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Abstract

Effective supply chain management relies on information integration and implementation of best
practice techniques across the chain. Supply chains are examples of complex multi-stage systems
with temporal and causal interrelations, operating multi-input and multi-output production and
services under utilization of fixed and variable resources as well as potentially environmental
exposure. Acknowledging the lack of system’s view, the need to identify system-wide as well as
individual effects, as well as the incorporation of a coherent set of performance metrics, the recent
literature reports on an increasing, but yet limited, number of applications of frontier analysis
models (e.g. DEA) for the performance assessment of supply chains or networks. The relevant
models in this respect are multi-stage models with various assumptions on the intermediate
outputs and inputs, enabling the derivation of metrics for technical and cost efficiencies for the
system as well as the autonomous links. This paper reviews the state of the art in multi-stage or
network DEA modeling, along with a critical review of the advanced applications that are
reported in terms of the consistency of the underlying assumptions and the results derived.
Consolidating the current work in this range using a unified notation and by comparing the
properties of the models presented, the paper is closed with recommendations for future research
in terms of both theory and application.
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1. Introduction

Supply chain management (SCM) was introduced asoranmn scientific and
managerial term in 1982 (cf. Oliver and Webber,2)3® describe a hierarchical control
system for material, information and financial flvin a potentially multidirectional
network of autonomous decision making entitieshéitgh there is a lack of universally
accepted definition (Otto and Kotzab, 1999), a wskd and typical definition of a
supply chain isa network of organizations that are involved, ttghuupstream and
downstream linkages in the different processes aatilities that produce value in the
form of products and services in the hand of thignalte consumerChristopher (1998,
p.15). The management activity is consequently dberdination of this network, or
‘chain’, of independent processes as to achievevkeall goal in terms of value creation.
Three elements are important in our context:nthdti-level characteof the network, the
interdependencynd thecompetitiveobjective. First, the underlying system is consid
of multiple layers, both horizontally (sequentiabpessing) and vertically (control layers,
levels of integration into firms, business unitinf ventures, information sharing, etc.).
This implies that the systematic analysis of a §ughain must take into account the
level of processing as well as the locus of coritrairder to understand the organization
and its performance. Second, the ‘links’ in theigHarm sequential processing stages
that are interdependent with respect to potentalliyhree types of flows; material flows
in progressive processing, information flows spéod types and quantity of processes
to be performed, and financial flows to reimbursengentivize the units to devote time
and resources to the joint activity. Third, a sypghain is not an arbitrary processing
plan but involves multiple independent organizatigeconventionally at least three)
cooperating under commercial conditions and subjectactual or potential future
competition, both as a common endeavor and indaligudfor each processing stage.
Taken together, the three observations underlirmg plerformance evaluations of
highest importance to assure continuity, competitess and, ultimately, survival of the
network, but that this evaluation must take intocamt the specificities of the network
character and the decision-making autonomy of via¢duated units.

A wide range of metrics for supply chain performamave been proposed (cf. Neely
et al., 1995, Melnyk et al., 2004) using an equdilxerse portfolio of methodologies (cf.
Estampe et al., 2010). Whereas most SCM literatasebeen devoted to the elaboration
and evaluation of absolute metrics, usually linkedhe dimensions cost (profit), time
(rates) and flexibility (change of rate), there lsdso been a growing awareness of the
need to perform external benchmarking (Beamon, 198% lack of integration of
metrics (Beamon, 1999, Chan, 2003), the lack ofesy's view (Holmberg, 2000) and
the lack of non-cost indicators (Beamon, 1999, Bei&nd Tonchia, 2001). In response
to this critique, several applications of non-paetic frontier analysis, such as Data
Envelopment Analysis (DEA), have been proposedstgply chain management. The
production-economic foundations and the capacity derive a consistent set of
informative performance metrics for a multi-inputdamulti-output setting qualify the
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frontier analysis as a useful tool for operationnagement assessments. However, the
interdependencies among evaluated units call fecifip frontier models, in particular
the multi-stage or network models (cf. Fare and sSkopf, 1996b). These models
explicitly take into account the network structimethe evaluation, deriving metrics that
can evaluate both individual unit and chain-widefgrenance in the long and the short
run. However, the rapid development of such modelg. Fare and Grosskopf, 2000,
Chen and Zhu, 2004; Chen et al., 2006a, Chen,&1G09a, 2009b; Zha and Liang, 2010)
and their relevance to supply chain performancessssent have not yet been critically
reviewed.

It is to fill this need that this paper summarities state-of-the-art in frontier analysis
models for supply chain management and their agipdins, along with identification of
future research directions. Special emphasis i®puhe special case of multi-level DEA
that is called the two-stage process. The outlininie paper is organized as follows. In
section 2, we first present the definition of thermt SCM and then we discuss
performance assessment in SCM. Section 3 is a shmapitulation of DEA definitions
for readers not familiar with the models. In Sectdh we present a generic activity model
for supply chain evaluation. In Section 5 we reviber DEA-models applied to two-stage
structures, including models based on cooperativk reon-cooperative game theory, in
particular bi-level programming. The paper is codeld in section 6 with critical
analysis of the reviewed work as some directionsufture research.

2. Performance evaluation in supply chain management

In the late 1980s, the term Supply Chain Manager(®6M) arose and came into
widespread use in the 1990s. SCM has been incasiteveloped in theory and
practice (e.g. Houlihan, 1985; Jones and Riley,7}98here have been a large number of
definitions of SCM (see e.g. Mentzer et al., 200d) unfortunately, there is no explicit
and generally accepted description of SCM in therdiure. The term supply chain
management is composed ofsupply chaiil as the object of control andrianagemefit
as the scope of activity. Some definitions of a pbypchain are proposed below
(Ganeshan and Terry 1996; Lambert et al. 1998):

e A supply chain is the alignment of firms that brprgducts or services to market.

« A supply chain consists of all stages involvededly or indirectly, in fulfilling a
customer request. The supply chain not only induttee manufacturer and
suppliers, but also transporters, warehouses, hetsj and customers themselves.

« A supply chain is a network of facilities and dlstition options that performs the
functions of procurement of materials, transforroatiof these materials into
intermediate and finished products, and the disitiitn of these finished products
to customers.

Generally, supply chain is a system of organizatigeople, technology, activities,
information and resources involved in moving a micidor service from supplier to
customer. Supply chain activities transform naturasources, raw materials and
components into a finished product that is deliddrethe end customer. In many cases a
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supply chain consists of multiple suppliers, maotufeers, wholesalers, retailers. The
management of a supply chain can be defined ag¢Bj®010):

The systemic, strategic coordination of the trafitil business functions and the
tactics across these business functions within atiquédar company and across
businesses within the supply chain, for the purposé improving the long-term
performance of the individual companies and thepguphain as a whole.

Supply chain management takes an integrated systangw on the design,
monitoring and control of the chain. This approasgrves to arbitrate the potential
conflicts of individual agents in the chain in orde coordinate the flow of products and
services to best serve the ultimate customer. \iée te this framework as “centralized”,
in that it represents the objective of a hypotlatmenevolent supply chain coordinator
with authority to implement any necessary decisiooughout the chain.

Performance measurement is intrinsically anchone8GM as both a predictive and
normative paradigm. Predictive in the sense thebpmance management provides data
and estimates necessary for the management ofiat@bed information flows in order to
meet stochastic demand, product and process chamgebkanges in the price/cost
structure for inputs and outputs. Normative in teense that the supply chain
management interfaces with both operations and cswyr providing targets for
improvement as well as potentially credible threztsubstitution or volume reductions
in case of poor [relative] performance. A seminapgr in performance measurement
design is Neely et al. (1995), defining the scopeperformance assessment as the
quantification of effectiveness and efficiency ofian. The paper also offers an overview
over a wide range of techniques and metrics useeelss their limitations and areas for
future research. Conventionally, the operationsnagament literature limited the
attention to performance measurement to the mdinitin of absolute (e.g. cost per
unit) and partial productivity (e.g. labor hours pait produced) metrics (Cf. Melnyk et
al. 2004 for a critique of this approach or Lamtetral., 2001 for an example) without
paying attention to their systemic or economic gnétion, or even to their value as
predictors of future profitability or survival irhé market place. Neely et al. (1995)
provide greater nuance to the analysis of suppiyrncherformance by distinguishing the
type of measurement, metric and method based acanalysis of organizational level,
integration, organizational support, managerialliappon and hierarchical level. The
authors document empirically that firms frequentigglect non-financial data, use
internal cost data of varying quality, deploy methowith no or poor connection to
organizational strategy and globally are dissatisfivith their performance assessment
system. Shepherd and Gunter (2006) review 362 tiftdepapers on supply chain
performance measurement and conclude that thenfisdif Neely et al. in many aspects
are still valid. Alternative qualitative approachesist using tools such as balanced
scorecards (cf. Bhagwat and Sharma, 2007), howdlerjnformation made available
from such models is limited in terms of e.g. decosipg productive and cost efficiency.
Nevertheless, the need to identify performanceippl/ chain can be of strategic as well
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as operational value, cf Gunasekaran et al. (2684)Olugu and Wong (2009), leading
us to require consistency in the evaluation methoggobetween the two levels.
Applications using frontier methods to complex mstage systems, normally the non-
parametric DEA method that is the focus here, elaively rare. An early application to
US Army recruitment in Charnes et al. (1986) usedwa-stage approach with
intermediate outputs that forms the basis of laietwork models. Ross and Droge
(2002) proposed an integrated benchmarking apprfmaaheasuring temporal efficiency
using some extensions to DEA methodology and thpptyang their approach into real
data including 102 distribution centers in the pletum business. Talluri et al. (1999)
proposed a framework based on DEA and multi-catelecision models for value chain
network design, primarily aiming at the identificet of an optimal supplier-
manufacturer dyad. Lothgren and Tambour (1999) used network DEA model
introduced by Fére and Grosskopf (1996a) to estimficiency and productivity for a
set of Swedish pharmacies. Hoopes, Triantis, amthi®gel (2000) developed a goal-
programming DEA formulation that models serial nfaeturing processes and applied it
to data on circuit board manufacturing. Tallurda@eaker (2002) proposed an interesting
three-phase approach for designing an effectivglgughain using a DEA framework.
Phase | evaluates potential suppliers, manufacgtuagd distributors in determining their
efficiencies using a combination of a DEA modelsl ahe pair-wise efficiency game.
Phase Il contains an integer programming modelchbptimally selects candidates for
supply chain design using a combination of thecifficies obtained in phase |, demand
and capacity requirements, and location constraitiase 1l includes the identification
of optimal routing decisions for all entities inetmetwork by solving a minimum-cost
transshipment model. Sexton and Lewis (2003) etetuamanagers’ management
efficiency of 30 Major League Baseball teams in 4@hder two-stage model. Their
model distinguishes inefficiency of the first staffem the second stage, allowing
managers to target inefficient stages of the produgrocess. Lewis and Sexton (2004)
viewed the network as a baseball team and exteBdrtbn and Lewis (2003) to consider
efficiency at each node of a network. Narasimhaal.e{2004) considered a two-stage
framework, namely flexibility competency and exegntcompetency, for discussing the
relationship between manufacturing flexibilitiesdamanufacturing performance of a set
of firms. Their model used the reduced CRS-DEA nhqueposed by Andersen and
Petersen (1993) to measure the efficiency of egesndependently. Sheth et al. (2007)
evaluate the overall performance of an agency’srbutes by using network DEA (Fare
and Grosskopf, 2000) and goal programming (Athaomdos, 1995) with
environmental factors from the supplier, consuraed society viewpoints. Yu and Lin
(2008) used a multi-activity network DEA model festimating passengers and freight
technical efficiency, service effectiveness andhtéeal effectiveness for 20 railway firms
in the world. Yu (2008a) used a multi-activity DEAodel for measuring the efficiency
of multi-mode bus transit under highway and urbas Iservices in the presence of
environmental variables, also used for a sharegubuhodel in Yu and Fan (2006) and
and an enhanced network system with consideratfocoasumption in addition to
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highway and urban bus services in Yu and Fan (2009)(2008b) presents a network
DEA approach consisting of two stages, the prodacand Consumption stages, to
evaluate the technical efficiency, the service gexhnical effectiveness of a selected
sample of 40 global railways. Vaz et al. (2010)gmeed a method to measure Portuguese
retail stores performance based on the network [fEgke et al., 1997), which takes into
account the interdependencies of the sections csimgpthe store.

Supply chain management involves decision on a i#l@yél decision network
structure. Application of conventional DEA modetmsiders the supply chain as a black
box and considers only the inputs from the begigrohthe upstream components and
final outputs at the very end of downstream comptsé the performance evaluation.
Thus, those intermediate measures are ignored. effidency scores will result in
ambiguous or too optimistic estimates of the SCM.

3. Dataenvelopment analysis

The data envelopment analysis (DEA) approach taieffcy measurement is a
deterministic method that does not require thenitefh of a functional relationship
between inputs and outputs. In economic terms, DHi#izes the non-parametric
mathematical programming approach to estimate ppesattice production frontiers
(envelope). The basic DEA model as introduced blgrBe (1951) and Farrell (1957) and
later developed by Charnes et al. (1978) is a dat@n method for evaluating the
relative efficiency of a set of entities with meiliputs and multi-outputs. DEA has rapid
and continuous growth in different areas since 1&f8rouznejad et al. (2008) reported
more than 4000 DEA research studies published imngls or book chapters. A
taxonomy and general model frameworks for DEA also be found in Cook and Seiford
(2009).

Let us introduce thtechnology set ©r production possibilities set (PPS)

T={(x y O R"x §| xcan producg

The background of the DEA is production theory, #raidea is that the DMUs have
a common underlying technology. In reality, we usually could not specify the
technology sebut DEA deals with the problem by estimating PPS,from observed
data on actual production activities accordinghnminimal extrapolation principle.

The mathematical programs can be obtained whenowdine the idea of minimal
extrapolation with Farrell's idea of measuring @&incy as a proportional improvement.

Assume that there ame DMUs to be evaluated where every DMU =1,2,..n

producess outputs, Y! =(y/,...,y, )0 R, usingm inputs, X' =(x/,...,X )O R'. The
sx n matrix of output measures is denotedyhynd themx n matrix of input measures
is denoted by.
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The efficiency of a specific DMU is denoted by& (X,Y,y) in output-oriented and
¢ (X,Y,y) in input-oriented wherey represents the returns to scale. Therefore,
g (X,Y,y) is calculated by using the following mathematid&A model

min &

st XA X,
YAZY, @
A0Q(p).

where Q()) specify the shape of the frontier. In other wor@Xy)) differentiates

between the models based on the returns to scalien@sion. In short, we can define six
following classical DEA models as follows (cf. Bagi and Otto, 2010):

The constant returns to scale (CRS) model wiars) ={A0R [ A freg= R

The decreasing returns to scale (DRS) model wRéars) ={A0R [11<]}
The increasing returns to scale (IRS) model wkiis) ={A0R |11 =1}

The varying returns to scale (VRS) model whefvrs) ={A0R |11 =1}
The free disposability hull (FDH) model whe®( fdh) ={A0 N, |14 =1}
The free replicability hull (FRH) model whe@(frh) ={A0ON_| A fre¢ = Z

where Z, is set of the non-negative integers.
The CRS, DRS, IRS and VRS models are linear progragithiR) problems while
FDH and FRH are mixed integer problems (MIP). Thal guoblem of (1) is:
max & =uY’
st vX' =1,
uY-vX+ y <0, 2
u,v=0,
u, D).

where ®(CRY ={0} , (DRSS = R,®( IR$= Fand®(VRS = F. In model (2),u
and v are the weight vectors assigned to the outputigmat vectors, respectively. Note
that in the dual program of CR8, =0 since there are no restrictions dnin the primal

model, therefore, it becomes

max & =uY’

st vX =1,
uY - vX<0,
u,v=0.

®3)



8 Agrell and Hatami-Marbini

A DMU with 87 (X,Y,y)=1, is called efficient with respect to the techngiczet
T(X,Y) and the returns to scalg, otherwise, & (X,Y,y)#1 is called inefficient.

Problem (1) is referred to as the envelopment wnagdrproblem, and (3) the multiplier or
dual problem.

4. A generic SCM model

The inefficient DMUs are notably interested in thetors that cause the inefficiency,
although it is obvious that either reducing inpoitsncreasing outputs will improve their
performance. To answer this question, much effag been devoted to breaking down
the overall efficiency into components so that twmurces of inefficiency can be
identified. One type of decomposition focuses am dtructure of the DEA models. The
general multi-level/multi-stage structure for penfiance evaluation in the complex and
real environment is illustrated in Figure 1. Thi®del involves the direct inputs and
outputs for each stage, the intermediate flows betwtwo stages and the common inputs
among all levels of the system and shared inputsngmstages of each level.

Shared input  Direct input Direct output

B Level 1 N Level 1 s Level 1
7 Stage 1 Stage 2 Stage n
l/ A
—>1 Level 2 Level 2 s Level 2
Common Stage 1 Stage 2 Stage n
inputs el
I I I
. X . Direct
Direct 1 l/ i 1 OUtEm
input ..
Level m Level m . Level m :"
—_ Stage 1 Stage 2 Stage n

Intermediate measure

Fig. 1: The common multi-stage activity model

Figure 2 shows a simplified model of a two-stagecpss with the shared resource,
where each DMU is composed of two sub-DMUs in seréad intermediate products by
the sub-DMU in stage 1 is consumed by the sub-DRstage 2.

Suppose that stage 1 of eaDMU  (j =1,...n)  Mmedirect inputsX, = (x/,...,X,)

and two sets of direct outputs:outputsY, = (Y, ..., y{',) andq outputs Z = (Z,..., %) ,
while stage 2 of eachMUj (j=1..nh) consists oblirect outputsY, =(y,...,y)

and two sets of direct inputsinputs X, = (xlj ,...,){ ) andq inputs Z = (zlJ 2q ) . We
also assume shared inputsX, = (x/,...,x ) which are allocated among two stayse

that Z is the intermediate measure e.g. the outpfubme stage become inputs to a later
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stage. The generic model is usually not analyzethéncurrent literature where most
instructions are special cases where some setengpéy. In this study, we denote the
efficiencies of stage 1 and stage 2 By(X,,Y,, Zy) k=1, 2;p=1,2,3;9=1,2 and the

overall efficiency is denoted byE"'(X,,Y;, Z)) in input orientechile we use

F (X, Y, Zy) and F*(X,,Y,, Z,y) notations in output oriented.
XS

A

~
~

1

Fig. 2: The common two-stage activity model.

5. Literature Review

In the black-box approach of conventional DEA, thternal structures of DMUs are
generally ignored, and the performance of a DMlassumed to be a function of the
chosen inputs and outputs. In the mid-1980s, RddePaimont (1984) started working on
performance evaluation of DMUs with known interrafuctures. They constructed
multi-plant efficiency measures and illustratedithmodels by analyzing utility firms
each of whom operated several electric generatmm$ Although Fare (1991), Fare and
Whittaker (1995) and Fare and Grosskopf (1996a)héur expanded this modeling
approach, the studies of Fare and Grosskopf (1988X0) in the literature are known as
a pioneered line of research at developing a genarhi-stage model with intermediate
inputs-outputs which is commonly callegtwork DEA Cook et al. (1998) discussed a
general framework for hierarchies in DEA, groupibiylUs and their individual and
aggregate performance indexes. Cook et al. (20@3epted a non-linear DEA model for
measuring the efficiency of two components (i.evise and sales) in banking system in
the presence of shared resources. Cook and Gré¥4)(2nodified the DEA model
developed by Cook et al. (2000) in order to spetify core business performance in
multi-plant firms. Jahanshahloo et al. (2004a) aeieed the progress and regress of each
component of a DMU upon the basis of Cook et @0(®. Jahanshahloo et al. (2004b)
linearized the model proposed in Cook et al. (208Ghe presence of discretionary and
non-discretionary shared resources. Yang et a0QPproposed a DEA evaluation model
for multiple independent parallel subsystems in chwhthe efficiency of the overall
process equals to the maximum of the efficiencieallosub-processes. Castelli et al.
(2001, 2004) and Amirteimoori and Shafiei (2006)cdssed on some types of the
network structure using DEA-like models. Golanykt(2006) simultaneously measured
the efficiency of the whole system and each sulesysts a special case of the Fare and
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Grosskopf network framework (2000). Chen (2009)aligwed a dynamic production
network DEA model by introducing an alternativei@éncy measure for evaluating the
performance of various hierarchical levels in thgamic environment along with
discussing on some returns to scale propertiesradystion network. Chen and Yan
(2011) recently developed thredfdrent network DEA models based on the concept of
centralized, decentralized and mixed organizatigsiesns along with discussing on the
relationship between their efficiencies. A latemgementary network DEA formulation
is a non-radial slacks based approach in Tone audsdii (2009). This approach has
applications in Fukuyama and Weber (2009), Fukuyamd Weber (2010) for bad
outputs and, Avkiran (2009) to a banking setting &n (2010) to airport operations. An
important modeling contribution for the Tone andufBsi (2009) model is made in
Chang et al. (2011), where the focus is on the ostrig-control for the formulation of a
full set of efficiency metrics.

A two-stage process which is a special case of Rack Grosskopf's multi-stage
framework involves a large number of real evaluatiwoblems. Therefore, DMUs may
have a two-stage structure in which the first stages inputs to produce outputs that
become inputs of the second stage and then thadatage uses these first stage outputs
to generate its own outputs. An excellent reviewD&EA models exploring internal
structure in general, including some of our woskfaund in Castelli et al. (2010). In this
section, we present a literature review on modelsvant to supply chain management.
We review different DEA approaches organized wibpect to methods in the two-stage
process, game theory and bi level programming tetaneasure efficiency of supply
chains.

5.1. Two-stage DEA

Wang et al. (1997) were the first, to the best wf knowledge, to apply a two-stage
structure for measuring the performance. Their rhage composed oK , Z and Y,

which are the input vector of stage 1, the interatedvector and the output vector of
stage 2, respectively (see Figure 2). Wang efl@bY) ignored the intermediate measures
and obtained an overall efficiency with the inpotghe first stage and the outputs of the
second stage (see model (5)). Similarly, Seiford Zhu (1999) proposed a two-stage
method to obtain the profitability and marketalilif the top 55 U.S. commercial banks,
consisting of X, Z and Y, presented in Figure 1. Seiford and Zhu (1999) used

independent CRS models (4), (5) and (6) to meatheeoverall efficiency and the
efficiencies of stage 1 and stage 2:

max E’ (X ,Y,,Z,crsf* = uY
st vX =1,

uy, - vX <0,

u,v=0.

(4)
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max E (X.Y,,Z,crsf* = wZ

st le" =1,
Stage 1 (5)
wZ- VX < 0,

w,v= 0.

max E; (X,,Y,,Z,crsf* = uy

st wZ =1,
Stage 2 (6)
uy, — wzZs 0,

u,w=0.

The intermediate measures can arise the potemtidlicts between two stages. For
example, the second stage may reduce its inpusrifiediate measures) to achieve an
efficient status. Such an action would, howeverplima reduction in the first stage
outputs, thereby reducing the efficiency of thetfstage. Zhu (2000) applied a method
similar to that of Seiford and Zhu (1999) to thetbne Global 500 companies.

When the model consists of, , Z and Y, another conventional CRS model is to use

the intermediate measure as an outpdt+(Y,) for measuring the overall efficiency.

Chen and Zhu (2004) demonstrated that such DEA hfads to correctly characterize
the two-stage process and the improvement to th& fB&nhtier can be distorted, i.e., the
performance improvement of one stage affects thieieicy status of the other, because
of the presence of intermediate measures. Zhu {2868 Chen and Zhu (2004) also
demonstrated that DEA model (4) does not corregtigracterize the performance of the
two stages, because it only considers the inpuiscaputs of the whole process and
ignores intermediate measur@sassociated with two stages. Alternatively, one can
consider the following DEA model that is the averadficiency of two stages:

1lwZ uy,
max E’ (X ,Y,,Z,cre)==| ——+—2
2| VX wZ
st wZ-vX<0, (7
uy,-w Z<0,
w,v= 0.

Although model (7) includes intermediate measuresit does not consider the
relationship between the first and second stagesgte issue of decouples of the two
stages. This does not show an ideal supply chatesy(Liang et al. (2006)). Chen and
Zhu (2004) suggested the following linear model tloe two-stage process based upon
the envelopment form of VRS consisting ¥f , Zand Y, presented in Figure 2:
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min E'(X,Y,, Z vi§* =ya-y,B
st XA<saX

2027 |gpma

Az0 8)

where y, and y, are the predetermined weights reflecting the pegfee over the two

stages’ performance an&’ which is unknown decision variables represents an
intermediate measure for a specific DMU under assesat. According to model (8), if
each stage is efficient, (that & =/ =1) then the two-stage process also is efficient.

Note that model (8) not only measures the oveféitiency, but also obtains optimized
values on the intermediate measures for a DMU uedetuation. They claimed that
model (8) can determine the DEA frontier for theotgtage process so as to project the
inefficient observations onto the efficient fromti€hen et al. (2006a) applied a DEA
model to assess the IT impact on firm performangednsidering both stages of the
scenario studied in Wang et al. (1997) and ChenZimd(2004). They decomposed some
inputs in the first stage into the second stagenG# al. (2006a) developed a shared two-
stage DEA with respect tX,, Z and Y,. Assume, therefore, thaX, is split into two

partsa X, and (1-a)X,. The average CRS ratios of stages 1 and 2 in thgram (9) is

used to measure the overall efficiency with comnmput and output weights for the two
stages.

° uy;
max E' (XY, Zcrspr=2| W 2
2 vaX, wZ+yl-a)X

St wz <1

v,a X, 9)

uy, <
wZ+y(l-a)X,
u,v, v, w= 0.

1 Vi Vg

Model (9) is a non-linear fractional programmingttkan be transformed into (10).
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max E (X,.Y,,Z,crsf” =

N |-

(WZ+ UYy)

st X -wZz20,
Vv X: =1,
(/=) X, + W Z- ki Y=0, (10)
VX +WZ - k=1,
V'-V, 20,
VI K W, U 0.

3' '3
Due to theku'Y, term, model (10) is a non-linear program. For\egk (2w Z"),
however, the model can be treated as a linear gar@mprogram. The efficiencies of the
first and second stages can be then attained,atdsglg, viaw” Z° andu”Y" wherew”
and u” are optimal measures obtained from (10). The divefficiency is the average
efficiency of the two-stage procesy2Ww Z + U Y'). Furthermore, a =v'3*/\/3'*
demonstrates how to allocate the resour¥g )(to two stages so as to maximize the

average efficiency of whole process.

Remark 1. If there is only one intermediate input, then tian-linear DEA model (9)
becomes a linear program [Chen et al. 2006a].

Remark 2. The optimala”™ in model (9) is always equal to unity and the mygti 5
represents the overall efficiency for the entireqgass [Chen et al. 2009a].

Saranga and Moser (2010) utilized the two-stageaideveloped by Chen and Zhu
(2004) to evaluate purchasing and supply manage(R&N!) performance.

Contrary to previous studies (e.g. Seiford and Zt209)), which treated the whole
process and the two sub-processes as independsmtakd Hwang (2008) considered a
series of relationship between the whole procedstlag two sub-processes in measuring
the efficiencies when a production process is caegof X,, Zand Y, as depicted in
Figure 2. The overall efficiency is decomposed itite product of the two individual
efficiencies, namely

wz' uy; _uy
vX1° wZ v)g’

Consequently, the overall efficiendy, under the CRS assumption calculates as:

E°:E1°XE;:

(11)



14  Agrell and Hatami-Marbini

max E’ (X .Y,,Z,crsf" = uy
st vX =1

uy,-vX <0,

wZ-vX <0,

uy, - wzZ<0,

u,v, w= 0.

(12)

The constraint set of (12) is the envelope of thafsmodels (4), (5) and (6). Note that
the weight associated wit# in the constraints are assumed to be the commaomeadns
that it does not matter whether the intermediatasuess play the role of output or input.
This assumption permits the conversion of theigiagl non-linear program into a linear
programming problem. This assumption also links tihe stages. Note also that the
constraintuY, — vX <0 is redundant in model (12) because of existing teostraints

wZ-vX <0 anduY,-wZ<0.If u',v andw be the optimal multipliers of (13), the
overall efficiency, the efficiencies of stages 1lda? are calculated byE® :u*Y2°,

E=wz/v Xl E5=u'Y;/ W Z , respectively. The optimal multipliers of (12) may
not be unique; hence, the decompositionEs= E, x E, would not be unique. Kao and

Hwang (2008) proposed the following model so adirid the set of multipliers which
produces the largedE; while maintaining the overall efficiency score Bt calculated

from (12):
max E (X .Y,,Z,crsf"= wZ,
st vX =1,
uy, - E(vX)=0,
wZ-vX <0,
uy, - wzs<0,
u,v, w= 0.

(13)

The relationshipE® = E; x E; enables us to obtain the efficiency of the secdages

Chen et al. (2009a) investigated the relationshigvben the approaches of Chen and
Zhu (2004) and Kao and Hwang (2008) for evaluatmerformance of two-stage
processes. Note that Kao and Hwang (2008)'s moded developed under the CRS
technology in the multiplier DEA model (see modEg2)), while Chen and Zhu (2004)’s
model was developed under the VRS technology inetiveelopment DEA model (see
model (8)).
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Remark 3. The CRS version of the Chen and Zhu (2004) maugtruy, =y, =1 is

equivalent to the Kao and Hwang's (2008) outpuented model i.e.,
F (X,Y,,Z cr9"= E'(X.Y,, Z cr9™ [Chen et al. 2009a].

According to Kao and Hwang (2008) approach, Cheal.g2009b) used the additive
efficiency decomposition approach to calculate t¢iverall efficiency, expressed as a
weighted sum of the efficiencies of the individshges. In fact, Chen et al. (2009b)
claimed that the two-stage DEA model of Kao and higvg2008) cannot be extended to
VRS assumption becaus&’ =((WZ +y)/vX)x((uy+ )/ w2 could not be

transformed into a linear program even if assuntirgsame weights on the intermediate
measures for the two stages. However, Chen e2@09p) approach can be applied under
both CRS and VRS assumptions while the method pepbdy Kao and Hwang (2008)
restricted to the CRS assumption. Chen et al. (@00%ed a weighted additive
(arithmetic mean) approach to calculate the ovestiitiency of the process under the
VRS assumption by solving the following problemtézd of combining the stages in a
multiplicative (geometric) way proposed in Kao atdlang (2008):

wZ' + uy +
max E°(X1,Y2,Z,vrs)“°'2:/ll( ch]+A2( 1 q]
v

. wZ
wZ +
st Q <1,
VX, (14)
M < 1,
wZ
u,v,w=0.
vX’ ° . .
where A =———=~—and 4, ::N—Z are the relative importance of the
tovX +wZ VX, +wWZ

performance of stages 1 and 2, respectively, bynmeéthe ‘relative sizes’ of two stages
for measuring the overall performance of the prec&y putting the above weightd,

and /,, assigned to two stages in the objective functib(il4) and using the Charnes—
Cooper transformation, the linear model (15) caol@ined.

max E° (X ,Y,,Z,vrsf = wZ+ p+ uy+ }

st le" + wZ =1,
wZ-vX +y<0, (15)
uy, — wz+ gso,
u,v,w= 0.

Analogous to Kao and Hwang (2008), the weightsfaltipliers) on the intermediate
measures are the same for the two stages. Onoptiamal solution to (15) is obtained,
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the efficiency scores for the two individual stagas be calculated in the same way as in
Kao and Hwang (2008) (see model (13)). In otherdspChen et al. (2009b) used Kao
and Hwang'’s (2008) approach to find a set of miidtip which produces the largest first
(or second) stage efficiency score whilst maintajnithe overall efficiency score
computed from model (15). In case the first stagwibe given pre-emptive priority, the
following model determines its efficiency, while miining the overall efficiency score
at E° computed from model (15).

max E" (X .Y,,Z,vrsf* = wZ+ y
st le"=1,
WZ—v)g+ qsO,
UYZ—WZ+ gso,
-E)wZ +uY + y+ y= E,

u,v,w= 0.

(16)

The efficiency for the second stage is then atthiag E; = (E" - A,.E") /X, where
A, and A, are optimal weights which can be obtained using eh¢dl5). In the same

way, Chen et al. (2009b) approach can be easiljiegbpnder the CRS assumption to
evaluate the overall efficiency and the individslges’ efficiencies.

Wang and Chin (2010) demonstrated that a two-siga model with a weighted
harmonic mean of the efficiencies of two individshges is equivalent to Chen et al.
(2009b)’s model.

Remark 4. The overall efficiency of Chen et al. (2009b) isajer than or equal to that of
Kao and Hwang (2008) under the CRS assumption i.e.,

E'(X,Y, Zcrg** > E(X Y, Z cis" [Wang and Chin 2010].

Furthermore, Wang and Chin (2010) extended Kao Hwdng (2008) to the VRS
assumption and also generalized Chen et al. (26G09m)del. Even though Kao and
Hwang (2008) computed the efficiency of a seriedesys Kao (2009a) proposed a
parallel DEA model with the individual components imeasuring the efficiency of a
DMU which is consisted of independent units coneééh parallel. His model minimizes
the inefficiency slacks of a DMU as well as ineiffiscy slacks of its units in order to
determine the inefficient units. Kao (2009b) depeld alternative relational network
DEA model by defining dummy processes to transfarmetwork system into a series
system (a multi-stage system), where each stagmiposed of a parallel structure with a
set of processes. Kao (2010) then built a relatioetwork CRS-DEA (series-parallel
systems) in both envelopment and multiplier foridsieh and Lin (2010) applied the
relational network DEA introduced by Kao (2009b)etmluate the performance of a set
of hotels.
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Wang and Chin (2010) used a weighted harmonic médame efficiencies of the two
individual stages to obtain the overall efficierafythe process by solving the following
problem instead of the approaches of Kao and HW20@8) and Chen et al. (2009b):
1
max E° (X .Y ,Z,crsf =
v Al.(vxl/WZ)+/12.( wz/ uf)

st —<1,
(17)

where A =wZ°/(uY2” + WZ) and A, = uYZ/( uy, + WZ) are the relative importance

of the performances of stages 1 and 2, respectiidlgse weights, similar to those of
Chen et al. (2009b), are the relative sizes oftihe stages. By substituting, and A,

into the objective function of (17), we achieve elathe same model proposed by Chen
et al. (2009b) in order to get the overall effiggrof two-stage process under the CRS
assumption. Likewise, the overall efficiency of tstmge process under the VRS
condition can be modeled as follows:

1

MK B 2 o Twz v )+ 4wz wy+ g

wZ + U
le

ety g
wZ

u,v,w= 0.

st <1,
(18)

Similarly, A, and A, which are the weights assigned to stages 1 arzhbe defined

as (WZ°+ul)/(WZ°+ y+ uy+ lzl) and uy; + LE/( WZ + y+ uy+ g), respectively.

By setting these weights into the objective funttaf (18), the same model defined by
Chen et al. (2009b) can be obtained for evaluatibthe overall efficiency under the
VRS assumption. Oncg; or E, is obtained, using the proposed approach by Cheh e

(2009b), the another one can be determined EE);lz/lz/((l/ E')-(/E )) or
E = /]l/((l/ E')-W,/E, )) , where A and A, are harmonic mean weights.

Remark 5. E*(X,Y,, Zy) = E"(X.,Y,, Zy)" wherey=crs and vrs.
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Chen et al. (2010) suggested the DEA model unde® YR measuring the efficiency of
two-stage system with the shared inputs. The stregs consisted oK, , X,,ZandY,

.(see Figure 2). The shared inputs, , can be split into two parte X, and (1-a)X,
wherel <a<lL,.

Overall efficiency was defined in Chen et al. (200&sithe average efficiency of stages 1
and 2 under CRS (see model (9)) An alternative diefinin Chen et al. (2010) and
Chen et al. (2009b), draws on a weighted averagdkeoéfficiencies of the two stages as

follows:
wZ’ + uy +
/11.( X L&X"}-AZ{ 1 f 4 ZJ (19)
Vi Ry VA X, v(l-a) X+ w

v, X; +va X, 4= v,(1-a)X;wZ
o o 2 o o
v, X+ v, X+ wZ v1X1+v3X3+ wZ

where A = . The non-linear program

(20) is created by substitutingl and A, in (*) and using the Charnes—Cooper
transformation.

max E° (X ,X,.Y,,Z,vrsf** = wZ+ p+ uy+ }

st v X +yX+wZ=1,
wZ-(v X +va X)+ y<o, (20)
uY, - (4(1-a) X, + w2+ y<o,
LsaslL, uyv,wz0.

Model (20)can be transformed tolmear form using the alternation variablga = y.

Once we attain an optimal solution of the lineardedpthe efficiencies of the two stages
can be consequently computed. Besides, Chen e2@l0) applied Kao and Hwang’s
(2008) approach to deal with the problem of mudtipptimal solutions.

Remark 6. The overall efficiency proposed by Chen et alO@f) and Chen et al. (2010)
are equal if we take the shared inputs defined Qiheh et al.,, 2010) away from

performance evaluation, i.eE"(X,Y,, Z, vrge? = E(X, X,,Y,, Z vrg®® iff X, =0.

Wang and Chin (2010) additionally extended the Kag Hwang (2008)’s model to
the VRS assumption. We should note that the fi@ges is evaluated with the input-
oriented VRS model and the second stage with theubwriented VRS model. Kao and
Hwang (2008)’s model under the VRS assumption harefore be expressed as
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max E° (X .Y,,Z,vrsf" = uy+ y

st vX -y=1,
wZ-vX +y<0, (21)
uy, - wzZ+ y <0,
u,v,w= 0.

The optimal multipliers of (21) may not be unighence, the decomposition & =
E/xE, would not be unique. Hence, similar to Kao and Hgvg2008) the set of

multipliers which produce the large€t’ (E)) can be obtained while preserving the
overall efficiency score aE° calculated from (21).

Remark 7. The overall efficiency under the assumption of WR&composed into the
product of the two individual efficiencies i.e.,

E(X, Y, Zvig™ = B(X Y, Zvif'x R X Y Z =
Wz uY,+y _uy+y
VX1°—ul wZ v)g— y

Furthermore, Wang and Chin (2010) generalized Géteal. (2009b)’'s models to
taking into consideration the relative importanaaghts of two individual stages. To do,
a two-stage process is transformed to a singleggsim which the two stages are treated
equally. In other words, the single process comsid#age 1's input X, ) and an

intermediate measure (Z) as inputs, and stage @afpud (Y, ) and an intermediate
measure (Z) as outputs. The generalized overatiefity of Chen et al. (2009b)’'s model
under the VRS assumption is formulated in mode).(20

AWZ + )+ A,(uY, + y)

max E° (X ,Y,,Z,vrsf9 = -
12 AVX, + A WZ

wZ + u <1
v, (22)

+
UYz—uzsly
wZ
u,v,w= 0.

St

The objective function of (22) can be transformet ia weighted harmonic mean as

E = L

VX1° .
J/l'WZ°+q Vor

wZ°
uy + 4

where
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L AwTy LAWY rw
AWZ + )+ AU+ u) T AWz W) AU, )

4

Remark 8. Model (14) by Chen et al. (2009b) is a special calsg2) withA =4, =1/2
e, E'(X,Y,, Z v =E"(X,Y,, Z vr§"*® . (Proof in Wang and Chin (2010))
Remark 9. If u=u,=0 in model (22), the generalized overall efficiency
E'(X,,Y,, Z cr9*? under the CRS assumption can be derived.

Chen et al. (2010) proposed an approach to spdafyfrontier points for inefficient
DMUs based upon the Kao and Hwang (2008)’'s modat. dual of model (12) proposed
by Kao and Hwang (2008) can be expressed as

min DE’(X,,Y,, Z cr§" =6
st XA<6X,
Yuzy, (23)
Z(A-p) 20,
Auz0, <1,
Model (12) can just obtain an overall efficiencyie under the assumption of CRS,

but would not be able to identify how to projeatfiicient DMUs on to the DEA frontier.
Chen et al. (2010), therefore, put forward the folllg model that is equivalent to the

model (23):
min DE’(X,Y,, Z cry" =8
st XA<6X,
Y,uzY,
ZA2 7,
Zus<Z,
AU,Z 20, 6<1.

(24)

where the decision variabl&° in the constraintsZA > Z° and Zu< Z° treats as
output and input, respectively, for the intermegliaeasure. According to model (24), the
projection point for DMU is given by(H*X;*,ZC* ,Y°) which is efficient under models
(24) and (23).

5.2. DEA using gametheory

Game theory allows us to explicitly model the sewpge of bargaining and the
strategic interaction present in decentralized sleci making, such as supply chain
management. Game theory has been successfully edpfioth to supply chain
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management coordination in general, and to normadpplications of frontier models.
Liang et al. (2006) proposed two DEA-based modetsefvaluation the efficiency of a
supply chain and its members (stages 1 and 2) tisergoncept of non-cooperative and
cooperative games in game theory. The models lzegfore, described in a seller-buyer
supply chain context, when the relationship betwiberseller and buyer is treated first as
one of leader-follower, and second as one thabgperative. In the non-cooperative
(leader-follower) approach, the leader is firsteased, and then the follower is evaluated
using the leader’s efficiency. In the cooperatitrecture, the overall efficiency which is
modeled as an average of the two stages’ effidsnis maximized, and both supply
chain members are evaluated simultaneously. Thétires cooperative game model is a
non-linear DEA model which can be solved as a patamlinear programming problem.
Figure 2 withoutY, shows a buyer-seller supply chain examined byd iemal. (2006).

They assumed that the first and second stagesharedller (leader) and the buyer
(follower), respectively, the efficiency of the dirstage E) is obtained using the

standard input oriented CRS model. If the optinelug E- holds when assessing the
efficiency of stage 1, the efficiency of stage Zadculated. It means dominating stage 2
by stage 1. The second stage’s efficiency, theeefman be obtained as
u,Y
v, X, + DxwZ
uy,
st ——2 <0,
v, X, + DxwZ
wZ-y X <0,
v, X, =1,
wZ' = Ej*,

U,, vV, V,, W, D= 0.

max E; =

(25)

Model (25) can be converted into the following riorear program:
max E, =u,Y;
st v X+ DwZ =1
u,Y, —v, X,- DWZ <0,
wZ-y X <0, (26)
v X =1,
wZ = E’,
u,,v,,v,, w, D= 0.
where 0< D <:;/E1°* and thereford can be treated as a parameter. That is, model
(26) can be considered as a parametric linear @anagOnce the first and second stage’s
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efficiency are obtained by the conventional CRS #R@), respectively, the overall
efficiency was then calculated via' =1/2(E + E, ).

Likewise, we can apply the above procedure for gsheation in which stage 1
(follower) is entirely dominated by stage 2 (legdéfang et al. (2006) also deemed the
situation where two stages have the same degrpevedr to influence the supply chain
system. The following cooperative game model, heseeks to maximize the average of
the first and second’s efficiency when the weigiisthe intermediate measures must be
equal.

o Y°
max E°=1{WZ + Y% }

2 VX v, X+ wZ
st wZ-yX <0, 27)
qu2 —v2X2— wZ <0,

u,, v, \,, W= 0.

Model (27) can be transformed into the followingdimear program:

max E'=Y¥2WZ +yY)

st vX =1, v2>g+lo<WZ=1,
WZ -y X <0, (28)
u2Y2—v2X2—k><WZs0,
u,v,v.,w k= 0.

2’ 1 27

Note that in model (24P<k < J/V\f Z where w is the optimal value to model (28).

That is to say, model (28) can be treated as anmree linear program. The efficiency of
stages 1 and 2 are then equivalenwi@’ and qu2 respectively, at the optima. The

remarkable conclusion in Liang et al. (2006) shtlved the supply chain efficiency under
the assumption of cooperation generally will notlégs than the efficiency under the
assumption of non-cooperation. The model in Liah@le(2006) was extended for the
multi-stage process in Cook et al. (2010).

Chen et al. (2006b) showed that there exist nunsemdash equilibria in two-stage
(supplier-manufacturer) game. They used a barggbBA-Game model under CRS
technology to analyze the relationships among W stages as well as defining two
efficiency functions for the first and second stage

Figure 2 withoutY, and X, presents the supplier-manufacturer (two-stage)gaded by

Liang et al. (2006). The efficiency of each stage be defined as
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,_wz!
Ly X!
171
. 29
o uy; (29)
2wzl +v X

Based on the decentralized control system, thelineas programs 1 and 2 can be used
for the supplier (stage 1) and the manufacturagés®), respectively.

S(E)=ma{ E [E<1LE< 1E< E

30
M(E,)=max{E; |E < 1LE < 1E < E} 50
Chen et al. (2006b) determined the obvious Naslililequms in the existing game
between the supplier and the manufacturer. Noliee $( E,) and M (E,) are functions

of E and E , respectively. If E,=M(S(E)), (E, ,E ) is a Nash equilibrium,
otherwise, Nash equilibriums does not exist. LikeyiNash equilibriums exist i, =

S(M(E)). In addition, Chen et al. (2006b) mentioned someperties on the two

efficiency functions as well as extending their metho the centralized control system.

Cook et al. (2010) extended Liang et al. (2006)take in account multi-stage
structures i.e., more than two stages in the CREVA@RS technologies. They calculated
the overall efficiency as an additive weighted ager of the efficiencies of the individual
stages. In addition, the developed model in (Cdokl.e 2010) was a LP while Liang et
al. (2006) model used a heuristic search algorilfiter converting the non-linear model
into a parametric linear model.

Using the geometric mean of the efficiencies of tve stages, Zha et al. (2008)
proposed a two-stage cooperative efficiency to utate the overall efficiency under
DEA-VRS model. They suggest that the efficiencyte first stage is evaluated with the
input-oriented VRS model and the second stage thighoutput-oriented VRS model.
Then, the overall efficiency is evaluated in a carapive framework. The upper and the
lower bounds are reached when non-cooperative framkeis considered. The non-linear
model is transformed into a parametric one, whepén@l solution of the overall
efficiency is reached easily. If input-oriented VR®del is suggested for performance
evaluation, inconsistency of the intermediate ot#pexists between the two stages.
Specifically, the two stages are cooperative fer thason that they are in series in an
organization. They considered the non-cooperatitng in order to determine the upper
and lower bounds of the efficiencies of the sub-DdMiJ different stages. Two conditions
are examined as follows.

A) Sub-DMU in stage 1 dominates the system, wiiéesub-DMU in stage 2 follows.

B) Sub-DMU in stage 2 dominates the system, wiiéesub-DMU stage 1 follows.

In both conditions, intermediate outputs need tocbesistent in two stages. So an
input-oriented VRS model is suggested when evalgatie efficiency of the sub-DMU
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in stage 1, and an output-oriented VRS model igssigd when evaluating the efficiency
of the sub-DMU in stage 2.

The upper bound of the efficiency of stage 1 isregped as follows:
min E’ =vX +y
st wZ =1,
(31)
vX +U-wZz0,
v,w= 0.

The lower bound of the efficiency of stage 2 carcdleulated by the following model
if the optimal valueE’* obtained from (31) holds when evaluating the &fficy of stage
2:

max E,”=uY -y
st wZ =1, vX +y= E,
VX, +U-wZz0, (32)
uy, - wZ- y <0,
u,v, w= 0.

Note that stage 2 is entirely dominated by stageikewise, the upper bound of the

efficiency of stage 2, denoted tE)z’ is first acquired, then, with holdina‘;" , the lower

bound of the efficiency of stage 1, denoted Ey’ is calculated. Zha et al. (2008)

considered the overall efficiency as the geometgan of the efficiencies the two-stages.
Hence, they assume that the efficiency of stagedl stage 2 are evaluated using the
input-oriented and the output-oriented models, eetpely. Geometric average
cooperative efficiency of the two stages is obtdihg the following model

max E’ = wZ X UY2 — 4
le" +u wZ
st W2 0 W4y
VX, +U wZ (33)
1 wZ° 1
— < <
T vty B
u,v,w= 0.

(33) can be transformed into
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max E°=UY2°—L£
st vxl"+q=1,
wZ-vX -y<0, uy - wz ys<o, (34)

JE  swz sy R,

u,v,w=0,

Liang et al. (2008) developed a two-stage modehgishon-cooperative and
cooperative concepts in game theory. In non-codiperapproach, they assume that one
of the stages is the leader that seeks to maxiitiZ@EA efficiency. Then the efficiency
of the other stage (the follower) is calculatedjsabto the leader-stage maintaining its
DEA efficiency. In other words, the leader staga ba viewed as being more important
than the other stage(s) in improving its efficienicycooperative approach, they assumed
that initially both stages’ efficiency scores areaximized simultaneously, while
determining a set of optimal (common) weights assibjto the intermediate measures.

Consider Figure 2 withou, andY,. It is assumed that the first and second stages

are the leader and the follower, respectively, effeciency of the first stage ;) is
obtained using the standard input oriented CRS imdidthe optimal vaIueEl"* holds

when assessing the efficiency of stage 1, theieffay of stage 2 is calculated. It means
that stage 2 is entirely dominated by stage 1.sBoend stage’s efficiency, therefore, can
be obtained as

max E, =%UY°

2

st uy - wZs 0,

wZ-vX < 0, (35)
vX; =1, WwZ=E,
u,v,w= 0.

Likewise, the second stage can be the leader aaml dhe obtains the first stage
(follower) model with regard to holding the efficiey of stage 2,E* . Finally, the

overall efficiency can be calculated &  =E'. E, = E .(/ E )uY ="uY. Or, in
other words,E” =E". E, =0 Y,/ v X and, as a resultE" is equal tou'Y, because
of V X/ =1.

An alternative method proposed by Liang et al. a0 measuring the efficiency of
the two stage process is to view them from a cadjper perspective. The cooperative
approach is characterized by letting the same weifgin intermediate data in two stage

models. Note that because of the same weights rftarmediate data, the overall
efficiency (E . E)) becomequz"/v)g“ which it can be modeled as follows:
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max E =E .E =uY/vX

, ‘ 36
st E<land E<1, O} (36)

The linear program of (36) is:
max E =uY]
st uy - wz<0,
wZ-vX <0, (37)
VX =1,
u,v, w=0.
The efficiencies of the first and second stagesbeatihen calculated as
E'=wZ/VX=wZ andE, =uY,/wZ
Note that optimal multipliers from model (37) magtie unique, as a resul, and
E, may not be unique. To discover for uniquenesspthgimum achievable value d
is firstly calculated using the following model:
max E, =wZ
st uY =E
uy, - wZs<0,
wZ-vX <0,
VX =1,
u,v, w= 0.

(38)

The minimum of E; is then calculated byE, = E°/E1°+ . In a similar way, the
maximum of E; and the minimum of, denoted byE), and E_, respectively, can be
obtained. Note thaE’ =E/ ifandonlyif E, =E  .If E_ =E, or E, =E , E and
E, are uniquely determined using model (37), otheewis’ and E, lead to multiple
optimal solutions. In the case &_# E;, or E,_# E;, Liang et al. (2008) proposed a
procedure to achieve a fair and alternative distidm of E' and E, between the two

stages.

Yang et al. (2009) proposed a CRS DEA approachdasure the overall efficiency
of the entire supply chain using a predefined PBAScomparing the obtained supply
chain frontier with other supply chains, chain-leperformance can be identified as
efficient or inefficient. The efficiency perspeaivand corresponding improvement
strategies for inefficient supply chains can beegiat the same time. Figure 2 withogt

and X, shows the two-stage structure (supplier-manufagtuteveloped in Yang et al.
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(2009). It is assume that all supply chains areaspe and their members can be
aggregated with other supply chain members so asalce a virtual supply chain. The
PPS can be characterized by all existing supplynshand some virtual supply chains.
Thus, the sub-perfect supply chain CRS PPS is el@f@s follows:

T=H{XWPAXESXAZ ZAZ ZA Y B2 YA20
where El"* and E;* , which can be obtained from models (6), are th&@Riciencies

of stages 1 and 2, respectively. Note that in thepgsed PPS the corresponding
envelopment coefficients for each DMU are the sainee. the members of each virtual

supply chain are restricted in the same actual lgughain. Note also tha(tXE{* , Z) and
(Z,Y/ Eg*) are projections of stage 1 and stage 2 BVIU°. Based upon PPS, the
overall efficiency of a supply chain is modeledaws:

min E =6

st XA<6X,
Y,A<Y,, (39)
(X;.Y,)OT,
A=0.

where (X,Y,,Z) points located at the frontier enveloped by tHe-serfect supply
chain CRS PPS (sd8. The following model is equivalent to (39):

min E°

st XA<EX, YAs<Y,
AX E <X,

A2=7", Az 7,

AV, /B Y,

AA=20.

(40)

Yang et al. (2009) also proved th&t" computed from model (40) is always smaller
than or equal toE”" obtained from model (1) under CRS. Also, they destated that
the optimal value of (40) is always smaller thanequal to E;" x E; . Their proposed

approach can be applied to evaluate the efficiefiequltiple-member supply chains.

Zha and Liang (2010) developed an approach to medka performance of a two-
stage process in a non-cooperative and cooperatasener within the framework of
game theory, where the shared inputs can be afld@hong different stages. Similar to
Chen et al. (2006a), Zha and Liang (2010) usedrEiguas a two-stage process with
shared inputs, e.g. all inputs (denotedXasg are directly associated with two stages. To

do this, it is assumed thaX, is divided into two partse X, and (1-a)X,. Zha and
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Liang (2010) utilized the product of two stage®t@luate the overall efficiency of each
DMU while the average of two stages was only usedhie Chen el al. (2006)'s
cooperative model. Let us assume that the firstssswdbnd stages are the leader and the

| follower, respectively, for the non-cooperative leration. First the efficiency of the first
stage ) can be calculated using the input oriented CR8ehas follows:

max El":wZ"
st wZ-va X <0,
u\é 4 (41)
vaaX3=1,

v, W2 0.

The second stage’s efficiency can be then obtafineah the following program
subject to the restriction that the efficiency loé first stage remains at optimal vaIE§

max E;=uY2°
st uy -(dwz+ ¥ X)<0,
wZ-\, X <0,
X, =1, (42)
wZ =E’,
VX, +0E" =1,
u, v, V2, w= 0.

1 V31 V3

Model (42) is a non-linear program becausedsf in the first constraint. However,
this model can be treated as a parametric lineagram since in specifying the optimum
E;*, o[0,1] (with regard to the interval< o < :I,/ El"* ) is considered as a parameter.

On the other hand, the second stage can be therlaad then one obtains the efficiency
of the first stage (follower) model based on stagd@herefore, the efficiency of stage 2
can be first calculated as in the following model:

max E, =uY,
st uy —(wz+ y X)<0,
wZ' + v, X, =1,

u,v,, w2 0.

(43)

Note that model (43) corresponds to the conventiGiRs DEA model. Assume that
uv3 and w' are optimal solution for (43). We must investigtiteee cases to obtain the

efficiency of stage 1. In the first case, if therasts a giverd (d=1,...p) satisfying
W; # 0, the efficiency of stage 1 is equivalent to
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max E =Jow Z

st oW Z-vy X <0,
v, X =1,
v3,520.

(44)

In the second casay =0, accordingly, the efficiency of stage 1 become® zad,

lastly, if there exists multiple optimum valuesrmodel (41), the efficiency of stage 1
dominated by stage 2 can be expressed as

max E =JowZ

st owZ-\ X <0,
VX =L uY - (f X+ wasO, (45)
WSE, X+ wz=l
u, ViV, w 0.

Note that the efficiency of stage 1 obtained frath)(is less than (44). In a special
situation, when intermediate product is singledp@émal values of the objective function
(42) and (43) are equal.

In the cooperative efficiency, while the weightstioé intermediate outputs in stage 1
are equal to the weights of the corresponding mméeliate inputs in stage 2, the product
of stages 1 and 2 for measuring the overall efficyecan be expressed as

wZ° uy;

2

max E° = X
vaX, wZ+yl-a)X

wZ
<1,
v,a X, (46)
uy,

2 <
wZ+\y(l-a) X,

u,vl,wzo

s.t.

Model (46) is a non-linear programming and we @arite it as:
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max E’ =wZ xuY
st wZ-yX<0,
v, X; =1
[ (h-v) X;+wZ |=1, (47)
uy, =d (h-y) X + wz <0,
hzuz0

V3,W20

Based on the non-cooperative approach,Uetk <U wherel is the efficiency of
stage 1 when stage 2 treats as a leaderlatite efficiency of stage 1 when stage 1
consider as a leader. Also, assume thg-v,) =v, wZ’ = k. Accordingly, (47) is
transformed into

max E° =kx uy,

st. wZ =k
L<k<U
WZ°—V3X;SO, 48
vSX;:1 (48)
vX;+5WZ’=1,
uy, —=(vX +owz)<0,
u,v,\v,,w=0

1 V3

Model (48) can be considered as a parametric lipeagramming since we can gain
J<1/k from agivenk O[L, U] and the constraintX; +owZ =1.

Du et al. (2011) created a Nash bargaining gameein@doperative game model) under
a two-stage structure witlX,, Z and Y, (see Figure 2) to measure the efficiency of

DMUs and sub-DMUs. The input-oriented DEA bargagnimodel of Du et al. (2011)
was constructed as

wZ’ _ || uy; _
max E ' =|—- 2 — x
|:VX1° 5 wZ &
uyY;
st W—Zoz E. 2> E,
vX] wZ (49)
Wz _q u ¢y,
vX W
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In model (49),E; and E, are the CRS efficiency scores of the two least iD&s as
a breakdown point where the least ideal DMUs fer fthr the first and second stages are
defined as (X" =max{X}, Z™ =min{ 3) and (Z™* =max{Z}, Y,"" =min{ ¥}) ,
respectively. The equivalent non-linear model is

max E =aquY,-E uY- E wZ+ E. E

st wZz=zE, uy z E,

vX; =1, wZ =a, (50)
WZ—le <0, au\g— wZ< 0,
a,u,v.,w>0.

1V

where a can be behaved as a parameter wittn [ 1], therefore, model (50) can be a
parametric linear model. After setting an initiallwe for @ and obtaining corresponding
objective function of model (50), , we decreaser by a very small positive number
until a=E, . Accordingly, the optimal solutions are associateth a given a’ when

E;, =max{E } . Thus, the efficiency scores of the first and sdcstages and the overall

process areE; =a =wZ, E =uY, and E"=E .E , respectively. It is
interesting to note that when only one intermediagasure exists between the two stages

E;* and E;* are equal to the efficiency scores of the two esagalculated from the
standard DEA approach separately (see models (b{egh

Remark 10. The Nash bargaining game model proposed by Dl é2@11) is equivalent
to the cooperative model of Liang et al. (2008) wig = E, =0 .

5.3. DEA using bilevel programming

Wu (2010) was first to explore a bi-level programqiDEA approach by combining
DEA cost efficiency proposed by Cooper et al. (2000 the bi-level programming
framework in order to evaluate the a two-stage ggecperformance in decentralized
decisions. In their study, each DMU includes twaeatdralized subsystems: a leader
(stage 1) and a follower (stage 2) as it is dediate=igure 2.

N J

X1 > Stage 1 7 ™ Stage 2 P,

v
S

l\)~<

Fig. 2. A leader-follower structure
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The leader uses two types of inputs, i.e., theesharput X; and the direct inpufX , to

produce two different types of outputs: the intediate measur& and the direct output
Y, . The follower uses three types of inputs, i.ee,shared inpul>(32 and the direct input

X, and the intermediate measute to produce the outpuX, . Furthermore, assume that
C,, C,, C, andC, are the input unit cost vectors associated le;h(Xj), X,,Z and
X

separate cases for the total amount of the shasedirce that we can take into account as
an extra constraint. According, when the total amiaf the shared input is fixed the bi-
level programming cost efficiency DEA model candxpressed as:

(€) in, ©X+CX)+(GX+ GX4 C
st X2 X,

X, > XA,

Yo < YA,

Z°<ZA,

X+ X2=F
(E) g"z”# CX;+CX,+CZ
st. X2z Xy,

X, = X, u,

227U,

Y, Y4,

X2, X, X, ZA 4= 0.

,» respectively. In fact, the exact fixed value amdximum fixed value are two

(51)

The shared input()Z;) , the direct input()?l) and an optimal multiplierA can be
calculated by the first level of model (51) so @srtinimize the total costs for the leader.
As a result,X? is simply obtained for the follower usin¥}+ X2 = F. Note that in the

above bi-level programming cost efficiency DEA mbifgermediate measure is output
for the leader in the upper level and also inputtf@ follower in the lower level. The
second case is when the total amount of the shaped has the fixed maximum value.

To do, we substituteX} + X2 < F for X!+ X?=F in model (51). Wu (2010) applied
the branch and bound algorithm proposed by Shi.gP@06) to solve the model (51).
Once the optimal value ofX}', X}, X, X,,Z A 2 ) is obtained from model (45) the
cost efficiency of th¢th leader(CE), thejth follower (CE]) and theth systen{CE’)
are defined as
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CElJ - ng;* + C1X;
1
C3 X3 + C:1 Xl
CEzj - C3X32 +C2)(2+ Cz Z
2
CX;+CX,+CZ
_CXTHC X+ G2+ (G X+ GX)
CX;+CX+ GY+(G X+ GX)
The jth leader, thgth follower- and thejth system are cost efficient if and only |f
CE’ =1, CE]} =1 and CE' =1, respectively. In addition, Wu (2010) similar todper
et al. (2000) used the reference units to ranleffieient DMUSs.

CE!

6. Conclusionsand futureresearch directions

Supply chain management (SCM) covers several diisegppand is growing rapidly.
Performance measurement is an important activépeeially in the multi-dimensional
case of international supply chains. DEA as a narametric technique for measuring
efficiency continues to enjoy increasing populariReviewing the multi- and two-level
extensions published in the DEA literature revemlsonsiderable wealth of different
models, based either on restrictions in the refareset, the weight system or the
sequence of optimization of the DMU problems.

However, the analysis also shows several open @mubin the application of DEA to
supply chain performance measurement.

First, thelimitations and rigidity in model specificationWhereas supply chains by
definition involves several stages (normally astehree) interacting independently with
markets for raw materials and intermediate outpuitk of the extensions are limited by
explicit or implicit restrictions to two-stage pexses with no third-party interaction. In
practice, this implies a strict dyadic buyer-seliichotomy in which all intermediate
outputs are consumed by a single entity. The assomgs very strong and in open
contradiction to standard results in multi-stag@pdy chain planning models, where
intermediate plants and distribution centers amgeeted to serve multiple downstream
units, within and/or without the focal enterpriddoreover, the lack of flexibility in the
model structure is commonly motivated by the solutapproach, derivations of joint
metrics etc., that consequently hamper the gematan of the results to a realistic
situation. Further work is necessary on this funelatal point to allow applications of
frontier-based methods to real multi-stage suppbjrcs.

Second, théack of motivation for the intermediate measussides the multi-stage
property, one of the underlying features distinging supply chain management from
general operations management is the prevalenckeadntralized decision making. In
economics and management science, we tend touadtribese decision makers with
some procedural rationality that renders them sigide to mathematical modeling. A
common assumption is that the decision makers magirasome profit or objective
function subject to some rationally imposed coristsa e.g. resource allocation across a
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group. It is therefore necessary for any perforreasgesessment to take into account the
objectives of the underlying units in their assessinif the resulting estimate is to have
any relevance as an indication for the effectivengfstheir decision making. We note
that some suggested models tend to abstract freradbnomic or preferential reality of
the evaluated units in assuming that their objestper seshould be related to, or even
centered on, the very metric that analysts progoseheir evaluation. In fact, most
models dispose of this step by simply assumingtti@bbjectives of the unit correspond
to the maximization of some single-stage evaluafiozblem, such as the conventional
CRS formulation. Already in a single-stage settititgg interpretation of productivity
measures is associated with many limitations, cirefl and West (2001). In the supply
chain setting, with the interdependencies betwegal$ and the ambiguous character of
the input resource restrictions challenge this gation and prompt for a careful and well
justified behavioral motivation for the submodeds, well as for the centralized models.
Further consolidation of the literature based omedheoretical approaches may be way
to address this shortcoming.

Third, modeling of the power or governance structuséthin the supply chain. Given
the absence of a centralized decision maker, thdetap faces a hierarchical multi-
criteria problem without any clear preferential usture. Whereas conventional
approaches in economics would use Stackelberghilpeel games or Nash bargaining
concepts, the supply chain management literat@gquéntly employs non-cooperative
and cooperative game theoretical approaches. Ajth@ome models are founded on
elements hereof, there is need of stringent madefging the evaluation model structure
with the underlying assumptions about the powergavernance structure within the
chain. Such work, founded on economic theory argistn theory, may also eliminate
the too frequent resort &d hoctechnical and scaling parameters in the modelsowtth
any methodological foundation.

Fourth, predominance ahultiplicative modelsMulti-product networks, especially
for dynamic approaches, involve relatively largenénsional output vectors and likely
(correctly) zero-valued observations. Multiplicativapproaches (radial efficiency
metrics) here yield computationally poor resultgweéfficiency scores in the presence of
significant slack, i.e. weak technical efficiencidditive models (seminal work by
Charnes et al., 1985) are traditionally viewed raerior, lacking translation and unit
invariance (cf. Ali and Seiford, 1990) and diffituto decompose in relevant
submeasures. The special structure for supply chesblems, however, where units
often can be homogenous (value, weight, energyeotsit pieces) and decompositions
can be consistent and informative using simplesftamations as in Agrell and Bogetoft
(2005). The use of additive approaches also opmnfevant substitutions and analyses
of cost- versus technical efficiency for more ret@di dimensions. However, more work is
necessary to determine the properties and robustrfesich models in generalized multi-
stage settings. The work by Chang et al. (2011¢dbas the non-radial Tone and Tsutsui
(2009) model is here particularly interesting, dtgon a conceptual viewpoint.
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Stating these areas of desired progress is in np memating the positive and

productive wealth of work in the areas of two-staga-parametric frontier models. On
the contrary, it is this energy and thrust that willock the force of the models to attack
the so far unsolved, frustrating and decisive protsd found in supply chain performance
measurement.
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