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Abstract

Liquefied natural gas (LNG) is natural gas transformed into liquid state for the pur-
pose of transportation mainly by specially built LNG vessels. This paper considers
a real-life LNG ship routing and scheduling problem where a producer is respon-
sible for transportation from production site to customers all over the world. The
aim is to create routes and schedules for the vessel fleet that are more robust with
respect to uncertainty such as in sailing times due to changing weather conditions.
A solution method and several robustness strategies are proposed and tested on in-
stances with time horizons of 3 to 12 months. The resulting solutions are evaluated
using a simulation model with a recourse optimization procedure. The results show
that there is a significant improvement potential by adding the proposed robustness
approaches.

Keywords: Maritime transportation, Liquefied natural gas, Ship routing and
scheduling, Simulation, Uncertainty

1. Introduction1

Natural gas is an energy source vital to the world’s energy supply. It is among2

others used to generate electricity, in domestic homes for cooking and heating, and3
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as fuel for vehicles. It is increasing in popularity compared to other alternatives4

due to its properties of cleaner burning and lower emission. One way of transport-5

ing natural gas from the production site to the consumers is by transformation into6

liquefied natural gas (LNG) followed by sea transportation to consumers by dedi-7

cated LNG vessels. This way natural gas can be delivered from one production site8

to consumers in all corners of the world.9

In a previous study, Halvorsen-Weare and Fagerholt (2010) studied a real-10

life ship routing and scheduling problem from the LNG business, and a solution11

method based on decomposition of routing and scheduling decisions was proposed.12

The solution method solves the problem of creating an annual delivery program13

(ADP). The ADP lists the shipments (cargoes) to deliver to the customers during14

the year, i.e. the cargoes’ pick-up and delivery days and what vessel that are ser-15

vicing what cargoes. The cargo size is determined by the vessel servicing it as the16

cargoes usually are full shiploads.17

Today, the creation of such an ADP is done by manual spreadsheet procedures.18

Such planning methods suffer from drawbacks as it may be difficult to create even19

a feasible solution when the problem size increases. The solution method pro-20

posed by Halvorsen-Weare and Fagerholt (2010) can create good (cost-optimal or21

near cost-optimal), feasible solutions to large problems within short computational22

time. The problem is considered as deterministic, with all input parameters given.23

However, the vessels operate in a highly uncertain environment where factors like24

weather conditions and port congestion easily can influence the sailing times. It is25

also assumed that the daily LNG production rates are known for the whole year.26

This is a simplification as unforeseen events can result in fluctuations in the pro-27

duction rates and thus it may not be possible to predict future production rates to28

such a detailed extent. These uncertain elements can result in delays which will29

induce extra cost for the LNG producer. These costs can be the outcome of having30

to increase sailing speed to make deliveries on time, penalty costs to customers or31

lost goodwill for delayed deliveries, and having to charter-in vessels to be able to32

service all cargoes within acceptable time.33

The purpose of this paper is to create solutions to the LNG ship routing and34

scheduling problem that are more robust, i.e. solutions that can better withstand35

deviations in the uncertain parameters. We focus on uncertainties in sailing times36

and daily LNG production rates as these are the most interesting from a planning37

perspective in this particular problem. The contributions of this paper consist of a38

new improved optimization model that solves the same real-life LNG ship routing39

and scheduling problem as in Halvorsen-Weare and Fagerholt (2010). Robustness40

strategies are then added to this model with the aim of creating solutions anticipat-41

ing uncertainties in sailing times and LNG production rates better. It is not given42

that one strategy will provide better results than others for all planning problems.43
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Therefore, a third contribution is the analysis of a number of different solutions44

to give the planners the possibility to choose the solution that overall performs45

best. For this purpose we have developed a simulation model with a recourse re-46

route optimization procedure that imitates a real-life re-planning situation. The47

optimization model, together with the different robustness strategies and the sim-48

ulation procedure with re-routing, creates a good basis for a complete decision49

support system.50

The problem we study is highly affected by uncertain elements, which is also51

the case for most other maritime transportation problems. However, uncertainties52

are often neglected in the literature. Christiansen et al. (2004) and Christiansen53

et al. (2007) are two recent reviews of literature on ship routing and scheduling,54

and reveal that most problems are solved in a deterministic setting. However, a few55

references that incorporate uncertainty exist. Christiansen and Fagerholt (2002)56

solve a deterministic version of a shipping problem, but create more robust solu-57

tions by penalizing solutions that are considered risky. A simulation study for a58

fleet sizing problem with uncertainty in weather conditions and future spot rates59

was presented by Shyshou et al. (2010), while Alvarez et al. (2011) propose a60

robust optimization model for the fleet sizing and deployment problem to deal with61

the uncertainty in future price and demand.62

Two related topics are stochastic and dynamic vehicle routing problems (see63

e.g. Gendreau et al. (1996) and Psaraftis (1995)), and stochastic airline and air-64

crew scheduling. While there has been quite an extensive research on stochastic65

and dynamic vehicle routing problems, airline and aircrew scheduling algorithms66

used for planning purposes in real-life assume no disruptions and rely on recov-67

ery planning (see the discussion by Barnhart et al. (2003)). However, the inter-68

est for methods for achieving robustness in schedules has increased the last years69

(see Clausen et al. (2010)). Two recent references that incorporates disruptions70

when creating an aircrew schedule are Yen and Birge (2006) and Schaefer et al.71

(2005). Yen and Birge (2006) propose a stochastic aircrew scheduling model. The72

approach by Schaefer et al. (2005) has similarities to ours. They suggest two73

algorithms for finding aircrew schedules that may perform well in operations with74

disruptions, and evaluate the crew schedules by a simulation program of airline75

operations with disruptions.76

The remaining part of this paper is organized as follows: Section 2 provides a77

problem description of the LNG ship routing and scheduling problem. Then Sec-78

tion 3 presents the mathematical model formulation. Section 4 gives a brief intro-79

duction to the uncertain elements we focus on in this paper, and Section 5 presents80

four robustness strategies that may be added to the model for the purpose of han-81

dling uncertainty more efficient. Section 6 gives a description of the simulation-82

optimization framework for evaluation of solutions, and Section 7 presents the83
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computational study. Finally, the paper is concluded in Section 8.84

2. Problem description85

The LNG ship routing and scheduling problem studied in this paper is a real-86

life tactical planning problem faced by one of the world’s largest LNG producers.87

The annual LNG production capacity for the producer amounts to 42 million tons.88

The LNG producer is contractually committed to transport LNG from production89

port to customers that are located all over the world. Every year the producer90

has to create and present an annual delivery program (ADP) to the customers that91

specifies when the customers will receive LNG shipments throughout the year (in-92

cluding time of delivery, by what vessel and quantity of LNG). The aim is then to93

create such an ADP. A thorough problem description of the LNG ship routing and94

scheduling problem can be found in Halvorsen-Weare and Fagerholt (2010). The95

major problem features are outlined here.96

Long-term contracts state how much LNG that is to be delivered to each cus-97

tomer during the year. The actual delivery dates have to be agreed upon in a process98

where the LNG producer will create an initial ADP with suggested delivery dates99

that the customers may accept or decline. It may therefore be necessary to reop-100

timize an ADP with some delivery dates fixed during the process of creating the101

ADP.102

To transport LNG from the production port to the customers, the LNG producer103

controls a heterogeneous fleet with vessels of varying loading capacities and sailing104

speeds. This fleet is fixed during the planning horizon, and some of the vessels105

are tied up to certain delivery contracts and can therefore only be used to service106

subsets of the customers.107

All LNG deliveries are usually full shiploads as it is not economically benefi-108

cial to visit more than one customer on a voyage before returning to the production109

port. This creates a simple network structure with one pick-up port, several de-110

livery ports and only full shiploads. Each LNG shipment will thus consist of a111

round-trip from production port to one customer and back to the production port.112

One full shipload represents one cargo. Based on the vessels’ average loading113

capacities, the producer initially estimates how many cargoes that should be de-114

livered to each customer during the year, and defines a time window for when the115

cargoes should be picked up in the production port based on the specifications in116

the customer contracts. This can be done as the loading capacities for the vessels117

that may visit a given subset of customers only vary to a small degree (less than118

10% difference between smallest and largest vessel capacity). We call this problem119

cargo-based as all cargoes are defined (by pick-up time window, customer and set120

of vessels that may service them) and need to be serviced. The LNG producer may121
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make an under- or over-delivery (typically not more than 10%) on the yearly con-122

tractual volume to deliver to each customer, which allows for vessels’ with varying123

loading capacity to visit the customers. This can for a general problem result in124

solutions where slightly smaller, cheaper vessels are preferred resulting in regular125

under-delivery, but this will not be the case for this problem as the vessel fleet’s126

capacity compared with the demand is quite tight so that all vessels need to be127

utilized.128

There is limited berth capacity at the production port. Hence, no more ves-129

sels can pick-up a cargo on a given day than there are available berths. There is130

also limited LNG inventory capacity, requiring LNG inventory levels to be within131

maximum and minimum levels at all times. Usually the LNG production is higher132

than the committed LNG delivery volumes to the customers. Consequently, spot133

cargoes are sold in the open market. These are being picked-up by vessels that are134

not in the producer’s vessel fleet (as these vessels are contractually committed to135

only be used in customer service), and will therefore only affect the berth capacity136

and LNG inventory levels. We choose not to consider the profit of spot cargoes137

to avoid maximizing the number of spot cargoes. They are therefore only to be138

considered as means of inventory level control.139

The LNG ship routing and scheduling problem of creating an ADP is then to140

minimize the costs of transporting all customer cargoes within the specified time141

windows, while at the same time ensuring that berth capacity and LNG inventory142

level constraints at the production port are not violated.143

3. Mathematical formulation144

This section provides a mathematicalcargo-based assignment model that presents145

and solves the LNG ship routing and scheduling problem described in the previ-146

ous section. This is a new model formulation that is more effective than the one147

from Halvorsen-Weare and Fagerholt (2010), but solves the exact same problem.148

The model formulation from Halvorsen-Weare and Fagerholt (2010) is an arc-flow149

model where binary flow variables describe directly the flow of the vessels. This150

demands for a greater number of variables than the assignment model we suggest151

here, where the binary variables describe an assignment of a cargo to a vessel on152

a given day. In addition, the arc-flow model formulation requires one more set of153

constraints: The flow conservation constraints.154

In the mathematical modeling formulation, letV be the set of vessels, andNv155

be the set of customers that vesselv ∈ V may service. Then setN contains all156

customers. SetT contains the days in the planning horizon, setU contains all157

customer cargoes that must be serviced during the planning horizon, and subset158

Ui ⊂ U contains all cargoes that are to be shipped to customeri.159
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Further, letCvi represent the cost for delivering a cargo of LNG to customeri160

by vesselv. Avit∗t is one if vesselv has not returned to the production port at day161

t after starting on a voyage to customeri at dayt∗, and zero otherwise.RMX
v is162

the length in days of the longest return-trip from the production port to a customer163

vesselv can service.Fi is the total number of cargoes to deliver to customeri164

during the planning horizon.TMN
u andTMX

u represent the first and last day of the165

time window for start of loading cargou, respectively.Qv is the loading capacity of166

vesselv, whileQS is the loading capacity of a typical spot vessel.DMN
i andDMX

i167

are the minimum and maximum volumes of LNG to deliver to customeri during168

the planning horizon, respectively.B is the number of berths at the production port,169

andPt is the production of LNG at dayt. S0 is the inventory level of LNG at the170

start of the planning horizon andSMN andSMX are the minimum and maximum171

inventory levels of LNG at the production port, respectively.172

The decision variables are:

xvit =
{

1, if vesselv starts loading a cargo to customeri on dayt (v ∈ V , i ∈ Nv , t ∈ T )
0, otherwise

st continuous variable representing the inventory level at the end of dayt (t ∈ T )

zt
integer variable representing the number of spot cargoes loaded
in the production port on dayt (t ∈ T )

The mathematical formulation for the cargo-based assignment model then be-173

comes:174

min
∑

v∈V

∑

i∈Nv

∑

t∈T
Cvixvit, (1)

subject to175
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t∑

t∗=max{0,t−RMX
v +1}

∑

i∈Nv

Avit∗txvit∗ ≤ 1, v ∈ V , t ∈ T , (2)

∑

v∈V

T MX
u∑

t=T MN
u

xvit ≥ 1, i ∈ N , u ∈ Ui, (3)

∑

v∈V

∑

t∈T
xvit = Fi, i ∈ N , (4)

DMN
i ≤

∑

v∈V

∑

t∈T
Qvxvit ≤ DMX

i , i ∈ N , (5)

∑

v∈V

∑

i∈Nv

xvit + zt ≤ B, t ∈ T , (6)

st = st−1 + Pt −
∑

v∈V

∑

i∈Nv

Qvxvit − QSzt, t ∈ T , (7)

SMN ≤ st ≤ SMX , t ∈ T , (8)

xvit ∈ {0, 1} , v ∈ V , i ∈ Nv , t ∈ T , (9)

zt ∈ Z+, t ∈ T . (10)

The objective function (1) minimizes the sailing costs for delivering all cargoes.176

Constraints (2) ensure that a vessel can only service one cargo on any given day,177

and constraints (3) are the time window constraints for the cargoes. Overlapping178

time windows for cargoes to deliver to one customer will allow that more than one179

cargo to that customer is serviced during the overlapping cargoes’ time windows.180

Hence, constraints (3) are formulated as greater than or equal to constraints. Con-181

straints (4) ensure that each customer get the required number of cargoes during the182

planning horizon. In the case of no overlapping time windows constraints (3) can183

be modeled as equality constraints and constraints (4) are redundant. Constraints184

(5) ensure that the total volume of LNG delivered to each customer at the end of185

the planning horizon is within the predefined minimum and maximum quantities.186

Constraints (6) are the berth constraints. Constraints (7) determine the volume of187

LNG at the production port,st−1 being equal toS0 for t = 1, and constraints (8)188

ensure that the volume is within the inventory’s minimum and maximum levels at189

all times. Finally, constraints (9) set the binary requirements for thexvit variables,190

and constraints (10) set the integer requirements for thezt variables.191
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Figure 1: Probability distributions for sailing times. Source: Kauczynski (1994).

4. Uncertainties in the LNG routing and scheduling problem192

In general, all maritime transportation problems are exposed to uncertainties193

although they are often solved by deterministic modeling approaches like the one194

presented in the previous section. In Halvorsen-Weare and Fagerholt (2010) the195

LNG ship routing and scheduling problem is solved without embedding any el-196

ements that considers such uncertainties. For this problem there are two main197

uncertain parameters that should be taken into consideration from a planning per-198

spective: Sailing times and daily LNG production rates.199

Sailing times for vessels are weather dependent, and it is not possible to predict200

the weather conditions for much more than a few days ahead. This is a common201

uncertain element for all maritime transportation problems. Still we observe that202

for most planning purposes sailing times are considered constant. This can be203

a realistic simplification for problems considering short-sea shipping in sheltered204

water. But for many problems, and this LNG ship routing and scheduling prob-205

lem in particular, voyages last for several days (and up to a month) in a deep-sea206

shipping environment where vessels can experience large weather variations while207

sailing a round-trip to a customer.208
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Table 1: Probability distribution for increased sailing time

Increase (%) 0.0 3.0 7.0 12.0 15.0
Probability (%) 38.8 30.2 16.5 11.0 3.5

Table 2: Probability distribution for changes in daily production rates

Change (%) 85 90 95 100 105 110
Probability (%) 5 10 15 35 20 15

Kauczynski (1994) studied the ship transportation between selected ports in209

Europe to determine the distribution of speed losses in a realistic operational en-210

vironment. Figure 1 shows the probability functions for sailing times on a voyage211

between Rome (Italy) and Bergen (Norway) for a gas tanker, ro-ro vessel and con-212

tainer carrier.213

The sailing times for the LNG vessels in the LNG ship routing and scheduling
problem we consider, follows a similar curve to the one for the gas tanker in Figure
1: A high likelihood of using approximately the planned sailing time, and a long
tail illustrating the probability of delays and break-downs. The curve for the gas
tanker in Figure 1 can be fitted to a log logistic probability distribution on the
following form (see Palisade Corporation (2010)):

f(x) =
αtα−1

β (1 + tα)2
, (11)

F (x) =
1

1 +
(

1
t

)α , (12)

where

t =
x − γ

β
. (13)

Function (11) describes the density function and (12) the cumulative distribution214

function. For the probability function for the gas tanker,α = 2.24, β = 9.79 and215

γ = 134.47, giving an expected sailing time of148.42 hours.216

Table 1 shows the calculated probabilities for some discrete increases in sail-217

ing time based on the probability function for the gas tanker when the extreme218

outcomes (long tail) are cut off.219

The LNG producer has a daily LNG production plan for the next year. But220

chances are that the produced volume for each day will not be exactly as planned.221

Therefore a good ADP should also allow for some variations in the daily planned222

9



Using normal sailing time

Adding extra sailing time

Planned sailing without extra sailing time
Planned sailing with extra sailing time
Slack

a)

b)

1 2 3 4 5

1 2 3 4 5

Figure 2: Schedule for a vessel with (b) and without (a) adding extra sailing time

production volumes. Table 2 shows an example of a discrete probability distribu-223

tion for daily production rates as percent of the planned rates.224

5. Robustness strategies225

The problem formulation presented in Section 3 can be used to solve the real-226

life LNG ship routing and scheduling problem as it is described in Section 2. How-227

ever, the solution obtained when solving this model can be difficult to execute in228

real-life as it does not take into consideration any of the uncertain parameters in229

this maritime transportation problem described in the previous section. Here we230

present four robustness strategies that can be embedded to the model formulation231

from Section 3 with the intention of creating solutions that are more robust with232

respect to the uncertainties described in Section 4.233

5.1. Adding extra sailing time to each round-trip234

A straightforward strategy to add some robustness to a solution is to plan with235

some slack in the schedule by planning that each round-trip should last longer236

than under normal conditions. This means, for example, that a round-trip from the237

production port to a customer that usually takes 30 days when sailing at normal238

speed is planned to last 32 days.239

Figure 2 illustrates what a schedule for one vessel may look like when adding240

extra sailing time for each round-trip (Figure 2b) compared with a schedule using241

normal sailing times based on the vessel’s service speed (Figure 2a). The figure242

shows when a vessel is planned to arrive at and depart from the production port243

during the planning horizon. Because the total required sailing time in a schedule244

is less than the planning horizon, there may be some slack between the round-trips245

for a solution based on normal sailing times. This happens after round-trips 2 and246
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4 in Figure 2a. For the solution with added sailing time to each round-trip there247

will always be slack between the round-trips due to the difference between planned248

sailing time and normal sailing time. This planned extra slack can lead to a vessel249

not being able to service the same customers as in the solution without extra sailing250

time, as we see in the plan where round-trip number 3 is shorter for the solution251

with extra sailing time (Figure 2b) than the corresponding one for the solution with252

normal sailing time (Figure 2a).253

Robustness strategies with similarities to this one have been applied to obtain254

robust aircrew schedules. E.g. Ehrgott and Ryan (2002) construct robust crew255

schedules by penalizing solutions where aircrew is scheduled to change aircraft for256

a successive flight and the ground time minus duty ground time (time the crew is257

obliged to be on ground) is less than the expected delay.258

Adding slack to each round-trip in the means of extra sailing time does not re-259

quire any changes to the model formulation from Section 3. The input data, how-260

ever, need to be modified by adjusting the values for some of theAvit∗t parameters261

in the model.262

A negative consequence of this robustness strategy arises when the vessel fleet’s263

capacity is close to being fully utilized. This means that a sailing schedule using264

normal sailing times will have little slack. In this case it may not be possible to265

find a feasible solution servicing all cargoes if round-trips are planned to last for266

example 32 days instead of 30 (which reduces the fleet capacity by 6.25%). There-267

fore a decision maker should be careful when using this approach and not plan with268

increased sailing times that make the planning problem infeasible.269

5.2. Target inventory level270

The inventory level in the storage tanks at the production port cannot exceed271

the maximum level nor be below the minimum level. In general, there are higher272

risks involved with being close to the maximum level than the minimum level,273

as exceeding maximum level can result in having to temporarily stop production.274

The probability of being close to maximum levels is also higher as both increased275

daily production rates and delayed vessels will result in higher inventory levels276

than planned. Being close to the minimum level (in this case 0) can happen in the277

case of lower production volumes than planned, and may result in vessels having278

to wait some time before being able to load a full cargo.279

The planners for the real-life LNG ship routing and scheduling problem we280

consider are, however, more concerned with having a target inventory level at half281

of the maximum volume. Therefore we define a target inventory level strategy282

where any levels below or above the target levels are penalized equally in the ob-283

jective function. This has similarities with the approach suggested by Christiansen284

and Nygreen (2005).285
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The overall goal for the target inventory level strategy is to have inventory
level close to half of the maximum volume. Since it will not be possible to have
an inventory level exactly at this volume on all days, high and low target inventory
levels are defined. These are defined based on the largest vessel in the fleet: The
volume within the high and low target levels should equal the loading capacity of
the largest vessel (the one with the greatest capacity). LetIH andIL be the high
and low target inventory levels,SMX be maximum inventory level, andQMX

equal the loading capacity of the largest vessel. Then the high and low target
inventory levels are calculated as follows:

IH =
SMX + QMX

2
, (14)

IL =
SMX − QMX

2
. (15)

The high and low target inventory levels are soft constraints that can be violated at
a penalty cost in the objective function. The following two non-negative variables
have to be added to the model formulation from Section 3:

s+
t ≥ st − IH , (16)

s−t ≥ IL − st, (17)

wheres+
t equals the amount of inventory above the high target inventory level286

at time t, ands−t equals the amount below the low target inventory level. Both287

variables equal zero if inventory levels are within high and/or low target levels.288

The objective function (1) needs to be replaced by

min
∑

v∈V

∑

i∈Nv

∑

t∈T
Cvixvit +

∑

t∈T
IP
(
s+
t + s−t

)
, (18)

whereIP is a penalty cost per m3 the inventory level is above or below the high289

and low target inventory levels.290

5.3. Target accumulated berth use291

Vessels that are delayed to the production port for the loading of one cargo can292

affect other cargoes that are to be loaded as there is limited berth capacity. For293

example, for a problem with one berth there can easily be conflicts when cargoes294

are planned to be picked-up on several consecutive days. This means that there may295

be gains by spreading the berth occupation during the planning horizon to avoid296

solutions where there are time periods with high planned berth activity followed297

by time periods with low berth activity.298
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In the target accumulated berth use strategy, soft constraints are added to the299

mathematical model formulation from Section 3 with the intention that the accumu-300

lated berth use should be within a minimum and maximum level. The accumulated301

berth use on a given dayt is given by the sum of vessel visits from day 1 to dayt302

in the planning horizon.303

Let bACC
t be the accumulated berth use on dayt, andxvit andzt be as defined

in Section 3. Then the accumulated berth use on dayt is calculated as follows:

bACC
t =

t∑

u=1

(∑

v∈V

∑

i∈N
xviu + zu

)
. (19)

We define a high and low target accumulated berth use on dayt, BH
t andBL

t ,
respectively. LetUTOT be the estimated total number of cargoes being shipped
from the production port during the planning horizon, including estimated number
of spot cargoes, and|T | be the total length of the planning horizon. Then the high
and low target accumulated berth use on dayt are calculated as follows:

BH
t = d t ∗ UTOT

|T | e, (20)

BL
t = b t ∗ UTOT

|T | c. (21)

The following two non-negative variables have to be added to the model formula-
tion:

b+
t ≥ bACC

t − BH
t , (22)

b−t ≥ BL
t − bACC

t , (23)

whereb+
t andb−t represent the accumulated berth use above or below the target304

levels on dayt, respectively.305

The objective function (1) needs to be replaced by

min
∑

v∈V

∑

i∈Nv

∑

t∈T
Cvixvit +

∑

t∈T
BP

(
b+
t + b−t

)
, (24)

whereBP is the penalty cost for accumulated berth use above or below the high306

and low target accumulated berth use.307

5.4. Combined strategy308

The combined strategy is a combination of the three robustness strategies from309

Sections 5.1-5.3. The variables described in (16)-(17), (19) and (22)-(23) are added310
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to the model formulation from Section 3, in addition to adjusting some of the pa-311

rametersAvit∗t by adding slack to round-trips.312

The objective function (1) needs to be replaced by the following combination
of (18) and (24):

min
∑

v∈V

∑

i∈Nv

∑

t∈T
Cvixvit +

∑

t∈T
IP
(
s+
t + s−t

)
+
∑

t∈T
BP

(
b+
t + b−t

)
. (25)

6. A simulation-optimization framework for evaluating solutions313

To evaluate a selection of candidate solutions to the LNG ship routing and314

scheduling problem, a simulation program has been developed. This program con-315

siders uncertainties in both sailing times and daily production rates as described316

in Section 4. It combines simulation with optimization by calling the recourse ac-317

tion of reoptimizing the schedule when given conditions occurs. In Section 6.1 an318

overview of the simulation program is given. Then follows a description of the319

reoptimizing (re-route) procedure in Section 6.2.320

6.1. The simulation program321

The purpose of the simulation program is to evaluate a given solution (or ro-322

bustness strategy). A solution will in this setting contain which customers to deliver323

LNG to on which day by which vessel. Embedded in the simulation program is a324

re-route optimization procedure that can be considered a recourse action: When-325

ever certain conditions occur in a simulation, the planned schedule is reoptimized,326

and the new reoptimized schedule is used in the rest of that simulation. This is to327

capture the essence of the real planning situation. The main focus is that deliveries328

to customers should ideally be made on the planned days. The vessel making the329

delivery is not of that great importance. This will be valid for the problem con-330

sidered in this paper as all vessels that may make delivery to a customer are quite331

similar with respect to loading capacities.332

Figure 3 shows the flow diagram for the simulation program. For each simu-333

lation, we start on the first day of the planning horizon. The inventory level is set334

to the inventory level the previous day (or start inventory if it is the first day in the335

planning horizon) plus any LNG production on this day. The daily LNG produc-336

tion rate is uncertain and is calculated based on the expected LNG production and337

the probability distribution for changes in the daily production rate (see Table 2)338

using a Monte Carlo sampling technique (see e.g. Rubinstein and Kroese (2008)).339

Further, for any cargoes that are planned to be serviced on this day, the planned340

vessel is chosen if it is in the production port available for service. The planned341
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Figure 3: Flow diagram for the simulation program
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vessel may not be available if it is delayed to the production port during service of342

a previous cargo, or if it has been used to service a cargo that was planned serviced343

by a different vessel. If the planned vessel is not available, a different vessel is cho-344

sen if any vessel that can service that cargo is idle. The cargo will then be serviced345

as long as there are available berths and there is an inventory level that accounts346

for a full shipload (or close to a full shipload).347

If the cargo is serviced, the inventory level and berth use is updated, and the348

return-time for the vessel is calculated based on the probability distribution for349

increased sailing time (see Table 1) using a Monte Carlo sampling technique. From350

this, the vessel’s next arrival time in the production port is calculated.351

If the cargo cannot be serviced, the delay for that cargo is updated with one352

day (initially zero days) and the pickup day is set to next day. The user of the353

simulation program defines a maximum allowed delay for the cargo pickups, and354

if the delay is greater than this allowed delay, the re-route optimization procedure355

(described in the next section) is called.356

When all cargoes are serviced on a given day or delayed to be serviced the next357

day, spot cargoes with planned pick-up on that day are serviced if there are suffi-358

cient inventory level and available berth capacity. If the inventory level is above359

maximum level, an extra spot cargo is inserted and the inventory level reduced360

correspondingly.361

After each simulation, the total cost of the sailed schedule is calculated. Also362

calculated is the total number of pick-up days changed from the originally planned363

schedule, and the number of times the re-route optimization procedure had to be364

called. Any other information that a decision maker may find relevant for eval-365

uating a solution to the LNG ship routing and scheduling problem can also be366

calculated and stored.367

After running a user specified number of simulations, average numbers and368

standard deviation over all simulations are calculated and can be used as decision369

making criteria to evaluate a given solution (or robustness strategy).370

6.2. The re-route optimization procedure371

Whenever the re-route optimization procedure is called during a simulation an372

optimization problem is solved to resemble the real-life planning process. This373

optimization problem is a modified version of the basic model from Section 3,374

and will only consider the remainder of the planning horizon at the day where the375

re-route procedure is called.376

The objective for the re-route optimization problem is to create a new minimum377

cost schedule that is as close to the previous schedule as possible, i.e. it is preferred378

that the customers get deliveries on the same days if possible. As in the simulation379
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program, no weight is put on what vessel that delivers a cargo to a customer as long380

as it is a vessel that can make delivery to that customer.381

Input from the simulation program to the re-route procedure is the remaining382

of the planned schedule, consisting of the remaining customer cargoes and the383

planned days for start of servicing them, and the vessels’ positions given as the day384

they will be available for service at the production port.385

Let setsN , T andV be as described in Section 3. Then subsetT A ⊂ T is386

the set of remaining days of the planning horizon when the re-route procedure is387

called (daytA). SetG contains the remaining planned schedule in terms of which388

customer cargoes that are planned to be serviced on which days,(i, t∗).389

The parametersCvi, RMX
v , Avit∗t, B, Pt, Qv , QS , SMN andSMX are as390

described in Section 3.Fi is now the number of remaining cargoes to deliver to391

customeri. Hit is zero if a cargo to customeri is scheduled to be serviced on day392

t and one if scheduled to be serviced on dayt − 1 or t + 1. HP is the penalty cost393

for customers not being serviced on the scheduled day.394

The decision variables are the same as in Section 3:xvit, zt andst. We intro-395

duce a new vessel variable,xS
jit. Indexj ∈ {spotvessel, spotcargo} represents396

either a charter-in spot vessel servicing a customer cargo (the customer cargo is397

serviced by a vessel that is not in the LNG producer’s fleet), or a spot delivery398

of LNG to a customer (the vessel servicing the customer cargo is not in the LNG399

producer’s fleet and the LNG delivered is bought from some other LNG producer).400

These are possible real-life recourse actions. The costs for these two options are401

relatively high compared with utilizing own fleet and LNG (reflecting the market402

costs for charter-in vessels and spot deliveries), are the same for all customers and403

represented byCj . LetVS be the set containing these two options. Then variable404

xS
jit equals 1 if optionj is used to service a cargo to customeri starting on dayt,405

and zero otherwise.406

Further, the new variablesMN
t represents LNG inventory at the production407

port below the minimum level on dayt. We allow for the inventory level being408

slightly under the minimum level as the simulation procedure allows for cargoes409

being close to full shiploads when the inventory level is lower than a full shipload.410

The re-route optimization problems only allows for full shiploads, thus allowing a411

small negative inventory level will create solution that will not require an expensive412

spot delivery of LNG when the inventory level amounts to close to a full shipload.413

SMXS is the maximum amount of LNG allowed below minimum inventory level,414

andSP the penalty cost for each m3 of LNG the inventory level is below minimum.415
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The re-route optimization problem then becomes:

min
∑

i∈N

∑

t∈T A


∑

v∈V
Cvixvit +

∑

j∈VS

Cjx
S
jit


+

∑

i∈N

∑

t∈T A

HitH
P


∑

v∈V
xvit +

∑

j∈VS

xS
jit


+

∑

t∈T A

SP sMN
t ,

(26)

subject to416

t∑

t∗=max{tA,t−RMX
v +1}

∑

i∈Nv

Avit∗txvit∗ ≤ 1, v ∈ V , t ∈ T A, (27)

∑

v∈V

t∗+1∑

t=max{tA,t∗−1}

xvit +
∑

j∈VS

t∗+1∑

t=max{tA,t∗−1}

xS
jit ≥ 1, (i, t∗) ∈ G (28)

∑

v∈V

∑

t∈T A

xvit +
∑

j∈VS

∑

t∈T A

xS
jit = Fi, i ∈ N (29)

∑

v∈V

∑

i∈Nv

xvit +
∑

j∈VS

∑

i∈N
xS

jit + zt ≤ B, t ∈ T A, j\ {spotcargo} (30)

st = st−1 + Pt −
∑

v∈V

∑

i∈Nv

xvitQv −
∑

j∈VS

∑

i∈N
xS

jitQ
S − ztQ

S , t ∈ T A, j\ {spotcargo}

(31)

SMN − sMN
t ≤ st ≤ SMX , t ∈ T A (32)

sMN
t ∈

[
0, SMXS

]
, t ∈ T A (33)

xvit ∈ {0, 1} , v ∈ V , i ∈ Nv , t ∈ T A, (34)

xS
jit ∈ {0, 1} , j ∈ VS , i ∈ N , t ∈ T A, (35)

zt ∈ Z+, t ∈ T A. (36)

The objective function (26) minimizes the cost of the schedule including sail-417

ing costs, charter-in vessels and the cost of spot deliveries. It also minimizes the418

number of customers receiving deliveries on other days than the ones in the planned419

input schedule, and the volume of LNG at the production port being below mini-420

mum level. Constraints (27) are similar to constraints (2) and ensure that a vessel421

is only assigned to servicing one cargo at the same time. Constraints (28) ensure422

that all planned customer cargoes are serviced either on the planned day or one day423

previous to or after this day. The second term being one if a customer cargo is ser-424

viced by a chartered-in vessel or by a spot cargo delivery. Constraints (29) ensure425
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that all remaining customer cargoes are serviced. These are redundant if all car-426

goes to a given customer is planned to be serviced with at least two days in between427

each pick-up. But for some customers that are to receive cargoes frequently this428

may not be the case and constraints (28) alone can result in some cargoes not being429

serviced. Constraints (30) and (31) are similar to constraints (5) and (6), but are430

valid only for the remaining days of the simulation. Then constraints (32) are the431

inventory level constraints. These are formulated as hard constraints for the maxi-432

mum level, and soft constraints for the minimum level (see the discussion above).433

Constraints (33) set the bound on thesMN
t variable, and constraints (34)-(36) set434

the binary and integer requirements on the problem variables.435

There are no constraints that ensure that total delivered volume to the customers436

are within minimum and maximum level, like constraints (4). These constraints are437

omitted to simplify the re-route optimization model and because the vessels that438

can sail to a given customer have similar loading capacities so that there should not439

be much difference in the total delivery. The sum of all deliveries to each customer440

is calculated in the simulation procedure so that the validity of these constraints441

can be checked a posteriori.442

7. Computational study443

Five different strategies for creating solutions to the LNG ship routing and444

scheduling program are evaluated by the simulation program described in Section445

6. These are:446

BASIC Model formulation as described in Section 3
EST BASIC strategy with added slack on each round-trip to the production port
TIL BASIC strategy with target inventory levels
TBA BASIC strategy with target accumulated berth use
COMBINED Combination of EST, TIL and TBA447

Nine problem instances based on the real problem have been created for this448

purpose. In Section 7.1 the problem instances are described along with the test449

settings used when solving the optimization problems and evaluating the corre-450

sponding solutions. Numerical results are provided in Section 7.2.451

7.1. Description of problem instances and test settings452

Problem instances are created based on three real planning problems: C1, C2453

and C3. An overview of the three planning problems is provided in Table 3.454

Three time horizons are defined for each of the planning problems; 90, 180455

and 360 days, giving a total of nine problem instances. Table 4 gives the number of456

customer cargoes to service for each problem instance, and the estimated number457

of spot cargoes needed to keep the inventory level within the maximum level.458
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Table 3: Overview of the three planning problems

Planning problem C1 C2 C3

# Vessels 8 13 11
# Customers 5 12 3
# Berths 1 1 1
Min inventory level [1000 m3] 0.00 0.00 0.00
Max inventory level [1000 m3] 510.00 333.36 420.00

Table 4: Number of customer cargoes for each problem instance

Problem instance C1-90 C1-180 C1-360 C2-90 C2-180 C2-360 C3-90 C3-180 C3-360

# cargoes 24 52 104 37 74 148 46 86 171
# spot 10 18 38 1 0 3 5 6 9

For each problem instance, the initial width of the time windows for picking up459

the customer cargoes are seven days except when this will lead to overlapping time460

windows for some customer cargoes. In the case of overlapping time windows, the461

width is reduced so that they are not overlapping.462

The nine problem instances are solved by the five strategies BASIC, EST, TIL,463

TBA and COMBINED described above.464

The shortest duration of a round-trip for a vessel from the production port to a465

customer is 8 days. The round-trip durations for the other customers vary from 22466

to 30 days depending somewhat also on the vessels’ sailing speed. For planning467

problems C1 and C3 round-trips of duration eight days are added one extra day of468

slack and the longer round-trips are added two days of slack. This is consistent469

with the probabilities for increased sailing times in Table 1, where a round-trip of470

duration 8 days will never be longer than 9 days, and for round-trips of durations471

22 to 30 days there is a 85.5 % chance that the sailing time will have a maximum472

increase of two days. For planning problem C2, there are four customers with473

round-trip durations of 22-25 days depending on which vessel that services them.474

The round-trip durations for these customers are added only one day of slack be-475

cause more slack made these instances infeasible (all cargoes could not be serviced476

by the LNG producer’s own vessel fleet).477

The target inventory levels and target accumulatedberth use are set as described478

in Section 5. The penalty costs for violating the target inventory levels and target479

accumulated berth use are set so high that these soft constraints will only be vio-480

lated when necessary to obtain a feasible integer solution.481

The simulation program is running 100 simulations for each planned schedule.482
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The probabilities for increased sailing time and changes in LNG production rates483

are as given in Tables 1 and 2, respectively. Allowed delay for the customer cargoes484

is zero days so that the re-route optimization procedure will be called whenever a485

customer cargo cannot be serviced on the planned day.486

All test results were obtained on a 2.16 GHz Intel Core 2 Duo PC with 2487

GB RAM. The basic model formulation with the extensions was implemented488

in Xpress-IVE 1.19.00 with Xpress-Mosel 2.4.0 and solved by Xpress-Optimizer489

19.00.00. The simulation program and re-route procedure was written in C++ us-490

ing Visual Studio 2005, the re-route optimization problem was modeled with BCL491

and solved by calling Xpress-Optimizer 19.00.00.492

The stopping criteria for the Xpress-Optimizer when getting solutions for the493

BASIC, EST, TIL and TBA strategies are as follows:494

1. Optimal solution (or when gap from best known lower bound is less than 0.1495

%)496

2. Best integer solution after 3600 seconds497

3. If no integer solution is found after 3600 seconds, first integer solution498

And for the re-route optimization problem:499

1. Optimal solution (or when gap from best known lower bound is less than 1500

%)501

2. Best integer solution after 600 seconds502

7.2. Numerical results503

Table 5 shows the planned costs (i.e. without running the simulation program)504

in percentage of the BASIC solution costs and optimality gaps (gap between solu-505

tion and best known lower bound reported by the Xpress-Optimizer) for the nine506

problem instances when solved using the five strategies. The planned costs are only507

the costs of sailing the planned schedule and do not include any penalty costs for508

violating target inventory levels or target accumulated berth use. The optimality509

gap, on the other hand, is the optimality gap for the objective function value that510

may also include penalty costs for strategies TIL, TBA and COMBINED. No inte-511

ger solution was found by the Xpress-Optimizer for problem instance C2-360 with512

strategy COMBINED after a CPU time of 12 hours; therefore no results are shown513

for C2-360 COMBINED. The bottom row shows the total cost over all problem514

instances, not including instance C2-360.515

We observe from Table 5 that the EST and COMBINED strategies have the516

highest planned costs. This is as expected as these strategies both include slack517

in sailing times which allows for less flexibility in the solutions than the other518

strategies. The EST strategy has a total cost that is higher than the COMBINED519
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Table 5: Planned cost and optimality gap. The planned cost of the robustness strategies are expressed
as % of the BASIC planned cost.

BASIC EST TIL TBA COMBINED
Opt. Plan. Opt. Plan. Opt. Plan. Opt. Plan. Opt.
gap cost gap cost gap cost gap cost gap
(%) (%) (%) (%) (%) (%) (%) (%) (%)

C1-90 0.00 100.05 0.00 100.06 0.72 100.07 0.12 100.16 1.89
C1-180 0.00 106.25 0.00 100.07 2.68 100.03 1.00 106.31 3.81
C1-360 0.00 115.63 0.02 103.14 7.49 106.27 8.02 121.88 11.42
C2-90 0.00 100.00 0.00 100.00 0.67 100.00 0.08 100.00 0.57
C2-180 0.00 100.00 0.00 100.06 1.78 100.00 0.08 100.21 2.57
C2-360 1.99 98.07 0.03 102.49 9.49 98.09 2.34 - -
C3-90 0.00 100.00 0.00 100.00 0.08 100.00 0.10 100.00 0.10
C3-180 0.00 106.15 5.78 100.02 2.84 100.04 2.80 100.06 2.71
C3-360 0.00 103.84 3.68 100.02 4.31 100.03 4.31 100.03 4.41

Totala 105.51 100.69 101.35 105.36
aNot including C2-360

strategy even though the opposite should occur since the COMBINED strategy is520

the EST strategy with more constraints. This can happen as the extra constraints521

and added penalty functions for the COMBINED strategy may guide the Xpress-522

Optimizer in a different direction than the EST strategy. This can result in lower523

cost solutions when the optimal integer solution is not found after the CPU time524

limit of 3600 seconds.525

Figure 4 shows the resulting inventory levels for problem instance C1-90 solved526

for BASIC and TIL. In the figure are also the high and low target inventory levels527

(IH and IL) and maximum inventory level (SMAX) shown. The figure illustrates528

how the TIL strategy typically results in inventory volumes further away from max-529

imum and minimum levels.530

Tables 6 and 7 show the average simulated costs over 100 simulations and the531

corresponding standard deviation (in percent) when there is uncertainty in only532

sailing times and in both sailing times and daily LNG production rates, respec-533

tively. For strategy BASIC the simulated cost is given as percentage of the planned534

cost, while for all other strategies it is given as percentage of the BASIC simulated535

cost. The simulated costs reflects the expected extra costs due to using more expen-536

sive vessels, needing to charter-in vessels to service customer cargoes or needing537

to buy spot cargoes of LNG to deliver to customers. The last row gives the total538
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Table 6: Average simulated cost and standard deviation, uncertainty in sailing times only. Simulated
cost of BASIC solutions are expressed as % of the BASIC planned cost. Simulated cost of other
solutions are expressed as % of BASIC simulated cost.

BASIC EST TIL TBA COMBINED
Sim. St. Sim. St. Sim. St. Sim. St. Sim. St.
cost dev. cost dev. cost dev. cost dev. cost dev.
(%)b (%) (%)c (%) (%)c (%) (%)c (%) (%)c (%)

C1-90 100.12 0.03 102.96 5.65 106.10 6.65 100.36 2.28 104.09 6.80
C1-180 112.62 4.46 99.36 4.62 101.01 5.57 98.71 4.75 98.69 4.37
C1-360 125.27 3.33 101.03 3.44 101.67 3.12 103.75 2.62 101.31 3.17
C2-90 106.09 7.08 100.60 14.42 100.18 5.52 98.61 4.61 98.92 4.75
C2-180 114.96 4.25 92.63 4.39 94.45 3.84 96.27 3.51 91.68 5.23
C2-360 111.34 2.92 103.82 3.25 95.45 2.47 96.65 2.85 - -
C3-90 106.01 6.31 95.16 2.97 98.84 5.26 96.82 4.82 95.99 3.97
C3-180 117.29 9.34 90.89 6.77 93.55 5.47 99.78 5.39 88.64 5.18
C3-360 102.90 3.38 100.69 1.71 101.48 3.32 100.51 1.92 103.61 6.68

Totala 112.49 97.93 99.34 99.93 98.06
aNot including C2-360
bPercent of planned cost
cPercent of simulated cost for BASIC strategy

average simulated costs over all problem instances (not including C2-360).539

For most of the problem instances, the calculated costs of the solutions are540

lower than the simulated cost, but if the optimal solution is not found for a problem541

instance, it is also possible that the simulated cost is lower as the re-route optimiza-542

tion procedure can produce lower-costs solutions. This was the case for problem543

instance C3-360 EST. For all BASIC solutions, the planned costs were lower than544

the simulated costs. But we observe that the expected extra costs vary for the prob-545

lem instances; from only 0.12 % for problem instance C1-90, and up to 25.27 % for546

problem instance C1-360. In total over all problem instances, the expected extra547

cost is 12.21 %.548

Observations from Tables 6 and 7 show that there is not one strategy that pro-549

vides the lowest cost solutions for all problem instances. When there is only uncer-550

tainty in sailing times (Table 6), each strategy produces the lowest cost solution for551

at least one problem instance. When it comes to total expected cost over all prob-552

lem instances, EST provides the lowest cost, with a reduction of 2.07% compared553

with BASIC, closely followed by the COMBINED strategy.554
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Table 7: Average simulated cost and standard deviation, uncertainty in sailing times and daily LNG
production rates.Simulated cost of BASIC solutions are expressed as % of the BASIC planned cost.
Simulated cost of other solutions are expressed as % of BASIC simulated cost.

BASIC EST TIL TBA COMBINED
Sim. St. Sim. St. Sim. St. Sim. St. Sim. St.
cost dev. cost dev. cost dev. cost dev. cost dev.
(%)b (%) (%)c (%) (%)c (%) (%)c (%) (%)c (%)

C1-90 100.26 1.42 101.86 4.97 108.09 7.02 100.36 2.66 102.57 5.78
C1-180 111.73 4.77 100.72 4.88 102.74 5.73 100.11 4.78 99.83 4.21
C1-360 124.67 3.43 104.36 4.64 102.02 3.23 104.23 3.15 101.54 2.97
C2-90 108.26 8.04 101.20 10.50 99.60 5.05 97.54 6.38 97.24 5.45
C2-180 120.59 7.41 92.63 6.09 90.25 4.14 97.55 6.15 89.76 6.22
C2-360 119.53 7.59 102.79 6.14 93.87 5.47 94.24 5.24 - -
C3-90 107.18 7.45 101.34 12.46 98.19 7.37 97.10 6.08 95.87 6.10
C3-180 119.19 9.10 96.85 10.46 94.55 6.69 99.20 5.91 86.61 4.67
C3-360 104.56 4.05 101.92 5.17 100.50 4.17 100.21 4.45 100.72 5.73

Totala 114.05 100.10 98.75 100.18 96.84
aNot including C2-360
bPercent of planned cost
cPercent of simulated cost for BASIC strategy

When there is uncertainty in both sailing times and daily LNG production rates555

(Table 7), strategies EST and TBA do not give lowest expected cost solutions for556

any of the problem instances. These strategies also provide higher expected cost557

over all problem instances than the BASIC strategy. The TIL strategy gives the558

lowest expected cost solution for problem instance C2-360, while the COMBINED559

strategy provides the lowest expected cost solutions for five of the remaining eight560

problem instances. Over all problem instances the COMBINED strategy provides561

the lowest total expected cost, representing a reduction of 3.16% on average com-562

pared with the BASIC strategy.563

The simulated costs do not reflect any costs involved with a replanning sit-564

uation (represented by a call to the re-route optimization procedure) and costs565

involved with changing delivery dates to customers. These costs are difficult to566

estimate, and depends on the extent of the replanning (variation from old plan) and567

the customers’ flexibility to changed delivery dates (low flexibility can lead to high568

penalty costs and/or loss of goodwill). Therefore weight should also be put on569

these elements.570
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Table 8: Average number of times the re-route optimization procedure is called (# RR) and average
number of cargo pick-up days changed from original plan (# D), uncertainty in sailing times only

BASIC EST TIL TBA COMBINED
# RR # D # RR # D # RR # D # RR # D # RR # D

C1-90 0.08 0.08 0.24 0.03 0.90 0.81 0.11 0.11 0.50 0.26
C1-180 2.64 2.74 1.74 1.15 3.00 3.31 2.87 4.18 1.44 1.04
C1-360 8.25 12.63 4.87 2.72 8.62 12.13 7.72 9.29 4.49 2.83
C2-90 1.06 0.69 0.93 0.97 1.66 1.29 1.22 1.01 1.12 1.22
C2-180 5.37 9.76 3.61 5.02 2.89 3.40 6.55 10.66 2.28 2.47
C2-360 13.20 26.96 12.89 19.60 8.20 12.43 7.17 8.09 - -
C3-90 2.63 5.61 0.58 0.74 3.13 7.27 1.91 3.70 0.77 0.95
C3-180 6.76 18.33 2.61 4.35 7.59 33.44 6.91 23.76 1.80 2.16
C3-360 13.98 41.14 1.51 2.36 13.80 54.72 1.50 2.37 2.61 3.88

Totala 40.77 90.98 16.09 17.34 41.59 116.37 28.79 55.08 15.01 14.81
aNot including C2-360

Tables 8 and 9 show how often the re-route optimization procedure on aver-571

age had to be called during a simulation (# RR), and the average total number of572

pick-up days changed from the originally planned schedule (# D). For example, if573

a cargo was planned to be picked-up on day 137 in the planning horizon, but in a574

simulation is picked-up on day 139, two is added to this number. These are aver-575

age numbers over 100 simulations. The last row shows the sum over all problem576

instances.577

The re-route optimization procedure is called whenever a customer cargo can-578

not be picked-up on the planned day. There is also a direct link between the number579

of re-route calls and the number of changed cargo pick-up days as the pick-up days580

can only be changed in the re-route optimization procedure. Therefore, we observe581

from Tables 8 and 9 that the number of calls to the re-route optimization procedure582

is lower than the number of changed pick-up days for almost all problem instances583

and solution strategies.584

The number of re-route calls and pick-up days changed vary for the different585

strategies, with COMBINED and EST being the ones with the lowest numbers.586

This is not surprising as adding slack to each return trip means that these strategies587

allow for some delay and thus are also less exposed for replanning.588

Since the costs of re-routing and changing cargo pick-up dates are not reflected589

in the simulation costs in Tables 6 and 7, both simulation costs and number of re-590

route calls and cargo pick-up days changed should be studied before concluding591
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Table 9: Average number of times the re-route optimization procedure is called (# RR) and average
number of cargo pick-up days changed from original plan (# D), uncertainty in sailing times and
daily LNG production rates

BASIC EST TIL TBA COMBINED
# RR # D # RR # D # RR # D # RR # D # RR # D

C1-90 0.09 0.09 0.26 0.24 0.91 0.69 0.51 0.48 0.44 0.33
C1-180 2.75 3.14 1.76 1.54 3.03 3.03 3.02 4.33 1.46 0.96
C1-360 8.22 10.43 5.26 3.23 8.45 11.15 7.39 8.28 4.40 2.62
C2-90 1.34 1.61 0.89 1.29 1.67 1.04 1.36 1.34 1.09 1.19
C2-180 4.48 7.79 3.66 5.99 2.94 3.46 4.20 6.70 2.57 3.21
C2-360 9.24 18.31 8.37 14.43 7.24 10.02 8.21 10.98 - -
C3-90 2.44 5.90 0.80 0.85 2.99 6.51 2.13 4.63 0.77 0.94
C3-180 6.61 17.92 2.29 3.15 7.58 31.52 6.91 25.80 1.82 2.58
C3-360 13.09 39.61 2.61 4.36 13.00 52.91 13.68 42.52 2.98 5.06

Totala 39.02 86.49 17.53 20.65 40.57 110.31 39.20 94.08 15.53 16.89
aNot including C2-360

what solution that overall performs the best.592

The results illustrate how the best strategy varies for the different problem in-593

stances. However, we observe that in total, over all problem instances, the COM-594

BINED strategy provides the best results. It has both the lowest average simulated595

costs and shows the best results on average with respect to the number of re-route596

optimization procedure calls and cargo pick-up day changes. This shows that it597

will add value to the solution to add some robustness strategies. On the other hand,598

the BASIC strategy also showed good results for some problem instances, which599

illustrates the importance for a decision maker to have the opportunity to create600

more than one solution based on different criteria and having access to a tool that601

can evaluate them.602

8. Concluding remarks603

This paper considered a ship routing and scheduling problem arising in the604

LNG business. A number of customer cargoes with given pick-up time windows605

need to be serviced by the available vessel fleet while at the same time not violating606

the production port’s berth capacity and inventory level constraints.607

As most maritime transportation problems this problem also includes uncer-608

tainty. In this paper we proposed and tested different robustness strategies that609

can be added to an optimization model with the aim of creating solutions that610
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better handles the problem’s underlying uncertain parameters: Sailing times and611

daily LNG production rates. The solutions obtained when solving the optimiza-612

tion model with and without adding robustness strategies were then compared by613

running a simulation program with a recourse re-route optimization procedure to614

imitate a real-life planning situation.615

In total, five different strategies for creating solutions to the LNG ship routing616

and scheduling problem was tested: One basic approach where the optimization617

model was solved without adding any robustness strategies, one with added slack618

to each sailed round-trip, one with target inventory levels, one with target accu-619

mulated berth use and one with a combination of all robustness strategies. The620

results show that there is none of the robustness strategies that perform better than621

the others for all problem instances. However, most of the proposed robustness622

strategies, and the combined one in particular, gave solutions with lower expected623

costs than the basic approach (without any robustness strategies). In addition, the624

strategies of adding extra slack and combining all robustness strategies, lead to a625

significant overall decrease in the number of times a schedule had to be re-planned626

and changes in pick-up days for the customer cargoes.627

The observed results illustrate the importance of addressing uncertainty in mar-628

itime transportation problems. The difficulty of creating one solution method that629

will create solutions that outperform all other solutions can be avoided by creating630

several solutions by adding various robustness strategies and assessing the results631

by a simulation program that imitates the real-life situation. The solution strate-632

gies proposed in this paper together with the simulation-optimization framework633

for evaluating solutions form a good foundation for a complete decision support634

system that will support both the initial planning process and the re-planning ac-635

tivities.636

The re-route optimization model does not use any robustness strategies. This637

means that the replanning activity in the simulation program is solved by a modified638

version of the basic approach. This was done because it is necessary that the re-639

route optimization problem is solved within reasonably short CPU time as it will640

be solved several times during a simulation. We leave to future work to improve641

the re-route procedure and test the effect of also adding robustness strategies in the642

replanning situation.643
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Figure 4: Inventory levels for problem instances C1-90 BASIC and TIL
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