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Abstract

Generally, the derivation of an inventory policy requires the knowledge of the underlying

demand distribution. Unfortunately, in many settings such as retail, demand is not completely

observable in a direct way or inventory records may be inaccurate. A variety of factors, in-

cluding the potential inaccuracy of inventory records, motivate retailers to seek replenishment

policies with a fixed order quantity. We derive estimators of the first two moments of the

(periodic) demand by means of renewal theoretical concepts. We then propose a regression-

based approximation to improve the quality of the estimators. These estimators are used in

conjunction with the Power Approximation (PA) method of Ehrhardt and Mosier (1984) to

obtain an (r, Q) replenishment policy. The proposed methodology is robust and easy to code

into a spreadsheet application. A series of numerical studies are carried out to evaluate the

accuracy and precision of the estimators, and to investigate the impact of the estimation on the

optimality of the inventory policies. Our experiments indicate that the proposed (r, Q) policy

is very close, with regard to the mean total cost per period, to the (s, S) policy obtained via the

PA method when the demand process is fully observable.
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1 Introduction

While modern-day inventory theory has been under development for more than 50 years, the ap-

plication of the theoretical results from this effort to real-world applications remains a challenge.

In particular, many common theoretically optimal inventory policies fail to deliver their promised

results in practice because the assumptions in the underlying models often do not hold. One key

underlying assumption that is often violated in practice is that the demand distribution and the as-

sociated parameter values are known with certainty by the policy maker. In reality, very few firms

know the true underlying demand distributions for their products. Instead, firms assume a specific

demand distribution and replace the unknown parameters with estimates computed from historical

data. Unfortunately, the data used to estimate these parameters is often limited due to frequent

product introductions and changing customer preferences. Even in the rare occasions where the

customer demand distribution is known with certainty, inventory control is still problematic due to

frequent inaccuracies in the system-reported inventory positions.

Recent studies have shown that system-reported inventory positions are often inaccurate. Ac-

cording to DeHoratius and Raman (2004), records were inaccurate for 65% of the SKUs at a

publicly traded retailer. Kang and Gershwin (2004) found that cycle counts at the SKU level across

the stores of a global retailer matched the system-reported inventory count in only 51% of the cases.

The best performing store in their study only achieved a 70-75% accuracy level. Kok and Shang

(2005) provide an example of a heavy equipment manufacturing firm where audits uncovered in-

ventory inaccuracies of 1.6% of total inventory value at their distribution centers. Problems arise

when firms with system-reported inventory inaccuracies continue to manage their stock with poli-

cies developed assuming perfect information about inventory positions and demand distributions.

Inventory inaccuracies also affect the demand distribution estimation process, as most common

inventory replenishment polices require the estimation (based on historical demand as recorded

by the information system) of the first and second moments of the demand distribution. Kok and

Shang (2005) estimate the cost penalties at the heavy equipment manufacturer for the misuse of

such “perfect-information” replensihment policies at 5%.
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Why are system-reported inventory levels so inaccurate? Possible reasons appearing in the

literature include misplacement, shrinkage, spoilage, and transaction errors. Misplacement involves

the physical stocking of an item in a location where the customer or employee can not locate it.

Non-perishable items may be found and replaced during a periodic cycle count and system inventory

records can be adjusted, but perishable products often expire before they are noticed or located.

Shrinkage typically refers to the theft of items by customers or the firm’s employees. Spoilage occurs

when a perishable item is not sold before its expiration and transaction errors refer to mistakes in

the process of receiving or selling an item. A common type of transaction error in the retail industry

involves the mis-scanning of items at the point-of-sale terminal.

The net impact of these reasons on system record inventory counts is almost always an over-

reporting of actual inventory levels. While misplacements and transaction errors mostly affect the

system record counts and not the physical inventory counts, shrinkage and spoilage directly decrease

the physical count, resulting in a system wide over-reporting of physical accounts. This net-loss in

actual inventory levels is supported by industry-wide empirical studies: A study of the 200 largest

European retailers of consumer goods reports an average stock loss of 1.75% of annual sales (ECR

Europe 2003) while a similar study of 118 U.S. retailers reports an average loss of 1.7% (Hollinger,

2003). New tracking technologies such as Radio Frequency Identification (RFID) offer promise

of decreasing these numbers, but are currently cost prohibitive for most consumer items. Better

security and more frequent cycle counts also help but are also often cost-prohibitive, especially in

the consumer goods retail sector. Thus, more robust replenishment policies are needed that account

for realities such as inaccurate system-reported inventory levels.

The motivation for our problem comes from a small to mid-sized retailer facing stochastic

demand and lead-times, linear holding and backordering cost, fixed order cost, and is restricted to

placing orders at the start of each period. If the demands during successive periods are independent

and identically distributed (i.i.d.) random variables from a known distribution, the lead-times form

an i.i.d. random sequence, and the reported inventory levels are accurate, an (s, S) policy derived

from these parameters minimizes the long-run expected undiscounted total cost per period. If only

2



the first two moments of the demand distribution are known, an approximately optimal (s, S) policy

can be obtained, e.g., by the Power Approximation (PA) method of Ehrhardt and Mosier (1984).

Because of the reasons described above however, recorded inventory is often inaccurate and there

is uncertainty about the true demand distribution — even the first two moments of the distribution.

Detailed audits of every SKU every period are unrealistic, so the retailer is forced to place orders

each period with imperfect information about its inventory position. In addition to an inventory

policy that acknowledges the reality of system-reported inventory position inaccuracies, the retailer

also desires a policy that reflects other common constraints of the industry such as a stable order

quantity and a simple robust policy that does not require dynamic (re-)optimization and can be

programmed in a spreadsheet or database software application.

The main objective of this paper is to provide an (r, Q) inventory policy that minimizes the

long-run mean (undiscounted) total cost per period subject to the aforementioned constraints. Our

choice of an (r, Q) policy over an (s, S) policy comes from the retailer’s desire for a stable order

quantity in each period. To this end, we first construct estimators for the first two moments of

the demand distribution using well-known results from renewal theory and realizations of periods

between orders. We proceed with the derivation of approximately optimal inventory policies similar

in spirit to the simple and robust PA method first described in Ehrhardt (1979) and revised in Ehrhardt

and Mosier (1984). The PA method has been used successfully in a variety of settings and owes

its popularity to its simplicity and the surprisingly good fit of the regression model to a variety

of demand distributions. We proceed with the development of an (r, Q) policy with r = s that

approximates the near-optimal (s, S) policy calculated using the PA method. The performance of

the (r, Q) policy is evaluated by means of an experimental grid consisting of 216 design points

and is similar to Ehrhardt’s experimental design. Since the cost of the (r, Q) policy is sensitive to

the variance of the demand per period, we develop an alternative regression-based estimator of the

variance of the periodic demand using the same grid. The incorporation of this estimator results

in a substantially improved (r, Q) policy with regard to the mean total cost per period. Indeed,

a simulation study based on our experimental grid reveals that the relative difference between the
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average costs per period induced by the proposed PA-based (r, Q) policy and the (s, S) policy under

fully observable demands is within ±5% for 94% of the 216 design points.

The rest of the paper is organized as follows: In the next section, we position our research in

the context of the relevant literature. §3 contains the key assumptions and notation, and reviews

the PA method. In §4, we discuss the estimation of the first two moments of the demand per period

and the conversion of (s, S) policies obtained by the PA method to (r, Q) policies. In §5, we

evaluate the quality of the moment estimators in §4 and the performance of the (r, Q) policy by

means of an extensive experimental study. In §6, we propose a refined estimator for the variance

of the demand per period, and use the experimental setting from §5 to show that this estimator

yields an (r, Q) policy that is close to the (s, S) policy obtained from the PA method under fully

observable demand with regard to the mean total cost per period. §7 contains conclusions and a

discussion of managerial implications. The Appendix, available online at <ftp://ftp.isye.

gatech.edu/pub/christos/Bai_etal_2005_Appendix.pdf>, contains tables with

experimental results.

2 Review of Existing Inventory Inaccuracy Compensation Meth-

ods

In a world with perfect information, no system-reported inaccuracies, and no restrictions on the

periodic order quantity, an (s, S) policy minimizes the long-run expected total cost per period. Scarf

(1960) and Iglehart (1963a) prove the optimality of (s, S) policies, and Veinott and Wagner (1965)

consider methods for computing them when demands per period are i.i.d. and normally distributed

random variables. Even under these ideal conditions, (s, S) policies are difficult to compute. Thus,

several approximations including Ehrhardt’s (1979) PA method were developed. Porteus (1985)

offers a review of some of the most common approximations. Our scenario assumes no prior

knowledge of the demand distribution type or its moments, and that the total demand in a period

is not directly observable. These assumptions in addition to our pre-stated requirement of a simple
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robust policy that does not require dynamic (re-)optimization led us to choose the PA method as

the basis for our work.

When the demand is observable but its distribution is unknown, a commonly used approach is

to fit a statistical model to the observed demand data and use the fitted model to obtain the desired

policy. Typically, limited historical data is available to estimate the parameters of the demand

distribution. Jacobs and Wagner (1989) investigate how the choices of statistical estimators affect

the mean total cost. Specifically, they show that when demand variability is large, exponentially

smoothed estimators can substantially outperform the sample mean and sample variance; hence

they yield improved (s, S) policies.

If the demand in a period is not observable directly, the problem becomes a lot more challenging.

There is little previous research on how a firm should control its inventory under unobservable

demand when the demand distribution is also unknown. This situation happens quite frequently

in practice, however, due to the system-reported inventory inaccuracies that are common at most

retailers. Based on their work at the MIT Auto-ID Center, Kang and Gershwin (2004) discuss

five methods that retailers can use in practice to compensate for their inventory inaccuracies: (I)

iteratively increasing the safety stock of an inventory policy with a reorder point, (II) cycle counts,

(III) manual reset of the inventory record, (IV) periodic negative adjustments of the inventory

position record, and (V) using tracking technology such as RFID.

The first method involves a firm incrementally increasing its safety stock (calculated using a

policy that assumes perfect inventory information) until acceptable customer service levels are

achieved. The second method relies on periodic cycle counts to synchronize the system-recorded

inventory level with the physical count. The third method involves monitoring the order frequency

of an item and resetting its stock to zero if an unusual number of periods without an order are

observed. The fourth method is essentially an attempt to model and subtract the other forms of

demand other than demand from purchases. The fifth method simply depends on better inventory

tracking.

Of the five methods, the first two are the most common but have major limitations. Method I
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involves trial and error and often results in excessive safety stocks. A firm using Method II typically

ignores the inventory inaccuracy problem during its order replenishment decisions but periodically

corrects the inaccuracy through a physical count. A common problem with this method involves

determining the frequency of the expensive physical counts. Kok and Shang (2005) include the cost

of cycle counts in a joint optimization problem of how much to replenish and how often to count.

For a finite horizon with no setup cost, they show that an inspection-adjusted base-stock policy is

near-optimal. For the retailer providing our motivation, physical scheduling constraints require that

manual cycle counts only occur at certain intervals and a significant amount of time elapses between

these intervals. Thus, we do not include the time between cycle counts as a decision variable. In

fact, our policy may be used by a firm that never corrects its reported inventory level through cycle

counts, making it applicable to situations where cycle counting is impractical.

Method III is becoming more common in the retail industry as it only involves the addition

of a simple logic code into the firm’s inventory management system. It is only useful if high

service levels are not required, as a number of periods may go by before the system’s logic resets

the inventory level of an item to zero and issues a replenishment request. A second drawback of

this method is that it may actually exacerbate the system recorded inventory accuracy problem. A

tradeoff involved with setting the threshold for the number of periods with zero demand before the

system resets the inventory level of an item equal to zero is that a threshold set too low results in

item inventory levels being set equal to zero when units are actually in stock and the number of

zero-demand periods actually resulted from a true sequence of low demands. In such cases, the use

of this method adds additional system-recorded inventory inaccuracies.

Methods IV and V are discussed in Atali et al. (2005), who measure the value of RFID in the

context of a periodic review inventory policy with no fixed ordering cost, multiple replenishments

that occur between cycle counts, and imperfect inventory information. They explicitly model four

demand streams that affect inventory accuracy: customer demand, misplacements, shrinkage, and

transaction errors. They then develop policies based on finite-horizon dynamic programs, which

account for the inventory inaccuracy, but are non-stationary in time and vary from period to period
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based on the time remaining until the next cycle count. In contrast, our policy is a stationary, infinite-

horizon policy that accounts for a fixed order cost and does not require an explicit knowledge of the

distributions for the multiple drivers of demand. When the fixed ordering cost is sufficiently large,

our policy resembles the traditional PA method, which we review in the next section.

3 Review of the Power Approximation Method

We set the length of each period to one day. Replenishment costs consist of a setup cost K and a

unit cost c. At the end of each day a cost of h or b is incurred for each unit on hand or backlogged,

respectively. We assume that the demands X1, X2, . . . for a specific item during different days are

i.i.d. from an unspecified distribution with mean µ and variance σ 2 < ∞. Lead-times are expressed

in days. Let E(L) and Var(L) denote the mean and variance of lead-time. The objective is the

minimization of the long-run expected undiscounted total cost per day. The use of undiscounted

cost is common for retail applications where lead-times are typically expressed in days.

Under the assumptions above, an (s, S) policy is optimal. That is, if during the periodic inspec-

tion the inventory position (inventory on hand plus on order), say x, is less than s, an order of S − x

units is placed. The computation of the reorder point s and the order-up-to value S requires the

complete specification of the demand distribution, and is difficult to carry out in practice. For fixed

lead-times and large K and b, Roberts (1962) derives approximations that are easy to compute but

still require full knowledge of the demand distribution. Unfortunately, the demand distribution is

rarely known in full and lead-times are frequently random; in fact, managers are fortunate if they

know the first two moments of the distributions for these random variables. To address these issues,

Ehrhardt (1979) proposed the PA method. For fixed lead-times, the PA method assumes the mean

total cost per day, T , can be modeled as

T/h = cf1(L, θ)f2(µ, θ)f3(π, θ)f4(κ, θ), (1)

where θ = σ 2/µ, κ = K/h, π = b/h, fi(x, θ) = xγi(x,θ) exp[δi(x, θ)] (i = 1, . . . , 4), and
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γi(x, θ), δi(x, θ) are linear combinations of variables from the set

{1, x, 1/x, θ, 1/θ, x2, 1/x2, θ2, 1/θ2, xθ, x/θ, θ/x, 1/(xθ)}.

Model (1) is fitted via regression based on optimal values obtained for a grid of 288 test cases

using Poisson or negative binomial demand distributions (with variance-to-mean ratios, θ, equal

to 3 or 9), three lead-times (0, 2 and 4 days), two values for K (32 and 64), and four values for π

(4, 4, 24, and 99). In addition to the parameters s and S, the PA method provides easy-to-compute

formulas for the mean holding cost per day, the mean replenishment cost per day, the mean backlog

cost per day, and the long-run backlog protection (defined as the probability that a stockout does

not occur during a day); see Ehrhardt (1985) for details.

Ehrhardt (1984) shows that for random lead-times, the PA method remains valid when µ is

replaced by µL = [E(L)+1]µ, the mean demand during the time needed to replenish the inventory,

and σ 2 is replaced by σ 2
L = [E(L)+1]σ 2+µ2Var(L), the variance of the demand during a lead-time.

The policy is determined as follows (the subscript “p” stands for “power”). First calculate

Dp = 1.30µ0.494κ0.506(1 + σ 2
L/µ2)0.116,

z =
√

Dp/(σLπ), and (2)

sp = 0.973µL + σL(0.183/z + 1.063 − 2.192z).

If Dp/µ > 1.5, let s = sp and S = sp + Dp. Otherwise, set s = min{sp, S0} and S =

min{sp +Dp, S0}, where S0 = µL +8−1(b/(b+h)) and 8−1(·) is the inverse c.d.f. of the standard

normal distribution. With discrete values, sp, Dp and S0 are rounded to the nearest integer. If any

of the moments µ, σ 2, E(L) or Var(L) are not known, they can be replaced by statistical estimates.

In the next section, we address the estimation of the first two moments of the daily total demand

(purchase, shrinkage, etc.) by means of a well-known renewal theoretic approach. We then use

these parameter value estimates to derive a modified (r, Q) policy and compare it against an optimal

(r, Q) policy found via simulations over a grid around (s, S − s).

8



4 Demand Estimation and Derivation of (r, Q) Policies

As described in the previous section, the PA method can use estimates of the mean and variance of

the daily demand and lead-time distributions. We now derive good estimations for the parameters of

these distributions based on imperfect demand and inventory information. Our estimation procedure

is motivated by the retailer whose current inventory system uses a non-optimal “two-bin” periodic

review (r, Q) inventory policy, where Q is a non-optimal quantity determined by the retailer’s

supplier’s current case-pack size and r = Q/2. The policy works as follows. The inventory status

is checked every T days. 1 If the inventory level is less than r , a quantity Q is ordered. Let ti

denote the time that the ith order is placed, which is recorded in a database. When an order of size

Q arrives, its arrival time Ri is also recorded in the database. Only these three pieces (ti, Ri, Q) of

historical information are available.

Recall that the mean and variance of the lead-times are also an input to the PA method. Since

the historical lead-times can be obtained from Ri − ti , one can easily obtain their sample mean and

sample variance. Let τi = ti − ti−1, denote the days between two successive orders (DBO) with

t0 = 0. As a random variable, DBO carries some information that we use towards the estimation

of the demand moments. Without loss of generality, we assume that system inventory records are

reviewed at the start of each day (T = 1). The next subsection describes our approach.

4.1 Estimation of Mean and Variance under Imperfect Demand Information

In this section, we provide a method for estimating the mean and variance of the daily demand

distribution. We define demand in this case as total item usage, equal to the sum of customer sales,

spoilage, shrinkage, permanent misplacements, items sold but not recorded, and any other unknown

effects that negatively impact the item’s physical count.

Based on our inventory control policy, once the approximate inventory position falls below the

1Recall that inventory status is based on system reported inventory levels; actual inventory levels may be lower due

to the unobservable demands described in the Introduction. Occasional cycle counts will align these two measures, but

it is not required that the cycle counts occur at the time of the inventory level review.

9



reorder point r , then a order of size Q will be placed. To obtain the estimators for the first two

moments of the daily demand, we assume temporarily that delivery is instantaneous and that the

total demand during the time interval [ti−1, ti) elapsed between orders exceeds the order quantity

Q. This allows us to count the cycles by means of a renewal process. Further, we use renewal-type

approximations for large Q to derive the estimators for µ and σ 2.

Let

N(u) ≡ sup{n : Zn = X1 + X2 + · · · + Xn ≤ u}, u ≥ 0.

Then {N(u) : u ≥ 0} is a renewal process and the time interval between order replenishments has

length

τ = N(Q) + 1 = inf{n : Zn > Q}.

From Heyman and Sobel (1982, Section 5-3) we have

E[N(Q)] =
Q

µ
+

σ 2 − µ2

2µ2
+ o(1) as Q → ∞, (3)

where the notation o(1) denotes a function h(z) such that h(z)/z → 0 as z → ∞. Under the

additional assumption E(X4
i ) < ∞, one also has

Var[N(Q)] =
σ 2

µ3
Q + cv + o(1) as Q → ∞, (4)

where

cv =
2σ 2

µ2
+

3

4
+

5

4

σ 4

µ4
−

2

3

E(X3
1)

µ3
.

Since τ = N(Q) + 1, we have

E(τ ) =
Q

µ
+

σ 2 + µ2

2µ2
+ o(1) as Q → ∞

and Var(τ ) = Var[N(Q)].

Remark 1 In addition to these approximations for the first two moments of τ , one has the following

central limit theorem:

τ − Q/µ − 1√
σ 2Q/µ3

d
−→ N(0, 1) as Q → ∞,
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where N(α, β2) denotes a normal random variable with mean α and variance β2 and “
d

−→” denotes

convergence in distribution. Hence, we can use the approximation

τ ≈ N

(
Q

µ
+ 1,

Qσ 2

µ3

)
. ⊳

The following theorem proposes consistent estimators for µ and σ 2.

Theorem 1 Assume that (a) the daily demands are i.i.d. random variables with meanµand variance

σ 2, (b) deliveries are instantaneous, and (c) the total demand during each time interval between

orders exceeds the order quantity Q. Let τi be the length of the ith time interval between orders, and

let τ̄ (n) and S2
τ (n) denote the sample mean and sample variance, respectively, of the τi . Consider

the following estimators for µ and σ 2:

µ̂ = Q/τ̄(n) (5)

and

σ̂ 2 =
S2

τ (n)Q2

τ̄ 3(n)
. (6)

Then, as Q → ∞ and n → ∞,

µ̂
p

−→ µ and σ̂ 2
p

−→ σ 2, (7)

where “
p

−→” denotes convergence in probability.

Proof Let M(·) ≡ E[N(·)] be the renewal function. For fixed Q, the (weak) law of large numbers

implies

τ̄ (n)
p

−→ M(Q) + 1 as n → ∞,

hence

τ̄ (n)/Q
p

−→ [M(Q) + 1]/Q as n → ∞.

Since M(Q)/Q → 1/µ, as Q → ∞, by the elementary renewal theorem (Heyman and Sobel,

1982), one has

τ̄ (n)/Q
p

−→ 1/µ as n → ∞ and Q → ∞. (8)
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Equation (5) follows from (8) and the continuous mapping theorem (Lehmann, 1990).

To prove (6), write

σ̂ 2 =
S2

τ (n)

Var(τ )

Q3

τ̄ 3(n)µ3

Var(τ )

Q
µ3. (9)

The first term on the r.h.s. of (9) converges to 1 since S2
τ (n)

p
−→ Var(τ ). The second term of (9)

also converges to 1 by µ̂
p

−→ µ and the continuous mapping theorem. On the other hand, equation

(4) implies Var(τ )/Q → σ 2/µ3 as Q → ∞. Equation (6) follows from the last three properties

and Slutsky’s theorem (Lehmann, 1990).

4.2 Derivation of (r, Q) Policies

Once the estimates of the mean and variance of the daily demand over a lead-time are obtained,

they can be applied to the PA method to obtain the reorder point s and order-up-to level S. Since the

current inventory position is not observable however and the retailer requires a fixed order quantity,

such an order-up-to policy cannot be applied directly. Instead, we consider (r, Q) policies with a

fixed order quantity Q. In this section, we discuss how to obtain such a policy based on the derived

(s, S) policy so that the total cost of an (r, Q) policy is close to that of the optimal (s, S) policy.

To test the accuracy of our (r, Q) policies, we use the same numerical examples from Veinott and

Wanger (1965) with setup cost K = 64, unit holding cost h = 1, unit penalty cost b = 9, zero

lead-time, and Poisson-distributed daily demand. In their paper, they provide optimal values for s

and S, and the total cost based on the known information for the demand distribution. The system

parameters and optimal values are presented in columns 2-3 of Table 1, with the mean demand

listed in column 1.

4.2.1 Direct (r, Q) Policy

An intuitive and direct transformation of an (s, S) policy to an (r, Q) policy is to use r = s as the

reorder point and Q = S − s as the order quantity. The direct (r, Q) policy and the respective cost

are shown in the columns 4-5 of Table 1. Unfortunately, due to the inventory record inaccuracies

discussed previously, the inventory position prior to the placement of an order will typically be

12



lower than r and the fixed order quantity Q will bring it under S. The poor “fit” of this policy is

evident from the entries when the mean demand is 63 or 64.

4.2.2 Adjusted (r, Q) Policy

Suppose momentarily that we use an (s, S) policy (that is, r = s and Q = S −s) with instantaneous

replenishments and known daily demand distribution. Under this policy, the first replenishment

epoch is N(S−s)+1 = N(Q)+1 and the inventory position (prior to replenishment) in steady-state

is

S − E[ZN(Q)+1] = S − µ[M(Q) + 1]

= S − µ

[
Q

µ
+

σ 2 − µ2

2µ2
+ 1 + o(1)

]

= S − Q −
σ 2 + µ2

2µ
+ o(µ)

= s −
σ 2 + µ2

2µ
+ o(µ), (10)

where the second equality is due to equation (3).

For simplicity, one can disregard the terms σ 2/(2µ) and o(µ), and use the adjusted order

quantity Q = S − s + µ/2. (A justification for the elimination of the first term is given in Remark

3 below.) Of course, the approximation in (10) is an asymptotic result when the order quantity Q

is large. In the case of a small order quantity, such a modified (r, Q) policy may deviate from the

optimal policy significantly. Thus, we consider the following adjustment:

Q = max

{
S − s + µ/2, EOQ ≡

√
2Kµ/h

}
. (11)

This empirical adjustment is motivated from the argument that the optimal order quantity should be

related to the economic order quantity (EOQ) to allow for the trade-off between the ordering and

holding cost. The respective (r, Q) policy and cost are shown in the columns 6-7 of Table 1.

Remark 2 Additional motivation for the use of the EOQ in equation (11) is provided by the case in

which deliveries are instantaneous (L = 0) and σ 2/µ = 1. Then the quantity Dp from equations
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Table 1: Comparison of the optimal (s, S) policy and the adjusted (r, Q) policy based on the

experiments in Veinott and Wagner (1965)

µ Optimal (s, S) Direct (r, Q) Adjusted (r, Q) Optimal (r, Q)

(s, S) Cost (r, Q) Cost (r, Q) Cost (r, Q) Cost

21 (15, 65) 50.410 (15, 50) 51.411 (15, 61) 51.157 (15, 56) 50.992

22 (16, 68) 51.630 (16, 52) 52.508 (16, 63) 52.416 (16, 57) 52.193

23 (17, 52) 52.757 (17, 35) 61.532 (17, 55) 53.504 (17, 59) 53.354

24 (18, 54) 53.514 (18, 36) 62.540 (18, 56) 54.659 (18, 60) 54.516

51 (43, 110) 71.612 (43, 67) 82.510 (43, 93) 79.709 (43, 87) 79.495

52 (44, 112) 72.249 (44, 68) 83.180 (44, 94) 80.489 (43, 89) 80.236

55 (47, 118) 74.165 (47, 71) 85.185 (44, 99) 82.995 (44, 90) 82.582

59 (51, 126) 76.679 (51, 75) 87.770 (51, 105) 86.238 (51, 92) 85.566

61 (52, 131) 77.933 (52, 79) 88.655 (52, 110) 87.884 (52, 97) 86.928

63 (54, 73) 78.290 (54, 19) > 104 (54, 90) 88.802 (54, 99) 88.376

64 (55, 74) 78.414 (55, 19) > 104 (54, 91) 89.263 (54, 97) 89.047

(2) is equal to

Dp = 1.30µ0.494(K/h)0.50620.116 .
= EOQ. ⊳

To evaluate the performance of the adjusted (r, Q) policy, we also searched for an optimal

(r, Q) policy and the corresponding cost by running 100 replications of a simulation model over

10 years. The values of r and Q were chosen from a grid around (s, S − s), where s and S are

given in column 2 of Table 1. The values of r and Q obtained from the simulation-based search,

along with the associated costs, are displayed in columns 8-9. These numerical results show that

the adjusted policy based on equation (11) works much better than the direct (r, Q) policy with

r = s and Q = S − s, and is close to the best (r, Q) policy found by the simulation experiment.

Remark 3 The consideration of the term σ 2/µ towards the derivation of the adjusted order quantity

in (11) could result in larger order quantities Q. Since the optimal order quantities in column 8 of

Table 1 are smaller than the adjusted order quantities in column 6 (with the optimal reorder points
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being equal to the respective values for the adjusted policy), such an inclusion would not have a

positive effect in this case. ⊳

5 Numerical Studies for Estimation Accuracy and Policy Per-

formance

In the previous section, we derived asymptotic estimators for the first two moments of the daily

demand based on partial demand information from the DBO. In this section we evaluate the “fit”

of these estimators by using them to create a policy based on the PA method, and then test the

performance of the policy via simulation. We start with an experimental design based on various

demand distributions, setup and unit order costs, lead-times, and constant order quantities; this

design grid is similar to the grid of Ehrhardt (1979). At each design point we perform a simulation

experiment consisting of 100 independent replications. Each replication has two phases. The first

phase collects realizations of DBO over a period of 2 years based on a fixed reorder point r = 15.

This DBO data is used to compute the estimates of µ and σ 2 via equations (5) and (6). The

PA method in §3 then uses estimates to derive the approximately optimal (s, S) inventory policy,

which is then converted to the adjusted (r, Q) policy using r = s and Q from equation (11). At this

instance, the second phase starts with an inventory position of zero and an order of size Q, continues

for a time window of 5 years, and returns a realization of the average total cost per day. (The long

duration of this phase suffices to alleviate the effects of the initial conditions.) We benchmark

the overall performance of our approach in terms of the average total daily cost via comparisons

with instances where the demand is observable, the unknown parameters are estimated by their

sample moments, and the PA-based (s, S) policy is implemented; we characterize those instances

as associated with fully observable demand.

Remark 4 Jacobs and Wagner (1989) studied the impact of demand estimation on the total system

cost under fully observable demands. In particular, they showed that exponentially smoothed

averages and absolute deviations can outperform the sample mean and sample standard deviation,
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respectively, when the (s, S) policy is computed via the PA method of Ehrhardt (1979). We do not

employ the estimators of Jacobs and Wagner (1989) for two reasons: (1) the two-year data collection

period is substantially long to allow the computation of sound estimates forµ andσ when the demand

is fully observable, and (2) our estimators are not based on smoothing techniques. However, the

development of more robust estimators for µ and σ (e.g., using exponentially weighted moving

averages) when the demand is partially observable is an important problem that is worth future

investigation. ⊳

We use a grid of 216 test cases based on the parameter assignments in Table 2. Three types

of demand distributions are used: Poisson, and negative binomial with variance-to-mean ratios

of 3 and 5. The appropriateness of these discrete models has been discussed in Chatfield et al.

(1966) and Ehrhardt (1979). Each demand distribution is given two mean values, 8 and 16. Two

values, 2 and 4, are assigned to lead-time. Since the cost function is linear in the parameters K ,

b, and h, the value of the unit holding cost is a redundant parameter which is set at unity. The

unit penalty costs are 4, 24 or 99, and the setup costs are 32 or 64. The unit replenishment cost is

unspecified because it does not effect the computation of an optimal policy for undiscounted and

infinite-horizon models. Based on the system parameters above, the reorder point of r = 15, and

the well-known EOQ model, we calculate the minimal and maximal order quantity for each design

point; the minimum is around 25 and the maximum is around 46. Therefore, the constant order

quantity is specified at three values: 20, 40, and 80. All combinations of these parameters settings

form the experimental grid of 216 cases. Table 11 in the Appendix lists the parameters for each

case. Cases 1-72 correspond to Poisson demand with parameter µ, and cases 73-216 correspond to

negative binomial demand with parameters r and p.

5.1 Performance Evaluation

In this section, we proceed with a thorough evaluation of the performance of the estimates of the

first two moments of the daily demand and the effectiveness of our methodology with regard to

the total average daily cost. We first examine the statistical properties of the estimators (5) and (6)
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Table 2: System parameters for experimental grid

Factor Levels
Number

of Levels

Poisson (σ 2 = µ)

Demand distribution Negative Binomial (σ 2 = 3µ) 3

Negative Binomial (σ 2 = 5µ)

Mean demand (µ) 8, 16 2

Replenishment lead-time (L) 2, 4 2

Replenishment setup cost (K) 32, 64 2

Unit penalty cost (b) 4, 24, 99 3

Unit holding cost (h) 1 1

Order quantity (Q) 20, 40, 80 3

using several standard statistical measurements for their accuracy and precision. Let ni denote the

number of observed DBO within simulation run i, i = 1, . . . , 100. Recall that in the first phase

of the experiment, the total number of daily demands is equal to 730 (2 years) but the number of

observed DBO is a random variable.

Let τi,j , j = 1, . . . , ni , denote the observed DBO during the ith replication. The estimated

mean within the ith replication is µ̂i = Q/τ̄ i , where τ̄ i =
∑ni

j=1 τi,j/ni . The estimate of the

mean daily demand over all samples is µ̂ = Q/τ̄ , where τ̄ =
∑100

i=1 τ̄ i/100. Let S2
τ,i denote the

sample variance of the DBO within the ith replication. By equation (6), the estimate of the standard

deviation of daily demand based on replication i is

σ̂ i =

√
S2

τ,iQ
2/τ̄ 3

i . (12)

The overall estimate of the standard deviation of daily demand is obtained by avaraging the estimates

from all replications:

σ̂ =
1

100

100∑

i=1

σ̂ i . (13)

In addition, we define the overall sample variance of historical DBOs by S2
τ =

∑100
i=1 S2

τ,i/100.
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In order to evaluate the accuracy and precision of the estimates, we use the following measures.

The first measure is the Relative Root Mean Squared Error (RRMSE) of the mean estimate, denoted

by

RRMSEµ =

√∑100
i=1

(
µ̂i − µ

)2

100

/
µ. (14)

RRMSE is also called the standard error of the estimate and measures the spread of the estimate

from the true value. The second measure is called the Relative Standard Deviation (RSD) of the

mean estimate, denoted by

RSDµ =

√∑100
i=1

(
µ̂i − µ̂

)2

99

/
µ. (15)

Moreover, we define the Relative Bias (RBias) by

RBiasµ =
(
µ̂ − µ

)
/µ, (16)

which measures the relative precision of the estimate. The detailed numerical results are listed in

Tables 12 to 17 in the Appendix.

Table 3 contains a summary of the experimental results. The averages of RBiasµ, RSD and

RRMSE are listed in rows 2-10 based on the level of the coefficient of variation σ/µ and Q, with

the remaining parameters being fixed. The last three rows contain the maximum, minimum, and

overall average of RBiasµ, RSD and RRMSE. Based on these results, we can infer that the estimate

(5) of the mean demand works as well as the sample mean of the daily demands as the differences

of all three measurements are small. For example, the average of RRMSE is 0.0186 under fully

observable demand and 0.0187 under partially observed demand. Furthermore, the difference of

the average of RBiasµ between partial information and full information is only 0.0004.

Notice that the size of the constant order quantity has negligible effect on the estimate of

demand mean, and that the estimate of the mean daily demand performs well throughout the entire

experimental grid. As the ratio σ/µ increases, the average of RBiasµ and RSD slightly increase as

well; this behavior is expected.
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Table 3: Summary results for the mean demand estimates under full and partial observation

Full Observation Partial Observation

Parameter RBias RSD RRMSE RBias RSD RRMSE

0.250 0.0002 0.0092 0.0092 0.0004 0.0092 0.0093

0.354 -0.0004 0.0132 0.0133 -0.0001 0.0132 0.0133

0.433 0.0002 0.0161 0.0162 0.0006 0.0162 0.0163

σ/µ 0.559 0.0009 0.0208 0.0209 0.0014 0.0208 0.0210

0.612 0.0011 0.0227 0.0228 0.0016 0.0227 0.0229

0.791 0.0003 0.0291 0.0292 0.0013 0.0294 0.0295

20 0.0005 0.0188 0.0188 0.0010 0.0188 0.0189

Q 40 0.0003 0.0184 0.0185 0.0008 0.0185 0.0186

80 0.0005 0.0183 0.0184 0.0008 0.0185 0.0186

Max 0.0067 0.0342 0.0342 0.0074 0.0342 0.0344

Min -0.0041 0.0079 0.0079 -0.0034 0.0080 0.0081

Average 0.0004 0.0185 0.0186 0.0008 0.0186 0.0187
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Similarly, we define the error measures for the standard deviation estimate as follows:

RRMSEσ =

√∑100
i=1

(
σ̂ i − σ

)2

100

/
σ, (17)

RSDσ =

√∑100
i=1

(
σ̂ i − σ̂

)2

99

/
σ, (18)

and RBiasσ =
(
σ̂ − σ

)
/σ . The numerical comparisons under fully and partially observed demand

are displayed in Tables 18 to 23 in the Appendix. Table 4 contains a summary of these results.

From Table 4 we observe that the estimate of the standard deviation based on partially observed

demand performs worse than the estimate obtained under fully observed demand (the last estimator

is the sample variance of the daily demands). Since the average of RSDσ under partial demand

observation is close to that under full observation, the error mainly comes from RBiasσ : the overall

average RBiasσ under partial observation is almost 50 times larger than that under full observation.

Thus, we focus our analysis on RBiasσ . Table 4 indicates that both the constant order quantity

Q and the coefficient of variation σ/µ significantly affect the performance of the estimate of the

standard deviation. As the constant order quantity Q increases, RBiasσ , RSDσ and RRMSEσ

decrease quickly. Once the order quantity Q becomes large enough, our estimate of standard

deviation works well with the average RBiasσ being only 0.0784 when Q = 80. The impact of

the demand coefficient of variation σ/µ on the estimate for σ is more complex. For example, the

maximum RBiasσ under Poisson demand and order quantity 20 is equal to 0.7476. For the same

type of demand distribution but smaller mean demand, the RBiasσ decreases: as the mean daily

demand drops from 16 to 8 (σ/µ = 0.354 and 0.250, respectively), the average RBiasσ drops

from 0.4764 to 0.1471, respectively. In general, as the ratio σ/µ increases, the RBiasσ exhibits a

(non-monotone) upward trend. This suggests that improved estimators for σ 2 are needed; this issue

is the topic of Section 6.

5.1.1 Evaluation With Regard to Average Total Cost

Next we examine the impact of the demand estimation on the cost estimates. Let C∗ denote the

average total daily cost for a given case under the (s, S) policy computed via the PA method with the
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Table 4: Summary results for the standard deviation estimates for daily demand under full and

partial observation

Full Observation Partial Observation

Parameter RBias RSD RRMSE RBias RSD RRMSE

0.250 0.0009 0.0266 0.0267 0.4764 0.0580 0.4817

0.354 0.0034 0.0277 0.0280 0.1471 0.0709 0.1699

0.433 0.0005 0.0307 0.0309 0.1834 0.0553 0.1950

σ/µ 0.559 0.0014 0.0350 0.0352 0.1066 0.0537 0.1243

0.612 0.0031 0.0348 0.0353 0.0492 0.0671 0.0889

0.791 0.0028 0.0411 0.0415 0.0253 0.0703 0.0765

20 0.0022 0.0329 0.0332 0.2638 0.0493 0.2734

Q 40 0.0022 0.0326 0.0329 0.1517 0.0593 0.1723

80 0.0017 0.0324 0.0327 0.0784 0.0791 0.1224

Max 0.0178 0.0491 0.0498 0.7476 0.0998 0.7490

Min -0.0067 0.0214 0.0214 0.0035 0.0362 0.0594

Average 0.0020 0.0327 0.0329 0.1647 0.0626 0.1894
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actual mean and variance of daily demand. Let Cp0,i denote the average total daily cost for a specific

case from the ith replication that uses the estimated mean and variance of daily demand under fully

observable demand. The average from all replications is denoted by C∗
p0

=
∑100

i=1 Cp0,i/100.

Similarly, Cp1,i denotes the respective average total daily cost from the ith replication based on

the estimated mean and variance under partial information with the overall average denoted by

C∗
p1

=
∑100

i=1 Cp1,i/100.

We examine the policy performance based on the known mean and variance of the daily demand.

Again we use the measures RRMSE, RSD and RBias to evaluate the policy’s performance in terms

of average total daily cost by simply replacing µ̂i , µ̂ and µ by Cp0,i (Cp1,i), C∗
p0

(C∗
p1

) and C∗,

respectively. The numerical results are presented in Tables 24 to 29 (Appendix), and the summary

is presented in Table 5. When the demand is observable, the average total cost is very close to the

nearly optimal average total cost; the average RBias over all 216 cases is very small, only 0.0009.

Since in most of the 216 cases the demand variance under partial observation is overestimated, most

of these cases are associated with higher average total cost than the nearly optimal cost. On the

other hand, the average RBias under partial information is 0.047. As the order quantity increases,

the RBias under partial demand observation decreases. In the worst case, the RBias is 0.3762.

To reflect practical situations where historical demand data are used to obtain estimates of the

mean and variance of the demand, Ehrhart (1979) tested the cost performance of the PA method

by substituting estimates of the demand mean and variance in place of the actual parameters by

simulating 72 systems, each having a negative binomial demand distribution with σ 2/µ = 9. He

found that the use of classical estimates with a year’s worth of weekly demand history resulted in

an aggregate cost that is approximately 6% above the optimal cost for known demand parameters.

Based on his results, we propose the following performance measure for each simulation run:

1p1,i =

(
Cp1,i − Cp0,i

)
× 100

Cp0,i

, i = 1, . . . , 100, (19)

namely, the percentage by which the average total cost under partially observed demand exceeds that

under fully observable demand. The average (denoted by 1̄p1) and standard deviation of 1p1,i over

the k replications are displayed in Tables 30 to 32 in the Appendix. These results are summarized
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Table 5: Summary results for the average total daily cost under full and partial observation

Full Observation Partial Observation

Parameter RBias RSD RRMSE RBias RSD RRMSE

0.250 -0.0011 0.0144 0.0156 0.1043 0.0213 0.1095

0.354 -0.0007 0.0167 0.019 0.0275 0.0226 0.0404

0.433 0.0011 0.0226 0.0236 0.0690 0.0310 0.0780

σ/µ 0.559 0.0037 0.029 0.0298 0.0523 0.0369 0.0671

0.612 0.0067 0.0257 0.0278 0.0233 0.0341 0.043

0.791 -0.0046 0.0326 0.0336 0.0059 0.0429 0.0443

20 0.0009 0.0239 0.0253 0.0766 0.029 0.0873

Q 40 0.0009 0.0235 0.0248 0.0429 0.0306 0.0584

80 0.0008 0.0231 0.0246 0.0217 0.0348 0.0454

Max 0.0244 0.05 0.05 0.3762 0.0734 0.378

Min -0.0177 0.0098 0.0103 -0.0135 0.0084 0.0085

Average 0.0009 0.0235 0.0249 0.0471 0.0315 0.0637
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Table 6: Frequencies for 1̄p1 under partial demand observation

Number Percentage

Range for 1̄p1 of Cases of Cases

(−∞, −1.5) 0 0.0

[−1.5, 1.5] 72 33.3

(1.5, 5) 76 35.2

(5, ∞) 68 31.5

in Table 6, which lists the number of cases in the system having values of 1̄p1 in various ranges.

33% of the cases fall in the range [−1.5, 1.5], 35% fall in (1.5, 5], and the remaining 31% fall in

(5, ∞). The large percentage of cases with 1̄p1 > 5 motivates the approach in the next section.

6 Power Approximation for Variance of Daily Demand (PAD)

In this section, we propose an adaptive method to improve the estimate of the variance of the daily

demand by using a regression model. Recall that the variance estimator (6) becomes unbiased as

Q → ∞ and n → ∞. Since the experiments in §5 use a sufficient amount of data, the significant

bias of the variance estimator is most likely due to the small values of the respective order quantities.

To address this issue, we consider estimators of the form

σ 2 = C(S2
τ )αQβ(τ̄ )γ , (20)

where C, α, β, and γ are constants to be fitted and the index “n” is dropped for simplicity. The

model (20) is motivated by the following observations: we see from the previous experiments that

the variance estimate degrades with smaller order sizes so the inclusion of Q is obvious. We also

see that the coefficient of variation of the demand has an effect, but since we do not know the

demand distribution parameters we use S2
τ and τ̄ as surrogates for this coefficient. We form a linear

model by taking the logarithm of equation (20) and using least squares regression to fit the model

based on the experimental grid in Table 2. The independent variables are the sample average of
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DBO, the sample variance of DBO, and the fixed order quantity Q. (Of course, we realize that

the independent variables of model 21 are statistically dependent, at least in small samples.) The

dependent variable is the true variance of the daily demand. The regression model generates the

following estimator for σ 2:

σ 2
p = 0.7418(S2

τ )1.2685Q2.0012/(τ̄ )3.0060, (21)

where again the subscript “p” stands for “power”. For a comparison with the estimator (6), notice

that the exponent of the order quantity Q is close to 2 and the exponent of the overall average of

DBO is close to −3. However, the exponent of the sample variance of DBO is slightly larger than 1,

and the model includes a multiplier that is less than 1. The model in equation (21) has a coefficient

of determination R2 = 0.9633.

6.1 Evaluation of the PAD Estimator

In this section, we evaluate the (incremental) effect of the PAD estimate in equation (21). As in

Section 5.1, we use the measures, RBias, RSD and RRMSE to evaluate the performance of the

variance estimate and the average total daily cost. The numerical results are displayed in the last

three columns of Tables 18 to 29 (see Appendix). We summarize the performance of the estimate

(21) and the average total cost in Tables 7 and 8, respectively.

Table 7 indicates that the PAD yields an improved estimator compared to (6). (To facilitate the

comparison we copy columns 3-5 from Table 5.) For instance, the average RBias decreases by a

factor of about 100 (from 0.1647 to 0.0016). Most importantly, the RSD does not vary significantly

over the 216 cases. Thus, the regression method “flattens” the bias and makes the estimate less

sensitive to the demand parameters and the order quantity. For example, the average absolute RBias

is 0.0099, -0.0098 and 0.048 when Q is at 20, 40 and 80, respectively.

Figure 1 plots the differences of the RBias, RSD and RRMSE based on equation (6) and PAD.

This figure indicates that the differences have certain patterns based on the demand distribution.

The differences of RSD vary slightly around zero. When the mean demand is 16, many RSDs
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Table 7: Summary results for the standard deviation estimate under partial demand observation and

PAD

Equation (6) PAD

Parameter RBias RSD RRMSE RBias RSD RRMSE

0.250 0.4764 0.0580 0.4817 0.0969 0.0545 0.1388

0.354 0.1471 0.0709 0.1699 -0.0377 0.0759 0.0858

0.433 0.1834 0.0553 0.1950 -0.0362 0.0558 0.0686

σ/µ 0.559 0.1066 0.0537 0.1243 -0.0507 0.0559 0.0781

0.612 0.0492 0.0671 0.0889 -0.0021 0.0798 0.0911

0.791 0.0253 0.0703 0.0765 0.0396 0.0874 0.1095

20 0.2638 0.0493 0.2734 0.0099 0.0477 0.0934

Q 40 0.1517 0.0593 0.1723 -0.0098 0.0636 0.0834

80 0.0784 0.0791 0.1224 0.0048 0.0933 0.1091

Max 0.7476 0.0998 0.7490 0.2481 0.1351 0.2522

Min 0.0035 0.0362 0.0594 -0.0722 0.0336 0.0370

Average 0.1647 0.0626 0.1894 0.0016 0.0682 0.0953

under equation (6) are less than those by PAD. The differences with regard to RBias and RRMSE

is obviously larger when the mean demand is 16.

Since the differences of RRMSE have the same pattern as those of RBias, we plot the differences

for RBias under equation (6) and under PAD based on the demand parameter σ/µ in Figure 2. From

this figure, we note as the ratio σ/µ increases, the PAD-based estimate becomes larger than the

estimate under equation (6).

Based on Table 8, PAD significantly reduces the average total cost to values close to the cost

of the nearly optimal (s, S) policy obtained via the PA method. The average RBias over the 216

cases is 0.0002, which is less than the average RBias under fully observable demand. This implies

that the total cost induced by PAD is close to the cost under fully observable demand. The average

total cost for each case is less sensitive to the demand parameters and the order quantity. The range

of RBias on the average total cost is from 0.1170 to −0.0443, which is considerably narrower than
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Figure 1: Difference of RBias, RSD and RMSE of the average total cost based on equation (6) and

PAD
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Figure 2: Comparison between RBias for the average total daily cost under partial information and

equation (6) and RBias under PAD based on variable coefficient of variation σ/µ
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Table 8: Summary results for the average total cost under equation (6) and PAD

Equation (6) RBA

Parameter RBias RSD RRMSE RBias RSD RRMSE

0.250 0.1043 0.0213 0.1095 0.0191 0.0189 0.0347

0.354 0.0275 0.0226 0.0404 -0.0076 0.0225 0.0264

0.433 0.069 0.031 0.078 -0.0109 0.0283 0.0319

σ/µ 0.559 0.0523 0.0369 0.0671 -0.0179 0.0352 0.0408

0.612 0.0233 0.0341 0.043 0.0057 0.0370 0.0415

0.791 0.0059 0.0429 0.0443 0.0130 0.049 0.0571

20 0.0766 0.029 0.0873 -0.0019 0.0266 0.0368

Q 40 0.0429 0.0306 0.0584 -0.0032 0.0302 0.0351

80 0.0217 0.0348 0.0454 0.0059 0.0387 0.0443

Max 0.3762 0.0734 0.3780 0.1170 0.0994 0.1297

Min -0.0135 0.0084 0.0085 -0.0443 0.0102 0.0111

Average 0.0471 0.0315 0.0637 0.0002 0.0318 0.0387

the range based on equation (6).

As in §5.1.1, let Cp2,i denote the average total cost from the ith replication based on the demand

estimate from PAD. We define the percentage differences

1p2,i =

(
Cp2,i − Cp0,i

)
× 100

Cp0,i

, i = 1, . . . , 100. (22)

The average (1̄p2) and standard deviation of 1p2,i over the 100 replications are listed in Tables 30

to 32 (see Appendix). Similarly, we list the number of cases in various ranges in Table 9. Nearly

60% of the cases fall in the range ±1.5, a remarkable 94% falls in the range ±5, while only 6%

induce 1̄p2 > 5. Therefore, it seems that the combination of the PA and PAD methods works as

well as the PA method alone under fully observable demand in terms of the mean total cost per day.
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Table 9: Frequencies for 1̄p2 under PAD

Number Percentage

Range for 1̄p2 of Cases of Cases

(−∞, −5) 0 0.0

[−5, −1.5) 60 27.8

[−1.5, 1.5] 112 51.9

(1.5, 5] 31 14.4

(5, ∞) 13 6.0

6.2 Extrapolation

We end the experimental evaluation of PAD with a few cases that are outside the experimental grid

in Table 2. A single case with interpolated parameter settings is used as a base case: negative

binomial daily demand with σ 2 = 4µ, µ = 12, L = 3, h = 1, b = 49, K = 48, and Q = 60. We

create each test case by changing the value of one parameter while holding the other parameters at

their base values. The performance measures relative to the mean total cost per day are presented

in Table 10.

Based on Table 10, the average RBias induced by PAD and equation (6) are −0.001 and 0.06,

respectively. This suggests that PAD works well with regard to the aggregated average total cost

even though the parameter values are beyond the original range. Based on the average RBias of

0.006 from column 3, the PAD variance estimator and equation (11) yield an (r, Q) policy that rivals

the near optimal (s, S) policy resulting from the PA method when the daily demand is observed.

7 Conclusions

In this paper, we provide an inventory policy for a retailer facing stochastic demand and lead-times,

linear holding and backordering costs, fixed order cost, and who is restricted to placing orders at

predetermined time intervals. The policy must be robust to system reported inventory inaccuracies
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Table 10: Single parameter extrapolations

Full Observation Partial Observation RBA

Parameter Value RBias RSD RRMSE RBias RSD RRMSE RBias RSD RRMSE

σ 2/µ 7 0.003 0.039 0.039 0.014 0.049 0.051 0.015 0.055 0.057

24 0.014 0.026 0.030 0.112 0.036 0.118 -0.013 0.033 0.035

µ 30 0.002 0.026 0.027 0.151 0.038 0.156 -0.007 0.034 0.034

36 -0.002 0.021 0.021 0.213 0.033 0.215 0.019 0.028 0.033

K 16 -0.004 0.038 0.039 0.031 0.059 0.067 -0.018 0.065 0.067

72 0.008 0.025 0.026 0.026 0.034 0.043 -0.002 0.038 0.038

2 0.005 0.017 0.018 0.003 0.017 0.018 0.008 0.018 0.020

p 132 0.008 0.030 0.031 0.036 0.045 0.058 -0.006 0.049 0.049

199 0.006 0.033 0.034 0.043 0.051 0.066 -0.003 0.055 0.055

L 0 0.000 0.016 0.016 0.014 0.023 0.027 -0.004 0.025 0.025

5 -0.003 0.034 0.034 0.028 0.045 0.053 -0.013 0.048 0.050

10 0.011 0.027 0.029 0.119 0.031 0.123 -0.027 0.026 0.037

15 0.009 0.030 0.032 0.097 0.037 0.104 -0.023 0.032 0.039

Q 85 0.013 0.028 0.031 0.029 0.041 0.050 0.014 0.047 0.050

90 0.012 0.028 0.030 0.032 0.048 0.058 0.025 0.056 0.062

100 0.007 0.032 0.033 0.021 0.046 0.050 0.019 0.055 0.058
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and reflect other common constraints of the retailing industry, such as a stable order quantity

and a simple policy that does not require dynamic (re-)optimization and can be programmed in a

spreadsheet or database software application. To meet these requirements, we propose an (r, Q)

inventory policy that minimizes the long-run mean (undiscounted) total cost per period. Our choice

of an (r, Q) policy over an (s, S) policy comes from the retailer’s desire for a stable order quantity

in each period. To this end, we first construct estimators for the first two moments of the demand

distribution using well-known results from renewal theory and realizations of periods between

orders. We proceed with the derivation of approximately optimal inventory policies similar in spirit

to the simple and robust Power Approximation (PA) method first described in Ehrhardt (1979).

The PA method has been used successfully in a variety of settings and owns its popularity to its

simplicity and the surprisingly good fit of the regression model to a variety of demand distributions.

Since the suppliers of the retailer prefer to ship fixed quantities that do not vary from one period to

the next, we propose an (r, Q) policy with r = s that approximates the near optimal (s, S) policy

calculated using the PA method.

The performance of the (r, Q) policy is evaluated using a simulation study over a range of

distributions and parameter values from an experimental grid that consists of 216 design points

and is similar to Ehrhardt’s experimental design. Since the cost of the (r, Q) policy is sensitive to

the variance of the demand per period, we develop an alternative regression-based estimator of the

variance of the periodic demand using the same grid. The incorporation of this estimator results in

substantially improved (r, Q) policies with regard to the mean total cost per period. The relative

difference between the average cost resulting from the PA method with the mean estimator (5) and

the variance estimator (21) for the demand and the average cost resulting from the PA method under

fully observable demand is within ±5% for 94% of the 216 cases in our experimental grid.

We end with a few problems worth future research. First, one could incorporate service level

constraints; this metric is frequently used by retailers as penalty costs are hard to obtain. An accurate

PA method for the case in which the backorder cost is replaced by a service level constraint was

proposed by Schneider and Ringuest (1990). Second, one could investigate the application of
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smoothing techniques to the estimation of the demand moments µ and σ (see Remark 4). For

instance, the sample mean τ̄ (n) in equations (5)-(6) can be replaced by an exponentially smoothed

average and the sample standard deviation Sτ (n) in equation (6) can be replaced by a modified

absolute deviation (cf. Jacobs and Wagner 1989). Third, one could look at modeling the tradeoff

between improving the accuracy of system reported inventory and the associated costs. Fourth, one

could study the effect of order size on the degree of inventory inaccuracy. For instance, one would

expect that large order sizes would induce more unobservable demand of the types mentioned in

the Introduction. Finally, our model can be modified to address the possibility of lost sales.
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