run horizon, the average

uptime is constant: this is the subject of the following result.

Proposition 4 (In the long-run horizon, the number of failures follows a

Renewal Process). In the long-run horizon, if no control is applied (except

that the perfect repair is performed whenever the system fails), the number

of failures follows a Renewal Process.

Proof. Since we consider that the system is left as it is (no control is applied)

and the perfect repair is performed after each failure, the times between

failures are independent and identically distributed (i.i.d.).

Let τ(i, j) be the first passage time in going from state i to state j in a

Markov chain, i.e., the mean length of time required to go from i to j. {Xk}
is not ergodic (because of Definition 1 it is not possible to go from state i+ i

to state i) but we only aim to compute the first passage time from state 1

(which is ergodic) since the system starts at this state. τ(1, L) represents

then the time to failure.

4Barlow, R. and Proschan, F. (1965). Mathematical Theory of Reliability. New York:
Wiley.
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Let τm(1, L) be the time to failure in the mth short-run horizon. τm(1, L)

are i.i.d. discrete random variables: since no control is applied, there is no

re-estimation of Ψ after each short-run horizon. τm(1, L) have the following

probability distribution:

n pn = Pr[τm(1, L) = n]
1 a1L

2 a11a1L + a12a2L

3 a2
11a1L + a11a12a2L + a12a22a2L + a12a23a3L

...
...

pn → 0 as n → ∞ because the state L is an absorbing state. Hence,

E[τm(1, L)] is finite and has the same value for all short-run horizon.

In Chapter 5 we also provide an illustration of this result (page 48)

Proposition 5 (A SM policy is a particular case of our CBM model). For

the same system, a SM (Scheduled Maintenance) policy is a particular case

of our CBM policy. Moreover, the SM policy cost is greater or equals to the

CBM policy cost.

Proof. A SM policy can be written as follows:

uk =

{
C, if k < n,

S, if k = n,

where n is the period of the scheduled preventive repair. Let W be the system

cost under the SM policy. Since we can write the SM policy as a particular

CBM policy and the CBM policy’s cost is optimal (see Eq. 3.5) we have

W ≥ J,

which demonstrates this result.
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Notice that the information about the system required to apply any CBM

policy may have a cost. We have not considered this case but in practice one

should take it into account when planning the CBM approach.

Proposition 6 (Our CBM policy improves the system availability). The

system availability under our CBM model is greater than or equal to the

availability under a SM policy.

Proof. Recalling the definition of availability (Section 2.1) and fixing the

MTTR (mean time to repair) since it is not concerned (it is assumed to be

the same in both cases), the availability can be increased as the MTTF (mean

time to failure = E[Uptime]) increases.

In order to demonstrate this result, let us set the cost function g as

follows: g(x < L, u = C) = −1, g(x < L, u = S) = 1, g(L, uk = S) = 1 and

g(L, uk=C) = 2. Note that this satisfies Definition 1.

Our Stochastic-Dynamic Programming equation (Eq. 3.5) is designed to

minimize the cost to go from stage k to stage k+1. With g as defined above,

Eq. 3.5 is now an algorithm to maximize the expected number of transitions

of {Xk}.
Let W and J be the expected number of transitions under a SM and a

CBM policy, respectively. From Proposition 5 we have

W ≥ J,

which demonstrates this result since both W and J are expected to be ne-

gative numbers (as consequence of cost function g).
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Inference of Model Parameters

4.1 Introduction and Motivation

This chapter addresses to the problem of fitting the CBM model parame-

ters to apply the model to a given system. That means we are looking for

a technique that uses the available data and leads to the best parameters

estimation.

The motivation for using Hidden Markov Models (HMM for short) for pa-

rameters estimation comes from its ability to differentiate between changes

in the system measurement which are due to regular system changes (e.g.,

changes of operating conditions), and condition measurement changes which

are due to changes in the measuring instrument and/or measurement pre-

cisions. Also, there exist computationally efficient methods for computing

likelihoods, in particular in the signal processing literature. Additional in-

formation on this topic can be found in (Rabiner, 1989; Ephraim and Merhav,

2002; Dugad and Desai, 1996).

HMM has already been used to tackle maintenance problems. For in-

stance, Tai et al. (2009) use HMM to deal with machine’s production con-

formity in order to detect machine/equipment failures. In line with that

work, Bunks et al. (2000) consider vibration measures to assess the status

of helicopter gearboxes. However, different from our approach, those papers

do not aim to propose CBM policies. Furthermore, we are also interested

expanding the use of CBM policies through HMM by offering an approach
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for estimating the input parameters.

4.2 Model Parameters Estimation

We deal with the problem of parameters estimation by modeling the available

data for estimating the parameters of our model (Ψ) in order to construct

the statistical inference for Ψ.

Let O represent the historical information about the system, i.e., the

historical data. O can be viewed as a set of M observation sequences, or

observed cycles (as defined in Fig. 3.1). That is O = {O1, O2, . . . , OM},
where Om represents a cycle, and it can be written as Om = {z1, z2, . . . , zN},
where N is the cycle’s length and zn is the system condition observed in n.

The estimation of Ψ = (A,B) can be viewed as follows: given the available

historical information O, we want to define Ψ as a function of the data

available. In other words, the problem is to find Ψ that maximizes Pr[O|Ψ]1.

We assume that an initial guess of Ψ is available, which will be denoted by

Ψ0.

Unfortunately, there is no known analytical approach to solve maxΨ Pr[O|Ψ]

(Rabiner, 1989). Nonetheless, this problem can be solved numerically using

an iterative procedure. The most successful method, widely cited in the liter-

ature, is the Baum-Welch re-estimation formulas (Baum et al., 1970), which

will be discussed below.

4.2.1 The Baum-Welch Algorithm

“Baum-Welch algorithm” is an algorithm based on successive applications

of the Baum-Welch re-estimation formulas (Baum et al., 1970). The model

Ψ = (A,B) is adjusted so as to increase Pr[O|Ψ] until a maximum value is

reached. First, we offer an intuitive explanation of the formulas.

Let āij and b̄x(z) be an estimation of aij and bx(z), respectively. These

estimators are based on the relative frequency principle, as follows:

1This problem is called in HMM literature as “problem 3”.
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• āij =
expected number (e.n.) of transition from state i to j

e.n. of transition leaving i
;

• b̄x(z) = e.n. of times in x where z was observed
e.n. of times in x

.

In order to describe the procedure for re-estimation for each observation

sequence On we define the following variables:

• forward: αn(x) = Pr[Z1 = z1, Z2 = z2, . . . , Zn = zn, Xn = x|Ψ];

• backward: βn(x) = Pr[Zn+1 = zn+1, Zn+2 = zn+2, . . . , ZN = zN , XN =

x|Ψ].

In the previous Chapter, we considered the question of estimating the

system state (Xk) from the information vector (Ik), as described in equation

3.3. The computation of Pr[Xk = x|Ik] can be efficiently performed using

the forward variable:

Pr[Xk = x|Ik] =
Pr[Xk = x, Ik]

Pr[Ik]
=

αk(x)∑
i∈X

αk(i)
. (4.1)

Now let γn(x) be the probability of being in state x at time n given On

and Ψ, i.e., γn(x) = Pr[Xn = x|On,Ψ]. The use of Bayes rule yields

γk(x) = Pr[Xk = x|On,Ψ] =
Pr[Xk = x,On|Ψ]

Pr[On|Ψ]
=
αk(x)βk(x)

Pr[On|Ψ]
.

Finally, let ξk(i, j) be the probability of being in the state i at epoch k and

making a transition to j at k+1, i.e., ξk(i, j) = Pr[Xk = i,Xk+1 = j|On,Ψ].

Using the Bayes rule yields

ξk(i, j) =
Pr[Xk = i,Xk+1 = j, On|Ψ]

Pr[On|Ψ]
=
αk(i)aijbj(Zk+1)βk+1(j)

Pr[On|Ψ]
.
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It can be shown that
∑K−1

k=1 γk(x) is the expected number of transitions

from state x and
∑K−1

k=1 ξk(i, j) is the expected number of transitions from

state i to state j (Rabiner, 1989; Dugad and Desai, 1996).

Now, we present the Baum-Welch re-estimation formulas:

• āij =
K−1∑
k=1

ξk(i, j)/
K−1∑
k=1

γk(i)

• b̄x(z) =
K∑

k=1
zk=z

γk(x)/
K∑
k=1

γk(x)

We can use these formulas to enhance the estimation quality using the

historical data. That is to say, we start with an initial estimation of Ψ and

we are able to improve this estimation by using field data, which makes our

approach clearly more applicable to real contexts. The algorithm 2 is pro-

posed based on these formulas. It involves collecting a set of data sequences,

computing the posterior distribution over hidden variables (Xk) at all times

given that sequences, and, finally, updating the parameters according to the

statistics of the posterior distribution.

Algorithm 2 Baum-Welch algorithm

1: Ψ0 ← (A,B) . a priori estimate for Ψ
2: for all n ∈ 1..N do . for each observation sequence

3: āij ←
K−1∑
k=1

ξk(i, j)/
K−1∑
k=1

γk(i), ∀i, j ∈ X

4: b̄x(z)←
K∑

k=1
zk=z

γk(x)/
K∑
k=1

γk(x), ∀x ∈ X, ∀z ∈ Z

5: Ψn ← (āij, b̄x(z))

6: return ΨN

Applying this algorithm at the end of each cycle (as described in Fig.

3.2) yields a systematic updating of Ψ, which is suitable for computer im-

plementation as part of a maintenance software, for example. Consequently,

we are able to get a more accurate estimation of Ψ as soon as more data are

available.
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4.3 Estimation Properties

The Baum-Welch algorithm is a computationally efficient iterative algorithm

for local maximization of the log-likelihood function. For more details, please

check (Ephraim and Merhav, 2002). It is an expectation-maximization al-

gorithm and it was developed and proved to local converge by Baum et al.

(1970).

In this section, we present some characteristics of our inference model

based on the Baum-Welch algorithm. To this end, let us define the following

terms for a given system2:

• Ψ: the system’s real parameters;

• Ψ̂0: initial guess of the system’s parameters;

• Ψ̂N : the estimation of the system’s parameters yielded by the Baum-

Welch algorithm after running N observation sequences.

We can use Ψ to generate N random samples in order to simulate Baum-

Welch algorithm and evaluate its fitting quality. Formally, this is called sta-

tistical simulation and it means an artificial data generation process, driven

by model design and parameter settings. The output, a synthetic sample,

can be used to validate the inference process.

For the purpose of evaluate the bias between Ψ and Ψ̂N , let us create the

following fitness measure

ρ =
∑
i,j∈X

(âij − aij)2 +
∑

x∈X,z∈Z

(̂bx(z)− bx(z))2. (4.2)

Hence, ρ is the sum of the squared residual deviations between Ψ and Ψ̂N

for both transition (A) and observation (B) probability matrices.

Proposition 7 (Baum-Welch algorithm convergence depends on the initial

parameters guess). The Baum-Welch algorithm gives an estimation that cor-

responds to the local maximum of the likelihood function. However, there

2Please recall that the system is assumed to be well-defined (Definition 1).
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exists at least one Ψ̂0 which garantees the convergence (global maximum of

the likelihood function) to the real system’s parameters as the number of em-

pirical data increases. That is

∃Ψ̂0 : ρ
N→∞−→ 0. (4.3)

Proof. Finding a Ψ̂0 that results in the algorithm convergence is straightfor-

ward: Baum-Welch will always converge if we make Ψ̂0 = Ψ for a sufficiently

larger N .

Indeed, the key question is how to choose the initial guess Ψ̂0 so that the

local maximum is the global maximum of the likelihood function. If it does

not happen, the algorithm yields a suboptimal solution. This fact is due to

the Baum-Welch formulas structure (Ephraim and Merhav, 2002; Rabiner,

1989; Baum et al., 1970) and basically there is no simple answer. We provide

below examples showing optimal and suboptimal convergences.

Let us illustrate the Proposition 7. For this purpose, we performed the

following experiment:

Algorithm 3 Baum-Welch convergence test: unbiased Ψ̂0 case

1: generate L as a discrete uniform distribution in [2, 10]
2: create Ψ as follows: (it assures that all probabilities add to 1 when needed

and Ψ will be well-defined)

• aii = 0.94 for 1 ≤ i < L−1, aL−1L−1 = 0.95 and aLL = 1

• aii+1 = 0.05 for 1 ≤ i < L

• b1(1) = 0.9, bx(z) = 0.8 for 1 < x < L, 1 < z < L and bL(L) = 0.9

• bii+1 = 0.1 for 1 ≤ i < L and bii−1 = 0.1 for 1 < i ≤ L

3: let Ψ̂0 = Ψ, i.e., a completely unbiased prior estimation
4: generate N random data series from Ψ. Each series corresponds to a

complete simulation of the system running to failure, i.e., the series ends
whenever L is reached

5: for each series n ∈ N , we use Baum-Welch to get Ψ̂n and then we evaluate
ρ according to Eq. 4.2.

The Fig. 4.1 presents the results: it shows ρ→ 0 when N grows.
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Figure 4.1: Baum-Welch optimal convergence for some random data (10
runs).

This result shows a cleary convergence of the method. Let us now run

our experiment considering a “uniform” prior system parameters estimation

(Ψ̂0). We replace then line 3 in Alg. 3 by:

Algorithm 4 Baum-Welch convergence test: uniform Ψ̂0 case

create Ψ̂0 as follows:
for i = 1 to L do

for j = i to L do . starts from i to ensure “well-definedness”

aij =
1

L− i+ 1
. uniform distribution

for x = 1 to L do
for z = 1 to L do

bx(z) =
1

L
. uniform distribution

This piece of pseudo-code produces an “uniform” Ψ̂0. Running again our

experiment produces the Fig. 4.2. We have limited the number of generated

data series (N) to 50 due the computational effort required to run the Baum-

Welch algorithm. In one case we have an optimal estimation (L = 3).

The Fig. 4.3 shows a long-run using an “uniform” Ψ̂0 converging to a non-
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Figure 4.2: Baum-Welch suboptimal convergence for some random data (10
runs).

optimal estimation since ρ 9 0. This test required about 3hs of machine3.

Figure 4.3: Baum-Welch suboptimal convergence for some random data (1
run).

Rabiner (1989) points out that the initial guess of the matrixB is specially

3The computational environment is described in the beginning of the Chapter 5.
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critical. To illustrate this fact, let us replace the part of Alg. 4 that generates

B by the following:

Algorithm 5 Baum-Welch convergence test: “semi-unbiased” B-matrix case

for x = 1 to L do
for z = 1 to L do

if observation z corresponds to x (as in 1 = 1) then
bx(z) = 0.5

else

bx(z) =
0.5

L− 1
. “uniform” distribution

Hence, we give a half of the probability mass to the correct guess. The

rest of B is left uniformly random. The results are sensibily differents: all

estimations have optimally converged (see Fig. 4.4).

Figure 4.4: Baum-Welch optimal convergence for some random data (10
runs).

This section highlights the role of the initial parameters guess in the

parameters estimation as a whole. Rabiner (1989) says that there is no

general answer but there exist some techniques useful, though, helping to

avoid suboptimals estimation regardless the initial guess. For the purposes

of this dissertation, this topic will not be covered.
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An Application Example

This chapter discusses the application of our methodology using empiric data.

The algorithms were coded using Matlab v6.5 and the tests were performed

on a 2.0 GHz dual core machine with 3Gb RAM running Microsoft Windows

XP. All computation times took no more than 10 seconds.

5.1 Preliminaries

Our application example uses data from a piece of equipment, provided by

a zinc mining company. For confidentiality reasons, we have had to disguise

the input data1. This system is electric-powered, it runs continuously, and

its main failure mode is a serious internal degradation, affecting the product

quality and the process productivity. This failure can happen whenever the

electric current is higher than a given design-fixed value, which is supposed

to be the maximum value for a correct operation. The perfect repair is per-

formed by replacing some internal components. Upon failure, even while the

piece of equipment is still running, the degradation is generalized, requiring

a more complex repair.

We wish to define the state failed (L) as the state where we have to carry

out the complex repair in order to bring back the system to state 1. Therefore,

in some sense, the event failure is hidden since it does not necessarily imply

1It has been performed by multiplying all values by some constant in such a way that,
despite the changes, the data remain coherent.
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that the piece of equipment is broken or not operating. Because of equipment

design and structure, as well as operational limitations, the electric current

is the monitored parameter. It is assumed that other failure modes are not

relevant and that they have no correlation with the mode being analyzed.

Hence, let θk denote the current measured (in Ampere) at epoch k, sampled

every day (the period T ). We set L = 5 and Table 5.1 shows the classification

adopted in our study, translating the parameter measurement into condition

measurement.

Parameter value zk
θk < 27.5 1

27.5 ≤ θk < 29.0 2
29.0 ≤ θk < 30.5 3
30.5 ≤ θk < 32.0 4

θk ≥ 32.0 5 (system seems failed)

Table 5.1: Classification of the parameter measurement.

The cost function g(xk, uk) considered is showed in Table 5.2. Notice

that “stop and perform the preventive maintenance” (g(xk, uk) with xk =

{1, 2, 3, 4}, uk = S) is 50 times more expensive than operate the system in

the condition “as good as new” (g(xk, uk) with xk=1, uk=C). For reference

purposes, let us call this function as gA.

Action taken (uk)
System real condition (xk) Continue Stop

1 1 50
2 1.1 50
3 1.2 50
4 1.3 50

5 (failed) 1000 200

Table 5.2: The cost function gA.
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5.2 Initial Parameters Estimation

We discuss now the model parameters (Ψ) estimation. As discussed, we

need an initial guess of Ψ, showed in Fig. 5.1. This estimation considers the

wear-out process and the possibility of failures due to shocks as well.

Figure 5.1: The initial guess (Ψ0) of the transition and observation matrices.

Let us illustrate some properties of our model. If the system is left “as

it is” (no control is applied), we expect that the system will fail in a finite

time interval due to wear-out and shock failures. We can check this fact by

computing the reliability and failure rate functions using Ψ0, as in Figs. 5.2

and 5.3.

Figure 5.2: The reliability function for the system (Ψ0) if no control is ap-
plied.
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Figure 5.3: The failure rate function for the system (Ψ0) if no control is
applied.

We have an increasing failure rate, which is the general case by systems

modeled using Markov chains, as discussed in Proposition 3. Since we con-

sider discrete-time Markov chain, we have computed the failure rate λ(k)

with respect to a fixed interval equal to 1 (a day, the period T ). This system

deterioration can be verified by computing the n-step transition probability

matrices, as shown in Table 5.3.

A10:

0.5386 0.2865 0.0686 0.0099 0.0964
0 0.5386 0.2865 0.0706 0.1043
0 0 0.5386 0.3006 0.1608
0 0 0 0.5987 0.4013
0 0 0 0 1.0000

A100:

0.0021 0.0109 0.0288 0.0661 0.8922
0 0.0021 0.0109 0.0420 0.9450
0 0 0.0021 0.0193 0.9786
0 0 0 0.0059 0.9941
0 0 0 0 1.0000

A500:

0.0000 0.0000 0.0000 0.0000 1.0000
0 0.0000 0.0000 0.0000 1.0000
0 0 0.0000 0.0000 1.0000
0 0 0 0.0000 1.0000
0 0 0 0 1.0000

Table 5.3: Some n-step transition probability matrices if no control is applied.

Still considering that no control is applied, we can compute the distribu-

tion of the time to failure (τ(1, L), Proposition 4). For this purpose, we use
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Ψ0 to calculate τ(1, L), as in Fig 5.4.

Figure 5.4: The distribution of the time to failure (τ(1, L)) for the system
(Ψ0) if no control is applied.

The data set used for initial parameters estimation consists of 3 distinct

systems that are in the same operating condition, in a total of 11 series. Ac-

cording to our definition of failure, two of these series are of the “up to pre-

ventive maintenance” type (Fig. 3.1a), while the others are of the “through

failure” type. The Fig. 5.5 illustrates, for each series, the behavior of the

electric current over time and Fig. 5.6 shows the data after classification,

performed according to Table 5.1.

Figure 5.5: The data series (total: 11) used in our application example.

We use these data series in our Hidden Markov Model approach to construct

the statistical inference for Ψ, providing a better estimation given the his-

torical data available.
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Figure 5.6: The same data of Fig. 5.5 after discretization.

Subsequently, we apply the Baum-Welch algorithm, obtaining the result

Ψ, as shown in Table 5.4. For referencing purposes, let us call these param-

eters as ΨA.

0.9797 0.0203 0 0 0.0000
0 0.9603 0.0397 0 0.0000
0 0 0.9703 0.0297 0.0000
0 0 0 0.9824 0.0176
0 0 0 0 1

0.9682 0.0318 0 0 0
0.0309 0.9426 0.0265 0 0

0 0.0447 0.8915 0.0637 0
0 0 0.0087 0.9626 0.0287
0 0 0 0.1166 0.8834

Table 5.4: ΨA: the initial estimation of the matrices A (above) and B (be-
low).

This result shows how the historical data processing works, as we pointed

out in Section 4.2. As can be seen, our algorithm changed the probabilities,

fitting our initial guess (Fig. 5.1) as a function of the empirical data. We

can say that ΨA is optimal (stochastically speaking) given the initial guess

and the historical data.

For illustration purposes, if we compute again the reliability and failure

rate functions, and the distribution of the time to failure, always considering

no control, we get the Fig. 5.7.

49



Chapter 5: An Application Example

Figure 5.7: The reliability (top) and failure rate (middle) functions, and the
distribution of time to failure (bottom) for ΨA if no control is applied.

Now that we have ΨA, we are able to calculate the CBM policy µ, we

are interested in computing the threshold state (r) by solving the Eq. 3.5

as discussed in Section 3.3. The algorithm result, depicted in Table 5.5,

indicates the state 4 as the threshold state. The expected cost until stop

(preventive or corrective) is 168.8720.

State (Xk) 1 2 3 4(=r) 5
Action (uk) C C C S S

Table 5.5: Threshold state (r) computation and optimal action.

We are now prepared to apply our CBM policy µ. We illustrate its application
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via the following scenarios that illustrate how our proposed approach works.

5.3 Testing-Scenarios

5.3.1 Scenario 1: A Typical Scenario

We begin by analyzing the scenario illustrated in Fig. 5.8. This figure shows

the behavior of µ: while k < 85, X̂k < r= 4 hence uk = C. At k = 85 we

have X̂k = 4 and hence u85 = S.

Figure 5.8: Scenario 1: condition observed (top) and state estimation (bot-
tom).

Let us illustrate how Eq. 3.3 works: until k = 19 we have Zk = 1 and

(x, Pr[Xk = x|Ik]) as follows: (1, 0.9993), (2, 0.0007); At k = 20, Zk = 2

and (1, 0.6116), (2, 0.3883), (3, 0.0001); At k = 21, Zk = 2 and (1, 0.0497),

(2, 0.9485), (3, 0.0018); ...; At k = 25, Zk = 2 and (2, 0.9979), (3, 0.0021);

At k = 26, Zk = 1 and (1, 0.0001), (2, 0.9999); At k = 25, Zk = 2 and (2,

0.9980), (3, 0.0020).

Since we stopped the system at k = 85, the actual measurement cycle

has just been closed. We wish to update ΨA using the newest condition

measurement series, as described in Fig. 3.2. To this end, we apply Baum-

Welch with the recently updated historical data (Fig. 5.6 plus Fig. 5.8)

giving a new up to now parameters estimation ΨB shown in Table 5.6.
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0.9786 0.0214 0 0 0
0 0.9625 0.0375 0 0.0000
0 0 0.9696 0.0304 0.0000
0 0 0 0.9824 0.0176
0 0 0 0 1

0.9693 0.0307 0 0 0
0.0299 0.9308 0.0393 0 0

0 0.0445 0.8945 0.0605 0
0 0 0.0092 0.9625 0.0283
0 0 0 0.1216 0.8784

Table 5.6: ΨB: the matrices A (above) and B (below) updated (ΨA + Fig.
5.8).

5.3.2 Scenario 2: Changes in the Cost g(·)

In this scenario we assume operational costs that are higher than those con-

sidered in gA, as follows: g(1, uk=C) = 1, g(2, uk=C) = 1.5, g(3, uk=C) =

2, g(4, uk =C) = 3 and g(5, uk =C) = 1000; and g(i, uk =S) = 50 (for i≤4)

and g(5, uk=S) = 200. Let us call it as gB(.).

Re-computing the CBM policy µ (using the ΨA, i.e., Table 5.4) yields,

with this new cost function (gB(.)), the state 3 as the threshold state. The

expected cost until stop is 172.7884. As we had expected, this cost is higher

than the cost of the previous scenario.

Hence, it is expected that uk = S will be carried out earlier, as far

as system degradation is concerned, than the state defined in the previous

scenario, reflecting the fact that operating in one of degraded states is more

expensive than before.

5.3.3 Scenario 3: Incidence of Shocks

Let us consider gA and ΨA. Hence, we have µ as in Table 5.5. So far, in the

scenarios we have considered, we did not note the occurrence of shocks. Let

us now analyze the scenario illustrated in Fig. 5.9. As can be seen, there has

been a shock at k = 14 forcing a corrective repair. Therefore, we conducted
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a Ψ update, which produces Table 5.7.

Figure 5.9: Scenario 3: condition observed (top) and state estimation (bot-
tom).

0.9784 0.0198 0 0 0.0018
0 0.9603 0.0397 0 0
0 0 0.9703 0.0297 0
0 0 0 0.9823 0.0177
0 0 0 0 1

0.9651 0.0349 0 0 0
0.0304 0.9431 0.0265 0 0

0 0.0447 0.8915 0.0637 0
0 0 0.0088 0.9627 0.0285
0 0 0 0.0325 0.9675

Table 5.7: Updating Ψ after occurrence of shock (A above and B below).

This scenario illustrates the ability to take into account the incidence of

shocks. One may see this result as counterintuitive since, as we can observe

in Table 5.7, the probability a15 has decreased from 0.01 to 0.0018, instead

of increasing. However, due to the Markovian property, the Baum-Welch

algorithm works as follows: aij are updated dividing the expected number

of transition from i to j (ξk(i, j)) by the expected number of all transition

from i (γk(i)). Therefore, despite the occurrence of 1→ 5, we have from the

historical data (Fig. 5.6) hundreds of transitions from 1 to 1. Hence, the

impact of the shock is not as big as one might expect.
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5.3.4 Scenario 4: Changing L and Classification Step

Let us now illustrate a scenario in which the discretization of the system

condition is refined - that is, a scenario where we take into account higher

values for L. Recall that L is the number of system states between “as good

as new” and “completely failed”. Let’s set L = 10. Fig. 5.10 shows the same

data presented in Fig. 5.5 after new classification, performed according to

Table 5.8.

Parameter value zk
θk < 25.25 1

25.25 ≤ θk < 26.00 2
(...)

31.25 ≤ θk < 32.0 9
θk ≥ 32.0 10 (system seems failed)

Table 5.8: Classification of the parameter measurement.

Figure 5.10: The same data of Figure 5.5 after new discretization (Table 5.8).

We consider an initial guess Ψ and a cost function g similar to the ones

used in scenario 1, just adapted to this scenario where L = 10. Hence,

for A we have aii:i≤8 = 0.94, a99 = 0.95, a1010 = 1, aij:j=i+1,i≤9 = 0.05

and ai10:i≤8 = 0.01. For B we have b1(1) = 0.9, bi(i) = 0.8 (for i ≤ 9)

and b10(10) = 0.9; bi(i+1) = 0.1 (for i ≤ 9) and bi+1(i) = 0.1 (for i ≤ 9).

The cost function is the following: g(1, uk = C) = 1, g(2, uk = C) = 1.1,

g(3, uk = C) = 1.2, ..., g(9, uk = C) = 1.8 and g(10, uk = C) = 1000; and

g(i, uk=S) = 50 (for i≤9) and g(10, uk=S) = 200.
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Applying Baum-Welch for parameters estimation yields the state 7 as

threshold state. The expected cost until stop is 272.6329. In Fig. 5.11 we

present the same data used in scenario 1 using the new classification. In this

case, we stop the system at k = 71 since X̂k = 7. As should be expected,

setting L = 10 implies different results from the model using L = 5.

Figure 5.11: Scenario 4: condition observed and state estimation.
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Conclusion, Suggestions for

Future Research

In this dissertation, we have studied the problem of constructing Condition-

Based Maintenance policy for systems under periodic inspection. The system

state is represented by a discrete-state Markov process and we take into ac-

count that the condition measurement may be not perfect. Also, we have

discussed the model parameters inference from a both theoretical and prac-

tical point of view.

The main result of this dissertation is a framework that combines opti-

mization and model parameter computation from historical data. We illus-

trated the application of our methodology in a industrial case and provided

a step by step discussion of our approach, using four different scenarios, illus-

trating its key points. The result suggests an approach suitable for industrial

applications, which can help managers to improve their decisions for cases

similar to the one that we tackled.

Few papers in the literature have pointed out that the Hidden Markov

Model theory is efficient to model historical data concerning condition mea-

surement. This dissertation expands the use of HMMs in reliability and

maintenance field by combining an optimization model with input parame-

ters estimation from empirical data. We believe our work can increase the

use of such models as well as motivate more research in this area.

An important issue of our approach concerns the parameters’ estimation
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robustness, since this step critically determines the CBM model outputs as

well as the performance and effectiveness of the model outcome. We have

chosen HMM because of its solid mathematical structure and theoretical

basis, as well as the computational efficiency to compute the estimations.

However, some aspects of HMM were not explored – for instance, a formal

discussion concerning the quality of the parameter estimates provided by the

Baum-Welch algorithm.

There are a couple of extensions, refinements, and alternative formula-

tions that might be worth exploring. As a future work, one can plan to im-

prove on our approach by considering some sophistication, we suggest some

possible directions:

1. Use of intermediate repairs, such as the minimal one. For instance, a

minimal repair will bring the system back to the state it was just after

failure.

2. Consider the stochastic rejuvenation. In this case, the repair action

outcome is stochastic, i.e., the state that the system will be brought is

a probability distribution.

3. Use random or sequential inspection (periodic inspection is a particular

case). One should also consider the cost do obtain information about

the system condition through inspection or any other mean (such as

on-line monitoring using sensors).

Naturally, these refinements would increase the complexity and thus would

require a different approach to process historical data for estimation of model

parameters.
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