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Abstract 
 

Effective supply chain management relies on information integration and implementation of best 
practice techniques across the chain. Supply chains are examples of complex multi-stage systems 
with temporal and causal interrelations, operating multi-input and multi-output production and 
services under utilization of fixed and variable resources as well as potentially environmental 
exposure. Acknowledging the lack of system’s view, the need to identify system-wide as well as 
individual effects, as well as the incorporation of a coherent set of performance metrics, the recent 
literature reports on an increasing, but yet limited, number of applications of frontier analysis 
models (e.g. DEA) for the performance assessment of supply chains or networks. The relevant 
models in this respect are multi-stage models with various assumptions on the intermediate 
outputs and inputs, enabling the derivation of metrics for technical and cost efficiencies for the 
system as well as the autonomous links. This paper reviews the state of the art in multi-stage or 
network DEA modeling, along with a critical review of the advanced applications that are 
reported in terms of the consistency of the underlying assumptions and the results derived. 
Consolidating the current work in this range using a unified notation and by comparing the 
properties of the models presented, the paper is closed with recommendations for future research 
in terms of both theory and application. 
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1.   Introduction 

Supply chain management (SCM) was introduced as a common scientific and 
managerial term in 1982 (cf. Oliver and Webber, 1992) to describe a hierarchical control 
system for material, information and financial flows in a potentially multidirectional 
network of autonomous decision making entities. Although there is a lack of universally 
accepted definition (Otto and Kotzab, 1999), a well-used and typical definition of a 
supply chain is ‘a network of organizations that are involved, through upstream and 
downstream linkages in the different processes and activities that produce value in the 
form of products and services in the hand of the ultimate consumer.’ Christopher (1998, 
p.15). The management activity is consequently the coordination of this network, or 
‘chain’, of independent processes as to achieve the overall goal in terms of value creation. 
Three elements are important in our context: the multi-level character of the network, the 
interdependency and the competitive objective. First, the underlying system is constituted 
of multiple layers, both horizontally (sequential processing) and vertically (control layers, 
levels of integration into firms, business units, joint ventures, information sharing, etc.). 
This implies that the systematic analysis of a supply chain must take into account the 
level of processing as well as the locus of control in order to understand the organization 
and its performance. Second, the ‘links’ in the chain form sequential processing stages 
that are interdependent with respect to potentially all three types of flows; material flows 
in progressive processing, information flows specifying types and quantity of processes 
to be performed, and financial flows to reimburse or incentivize the units to devote time 
and resources to the joint activity. Third, a supply chain is not an arbitrary processing 
plan but involves multiple independent organizations (conventionally at least three) 
cooperating under commercial conditions and subject to actual or potential future 
competition, both as a common endeavor and individually for each processing stage. 
Taken together, the three observations underline that performance evaluation is of 
highest importance to assure continuity, competitiveness and, ultimately, survival of the 
network, but that this evaluation must take into account the specificities of the network 
character and the decision-making autonomy of the evaluated units.  

A wide range of metrics for supply chain performance have been proposed (cf. Neely 
et al., 1995, Melnyk et al., 2004) using an equally diverse portfolio of methodologies (cf. 
Estampe et al., 2010). Whereas most SCM literature has been devoted to the elaboration 
and evaluation of absolute metrics, usually linked to the dimensions cost (profit), time 
(rates) and flexibility (change of rate), there has also been a growing awareness of the 
need to perform external benchmarking (Beamon, 1999), the lack of integration of 
metrics (Beamon, 1999, Chan, 2003), the lack of system’s view (Holmberg, 2000) and 
the lack of non-cost indicators (Beamon, 1999, De Toni and Tonchia, 2001). In response 
to this critique, several applications of non-parametric frontier analysis, such as Data 
Envelopment Analysis (DEA), have been proposed for supply chain management. The 
production-economic foundations and the capacity to derive a consistent set of 
informative performance metrics for a multi-input and multi-output setting qualify the 
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frontier analysis as a useful tool for operation management assessments. However, the 
interdependencies among evaluated units call for specific frontier models, in particular 
the multi-stage or network models (cf. Färe and Grosskopf, 1996b). These models 
explicitly take into account the network structure in the evaluation, deriving metrics that 
can evaluate both individual unit and chain-wide performance in the long and the short 
run. However, the rapid development of such models (e.g. Färe and Grosskopf, 2000, 
Chen and Zhu, 2004; Chen et al., 2006a, Chen et al., 2009a, 2009b; Zha and Liang, 2010) 
and their relevance to supply chain performance assessment have not yet been critically 
reviewed. 

It is to fill this need that this paper summarizes the state-of-the-art in frontier analysis 
models for supply chain management and their applications, along with identification of 
future research directions. Special emphasis is put on the special case of multi-level DEA 
that is called the two-stage process. The outline of this paper is organized as follows. In 
section 2, we first present the definition of the term SCM and then we discuss 
performance assessment in SCM. Section 3 is a short recapitulation of DEA definitions 
for readers not familiar with the models. In Section 4, we present a generic activity model 
for supply chain evaluation. In Section 5 we review the DEA-models applied to two-stage 
structures, including models based on cooperative and non-cooperative game theory, in 
particular bi-level programming. The paper is concluded in section 6 with critical 
analysis of the reviewed work as some directions for future research. 

2.   Performance evaluation in supply chain management 

In the late 1980s, the term Supply Chain Management (SCM) arose and came into 
widespread use in the 1990s. SCM has been increasingly developed in theory and 
practice (e.g. Houlihan, 1985; Jones and Riley, 1987). There have been a large number of 
definitions of SCM (see e.g. Mentzer et al., 2001) but unfortunately, there is no explicit 
and generally accepted description of SCM in the literature. The term supply chain 
management is composed of a “supply chain” as the object of control and “management” 
as the scope of activity. Some definitions of a supply chain are proposed below 
(Ganeshan and Terry 1996; Lambert et al. 1998): 

• A supply chain is the alignment of firms that bring products or services to market.  
• A supply chain consists of all stages involved, directly or indirectly, in fulfilling a 

customer request. The supply chain not only includes the manufacturer and 
suppliers, but also transporters, warehouses, retailers, and customers themselves. 

• A supply chain is a network of facilities and distribution options that performs the 
functions of procurement of materials, transformation of these materials into 
intermediate and finished products, and the distribution of these finished products 
to customers.  

Generally, supply chain is a system of organizations, people, technology, activities, 
information and resources involved in moving a product or service from supplier to 
customer. Supply chain activities transform natural resources, raw materials and 
components into a finished product that is delivered to the end customer. In many cases a 
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supply chain consists of multiple suppliers, manufacturers, wholesalers, retailers. The 
management of a supply chain can be defined as (Bidgoli, 2010): 

The systemic, strategic coordination of the traditional business functions and the 
tactics across these business functions within a particular company and across 
businesses within the supply chain, for the purposes of improving the long-term 
performance of the individual companies and the supply chain as a whole. 

Supply chain management takes an integrated system’s view on the design, 
monitoring and control of the chain. This approach serves to arbitrate the potential 
conflicts of individual agents in the chain in order to coordinate the flow of products and 
services to best serve the ultimate customer. We refer to this framework as “centralized”, 
in that it represents the objective of a hypothetical benevolent supply chain coordinator 
with authority to implement any necessary decision throughout the chain. 

Performance measurement is intrinsically anchored in SCM as both a predictive and 
normative paradigm. Predictive in the sense that performance management provides data 
and estimates necessary for the management of material and information flows in order to 
meet stochastic demand, product and process changes or changes in the price/cost 
structure for inputs and outputs. Normative in the sense that the supply chain 
management interfaces with both operations and sourcing, providing targets for 
improvement as well as potentially credible threats of substitution or volume reductions 
in case of poor [relative] performance. A seminal paper in performance measurement 
design is Neely et al. (1995), defining the scope of performance assessment as the 
quantification of effectiveness and efficiency of action. The paper also offers an overview 
over a wide range of techniques and metrics used as well as their limitations and areas for 
future research.  Conventionally, the operations management literature limited the 
attention to performance measurement to the mere definition of absolute (e.g. cost per 
unit) and partial productivity (e.g. labor hours per unit produced) metrics (Cf. Melnyk et 
al. 2004 for a critique of this approach or Lambert et al., 2001 for an example) without 
paying attention to their systemic or economic integration, or even to their value as 
predictors of future profitability or survival in the market place. Neely et al. (1995) 
provide greater nuance to the analysis of supply chain performance by distinguishing the 
type of measurement, metric and method based on an analysis of organizational level, 
integration, organizational support, managerial application and hierarchical level. The 
authors document empirically that firms frequently neglect non-financial data, use 
internal cost data of varying quality, deploy methods with no or poor connection to 
organizational strategy and globally are dissatisfied with their performance assessment 
system. Shepherd and Gunter (2006) review 362 scientific papers on supply chain 
performance measurement and conclude that the findings of Neely et al. in many aspects 
are still valid. Alternative qualitative approaches exist using tools such as balanced 
scorecards (cf. Bhagwat and Sharma, 2007), however, the information made available 
from such models is limited in terms of e.g. decomposing productive and cost efficiency. 
Nevertheless, the need to identify performance in supply chain can be of strategic as well 
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as operational value, cf Gunasekaran et al. (2004) and Olugu and Wong (2009), leading 
us to require consistency in the evaluation methodology between the two levels.  
Applications using frontier methods to complex multi-stage systems, normally the non-
parametric DEA method that is the focus here, are relatively rare. An early application to 
US Army recruitment in Charnes et al. (1986) used a two-stage approach with 
intermediate outputs that forms the basis of later network models.  Ross and Droge 
(2002) proposed an integrated benchmarking approach for measuring temporal efficiency 
using some extensions to DEA methodology and then applying their approach into real 
data including 102 distribution centers in the petroleum business. Talluri et al. (1999) 
proposed a framework based on DEA and multi-criteria decision models for value chain 
network design, primarily aiming at the identification of an optimal supplier-
manufacturer dyad. Löthgren and Tambour (1999) used the network DEA model 
introduced by Färe and Grosskopf (1996a) to estimate efficiency and productivity for a 
set of Swedish pharmacies. Hoopes, Triantis, and Partangel (2000) developed a goal-
programming DEA formulation that models serial manufacturing processes and applied it 
to data on circuit board manufacturing.  Talluri and Baker (2002) proposed an interesting 
three-phase approach for designing an effective supply chain using a DEA framework. 
Phase I evaluates potential suppliers, manufacturers, and distributors in determining their 
efficiencies using a combination of a DEA models and the pair-wise efficiency game. 
Phase II contains an integer programming model, which optimally selects candidates for 
supply chain design using a combination of the efficiencies obtained in phase I, demand 
and capacity requirements, and location constraints. Phase III includes the identification 
of optimal routing decisions for all entities in the network by solving a minimum-cost 
transshipment model. Sexton and Lewis (2003) evaluated managers’ management 
efficiency of 30 Major League Baseball teams in 1999 under two-stage model. Their 
model distinguishes inefficiency of the first stage from the second stage, allowing 
managers to target inefficient stages of the production process. Lewis and Sexton (2004) 
viewed the network as a baseball team and extended Sexton and Lewis (2003) to consider 
efficiency at each node of a network. Narasimhan et al. (2004) considered a two-stage 
framework, namely flexibility competency and execution competency, for discussing the 
relationship between manufacturing flexibilities and manufacturing performance of a set 
of firms. Their model used the reduced CRS-DEA model proposed by Andersen and 
Petersen (1993) to measure the efficiency of each stage independently. Sheth et al. (2007) 
evaluate the overall performance of an agency’s bus routes by using network DEA (Färe 
and Grosskopf, 2000) and goal programming (Athanassopoulos, 1995) with 
environmental factors from the supplier, consumer, and society viewpoints. Yu and Lin 
(2008) used a multi-activity network DEA model for estimating passengers and freight 
technical efficiency, service effectiveness and technical effectiveness for 20 railway firms 
in the world. Yu (2008a) used a multi-activity DEA model for measuring the efficiency 
of multi-mode bus transit under highway and urban bus services in the presence of 
environmental variables, also used for a shared output-model in Yu and Fan (2006) and 
and an enhanced network system with consideration of consumption in addition to 
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highway and urban bus services in Yu and Fan (2009). Yu (2008b) presents a network 
DEA approach consisting of two stages, the production and Consumption stages, to 
evaluate the technical efficiency, the service and technical effectiveness of a selected 
sample of 40 global railways. Vaz et al. (2010) proposed a method to measure Portuguese 
retail stores performance based on the network DEA (Färe et al., 1997), which takes into 
account the interdependencies of the sections composing the store.  

Supply chain management involves decision on a multi-level decision network 
structure. Application of conventional DEA models considers the supply chain as a black 
box and considers only the inputs from the beginning of the upstream components and 
final outputs at the very end of downstream components in the performance evaluation. 
Thus, those intermediate measures are ignored. The efficiency scores will result in 
ambiguous or too optimistic estimates of the SCM. 

3.   Data envelopment analysis 

The data envelopment analysis (DEA) approach to efficiency measurement is a 
deterministic method that does not require the definition of a functional relationship 
between inputs and outputs. In economic terms, DEA utilizes the non-parametric 
mathematical programming approach to estimate best practice production frontiers 
(envelope). The basic DEA model as introduced by Debreu (1951) and Farrell (1957) and 
later developed by Charnes et al. (1978) is a data-driven method for evaluating the 
relative efficiency of a set of entities with multi-inputs and multi-outputs. DEA has rapid 
and continuous growth in different areas since 1978. Emrouznejad et al. (2008) reported 
more than 4000 DEA research studies published in journals or book chapters. A 
taxonomy and general model frameworks for DEA also can be found in Cook and Seiford 
(2009).  

Let us introduce the technology set T or production possibilities set (PPS) 

 {( , ) }m sT x y R R xcan produce y+ += ∈ ×  

The background of the DEA is production theory, and the idea is that the DMUs have 
a common underlying technology T. In reality, we usually could not specify the 
technology set but DEA deals with the problem by estimating PPS, T*, from observed 
data on actual production activities according to the minimal extrapolation principle.  

The mathematical programs can be obtained when we combine the idea of minimal 
extrapolation with Farrell’s idea of measuring efficiency as a proportional improvement. 

Assume that there are n DMUs to be evaluated where every DMUj, 1,2,...,j n= ,  

produces s outputs, 
1

( ,..., )j j j s

s
Y y y R+= ∈ , using m inputs, 

1
( ,..., )j j j m

m
X x x R+= ∈ . The 

s n×  matrix of output measures is denoted by Y, and the m n×  matrix of input measures 

is denoted by X.  
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The efficiency of a specific DMU�  is denoted by ( , , )X Yθ γ�  in output-oriented and 

( , , )X Yϕ γ�

 
in input-oriented where γ  represents the returns to scale. Therefore, 

( , , )X Yθ γ�  is calculated by using the following mathematical DEA model 

 

min

. . ,

,

( ).

s t X X

Y Y

θ
λ θ
λ

λ γ

≤
≥

∈ Ω

�

� �

�

 

 

(1) 

where ( )γΩ  specify the shape of the frontier. In other words, ( )γΩ  differentiates 

between the models based on the returns to scale assumption.  In short, we can define six 
following classical DEA models as follows (cf. Bogetoft and Otto, 2010): 

The constant returns to scale (CRS) model when ( ) { | }crs R free Rλ λ+ +Ω = ∈ =  

The decreasing returns to scale (DRS) model when ( ) { |1 1}drs Rλ λ+Ω = ∈ ≤  

The increasing returns to scale (IRS) model when ( ) { |1 1}irs Rλ λ+Ω = ∈ ≥  

The varying returns to scale (VRS) model when ( ) { |1 1}vrs Rλ λ+Ω = ∈ =  

The free disposability hull (FDH) model when ( ) { |1 1}fdh Nλ λ+Ω = ∈ =  

The free replicability hull (FRH) model when ( ) { | }frh N free Zλ λ+ +Ω = ∈ =  

where Z+  is set of the non-negative integers. 

The CRS, DRS, IRS and VRS models are linear programming (LP) problems while 
FDH and FRH are mixed integer problems (MIP). The dual problem of (1) is: 

 
0

0

max

. . 1,

0,

, 0,

( ).

uY

s t vX

uY vX u

u v

u

θ

γ

=
=

− + ≤

≥
∈ Φ

� �

�

 

 

(2) 

where ( ) {0}CRSΦ = , ( ) , ( )DRS R IRS R− +Φ = Φ =  and ( )VRS RΦ = . In model (2), u  

and v  are the weight vectors assigned to the output and input vectors, respectively. Note 
that in the dual program of CRS, 

0
0u =  since there are no restrictions on λ  in the primal 

model, therefore, it becomes  

 

max

. . 1,

0,

, 0.

uY

s t vX

uY vX

u v

θ =
=

− ≤
≥

� �

�

 

 

(3) 
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A DMU with * ( , , ) 1X Yθ γ =� , is called efficient with respect to the technology set 

( , )T X Y  and the returns to scale γ , otherwise, * ( , , ) 1X Yθ γ ≠�  is called inefficient. 

Problem (1) is referred to as the envelopment or primal problem, and (3) the multiplier or 
dual problem.  

4.   A generic SCM model  

The inefficient DMUs are notably interested in the factors that cause the inefficiency, 
although it is obvious that either reducing inputs or increasing outputs will improve their 
performance. To answer this question, much effort has been devoted to breaking down 
the overall efficiency into components so that the sources of inefficiency can be 
identified. One type of decomposition focuses on the structure of the DEA models. The 
general multi-level/multi-stage structure for performance evaluation in the complex and 
real environment is illustrated in Figure 1. This model involves the direct inputs and 
outputs for each stage, the intermediate flows between two stages and the common inputs 
among all levels of the system and shared inputs among stages of each level. 

 

 
Fig. 1: The common multi-stage activity model 

 
Figure 2 shows a simplified model of a two-stage process with the shared resource, 

where each DMU is composed of two sub-DMUs in series, and intermediate products by 
the sub-DMU in stage 1 is consumed by the sub-DMU in stage 2.  

Suppose that stage 1 of each  has m direct inputs 
 

and two sets of direct outputs: p outputs 
 
and q outputs , 

while stage 2 of each  consists of s direct outputs 
 

and two sets of direct inputs: t inputs 
 
and q inputs . We 

also assume k shared inputs  which are allocated among two stages.
 
Note 

that  is the intermediate measure e.g. the outputs of one stage become inputs to a later 

( 1,..., )
j

DMU j n=
1 1

( ,..., )j j

m
X x x=

1 1
( ,..., )j j

p
Y y y=

1
( ,..., )j j

q
Z z z=

( 1,..., )
j

DMU j n=
2 1

( ,..., )j j

s
Y y y=

2 1
( ,..., )j j

t
X x x=

1
( ,..., )j j

q
Z z z=

3 1
( ,..., )j j

k
X x x=

Z
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stage. The generic model is usually not analyzed in the current literature where most 
instructions are special cases where some sets are empty. In this study, we denote the 
efficiencies of stage 1 and stage 2 by , k=1, 2; p=1,2,3; q=1,2 and the 

overall efficiency is denoted by  in input oriented while we use 

 
and  notations in output oriented. 

 

Fig. 2: The common two-stage activity model. 

5.   Literature Review 

In the black-box approach of conventional DEA, the internal structures of DMUs are 
generally ignored, and the performance of a DMU is assumed to be a function of the 
chosen inputs and outputs. In the mid-1980s, Färe and Primont (1984) started working on 
performance evaluation of DMUs with known internal structures. They constructed 
multi-plant efficiency measures and illustrated their models by analyzing utility firms 
each of whom operated several electric generation plants. Although Färe (1991), Färe and 
Whittaker (1995) and Färe and Grosskopf (1996a) further expanded this modeling 
approach, the studies of Färe and Grosskopf (1996b, 2000) in the literature are known as 
a pioneered line of research at developing a general multi-stage model with intermediate 
inputs-outputs which is commonly called network DEA. Cook et al. (1998) discussed a 
general framework for hierarchies in DEA, grouping DMUs and their individual and 
aggregate performance indexes. Cook et al. (2000) presented a non-linear DEA model for 
measuring the efficiency of two components (i.e., service and sales) in banking system in 
the presence of shared resources. Cook and Green (2004) modified the DEA model 
developed by Cook et al. (2000) in order to specify the core business performance in 
multi-plant firms. Jahanshahloo et al. (2004a) determined the progress and regress of each 
component of a DMU upon the basis of Cook et al. (2000). Jahanshahloo et al. (2004b) 
linearized the model proposed in Cook et al. (2000) in the presence of discretionary and 
non-discretionary shared resources. Yang et al. (2000) proposed a DEA evaluation model 
for multiple independent parallel subsystems in which the efficiency of the overall 
process equals to the maximum of the efficiencies of all sub-processes. Castelli et al. 
(2001, 2004) and Amirteimoori and Shafiei (2006) discussed on some types of the 
network structure using DEA-like models. Golany et al. (2006) simultaneously measured 
the efficiency of the whole system and each sub-system as a special case of the Färe and 

( , , , )k p qE X Y Z γ�

( , , , )p qE X Y Z γ�

( , , , )k p qF X Y Z γ� ( , , , )p qF X Y Z γ�
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Grosskopf network framework (2000). Chen (2009) developed a dynamic production 
network DEA model by introducing an alternative efficiency measure for evaluating the 
performance of various hierarchical levels in the dynamic environment along with 
discussing on some returns to scale properties of production network. Chen and Yan 
(2011) recently developed three different network DEA models based on the concept of 
centralized, decentralized and mixed organization systems along with discussing on the 
relationship between their efficiencies. A later complementary network DEA formulation 
is a non-radial slacks based approach in Tone and Tsutsui (2009). This approach has 
applications in Fukuyama and Weber (2009), Fukuyama and Weber (2010) for bad 
outputs and, Avkiran (2009) to a banking setting and Yu (2010) to airport operations.  An 
important modeling contribution for the Tone and Tsutsui (2009) model is made in 
Chang et al. (2011), where the focus is on the ownership-control for the formulation of a 
full set of efficiency metrics.  

A two-stage process which is a special case of Färe and Grosskopf’s multi-stage 
framework involves a large number of real evaluation problems. Therefore, DMUs may 
have a two-stage structure in which the first stage uses inputs to produce outputs that 
become inputs of the second stage and then the second stage uses these first stage outputs 
to generate its own outputs. An excellent review of DEA models exploring internal 
structure in general, including some of our work, is found in Castelli et al. (2010). In this 
section, we present a literature review on models relevant to supply chain management. 
We review different DEA approaches organized with respect to methods in the two-stage 
process, game theory and bi level programming etc. to measure efficiency of supply 
chains. 

5.1.   Two-stage DEA  

Wang et al. (1997) were the first, to the best of our knowledge, to apply a two-stage 
structure for measuring the performance. Their model was composed of 

1
X , Z

 
and 

2
Y

 
which are the input vector of stage 1, the intermediate vector and the output vector of 
stage 2, respectively (see Figure 2). Wang et al. (1997) ignored the intermediate measures 
and obtained an overall efficiency with the inputs of the first stage and the outputs of the 
second stage (see model (5)). Similarly, Seiford and Zhu (1999) proposed a two-stage 
method to obtain the profitability and marketability of the top 55 U.S. commercial banks, 
consisting of 

1
X , Z

 
and 

2
Y

 
presented in Figure 1. Seiford and Zhu (1999) used 

independent CRS models (4), (5) and (6) to measure the overall efficiency and the 
efficiencies of stage 1 and stage 2: 

 

 

1 2 2

1

2 1

max ( , , , )

. . 1,

0,

, 0.

szE X Y Z crs uY

s t vX

uY vX

u v

=

=
− ≤

≥

� �

�

  (4) 
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Stage 1

 

1 1 2

1

1

max ( , , , )

. . 1,

0,

, 0.

szE X Y Z crs wZ

s t vX

wZ vX

w v

=

=

− ≤
≥

� �

�

�

 

(5) 

Stage 2

 

2 1 2 2

2

max ( , , , )

. . 1,

0,

, 0.

szE X Y Z crs uY

s t wZ

uY wZ

u w

=

=
− ≤
≥

� �

�

 

(6) 

The intermediate measures can arise the potential conflicts between two stages. For 
example, the second stage may reduce its inputs (intermediate measures) to achieve an 
efficient status. Such an action would, however, imply a reduction in the first stage 
outputs, thereby reducing the efficiency of the first stage. Zhu (2000) applied a method 
similar to that of Seiford and Zhu (1999) to the Fortune Global 500 companies. 

When the model consists of 
1

X , Z 
 
and 

2
Y , another conventional CRS model is to use 

the intermediate measure as an output (Z +
2

Y ) for measuring the overall efficiency.  

Chen and Zhu (2004) demonstrated that such DEA model fails to correctly characterize 
the two-stage process and the improvement to the DEA frontier can be distorted, i.e., the 
performance improvement of one stage affects the efficiency status of the other, because 
of the presence of intermediate measures. Zhu (2003) and Chen and Zhu (2004) also 
demonstrated that DEA model (4) does not correctly characterize the performance of the 
two stages, because it only considers the inputs and outputs of the whole process and 
ignores intermediate measures Z associated with two stages. Alternatively, one can 
consider the following DEA model that is the average efficiency of two stages: 

 

1 2
1 2

1 2

1 1

2 2

1
max ( , , , )

2

. . 0,

0,

, 0.

w Z uY
E X Y Z crs

vX w Z

s t w Z vX

uY w Z

w v

 
= + 

  

− ≤
− ≤
≥

� �

�

� �

 

 

(7) 

Although model (7) includes intermediate measures Z, it does not consider the 
relationship between the first and second stages owing to issue of decouples of the two 
stages. This does not show an ideal supply chain system (Liang et al. (2006)). Chen and 
Zhu (2004) suggested the following linear model for the two-stage process based upon 
the envelopment form of VRS consisting of 

1
X , Z and 

2
Y  presented in Figure 2: 
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1 2 1 2

1 1

2

min ( , , , )

. .

1,
1 1

0

2.
1 1

0

czE X Y Z vrs

s t X X

Z Z Stage

Z Z

Y Y
Stage

γ α γ β

λ α

λ
λ

λ

µ
µ β

µ
µ

= −

≤

≥


= 
≥ 

≤


≥ 


= 
≥ 

�

�

�

�

�

⌢

⌢

 

 

(8) 

where 
1

γ  and 
2

γ  are the predetermined weights reflecting the preference over the two 

stages’ performance and Z�
⌢

 which is unknown decision variables represents an 
intermediate measure for a specific DMU under assessment. According to model (8), if 
each stage is efficient, (that is * * 1α β= = ) then the two-stage process also is efficient. 

Note that model (8) not only measures the overall efficiency, but also obtains optimized 
values on the intermediate measures for a DMU under evaluation. They claimed that 
model (8) can determine the DEA frontier for the two-stage process so as to project the 
inefficient observations onto the efficient frontier. Chen et al. (2006a) applied a DEA 
model to assess the IT impact on firm performance by considering both stages of the 
scenario studied in Wang et al. (1997) and Chen and Zhu (2004). They decomposed some 
inputs in the first stage into the second stage. Chen et al. (2006a) developed a shared two-
stage DEA with respect to 

3
X , Z

 
and 

2
Y . Assume, therefore, that 

3
X  is split into two 

parts 
3

Xα  and 
3

(1 )Xα− . The average CRS ratios of stages 1 and 2 in the program (9) is 

used to measure the overall efficiency with common input and output weights for the two 
stages. 

 

2
3 2

3 3 3 3

3 3

2

3 3

1 3

1
max ( , , , )

2 (1 )

. . 1,

1,
(1 )

, , , 0.

clyz uYwZ
E X Y Z crs

v X wZ v X

wZ
s t

v X

uY

wZ v X

u v v w

α α

α

α

 
= + 

+ −  

≤

≤
+ −

≥

�
�

�

� � �

 (9) 

Model (9) is a non-linear fractional programming that can be transformed into (10). 
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3 2 2

3 3

3 3

3 3 3 2

3 3

3 3

3 3

1
max ( , , , ) ( )

2
. . 0,

1,

( ) 0,

1,

0,

, , , , 0.

clyzE X Y Z crs w Z u Y

s t v X w Z

v X

v v X w Z ku Y

v X w Z k

v v

v v k w u

′ ′= +

′ ′− ≥

′ =

′′ ′ ′ ′− + − ≥

′′ ′+ − =
′′ ′− ≥
′′ ′ ′ ′ ≥

� � �

�

� �

 

 

(10) 

Due to the 
2

ku Y′  term, model (10) is a non-linear program. For a given k ( w Z′≥ � ), 

however, the model can be treated as a linear parametric program. The efficiencies of the 
first and second stages can be then attained, respectively, via *w Z′ �  and *u Y′ �  where *w′  

and *u′  are optimal measures obtained from (10). The overall efficiency is the average 

efficiency of the two-stage process * *1 2( )w Z u Y′ ′+� � . Furthermore, * *
3 3

v vα ′ ′′=  

demonstrates how to allocate the resource (
3

X ) to two stages so as to maximize the 

average efficiency of whole process. 

Remark 1. If there is only one intermediate input, then the non-linear DEA model (9) 
becomes a linear program [Chen et al. 2006a]. 
 

Remark 2. The optimal *α  in model (9) is always equal to unity and the optimal *β  

represents the overall efficiency for the entire process [Chen et al. 2009a]. 

Saranga and Moser (2010) utilized the two-stage model developed by Chen and Zhu 
(2004) to evaluate purchasing and supply management (PSM) performance. 

Contrary to previous studies (e.g. Seiford and Zhu (1999)), which treated the whole 
process and the two sub-processes as independent, Kao and Hwang (2008) considered a 
series of relationship between the whole process and the two sub-processes in measuring 
the efficiencies when a production process is composed of 1X , Z

 
and 2Y  as depicted in 

Figure 2. The overall efficiency is decomposed into the product of the two individual 
efficiencies, namely 

 2 2
1 2

1 1

uY uYwZ
E E E

vX wZ vX
= × = × =

� �
�

� � �

� � �

 

 

(11) 

Consequently, the overall efficiency E
�
 under the CRS assumption calculates as: 
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1 2 2

1

2 1

1

2

max ( , , , )

. . 1

0,

0,

0,

, , 0.

khE X Y Z crs uY

s t vX

uY vX

wZ vX

uY wZ

u v w

=

=
− ≤
− ≤
− ≤

≥

� �

�

 

 

(12) 

The constraint set of (12) is the envelope of those of models (4), (5) and (6). Note that 
the weight associated with

 
 Z in the constraints are assumed to be the common. It means 

that it does not matter whether the intermediate measures play the role of output or input. 
This assumption permits the conversion of their original non-linear program into a linear 
programming problem. This assumption also links the two stages. Note also that the 
constraint 

2 1
0uY vX− ≤  is redundant in model (12) because of existing two constraints 

1
0wZ vX− ≤  and 

2
0uY wZ− ≤ . If * *,u v  and *w  be the optimal multipliers of (13), the 

overall efficiency, the efficiencies of stages 1 and 2 are calculated by *
2E u Y=� � , 

* *
1 1E w Z v X=

�
� � , * *

2 2E u Y w Z=� � � , respectively. The optimal multipliers of (12) may 

not be unique; hence, the decomposition of E� =
1 2

E E×� �  would not be unique. Kao and 

Hwang (2008) proposed the following model so as to find the set of multipliers which 

produces the largest 
1

E�  while maintaining the overall efficiency score at E�  calculated 

from (12): 

 

1 1 2

1

2 1

1

2

max ( , , , ) ,

. . 1,

( ) 0,

0,

0,

, , 0.

khE X Y Z crs wZ

s t vX

uY E vX

wZ vX

uY wZ

u v w

=

=

− =
− ≤
− ≤

≥

� �

�

� � �

 

 

(13) 

The relationship E� =
1 2

E E×� �

 enables us to obtain the efficiency of the second stage.  

Chen et al. (2009a) investigated the relationship between the approaches of Chen and 
Zhu (2004) and Kao and Hwang (2008) for evaluation performance of two-stage 
processes. Note that Kao and Hwang (2008)’s model was developed under the CRS 
technology in the multiplier DEA model (see model (12)), while Chen and Zhu (2004)’s 
model was developed under the VRS technology in the envelopment DEA model (see 
model (8)).  
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Remark 3. The CRS version of the Chen and Zhu (2004) model under 
1 2

1γ γ= =  is 

equivalent to the Kao and Hwang’s (2008) output-oriented model i.e., 

1 2
( , , , )khF X Y Z crs� = 

1 2
( , , , )czE X Y Z crs�  [Chen et al. 2009a]. 

According to Kao and Hwang (2008) approach, Chen et al. (2009b) used the additive 
efficiency decomposition approach to calculate the overall efficiency, expressed as a 
weighted sum of the efficiencies of the individual stages. In fact, Chen et al. (2009b) 
claimed that the two-stage DEA model of Kao and Hwang (2008) cannot be extended to 
VRS assumption because 

1 1 2 2
(( ) ) (( ) )E wZ u vX uY u wZ= + × +� � � � �

 
could not be 

transformed into a linear program even if assuming the same weights on the intermediate 
measures for the two stages. However, Chen et al. (2009b) approach can be applied under 
both CRS and VRS assumptions while the method proposed by Kao and Hwang (2008) 
restricted to the CRS assumption. Chen et al. (2009b) used a weighted additive 
(arithmetic mean) approach to calculate the overall efficiency of the process under the 
VRS assumption by solving the following problem instead of combining the stages in a 
multiplicative (geometric) way proposed in Kao and Hwang (2008): 

 

1 2 2
1 2 1 2

1

1

1

2 2

max ( , , , ) . .

( )
. . 1,

( )
1,

, , 0.

cclz wZ u uY u
E X Y Z vrs

vX wZ

wZ u
s t

vX

uY u

wZ
u v w

λ λ
   + +

= +      
   

+
≤

+
≤

≥

� �

�

� �

 (14) 

where 1
1

1

vX

vX wZ
λ =

+

�

� �

and 
2

1

wZ

vX wZ
λ =

+

�

� �

 

are the relative importance of the 

performance of stages 1 and 2, respectively, by means of the ‘relative sizes’ of two stages 
for measuring the overall performance of the process. By putting the above weights,

 1λ  

and 2λ , assigned to two stages in the objective function of (14) and using the Charnes–

Cooper transformation, the linear model (15) can be obtained. 

 

1 2 1 2 2

1

1 1

2 2

max ( , , , )

. . 1,

0,

0,

, , 0.

cclzE X Y Z vrs wZ u uY u

s t vX wZ

wZ vX u

uY wZ u

u v w

= + + +

+ =
− + ≤
− + ≤

≥

� � �

� �

 

 

(15) 

Analogous to Kao and Hwang (2008), the weights (or multipliers) on the intermediate 
measures are the same for the two stages.  Once an optimal solution to (15) is obtained, 
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the efficiency scores for the two individual stages can be calculated in the same way as in 
Kao and Hwang (2008) (see model (13)). In other words, Chen et al. (2009b) used Kao 
and Hwang’s (2008) approach to find a set of multipliers which produces the largest first 
(or second) stage efficiency score whilst maintaining the overall efficiency score 
computed from model (15). In case the first stage is to be given pre-emptive priority, the 
following model determines its efficiency, while maintaining the overall efficiency score 
at E�  computed from model (15). 

 

*
1 1 2 1

1

1 1

2 2

2 1 2

max ( , , , )

. . 1,

0,

0,

(1 ) ,

, , 0.

cclzE X Y Z vrs wZ u

s t vX

wZ vX u

uY wZ u

E wZ uY u u E

u v w

= +

=
− + ≤
− + ≤

− + + + =
≥

� �

�

� � � �

 

 

(16) 

The efficiency for the second stage is then attained as * 1* *

2 1 2
( . )E E Eλ λ= −� �

�

where 
*
1λ  and *

2λ
 
are optimal weights which can be obtained using model (15). In the same 

way, Chen et al. (2009b) approach can be easily applied under the CRS assumption to 
evaluate the overall efficiency and the individual stages’ efficiencies. 

Wang and Chin (2010) demonstrated that a two-stage DEA model with a weighted 
harmonic mean of the efficiencies of two individual stages is equivalent to Chen et al. 
(2009b)’s model.  

Remark 4. The overall efficiency of Chen et al. (2009b) is greater than or equal to that of 
Kao and Hwang (2008) under the CRS assumption i.e., 

1 2 1 2
( , , , ) ( , , , )cclz khE X Y Z crs E X Y Z crs≥� �  [Wang and Chin 2010]. 

Furthermore, Wang and Chin (2010) extended Kao and Hwang (2008) to the VRS 
assumption and also generalized Chen et al. (2009b)’s model. Even though Kao and 
Hwang (2008) computed the efficiency of a series system, Kao (2009a) proposed a 
parallel DEA model with the individual components for measuring the efficiency of a 
DMU which is consisted of independent units connected in parallel. His model minimizes 
the inefficiency slacks of a DMU as well as inefficiency slacks of its units in order to 
determine the inefficient units. Kao (2009b) developed alternative relational network 
DEA model by defining dummy processes to transform a network system into a series 
system (a multi-stage system), where each stage is composed of a parallel structure with a 
set of processes. Kao (2010) then built a relational network CRS-DEA (series-parallel 
systems) in both envelopment and multiplier forms. Hsieh and Lin (2010) applied the 
relational network DEA introduced by Kao (2009b) to evaluate the performance of a set 
of hotels. 
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Wang and Chin (2010) used a weighted harmonic mean of the efficiencies of the two 
individual stages to obtain the overall efficiency of the process by solving the following 
problem instead of the approaches of Kao and Hwang (2008) and Chen et al. (2009b): 

 

( ) ( )1 2

1 1 2 2

1

2

1
max ( , , , )

. .

. . 1,

1,

, , 0.

wcE X Y Z crs
vX wZ wZ uY

wZ
s t

vX

uY

wZ
u v w

λ λ
=

+

≤

≤

≥

�

� � � �

 (17) 

where ( )1 2
wZ uY wZλ = +� � �  and ( )2 2 2

uY uY wZλ = +� � �  are the relative importance 

of the performances of stages 1 and 2, respectively. These weights, similar to those of 
Chen et al. (2009b), are the relative sizes of the two stages. By substituting 1λ  and 2λ  

into the objective function of (17), we achieve exactly the same model proposed by Chen 
et al. (2009b) in order to get the overall efficiency of two-stage process under the CRS 
assumption. Likewise, the overall efficiency of two-stage process under the VRS 
condition can be modeled as follows: 

 

( ) ( )1 2

1 1 1 2 2 2

1

1

2 2

1
max ( , , , )

. .

. . 1,

1,

, , 0.

wcE X Y Z vrs
vX wZ u wZ uY u

wZ u
s t

vX

uY u

wZ
u v w

λ λ
=

+ + +

+
≤

+
≤

≥

�

� � � �

 (18) 

Similarly, 1λ  and 2λ  which are the weights assigned to stages 1 and 2 can be defined 

as ( ) ( )1 1 2 2
wZ u wZ u uY u+ + + +� � �  and ( )2 2 1 2 2

uY u wZ u uY u+ + + +� � � , respectively. 

By setting these weights into the objective function of (18), the same model defined by 
Chen et al. (2009b) can be obtained for evaluation of the overall efficiency under the 
VRS assumption. Once 

1
E�  or 

2
E�  is obtained, using the proposed approach by Chen et al. 

(2009b), the another one can be determined by ( )* * * *

2 2 1 1
(1 ) ( )E E Eλ λ= −� � �  or 

( )* * * *

1 1 2 2
(1 ) ( )E E Eλ λ= −� � � , where 

1
λ  and 

2
λ  are harmonic mean weights. 

Remark 5. 
1 2

( , , , )cclzE X Y Z γ� =
1 2

( , , , )wcE X Y Z γ�  where γ =crs and vrs. 
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Chen et al. (2010) suggested the DEA model under VRS for measuring the efficiency of 
two-stage system with the shared inputs. The structure is consisted of 

1
X ,

 3
X , Z

 
and 

2
Y

.(see Figure 2). The shared inputs,
 3

X , can be split into two parts 
3

Xα  and 
3

(1 )Xα−  

where 
1 2

L Lα≤ ≤ .  

Overall efficiency was defined in Chen et al. (2006a) as the average efficiency of stages 1 
and 2 under CRS (see model (9)) An alternative definition in Chen et al. (2010) and  
Chen et al. (2009b), draws on a weighted average of the efficiencies of the two stages as 
follows: 

 1 2 2
1 2

1 1 3 3 3 3

. .
(1 )

wZ u uY u

v X v X v X wZ
λ λ

α α
   + +

+      + − +   

� �

� � � �

 

 

(19) 

 

where 1 1 3 3
1

1 1 3 3

v X v X

v X v X wZ

α
λ

+
=

+ +

� �

� � �

 

and 3 3
2

1 1 3 3

(1 )v X wZ

v X v X wZ

α
λ

−
=

+ +

� �

� � �

. The non-linear program 

(20) is created by substituting 
1

λ  and 
2

λ  in (*) and using the Charnes–Cooper 

transformation. 

 

1 3 2 1 2 2

1 1 3 3

1 1 3 3 1

2 3 3 2

1 2

max ( , , , , )

. . 1,

( ) 0,

( (1 ) ) 0,

, , , 0.

cdszE X X Y Z vrs wZ u uY u

s t v X v X wZ

wZ v X v X u

uY v X wZ u

L L u v w

α

α
α

= + + +

+ + =

− + + ≤

− − + + ≤
≤ ≤ ≥

� � �

� � �

 

 

(20) 

Model (20) can be transformed to a linear form using the alternation variable 
3

.v α γ=  

Once we attain an optimal solution of the linear model, the efficiencies of the two stages 
can be consequently computed. Besides, Chen et al. (2010) applied Kao and Hwang’s 
(2008) approach to deal with the problem of multiple optimal solutions. 
 

Remark 6. The overall efficiency proposed by Chen et al. (2009b) and Chen et al. (2010) 
are equal if we take the shared inputs defined in (Chen et al., 2010) away from 
performance evaluation, i.e., 

1 2
( , , , )cclzE X Y Z vrs� =

1 3 2
( , , , , )cdszE X X Y Z vrs�  iff 

3
0X = .  

Wang and Chin (2010) additionally extended the Kao and Hwang (2008)’s model to 
the VRS assumption. We should note that the first stage is evaluated with the input-
oriented VRS model and the second stage with the output-oriented VRS model. Kao and 
Hwang (2008)’s model under the VRS assumption can therefore be expressed as 
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1 2 2 2

1 1

1 1

1 2

max ( , , , )

. . 1,

0,

0,

, , 0.

kwE X Y Z vrs uY u

s t vX u

wZ vX u

uY wZ u

u v w

= +

− =

− + ≤

− + ≤
≥

� �

�

 

 

(21) 

The optimal multipliers of (21) may not be unique; hence, the decomposition of E� =

1 2
E E×� �  would not be unique. Hence, similar to Kao and Hwang (2008) the set of 

multipliers which produce the largest 
1

E�  (
2

E� ) can be obtained while preserving the 

overall efficiency score at E�  calculated from (21).  

Remark 7. The overall efficiency under the assumption of VRS is decomposed into the 
product of the two individual efficiencies i.e., 

1 2 1 1 2 2 1 2
( , , , ) ( , , , ) ( , , , )kw kw kwE X Y Z vrs E X Y Z vrs F X Y Z vrs= × =� � �

 
2 2 2 2

1 1 1 1

uY u uY uwZ

vX u wZ vX u

+ +
× =

− −

� �
�

� � �

 

Furthermore, Wang and Chin (2010) generalized Chen et al. (2009b)’s models to 
taking into consideration the relative importance weights of two individual stages. To do, 
a two-stage process is transformed to a single process in which the two stages are treated 
equally. In other words, the single process considers stage 1’s input (

1
X ) and an 

intermediate measure (Z) as inputs, and stage 2’s output (
2

Y ) and an intermediate 

measure (Z) as outputs. The generalized overall efficiency of Chen et al. (2009b)’s model 
under the VRS assumption is formulated in model (20). 

 

( ) 1 1 2 2 2
1 2

1 1 2

1

1

2 2

( ) ( )
max ( , , , )

. . 1,

1,

, , 0.

wc g wZ u uY u
E X Y Z vrs

vX wZ

wZ u
s t

vX

uY u

wZ
u v w

λ λ
λ λ

+ + +
=

+
+

≤

+
≤

≥

� �

�

� �

 (22) 

The objective function of (22) can be transformed into a weighted harmonic mean as 

1
1 2

1 2 2

1

. .

E
vX wZ

wZ u uY u
γ γ

=
+

+ +

�

�
�

� �

 

where  
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1 1
1

1 1 2 2 2

( )

( ) ( )

wZ u

wZ u uY u

λ
γ

λ λ
+

=
+ + +

�

� �

 and 2 2 2
1

1 1 2 2 2

( )

( ) ( )

uY u

wZ u uY u

λ
γ

λ λ
+

=
+ + +

�

� �

.  

Remark 8. Model (14) by Chen et al. (2009b) is a special case of (22) with 
1 2

1 2λ λ= =  

i.e., 
1 2

( , , , )cclzE X Y Z vrs� = ( )

1 2
( , , , )wc gE X Y Z vrs� . (Proof in Wang and Chin (2010)) 

Remark 9. If 
1 2

0u u= =  in model (22), the generalized overall efficiency 
( )

1 2
( , , , )wc gE X Y Z crs�  under the CRS assumption can be derived.  

Chen et al. (2010) proposed an approach to specify the frontier points for inefficient 
DMUs based upon the Kao and Hwang (2008)’s model. The dual of model (12) proposed 
by Kao and Hwang (2008) can be expressed as 

 

1 2

1 1

2

min ( , , , )

. . ,

,

( ) 0,

, 0, 1.

kwDE X Y Z crs

s t X X

Y Y

Z

θ

λ θ

µ
λ µ

λ µ θ

=

≤

≥
− ≥
≥ ≤

�

�

�  

 

(23) 

Model (12) can just obtain an overall efficiency score under the assumption of CRS, 
but would not be able to identify how to project inefficient DMUs on to the DEA frontier. 
Chen et al. (2010), therefore, put forward the following model that is equivalent to the 
model (23): 

 

1 2

1 1

2 2

min ( , , , )

. . ,

,

,

,

, , 0, 1.

kwDE X Y Z crs

s t X X

Y Y

Z Z

Z Z

Z

θ

λ θ

µ

λ
µ

λ µ θ

=

≤

≥

≥

≤

≥ ≤

�

�

�

�

�

�

⌢

⌢

⌢

 

 

(24) 

where the decision variable Z�
⌢

 in the constraints Z Zλ ≥ �

⌢

 and Z Zµ ≤ �

⌢

 treats as 

output and input, respectively, for the intermediate measure. According to model (24), the 

projection point for DMU�  is given by * * *

1
( , , )X Z Yθ � � �

⌢

 which is efficient under models 

(24) and (23). 

5.2.   DEA using game theory  

Game theory allows us to explicitly model the sequence of bargaining and the 
strategic interaction present in decentralized decision making, such as supply chain 
management. Game theory has been successfully applied both to supply chain 
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management coordination in general, and to normative applications of frontier models. 
Liang et al. (2006) proposed two DEA-based models for evaluation the efficiency of a 
supply chain and its members (stages 1 and 2) using the concept of non-cooperative and 
cooperative games in game theory. The models are, therefore, described in a seller-buyer 
supply chain context, when the relationship between the seller and buyer is treated first as 
one of leader-follower, and second as one that is cooperative. In the non-cooperative 
(leader-follower) approach, the leader is first assessed, and then the follower is evaluated 
using the leader’s efficiency. In the cooperative structure, the overall efficiency which is 
modeled as an average of the two stages’ efficiencies is maximized, and both supply 
chain members are evaluated simultaneously. The resulting cooperative game model is a 
non-linear DEA model which can be solved as a parametric linear programming problem. 
Figure 2 without 

1
Y  shows a buyer-seller supply chain examined by Liang et al. (2006). 

They assumed that the first and second stages are the seller (leader) and the buyer 
(follower), respectively, the efficiency of the first stage (

1
E� ) is obtained using the 

standard input oriented CRS model. If the optimal value 1*E
�

 holds when assessing the 

efficiency of stage 1, the efficiency of stage 2 is calculated. It means dominating stage 2 
by stage 1. The second stage’s efficiency, therefore, can be obtained as  

 

2 2
2

2 2

2

2 2

1 1

1 1

*

1

2 1 2

max

. . 0,

0,

1,

,

, , , , 0.
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wZ E

u v v w D

=
+ ×

≤
+ ×

− ≤

=

=
≥
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�

� �

 

 

(25) 

Model (25) can be converted into the following non-linear program: 

 

2 2 2

2 2

2 2 2 2

1 1

1 1

*
1

2 1 2

max

. . 1

0,

0,

1,

,

, , , , 0.

E u Y

s t v X DwZ

u Y v X DwZ

wZ v X

v X

wZ E

u v v w D

=
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(26) 

where *

1
0 1D E≤ < �  and therefore D can be treated as a parameter. That is, model 

(26) can be considered as a parametric linear program. Once the first and second stage’s 
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efficiency are obtained by the conventional CRS and (26), respectively, the overall 
efficiency was then calculated via * *

1 2
1 2( )E E E= +� � � . 

Likewise, we can apply the above procedure for the situation in which stage 1 
(follower) is entirely dominated by stage 2 (leader). Liang et al. (2006) also deemed the 
situation where two stages have the same degree of power to influence the supply chain 
system. The following cooperative game model, hence, seeks to maximize the average of 
the first and second’s efficiency when the weights on the intermediate measures must be 
equal. 

 

2 2

1 1 2 2
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2 2 2 2

2 1 2

1
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u YwZ
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(27) 

Model (27) can be transformed into the following non-linear program: 

 

2 2

1 1 2 2

1 1

2 2 2 2

2 1 2

max 1 2( )

. . 1, 1,
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0,

, , , , 0.

E wZ u Y

s t v X v X k wZ

wZ v X

u Y v X k wZ

u v v w k

= +

= + × =

− ≤
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≥
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(28) 

Note that in model (24) *0 1k w Z≤ < � where *w  is the optimal value to model (28). 

That is to say, model (28) can be treated as a parametric linear program. The efficiency of 
stages 1 and 2 are then equivalent to *w Z�  and *

2 2
u Y� , respectively, at the optima. The 

remarkable conclusion in Liang et al. (2006) shows that the supply chain efficiency under 
the assumption of cooperation generally will not be less than the efficiency under the 
assumption of non-cooperation. The model in Liang et al. (2006) was extended for the 
multi-stage process in Cook et al. (2010). 
Chen et al. (2006b) showed that there exist numerous Nash equilibria in two-stage 
(supplier-manufacturer) game. They used a bargaining-DEA-Game model under CRS 
technology to analyze the relationships among the two stages as well as defining two 
efficiency functions for the first and second stages.  
Figure 2 without 

1
Y  and 

3
X

 
presents the supplier-manufacturer (two-stage) proceeded by 

Liang et al. (2006). The efficiency of each stage can be defined as 
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(29) 

Based on the decentralized control system, the non-linear programs 1 and 2 can be used 
for the supplier (stage 1) and the manufacturer (stage 2), respectively. 

{ }
{ }

2 1 1 2 2 2

1 2 1 2 1 1

( ) max | 1, 1,

( ) max | 1, 1,

S E E E E E E

M E E E E E E

= ≤ ≤ ≤

= ≤ ≤ ≤

� �

� �

 
 

(30) 

 
Chen et al. (2006b) determined the obvious Nash equilibriums in the existing game 
between the supplier and the manufacturer. Notice that 

2
( )S E and 

1
( )M E  are functions 

of 
1

E  and 
1

E , respectively. If 
2

E =
2

( ( ))M S E , (
1

E ,
1

E ) is a Nash equilibrium, 

otherwise, Nash equilibriums does not exist. Likewise, Nash equilibriums exist if 
1

E =

1
( ( ))S M E . In addition, Chen et al. (2006b) mentioned some properties on the two 

efficiency functions as well as extending their method to the centralized control system. 
Cook et al. (2010) extended Liang et al. (2006) to take in account multi-stage 

structures i.e., more than two stages in the CRS and VRS technologies. They calculated 
the overall efficiency as an additive weighted average of the efficiencies of the individual 
stages. In addition, the developed model in (Cook et al., 2010) was a LP while Liang et 
al. (2006) model used a heuristic search algorithm after converting the non-linear model 
into a parametric linear model. 

Using the geometric mean of the efficiencies of the two stages, Zha et al. (2008) 
proposed a two-stage cooperative efficiency to calculate the overall efficiency under 
DEA-VRS model. They suggest that the efficiency of the first stage is evaluated with the 
input-oriented VRS model and the second stage with the output-oriented VRS model. 
Then, the overall efficiency is evaluated in a cooperative framework. The upper and the 
lower bounds are reached when non-cooperative framework is considered. The non-linear 
model is transformed into a parametric one, where optimal solution of the overall 
efficiency is reached easily. If input-oriented VRS model is suggested for performance 
evaluation, inconsistency of the intermediate outputs exists between the two stages. 
Specifically, the two stages are cooperative for the reason that they are in series in an 
organization. They considered the non-cooperative setting in order to determine the upper 
and lower bounds of the efficiencies of the sub-DMUs in different stages. Two conditions 
are examined as follows.  

A) Sub-DMU in stage 1 dominates the system, while the sub-DMU in stage 2 follows.  
B) Sub-DMU in stage 2 dominates the system, while the sub-DMU stage 1 follows. 
In both conditions, intermediate outputs need to be consistent in two stages. So an 

input-oriented VRS model is suggested when evaluating the efficiency of the sub-DMU 
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in stage 1, and an output-oriented VRS model is suggested when evaluating the efficiency 
of the sub-DMU in stage 2. 

The upper bound of the efficiency of stage 1 is expressed as follows: 

 

1 1 1

1 1
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, 0.

UE vX u
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v w
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+ − ≥
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(31) 

The lower bound of the efficiency of stage 2 can be calculated by the following model 
if the optimal value 1

UE �  obtained from (31) holds when evaluating the efficiency of stage 

2: 
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(32) 

Note that stage 2 is entirely dominated by stage 1. Likewise, the upper bound of the 
efficiency of stage 2, denoted by 

2

UE � , is first acquired, then, with holding 
2

UE � , the lower 

bound of the efficiency of stage 1, denoted by 
1

LE � , is calculated. Zha et al. (2008) 

considered the overall efficiency as the geometric mean of the efficiencies the two-stages. 
Hence, they assume that the efficiency of stage 1 and stage 2 are evaluated using the 
input-oriented and the output-oriented models, respectively. Geometric average 
cooperative efficiency of the two stages is obtained by the following model 
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(33) 

(33) can be transformed into 
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(34) 

Liang et al. (2008) developed a two-stage model using non-cooperative and 
cooperative concepts in game theory. In non-cooperative approach, they assume that one 
of the stages is the leader that seeks to maximize its DEA efficiency. Then the efficiency 
of the other stage (the follower) is calculated subject to the leader-stage maintaining its 
DEA efficiency. In other words, the leader stage can be viewed as being more important 
than the other stage(s) in improving its efficiency. In cooperative approach, they assumed 
that initially both stages’ efficiency scores are maximized simultaneously, while 
determining a set of optimal (common) weights assigned to the intermediate measures. 

Consider Figure 2 without 
2

X  and 
1

Y . It is assumed that the first and second stages 

are the leader and the follower, respectively, the efficiency of the first stage (
1

E� ) is 

obtained using the standard input oriented CRS model. If the optimal value *

1
E�  holds 

when assessing the efficiency of stage 1, the efficiency of stage 2 is calculated. It means 
that stage 2 is entirely dominated by stage 1. The second stage’s efficiency, therefore, can 
be obtained as  

 

*2 2
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1
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1
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(35) 

Likewise, the second stage can be the leader and then one obtains the first stage 
(follower) model with regard to holding the efficiency of stage 2, 2*E

�

. Finally, the 

overall efficiency can be calculated as * * * * * * *

1 2 1 1 2 2
. .(1 )E E E E E u Y u Y= = =� � � � � � � . Or, in 

other words, * * * * *

1 2 2 1
.E E E u Y v X= =� � � � �  and, as a result, *E�  is equal to *

2
u Y�  because 

of *

1
1v X =� . 

An alternative method proposed by Liang et al. (2008) to measuring the efficiency of 
the two stage process is to view them from a cooperative perspective. The cooperative 
approach is characterized by letting the same weights for intermediate data in two stage 
models. Note that because of the same weights for intermediate data, the overall 
efficiency (

1 2
.E E� � ) becomes 

2 1
uY vX� �  which it can be modeled as follows: 
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The linear program of (36) is:  
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(37) 

The efficiencies of the first and second stages can be then calculated as 
* * * *

1 1
,E w Z v X w Z= =� � � � and * * *

2 2
E u Y w Z=� � �  

Note that optimal multipliers from model (37) may not be unique, as a result, 
1

E�  and 

2
E�may not be unique. To discover for uniqueness, the maximum achievable value of 

1
E�  

is firstly calculated using the following model: 
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(38) 

The minimum of 
2

E�  is then calculated by 
2 1

E E E− +=� � � . In a similar way, the 

maximum of 
2

E�  and the minimum of 
1

E� , denoted by 
2

E +
�  and 

1
E −
� , respectively, can be 

obtained. Note that 
1

E −
� =

1
E +
�  if and only if 

2
E −
� =

2
E +
� . If 

1
E −
� =

1
E +
�  or 

2
E −
� =

2
E +
� , 

1
E�  and 

2
E�  are uniquely determined using model (37), otherwise, 

1
E�  and 

2
E�  lead to multiple 

optimal solutions. In the case of 
1

E − ≠�

1
E +
�  or 

2
E − ≠�

2
E +
�  Liang et al. (2008) proposed a 

procedure to achieve a fair and alternative distribution of 
1

E�  and 
2

E�
 
between the two 

stages. 
Yang et al. (2009) proposed a CRS DEA approach to measure the overall efficiency 

of the entire supply chain using a predefined PPS. By comparing the obtained supply 
chain frontier with other supply chains, chain-level performance can be identified as 
efficient or inefficient. The efficiency perspective and corresponding improvement 
strategies for inefficient supply chains can be given at the same time. Figure 2 without 

1
Y  

and 
2

X shows the two-stage structure (supplier-manufacturer) developed in Yang et al. 
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(2009). It is assume that all supply chains are separable and their members can be 
aggregated with other supply chain members so as to make a virtual supply chain. The 
PPS can be characterized by all existing supply chains and some virtual supply chains. 
Thus, the sub-perfect supply chain CRS PPS is defined as follows:   

* *
1 2 1 1 1 2 2 2{( , ) , , , ( ) , 0}T X Y X E X Z Z Z Z Y E Yλ λ λ λ λ= ≤ ≥ ≤ ≥ ≥� � � � � � � �  

where *

1
E� and *

2
E� , which can be obtained from models (6), are the CRS efficiencies 

of stages 1 and 2, respectively. Note that in the proposed PPS the corresponding 
envelopment coefficients for each DMU are the same λ  i.e. the members of each virtual 

supply chain are restricted in the same actual supply chain. Note also that *
1( , )XE Z� and 

*
2( , )Z Y E�  are projections of stage 1 and stage 2 for DMU � . Based upon PPS, the 

overall efficiency of a supply chain is modeled as follows:  
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(39) 

where * * *

1 2
( , , )X Y Z  points located at the frontier enveloped by the sub-perfect supply 

chain CRS PPS (see T). The following model is equivalent to (39): 
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(40) 

Yang et al. (2009) also proved that *E�  computed from model (40) is always smaller 

than or equal to *E�  obtained from model (1) under CRS. Also, they demonstrated that 

the optimal value of (40) is always smaller than or equal to * *
1 2E E×� � . Their proposed 

approach can be applied to evaluate the efficiency of multiple-member supply chains. 
Zha and Liang (2010) developed an approach to measure the performance of a two-

stage process in a non-cooperative and cooperative manner within the framework of 
game theory, where the shared inputs can be allocated among different stages. Similar to 
Chen et al. (2006a), Zha and Liang (2010) used Figure 2 as a two-stage process with 
shared inputs, e.g. all inputs (denoted as 

3
X ) are directly associated with two stages. To 

do this, it is assumed that 
3

X  is divided into two parts 
3

Xα  and 
3

(1 )Xα− . Zha and 
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Liang (2010) utilized the product of two stages to evaluate the overall efficiency of each 
DMU while the average of two stages was only used in the Chen el al. (2006)’s 
cooperative model. Let us assume that the first and second stages are the leader and the 
follower, respectively, for the non-cooperative evaluation . First the efficiency of the first 
stage (

1
E� ) can be calculated using the input oriented CRS model as follows: 
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The second stage’s efficiency can be then obtained from the following program 
subject to the restriction that the efficiency of the first stage remains at optimal value
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(42) 

Model (42) is a non-linear program because of wδ  in the first constraint. However, 
this model can be treated as a parametric linear program since in specifying the optimum 

*

2
E� , [0,1]δ ∈  (with regard to the interval *

1
0 1 Eδ< ≤ � ) is considered as a parameter. 

On the other hand, the second stage can be the leader and then one obtains the efficiency 
of the first stage (follower) model based on stage 2. Therefore, the efficiency of stage 2 
can be first calculated as in the following model: 
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(43) 

Note that model (43) corresponds to the conventional CRS DEA model. Assume that 
* *

3
,u v  and *w are optimal solution for (43). We must investigate three cases to obtain the 

efficiency of stage 1.  In the first case, if there exists a given d (d=1,…,p) satisfying 
* 0
d

w ≠ , the efficiency of stage 1 is equivalent to 
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In the second case, * 0w = , accordingly, the efficiency of stage 1 becomes zero and, 
lastly, if there exists multiple optimum values in model (41), the efficiency of stage 1 
dominated by stage 2 can be expressed as 
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(45) 

Note that the efficiency of stage 1 obtained from (45) is less than (44). In a special 
situation, when intermediate product is single the optimal values of the objective function 
(42) and (43) are equal. 

In the cooperative efficiency, while the weights of the intermediate outputs in stage 1 
are equal to the weights of the corresponding intermediate inputs in stage 2, the product 
of stages 1 and 2 for measuring the overall efficiency can be expressed as  
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(46) 

Model (46) is a non-linear programming and we can rewrite it as: 
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(47) 

Based on the non-cooperative approach, let L k U≤ ≤  where L is the efficiency of 
stage 1 when stage 2 treats as a leader and U the efficiency of stage 1 when stage 1 
consider as a leader. Also, assume that 

3
( )h v vδ − = , wZ k=� . Accordingly, (47) is 

transformed into  
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(48) 

Model (48) can be considered as a parametric linear programming since we can gain 

1 kδ ≤  from  a given [ , ]k L U∈  and the constraint 
3

1vX wZδ+ =� � .  

Du et al. (2011) created a Nash bargaining game model (cooperative game model) under 
a two-stage structure with 

1
X , Z 

 
and 

2
Y

 
(see Figure 2) to measure the efficiency of 

DMUs and sub-DMUs. The input-oriented DEA bargaining model of Du et al. (2011) 
was constructed as  
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(49) 
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In model (49), 
1

E−

 
and 

2
E−  are the CRS efficiency scores of the two least ideal DMUs as 

a breakdown point where the least ideal DMUs for the for the first and second stages are 
defined as ( max min

1 1
( max{ }, min{ })X X Z Z= =

 
and max min

1 1
( max{ }, min{ })Z Z Y Y= = , 

respectively. The equivalent non-linear model is 
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(50) 

where α  can be behaved as a parameter within [
1

E− , 1], therefore, model (50) can be a 

parametric linear model. After setting an initial value for α  and obtaining corresponding 

objective function of model (50), Eα  , we decrease α  by a very small positive number 

until α =
1

E− . Accordingly, the optimal solutions are associated with a given *α  when 

*

* max{ }E Eαα
= . Thus, the efficiency scores of the first and second stages and the overall 

process are * * *
1

,E w Zα= =� �  * *
2 2

E u Y=� �  and * * *
1 2

.E E E=� � � , respectively. It is 

interesting to note that when only one intermediate measure exists between the two stages 
*

1
E�  and *

2
E�  are equal to the efficiency scores of the two stages calculated from the 

standard DEA approach separately (see models (5) and (6)). 

Remark 10. The Nash bargaining game model proposed by Du et al. (2011) is equivalent 
to the cooperative model of Liang et al. (2008) when 

1
E−

 
=

2
0E− = .  

5.3.   DEA using bilevel programming 

Wu (2010) was first to explore a bi-level programming DEA approach by combining 
DEA cost efficiency proposed by Cooper et al. (2000) into the bi-level programming 
framework in order to evaluate the a two-stage process performance in decentralized 
decisions. In their study, each DMU includes two decentralized subsystems: a leader 
(stage 1) and a follower (stage 2) as it is depicted in Figure 2.  

 

Fig. 2. A leader-follower structure  
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The leader uses two types of inputs, i.e., the shared input 1

3
X and the direct input 

1
X , to 

produce two different types of outputs: the intermediate measure Z  and the direct output 

1
Y . The follower uses three types of inputs, i.e., the shared input 2

3
X  and the direct input 

2
X  and the intermediate measure Z , to produce the output 

2
Y . Furthermore, assume that 

3
C , 

1
C , 

Z
C  and 

2
C  are the input unit cost vectors associated with 1

3
X  ( 2

3
X ),

1
X , Z  and 

2
X , respectively. In fact, the exact fixed value and maximum fixed value are two 

separate cases for the total amount of the shared resource that we can take into account as 
an extra constraint. According, when the total amount of the shared input is fixed the bi-
level programming cost efficiency DEA model can be expressed as:  
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(51) 

The shared input 1

3
( )X
⌢

, the direct input 
1

( )X
⌢

 and an optimal multiplier λ  can be 

calculated by the first level of model (51) so as to minimize the total costs for the leader. 

As a result, 2

3
X
⌢

 is simply obtained for the follower using 1 2

3 3
X X F+ =
⌢ ⌢

. Note that in the 

above bi-level programming cost efficiency DEA model intermediate measure is output 
for the leader in the upper level and also input for the follower in the lower level. The 
second case is when the total amount of the shared input has the fixed maximum value. 

To do, we substitute 1 2

3 3
X X F+ ≤
⌢ ⌢

 for 1 2

3 3
X X F+ =
⌢ ⌢

 in model (51). Wu (2010) applied 

the branch and bound algorithm proposed by Shi et al. (2006) to solve the model (51). 

Once the optimal value of 1* 1* * * * * *

3 3 1 2
( , , , , , , )X X X X Z λ µ
⌢ ⌢ ⌢ ⌢ ⌢

 is obtained from model (45) the 

cost efficiency of the jth leader 
1

( )jCE , the jth follower 
2

( )jCE  and the jth system( )jCE  

are defined as 
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The jth leader, the jth follower  and the jth system are cost efficient if and only if 

1
1jCE = , 

2
1jCE =  and 1jCE = , respectively. In addition, Wu (2010) similar to Cooper 

et al. (2000) used the reference units to rank the efficient DMUs.  

6.   Conclusions and future research directions  

Supply chain management (SCM) covers several disciplines and is growing rapidly. 
Performance measurement is an important activity, especially in the multi-dimensional 
case of international supply chains. DEA as a non-parametric technique for measuring 
efficiency continues to enjoy increasing popularity. Reviewing the multi- and two-level 
extensions published in the DEA literature reveals a considerable wealth of different 
models, based either on restrictions in the reference set, the weight system or the 
sequence of optimization of the DMU problems.  

However, the analysis also shows several open problems in the application of DEA to 
supply chain performance measurement.  

First, the limitations and rigidity in model specification. Whereas supply chains by 
definition involves several stages (normally at least three) interacting independently with 
markets for raw materials and intermediate outputs, bulk of the extensions are limited by 
explicit or implicit restrictions to two-stage processes with no third-party interaction. In 
practice, this implies a strict dyadic buyer-seller dichotomy in which all intermediate 
outputs are consumed by a single entity. The assumption is very strong and in open 
contradiction to standard results in multi-stage supply chain planning models, where 
intermediate plants and distribution centers are expected to serve multiple downstream 
units, within and/or without the focal enterprise. Moreover, the lack of flexibility in the 
model structure is commonly motivated by the solution approach, derivations of joint 
metrics etc., that consequently hamper the generalization of the results to a realistic 
situation. Further work is necessary on this fundamental point to allow applications of 
frontier-based methods to real multi-stage supply chains. 

Second, the lack of motivation for the intermediate measures. Besides the multi-stage 
property, one of the underlying features distinguishing supply chain management from 
general operations management is the prevalence of decentralized decision making. In 
economics and management science, we tend to attribute these decision makers with 
some procedural rationality that renders them susceptible to mathematical modeling. A 
common assumption is that the decision makers maximize some profit or objective 
function subject to some rationally imposed constraints, e.g. resource allocation across a 
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group. It is therefore necessary for any performance assessment to take into account the 
objectives of the underlying units in their assessment, if the resulting estimate is to have 
any relevance as an indication for the effectiveness of their decision making. We note 
that some suggested models tend to abstract from the economic or preferential reality of 
the evaluated units in assuming that their objectives per se should be related to, or even 
centered on, the very metric that analysts propose for their evaluation. In fact, most 
models dispose of this step by simply assuming that the objectives of the unit correspond 
to the maximization of some single-stage evaluation problem, such as the conventional 
CRS formulation. Already in a single-stage setting, the interpretation of productivity 
measures is associated with many limitations, cf. Agrell and West (2001). In the supply 
chain setting, with the interdependencies between levels and the ambiguous character of 
the input resource restrictions challenge this perception and prompt for a careful and well 
justified behavioral motivation for the submodels, as well as for the centralized models. 
Further consolidation of the literature based on game-theoretical approaches may be way 
to address this shortcoming. 

Third, modeling of the power or governance structures within the supply chain. Given 
the absence of a centralized decision maker, the modeler faces a hierarchical multi-
criteria problem without any clear preferential structure. Whereas conventional 
approaches in economics would use Stackelberg-type bilevel games or Nash bargaining 
concepts, the supply chain management literature frequently employs non-cooperative 
and cooperative game theoretical approaches. Although some models are founded on 
elements hereof, there is need of stringent models unifying the evaluation model structure 
with the underlying assumptions about the power or governance structure within the 
chain. Such work, founded on economic theory and decision theory, may also eliminate 
the too frequent resort to ad hoc technical and scaling parameters in the models without 
any methodological foundation.  

Fourth, predominance of multiplicative models. Multi-product networks, especially 
for dynamic approaches, involve relatively large dimensional output vectors and likely 
(correctly) zero-valued observations. Multiplicative approaches (radial efficiency 
metrics) here yield computationally poor results with efficiency scores in the presence of 
significant slack, i.e. weak technical efficiency. Additive models (seminal work by 
Charnes et al., 1985) are traditionally viewed as inferior, lacking translation and unit 
invariance (cf. Ali and Seiford, 1990) and difficult to decompose in relevant 
submeasures. The special structure for supply chain problems, however, where units 
often can be homogenous (value, weight, energy contents, pieces) and decompositions 
can be consistent and informative using simple transformations as in Agrell and Bogetoft 
(2005). The use of additive approaches also opens for relevant substitutions and analyses 
of cost- versus technical efficiency for more realistic dimensions. However, more work is 
necessary to determine the properties and robustness of such models in generalized multi-
stage settings. The work by Chang et al. (2011) based on the non-radial Tone and Tsutsui 
(2009) model is here particularly interesting, also from a conceptual viewpoint.      
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Stating these areas of desired progress is in no way negating the positive and 
productive wealth of work in the areas of two-stage non-parametric frontier models. On 
the contrary, it is this energy and thrust that will unlock the force of the models to attack 
the so far unsolved, frustrating and decisive problems found in supply chain performance 
measurement.  
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