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ABSTRACT

This paper develops a maintenance strategy, called inspection-replacement policy, to
cope with heterogeneous populations. Burn-in is the procedure by which most of the de-
fective products in a heterogeneous population can be identified and removed prior to being
placed in service. However, modern manufacturing is so well developed that a defective
product is able to function for a long period of time even under aggravated operational
conditions. Instead of weeding defective products out via costly burn-in tests, use can
be made of them in field operation where maintaining actions will be performed to pre-
vent early in-use failures. The inspection-replacement policy consists of an inspection,
conducted in an early stage with the purpose of identifying and replacing defective prod-
ucts, and a preventive replacement, carried out at a later stage to prevent wear-out failures.
The preventive-replacement time is dynamically determined, depending on the informa-
tion obtained by the inspection. The inspection-replacement policy is compared with a
joint burn-in and age-based-replacement policy to show its practicability and competence.

Keywords: Burn-in test; gamma process; mixture distribution; preventive replacement;
Wiener process.

1 INTRODUCTION
To maintain competitive advantage, manufacturers endeavor as much as possible to produce re-
liable products. However, during the manufacturing process, some unavoidable manufacturing
defects could be introduced, e.g. defects in the raw material, leading to a heterogeneous popu-
lation of products. The heterogeneous population contains a small proportion of weak/defective
products. Compared with the normal products, the weak products have a shorter mean lifetime
and are prone to giving rise to early in-use failures. The early in-use failures will cause substan-
tial costs and sometimes are hazardous. In fact, it is not uncommon to observe a heterogeneous
population with two sub-populations: a weak sub-population and a normal sub-population. For
example, it is widely believed that integrated circuits consist of a small proportion of weak
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items which have much shorter mean lifetime. The GaAs laser data set, provided by Meeker
and Escobar (1998), is a typical sample consisting of a sub-group of normal devices and a sub-
group of weak devices; see Tsai et al. (2011). Scarf and Cavalcante (2012) considered compo-
nent heterogeneity when developing an age-based maintenance policy for a single-component
system; they assumed that the population of components comprises a mixture of the weak and
the strong. Berrade et al. (2013) developed a maintenance policy involving periodic inspec-
tions, in which inspections are subject to error; they assumed that the time a system spends in
the defective state is a random variable from a mixture distribution. Recent research on hetero-
geneous data can be found in Cha and Finkelstein (2013), Eriolu et al. (2013) and Kazmi et al.
(2013), among others.

A common practice to tackle a heterogeneous population is to screen out the weak products
by means of a burn-in test. Burn-in is an engineering procedure implemented at the end of
the manufacturing process. In a burn-in test, all the products are subjected to harsh electrical
and thermal conditions that emulate the field operational conditions. At the end of the burn-in
test, only the functioning products will be shipped to customers. There has been a bulk of
research on developing economical burn-in tests; see Cha and Finkelstein (2010), Pearn et al.
(2013), Post and Bhattacharyya (2012) and Yuan and Kuo (2010), among others. With the
rapid development of modern manufacturing technology, even a weak product is able to op-
erate for a fairly long period of time under aggravated operational conditions. Weeding out
weak products via traditional age-based burn-in approach is therefore ineffectual. When there
is a performance characteristic whose evolution is closely associated with the lifetime of the
product, the condition-based burn-in approach is an attractive alternative (Xiang et al., 2013;
Ye et al., 2012). Because a weak product most often deteriorates faster than a normal prod-
uct, a condition-based burn-in test exercises all the products for a certain period of time and
scraps the products with deterioration levels higher than a pre-specified cut-off level. After the
burn-in test, all the products with deterioration levels lower than the cut-off level are shipped
to customers. In field operation, preventive repairs are often scheduled to further improve re-
liability and reduce operational costs. See Ahmad and Kamaruddin (2012) for an overview of
two maintenance techniques widely adopted by industrial engineers: time-based maintenance
and condition-based maintenance. Nonetheless, it is well known that burn-in is costly, includ-
ing such as burn-in set-up cost, burn-in operational cost and repair/scrap cost from a burn-in
failure. Scilicet, by adopting the burn-in procedure, we make a trade-off between early in-use
failures and a reduced yield due to the burn-in costs. It is worth noting that nowadays even
a weak product is able to operate for a long term. A more judgmatic approach to tackling a
heterogeneous population is to directly put all the products into field operation and replace the
weak products before they fail. By virtue of appropriately scheduled inspections, early in-use
failures can be mitigated, and the failure cost can be countervailed by the long-time operating
income. Even if a burn-in test is able to identify most of the defective products, it will cause
damage to the normal products, shortening the mean lifetime of the normal products (Cha and
Finkelstein, 2011; Ye et al., 2011).

To make full use of weak products and avoid impairing normal products, we develop the
inspection-replacement policy for heterogeneous populations with the assumption that a suit-
able performance characteristic of the products is available. The inspection-replacement policy
directly puts all the products in a heterogeneous population into field use without burn-in. The
physical degradation of each product will be measured at time b(> 0). If the degradation of
a product exceeds a critical threshold, then it will be treated like a weak product and replaced
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at time b. If the degradation does not exceed the critical threshold, then it will be treated like
a normal product and will be preventively replaced at time R(> b), if it survives to time R. A
schematic diagram of the inspection-replacement policy is shown in Figure 1. The purpose of
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Figure 1: Schematic of the inspection-replacement policy.

the inspection is to identify and replace weak products, whereas the preventive replacement
is to replace aged normal products. If the inspection and the critical threshold are well deter-
mined, most of the weak products will be identified by the inspection. It is not difficult to see
that the role of the inspection is analogous to a burn-in test except that the inspection is carried
out in the field operation. However, there will be some figures of merit by replacing the burn-in
approach with the inspection-replacement policy. First of all, the inspection-replacement pol-
icy does not need to burn-in products, and therefore saves burn-in costs and avoids impairing
normal products. Secondly, the inspection-replacement policy makes full use of weak products,
and therefore is expected to yield more profits. Last but not least, the preventive-replacement
time R for each product is dynamically determined, depending on the physical degradation of
the product obtained by the inspection. The on-line updating technique is expected to return
more cost-efficient maintenance policy.

The rest of the paper is organized as follows. Section 2 details the inspection-replacement
policy. The long-run cost rate function is derived. A joint burn-in and age-based-replacement
policy serving as a benchmark is introduced. Section 3 draws the inspection-replacement policy
on two predominant stochastic processes: the gamma process and the Wiener process. Section 4
presents numerical examples to elaborate the methodology developed in Section 2 and Section
3. The GaAs laser data set is analyzed. Contradistinctive analysis and sensitivity analysis are
performed by using numerical simulations. Section 5 concludes the paper.

2 MAINTENANCE STRATEGY & COST RATE FUNCTION
The product concerned stands for a component which is randomly drawn from a heterogeneous
population. When put into operation, the component undergoes deterioration with the degra-
dation process denoted by {Xt , t ≥ 0}, assuming X0 = 0 as with the convention. A component
is considered to have failed if its deterioration level reaches a given failure threshold, denoted
by l(> 0), which is a known constant. Define T to be a random variable representing the first
hitting time of the degradation process {Xt , t ≥ 0} to the failure threshold l. The inspection-
replacement policy is detailed as follows. After the installation at time 0, the component is
subject to inspection at a pre-determined epoch b(> 0). The component will be treated like a
weak component and will be replaced by a new component if it survives beyond the point, i.e.
T > b, yet with the deterioration level Xb equating or exceeding a critical threshold ϑ(< l).
The new backup component is randomly drawn from the same heterogeneous population. In
the case that T > b and Xb < ϑ , a preventive-replacement time R(> b) will be scheduled. R is
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the time point upon which the reliability of the component drops to a pre-determined reliability
threshold δ (0 < δ < 1). Note that the preventive-replacement time R is on-line calculated,
depending on the deterioration level Xb. In the case that the component survives beyond the
preventive-replacement time, i.e. Xb < ϑ and T > R, it will be preventively replaced at time
R by a new component. In the event that the component fails unexpectedly, i.e. 0 < T < b or
b< T ≤R, it will be immediately replaced by a new component. The intention of the inspection
is to screen out poor-quality components and hence to prevent early failures. The purpose of
the preventive replacement is to reduce wear-out failures caused by normal components. Other
mild assumptions are given as follows.

• Starting from the installation of a device, the wear trajectory is taken to have an upward
trend though not necessarily monotonically increasing.

• Inspection is perfect in the sense that it reveals the true degradation level of a device and
does not change the condition of the device.

• Replacement time is negligible compared to the expected lifetime of the devices. Failure
is self-announcing and can be observed instantaneously.

Components with Xb ≥ ϑ are replaced at the condition-monitoring point instantaneously, and
the average cost of replacing a component is Cr. Preventive replacement of a component at time
R is instantaneous and again costs Cr. The cost of each inspection is CI , and the cost of a failure
is C f . Practical conditions define the constraints on the costs as follows: CI < Cr < C f . The
decision variables of the inspection-replacement policy are the condition-monitoring epoch, b,
and the corresponding critical threshold, ϑ . The reliability threshold, δ , is pre-determined by
domain experts. A conservative engineer may set a high value of reliability threshold.

Let random variable V denote the length of a single replacement cycle, i.e. the time from the
installation of a component to its replacement. In every replacement cycle, one of the following
4 exclusive events occurs.

E1 = {0 < T ≤ b}: A component fails before or at the condition-monitoring epoch b, costing
C f +Cr.

E2 = {T > b, Xb ≥ ϑ}: A component survives to b and is replaced at b, costing CI +Cr.

E3 = {Xb < ϑ , b < T ≤ R}: A component, with Xb < ϑ , fails at or before the preventive-
replacement time R, costing CI +C f +Cr.

E4 = {Xb < ϑ , T > R}: A component, with Xb < ϑ , survives to the preventive-replacement
time R and is replaced at R, costing CI +Cr.

After each replacement, the process renews. The total cost incurred in a replacement cycle can
be formulated to be

C = (C f +Cr)I(E1)+(CI +Cr)I(E2)+(CI +C f +Cr)I(E3)+(CI +Cr)I(E4)

= Cr +C f I(E1)+CII(E2)+(CI +C f )I(E3)+CII(E4).

I(·) is the indicator function which equals 1 if the argument is true and 0 otherwise. Hence, the
expected total cost incurred in a replacement cycle is

E[C] = Cr +C f p1 +CI p2 +(CI +C f )p3 +CI p4

= Cr +CI +(C f −CI)p1 +C f p3.
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p j ( j = 1, ...,4) denotes the probability of the occurrence of the event Ej. The length of a
replacement cycle can be formulated to be

V = T [I(E1)+ I(E3)]+bI(E2)+RI(E4).

Hence, the expected length of a replacement cycle is

E[V ] = E[T I(0 < T ≤ b)]+bp2 +E[T I(Xb < ϑ , b < T ≤ R)]+E[RI(Xb < ϑ , T > R)].

In each replacement cycle, one of the four exclusive events occurs. In the long run, the evolution
of the replacement cycle forms a stochastic process which will settle into equilibrium (Karlin
and Taylor, 1975); the four basic events will occur with relative frequencies given by their
respective probabilities. Therefore, the long-run cost per unit time, denoted by c(b,ϑ), is

c(b, ϑ) =
E[C]

E[V ]
.

The remaining task is to minimize the long-run cost per unit time by appropriately choosing the
condition-monitoring epoch b and the critical threshold ϑ . It is evident that setting b too small
will result in a poor estimation of the preventive-replacement time, and that setting b too large
will risk unexpected failures before the inspection. Similarly, setting ϑ too small will result in
too many premature replacements, and setting ϑ too large will risk unexpected failures after
the inspection. Therefore, there is an economic necessity to minimize the long-run cost per unit
time c(b, ϑ). In Section 3, we will elaborate the inspection-replacement policy by considering
two widely used stochastic processes: the gamma process and the Wiener process.

Remark 1. It is worth noting that the inspection-replacement policy is targeted at individ-
ual components in the sense that the preventive-replacement time is not identical but alter-
ing among components. Only the degradation measurement at time b is obtained, can the
preventive-replacement time be determined. One may say that a more cost-efficient technique
is to include the preventive-replacement time in the decision variables, and minimize the cost
rate function by appropriately choosing b, ϑ and R simultaneously. However, if we include R
in the decision variables, the preventive-replacement time will be identical for all the compo-
nents in the heterogeneous population. Otherwise, if we want to find the optimal preventive-
replacement time for each individual component, then the condition-monitoring epoch and the
critical threshold must be pre-fixed. We cannot find the optimal preventive-replacement time
for an individual component without knowing any degradation information of the component.
Therefore, to schedule the optimal preventive-replacement time for each individual component,
we cannot include R in the decision variables.

To demonstrate the advantage of the inspection-replacement policy, we compare it with a
joint policy which was advocated by Ye et al. (2012). The joint policy is composed of two suc-
cessive procedures: a burn-in test by which weak components will be screened out, and then
an age-based replacement by which burnt-in in-use components will be preventively replaced.
Specifically, components in a heterogeneous population are all subject to a burn-in test with
duration b̈(> 0). After the burn-in test, the deterioration level of each component is measured.
Components with deterioration level exceeding the cut-off level ϑ̈(< l) are treated like weak
and discarded. The burnt-in components, with deterioration level smaller than the cut-off level,
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Figure 2: Schematic of the joint policy.

are put into field use and are subject to an age-based replacement: A burnt-in in-use component
will be replaced by a new burnt-in component upon failure or at a pre-determined preventive-
replacement time R̈(> 0), whichever occurs first (see Figure 2). The decision variables of the
joint policy are the burn-in duration, b̈, the cut-off level, ϑ̈ , and the preventive-replacement
time, R̈. The per-component burn-in costs include the unit-time burn-in cost, C1, the manu-
facturing cost, C2, the fixed burn-in cost, C3, and the inspection cost, CI . Let Cb̈,ϑ̈ denote the
amount of money a manufacture needs to pay in order to obtain an accepted burnt-in compo-
nent. In the field operation, the replacement cost is therefore Cr−C2+Cb̈,ϑ̈ . The failure cost is
C f for each burnt-in component. Here, CI , Cr and C f are identical to what have been defined in
the inspection-replacement policy. The objective is to minimize the long-run cost per unit time
by appropriately choosing b̈, ϑ̈ and R̈.

The inspection-replacement policy and the joint policy share some common ground. The
objectives of the inspection at epoch b and the burn-in test with duration b̈ are both to prevent
early in-use failures. However, there are two essential differences between them. Firstly, the
inspection-replacement policy is implemented in the field operation while the burn-in test is
a process by which components are exercised prior to being placed in service. Secondly, the
preventive-replacement time R̈ of the joint policy is identical for all the burnt-in components.
The preventive-replacement time R of the inspection-replacement policy is dynamically deter-
mined, varying among the components. One deficiency of the joint policy is that it only takes
into account the cost criterion yet not the reliability criterion. The inspection-replacement
policy, however, takes into account the cost and reliability simultaneously. The preventive-
replacement time R is determined in a way such that the reliability of the functioning compo-
nent is guaranteed to be larger than the threshold δ .

3 APPLIED TO TWO SPECIFIC PROCESSES
In this section we draw the advanced inspection-replacement policy on two predominant stochas-
tic processes: the gamma process and the Wiener process. The gamma process is the limit of a
shot-noise process with exponential decay, and the wear is non-decreasing. The Wiener process
is an almost surely continuous martingale. The gamma process and the Wiener process can be
visualized in different contexts and have been studied rather extensively; see Balka et al. (2009)
and van Noortwijk (2009) for review.
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3.1 Strategy for Gamma Process
The gamma process is a stochastic process with independent, gamma-distributed increments.
The gamma process is suitable for modelling gradual damage monotonically accumulating over
time in a sequence of tiny increments, such as wear, fatigue, corrosion, etc. Another advantage
of the gamma process is the existence of an explicit probability density function (PDF), which
permits feasible mathematical developments (van Noortwijk, 2009). Maintenance strategies
developed in the literature when the deterioration follows the gamma process can be found in
Castro (2013), Cheng et al. (2012) and Huynh et al. (2012). Let v(t) be a non-decreasing, right-
continuous, real-valued function on [0,+∞), with v(0) = 0. Roughly speaking, a continuous-
time stochastic process {Zt , t ≥ 0} is a gamma process such that, for all 0≤ s < t, the random
increment Zt−Zs is independent of Zs and has a gamma distribution G(v(t)− v(s), β ). v(t)−
v(s) is the shape parameter. β (> 0) is the scale parameter. The marginal density function of
{Zt , t ≥ 0} at time t is

g(z; v(t)) = P(Zt = z) =
β v(t)

Γ(v(t))
zv(t)−1 exp(−β z), z≥ 0.

Here, Γ(a) =
∫

∞

0 za−1 exp(−z)dz is the gamma function for a > 0. The first hitting time of the
process {Zt , t ≥ 0} to the failure threshold l has the cumulative distribution function (CDF):

FGa (t; v(t), l) = P(Zt ≥ l) =
∫

∞

l
P(Zt = z)dz

=
∫

∞

l

β v(t)

Γ(v(t))
zv(t)−1 exp(−β z)dz =

∫
∞

β l

zv(t)−1

Γ(v(t))
exp(−z)dz

=
Γ(v(t), β l)

Γ(v(t))
.

Here, Γ(a,τ) =
∫

∞

τ
za−1 exp(−z)dz is the incomplete gamma function for a > 0 and τ ≥ 0. On

one hand, the PDF of the first hitting time, by using the chain rule for differentiation, is

fGa (t; v(t), l) =
∂

∂ t
FGa(t; v(t), l)

=
v
′
(t)

Γ(v(t))

∫
∞

β l
[log(z)−ψ(v(t))]zv(t)−1 exp(−z)dz.

Here, ψ(a) = Γ
′
(a)/Γ(a) is the digamma function for a > 0. On the other hand, because the

gamma process is monotonically increasing, the PDF of the first hitting time can be re-written
by

fGa (t; v(t), l) = P(Zt = l) = g(l; v(t)) .

Therefore, ∀z > 0, we can conclude that

g(z; v(t)) =
∂

∂ t
FGa(t; v(t), z).

We assume that the deterioration of a component from the normal sub-population fol-
lows the gamma process with marginal distribution G(α1t, β ). The deterioration of a com-
ponent from the weak sub-population follows the gamma process with marginal distribution
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G(α2t, β ). We have α2 > α1 > 0 and β > 0. Hence, the marginal density function of the
degradation process {Xt , t ≥ 0} at time t is

P(Xt = x) = w1g(x; α1t)+w2g(x; α2t), x≥ 0.

Here, w1 and w2 are the respective proportions of the normal and the weak components in
the heterogeneous population, with w1 +w2 = 1. The parameters αi, wi (i = 1,2) and β can
be estimated from degradation data and failure data by using classical parameter-estimation
methods. Given that a component survives beyond the condition-monitoring epoch b with
degradation Xb = x(< l), the probability of the component being normal is

w1,Xb = P(normal|T > b,Xb = x) =
w1g(x; α1b)

w1g(x; α1b)+w2g(x; α2b)
.

The probability of the component being weak is

w2,Xb = P(weak|T > b,Xb = x) =
w2g(x; α2b)

w1g(x; α1b)+w2g(x; α2b)
.

Therefore, for a component having survived beyond the condition-monitoring epoch b with
degradation Xb = x, the remaining useful life of the component has distribution function

P(T ≤ t|T > b,Xb = x) = P(Xt−b ≥ l− x)

= w1,Xb

Γ(α1(t−b), β (l− x))
Γ(α1(t−b))

+w2,Xb

Γ(α2(t−b), β (l− x))
Γ(α2(t−b))

.

The preventive-replacement time R should be scheduled such that P(T ≥ R|T > b,Xb = x) =
δ . Note that the complementary CDF P(T ≥ t|T > b,Xb = x) is a monotonically decreasing
function of t. Therefore, the preventive-replacement time R can be uniquely determined. R has
to be calculated by using numerical methods. The calculation of R is rather straightforward
with today’s computational capacity.

The probability of the occurrence of the event E1 is

p1 = P(0 < T ≤ b) = w1FGa(b; α1b, l)+w2FGa(b; α2b, l).

The probability of the occurrence of the event E3 is

p3 = P(Xb < ϑ , b < T ≤ R)

=
∫

ϑ

0
w1P(XR ≥ l|Xb = x,normal)P(Xb = x|normal)dx

+
∫

ϑ

0
w2P(XR ≥ l|Xb = x,weak)P(Xb = x|weak)dx

= w1

∫
ϑ

0
FGa(R−b; α1(R−b), (l− x))g(x; α1b)dx

+w2

∫
ϑ

0
FGa(R−b; α2(R−b), (l− x))g(x; α2b)dx.
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The expectation E[T I(0 < T ≤ b)] can be formulated to be

E[T I(0 < T ≤ b)] =
∫ b

0
tP(T = t)dt =

∫ b

0
tP(Xt = l)dt

= w1

∫ b

0
tg(l; α1t)dt +w2

∫ b

0
tg(l; α2t)dt

= w1

∫ b

0
tdFGa (t; α1t, l)+w2

∫ b

0
tdFGa (t; α2t, l)

= w1

[
bFGa (b; α1b, l)−

∫ b

0
FGa (t; α1t, l)dt

]
+w2

[
bFGa (b; α2b, l)−

∫ b

0
FGa (t; α2t, l)dt

]
.

The probability of the occurrence of the event E2 is

p2 = P(ϑ ≤ Xb < l)
= w1 [FGa(b; α1b,ϑ)−FGa(b; α1b, l)]

+w2 [FGa(b; α2b,ϑ)−FGa(b; α2b, l)] .

It can be evidenced that

E[T I(0 < T ≤ b)]+bp2 = w1

[
bFGa(b; α1b,ϑ)−

∫ b

0
FGa(t; α1t, l)dt

]
+w2

[
bFGa(b; α2b,ϑ)−

∫ b

0
FGa(t; α2t, l)dt

]
. (1)

The expectation E[T I(Xb < ϑ ,b < T ≤ R)] can be formulated to be

E[T I(Xb < ϑ ,b < T ≤ R)] =
∫

ϑ

0

∫ R

b
tP(T = t|Xb = x)P(Xb = x)dtdx

=
∫

ϑ

0

∫ R

b
tP(Xt−b = l− x)P(Xb = x)dtdx

= w1

∫
ϑ

0

∫ R

b
tg(l− x; α1(t−b))g(x; α1b)dtdx

+w2

∫
ϑ

0

∫ R

b
tg(l− x; α2(t−b))g(x; α2b)dtdx.

Because, for i = 1,2,∫ R

b
tg(l− x; αi(t−b))g(x; αib)dt = g(x; αib)

∫ R

b
tg(l− x; αi(t−b))dt

= g(x; αib)
∫ R

b
tdFGa (t−b; αi(t−b), (l− x)) ,

and ∫ R

b
tdFGa (t−b; αi(t−b), (l− x)) = RFGa (R−b; αi(R−b), (l− x))

−
∫ R

b
FGa (t−b; αi(t−b), (l− x))dt,
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we have

E[T I(Xb < ϑ ,b < T ≤ R)] = w1

∫
ϑ

0
RFGa (R−b; α1(R−b), (l− x))g(x; α1b)dx

−w1

∫
ϑ

0

∫ R

b
FGa (t−b; α1(t−b), (l− x))g(x; α1b)dtdx

+w2

∫
ϑ

0
RFGa (R−b; α2(R−b), (l− x))g(x; α2b)dx

−w2

∫
ϑ

0

∫ R

b
FGa (t−b; α2(t−b), (l− x))g(x; α2b)dtdx.

The expectation E[RI(Xb < ϑ ,T > R)] can be formulated to be

E[RI(Xb < ϑ ,T > R)] = E[RI(Xb < ϑ , XR < l)]

=
∫

ϑ

0
RP(XR−b < l− x)P(Xb = x)dx

= w1

∫
ϑ

0
R[1−FGa(R−b; α1(R−b), (l− x))]g(x; α1b)dx

+w2

∫
ϑ

0
R[1−FGa(R−b; α2(R−b), (l− x))]g(x; α2b)dx.

It can be evidenced that

E[T I(Xb < ϑ ,b < T ≤ R)]+E[RI(Xb < ϑ ,T > R)]

= w1

[∫
ϑ

0
Rg(x; α1b)dx−

∫
ϑ

0

∫ R

b
FGa(t−b; α1(t−b), (l− x))g(x; α1b)dtdx

]
+w2

[∫
ϑ

0
Rg(x; α2b)dx−

∫
ϑ

0

∫ R

b
FGa(t−b; α2(t−b), (l− x))g(x; α2b)dtdx

]
.

(2)

The integrations can be evaluated by using numerical methods. The cost rate function for the
gamma process is readily obtained, substituting pi (i = 1,2,3), Equation (1) and Equation (2)
into c(b, ϑ). The minimal cost rate can be sought numerically.

3.2 Strategy for Wiener Process
The Wiener process {Zt , t ≥ 0} with linear drift is defined by Zt = ηt + σB(t) in which
η(> 0) is the drift parameter, and σ(> 0) is the variance coefficient (Singpurwalla, 1995).
B(t) is the standard Brownian motion. Maintenance strategies developed in the literature when
the deterioration follows the Wiener process can be found in Barker and Newby (2009) and
Guo et al. (2013). The Wiener process has independent and normally distributed increments;
that is, for all 0 ≤ s < t, Zt − Zs is independent of Zs and follows the normal distribution
N
(
η(t− s), σ2(t− s)

)
. Given the failure threshold l, the first hitting time conforms to the

inverse Gaussian distribution with the PDF

fIG(t; µ,λ ) =

(
λ

2πt3

)1/2

exp
(
−λ (t−µ)2

2µ2t

)
,
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and the CDF

FIG(t; µ,λ ) = Φ

(√
λ

t

(
t
µ
−1
))

+ exp
(

2λ

µ

)
Φ

(
−
√

λ

t

(
t
µ
+1
))

.

Here µ = l×η−1, and
√

λ = l×σ−1. Φ(·) is the CDF of the standard normal distribution.
The deterioration of a component from the normal sub-population is assumed to follow the

Wiener process with drift parameter η1(> 0) and variance coefficient σ(> 0). The deterioration
of a component from the weak sub-population is assumed to follow the Wiener process with
drift parameter η2(> η1) and the same variance coefficient σ . Hence, the marginal density
function of the degradation process {Xt , t ≥ 0} at time t is

P(Xt = x) =
1√

2πσ2t

[
w1 exp

(
−(x−η1t)2

2σ2t

)
+w2 exp

(
−(x−η2t)2

2σ2t

)]
=

w1

σ
√

t
φ

(
x−η1t
σ
√

t

)
+

w2

σ
√

t
φ

(
x−η2t
σ
√

t

)
,

in which φ(·) is the PDF of the standard normal distribution. w1 and w2 are the respective
proportions of the normal and the weak components in the heterogeneous population, with
w1 +w2 = 1. The parameters ηi, wi (i = 1,2) and σ can be estimated from degradation data
and failure data by using classical statistical methods. For notational convenience, define three
functions of x: µ1

x = (l−x)×η
−1
1 , µ2

x = (l−x)×η
−1
2 and λx = (l−x)2×σ−2. The first hitting

time of {Xt , t ≥ 0} to the failure threshold l has a mixture distribution:

P(T ≤ t) = w1FIG
(
t; µ

1
0 ,λ0

)
+w2FIG

(
t; µ

2
0 ,λ0

)
.

Note the Wiener process is not monotonically increasing. It is necessary to calculate P(T >
b,Xb = x): the probability of a product surviving beyond time b with the deterioration level at
time b being x(< l). According to Lu (1995), the probability P(T > b,Xb = x) can be calculated
by using the following formula:

P(T > b,Xb = x) =

[
1− exp

(
−2l(l− x)

σ2b

)][
w1

σ
√

b
φ

(
x−η1b
σ
√

b

)
+

w2

σ
√

b
φ

(
x−η2b
σ
√

b

)]
= f (x,b)

[
w1

σ
√

b
φ

(
x−η1b
σ
√

b

)
+

w2

σ
√

b
φ

(
x−η2b
σ
√

b

)]
, (3)

in which

f (x,b) = 1− exp
(
−2l(l− x)

σ2b

)
.

Therefore, for all t > b, we have

P(T > t,Xb = x) = P(T > b,Xb = x)P(T > t|T > b,Xb = x)
= w1P(T > b,Xb = x|normal)P(Tb, x ≥ t−b|normal)

+w2P(T > b,Xb = x|weak)P(Tb, x ≥ t−b|weak)

= w1
f (x,b)
σ
√

b
φ

(
x−η1b
σ
√

b

)[
1−FIG

(
t−b; µ

1
x ,λx

)]
+w2

f (x,b)
σ
√

b
φ

(
x−η2b
σ
√

b

)[
1−FIG

(
t−b; µ

2
x ,λx

)]
.
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Here, Tb, x denotes the first hitting time of the degradation process {Xt−x, t ≥ b} to the thresh-
old (l− x). We have

P(Tb, x ≥ t−b|normal) = 1−FIG
(
t−b; µ

1
x ,λx

)
,

and

P(Tb, x ≥ t−b|weak) = 1−FIG
(
t−b; µ

2
x ,λx

)
.

Given a component having survived beyond the condition-monitoring epoch b with deteriora-
tion Xb = x(< ϑ), the probability of the component being normal is

w1,Xb = P(normal|T > b,Xb = x) =
w1φ

(
x−η1b
σ
√

b

)
w1φ

(
x−η1b
σ
√

b

)
+w2φ

(
x−η2b
σ
√

b

) .
The probability of the component being weak is

w2,Xb = P(weak|T > b,Xb = x) =
w2φ

(
x−η2b
σ
√

b

)
w1φ

(
x−η1b
σ
√

b

)
+w2φ

(
x−η2b
σ
√

b

) .
Therefore, for a component having survived beyond the condition-monitoring epoch b with
degradation Xb = x, the remaining useful life of the component has distribution function

P(T ≤ t|T > b,Xb = x) = w1,XbFIG
(
t−b; µ

1
x ,λx

)
+w2,XbFIG

(
t−b; µ

2
x ,λx

)
.

The preventive-replacement time R can therefore be uniquely determined by solving the equa-
tion P(T ≥ R|T > b,Xb = x) = δ .

The probability of the occurrence of the event E1 is

p1 = P(0 < T ≤ b) = w1FIG
(
b; µ

1
0 ,λ0

)
+w2FIG

(
b; µ

2
0 ,λ0

)
.

The probability of the occurrence of the event E3 is

p3 =
∫

ϑ

−∞

[P(T > b,Xb = x)−P(T > R,Xb = x)]dx

=
∫

ϑ

−∞

P(Tb, x < R−b)P(T > b,Xb = x)dx

=
w1

σ
√

b

∫
ϑ

−∞

f (x,b)FIG
(
R−b; µ

1
x ,λx

)
φ

(
x−η1b
σ
√

b

)
dx

+
w2

σ
√

b

∫
ϑ

−∞

f (x,b)FIG
(
R−b; µ

2
x ,λx

)
φ

(
x−η2b
σ
√

b

)
dx

= w1

∫
Φ

(
ϑ−η1b

σ
√

b

)
0

f (ϕ1(z),b)FIG

(
R−b; µ

1
ϕ1(z),λϕ1(z)

)
dz

+w2

∫
Φ

(
ϑ−η2b

σ
√

b

)
0

f (ϕ2(z),b)FIG

(
R−b; µ

2
ϕ2(z),λϕ2(z)

)
dz.
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The function ϕi(·) (i = 1,2) is defined by

ϕi(z) = σ
√

bΦ
−1(z)+ηib.

Note that, when calculating p3, we convert the problem of integration over an infinite interval
to the problem of integration over a finite interval. If the integral is evaluated numerically, the
conversion can reduce the computational load and improve the integral accuracy dramatically.
The expectation E[T I(0 < T ≤ b)] can be formulated to be

E[T I(0 < T ≤ b)] =
∫ b

0
t
[
w1 fIG(t; µ

1
0 ,λ0)+w2 fIG(t; µ

2
0 ,λ0)

]
dt

=
lw1

η1

[
Φ

(
− l−η1b

σ
√

b

)
− exp

(
2η1l
σ2

)
Φ

(
− l +η1b

σ
√

b

)]
+

lw2

η2

[
Φ

(
− l−η2b

σ
√

b

)
− exp

(
2η2l
σ2

)
Φ

(
− l +η2b

σ
√

b

)]
. (4)

The derivation of E[T I(0 < T ≤ b)] is given in Appendix A. The probability of the occurrence
of the event E2 is

p2 = P(T > b, Xb ≥ ϑ) =
∫ l

ϑ

P(T > b,Xb = x)dx.

The expectation E[T I(Xb < ϑ ,b < T ≤ R)] can be formulated to be

E[T I(Xb < ϑ ,b < T ≤ R)]

=
∫

ϑ

−∞

[
−
∫ R

b
tdP(T > t,Xb = x)

]
dx

=
∫

ϑ

−∞

bP(T > b,Xb = x)dx−
∫

ϑ

−∞

RP(T > R,Xb = x)dx

+
w2

σ
√

b

ϑ∫
−∞

R∫
b

f (x,b)
[
1−FIG

(
t−b; µ

2
x ,λx

)]
φ

(
x−η2b
σ
√

b

)
dtdx

+
w1

σ
√

b

ϑ∫
−∞

R∫
b

f (x,b)
[
1−FIG

(
t−b; µ

1
x ,λx

)]
φ

(
x−η1b
σ
√

b

)
dtdx.

The expectation E[RI(Xb < ϑ ,T > R)] can be formulated to be

E[RI(Xb < ϑ ,T > R)] =
∫

ϑ

−∞

RP(T > R,Xb = x)dx.

It can be evidenced that

bp2 +E[T I(Xb < ϑ ,b < T ≤ R)]+E[RI(Xb < ϑ ,T > R)]

= b
∫ l

−∞

P(T > b,Xb = x)dx

+
w2

σ
√

b

∫
ϑ

−∞

∫ R

b
f (x,b)

[
1−FIG

(
t−b; µ

2
x ,λx

)]
φ

(
x−η2b
σ
√

b

)
dtdx

+
w1

σ
√

b

∫
ϑ

−∞

∫ R

b
f (x,b)

[
1−FIG

(
t−b; µ

1
x ,λx

)]
φ

(
x−η1b
σ
√

b

)
dtdx,
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which can be further simplified into

bp2 +E[T I(Xb < ϑ ,b < T ≤ R)]+E[RI(Xb < ϑ ,T > R)]

= bw1

[
Φ

(
l−η1b
σ
√

b

)
− exp

(
2η1l
σ2

)
Φ

(
− l +η1b

σ
√

b

)]
+bw2

[
Φ

(
l−η2b
σ
√

b

)
− exp

(
2η2l
σ2

)
Φ

(
− l +η2b

σ
√

b

)]
+w1

∫
Φ

(
ϑ−η1b

σ
√

b

)
0

∫ R

b
f (ϕ1(z),b)

[
1−FIG

(
t−b; µ

1
ϕ1(z),λϕ1(z)

)]
dtdz

+w2

∫
Φ

(
ϑ−η2b

σ
√

b

)
0

∫ R

b
f (ϕ2(z),b)

[
1−FIG

(
t−b; µ

2
ϕ2(z),λϕ2(z)

)]
dtdz. (5)

The cost rate function for the Wiener process is readily obtained, substituting pi (i = 1,2,3),
Equation (4) and Equation (5) into c(b, ϑ). The optimal condition-monitoring epoch and
critical threshold can therefore be determined by minimizing the cost rate function.

4 NUMERICAL EXAMPLES

4.1 Application: GaAs Lasers
As a laser device ages, its light output decreases. Increasing a laser device’s operating current
may maintain its light output nearly constant. Therefore, the operating current usually serves
as a performance characteristic for laser devices. A laser device is considered to have failed if
its operating current is too high and crosses a threshold. Figure 3 shows the percent increase
in operating current over time for a sample of fifteen GaAs laser devices (Meeker and Escobar,
1998). The GaAs laser devices were tested at 80 ◦C. After the installation of a new GaAs laser
device, its operating current was measured every 250 hours. The experiment was terminated
after 4000 hours. A GaAs laser device is considered to have failed if the percent increase in
its operating current reaches the failure threshold l=10. That is, if the increase in its operating
current is larger than 10 percent, a device is considered to have failed. It can be observed in
Figure 3 that the operating current increases linearly with time and that four GaAs laser devices
are non-conforming, deteriorating faster than the others. Therefore, the mixture gamma process
and the mixture Wiener process are suitable for modeling the evolving process of the operating
current. Since the operating current was measured every 250 hours, for ease of exposition, in
what follows the unit of time is always set by 250 hours. By fitting the mixture gamma process
and the mixture Wiener process to the GaAs laser data, the maximum likelihood estimates are
given in Table 1. The maximized log-likelihoods, denoted by `, are also given. According to

Table 1: Maximum likelihood estimate with corresponding log-likelihood.

Model Maximum likelihood estimate `

gamma {ŵ2, α̂1, α̂2, β̂}= {0.2646,8.6129,12.9727,19.1764} 97.1152
Wiener {ŵ2, η̂1, η̂2, σ̂}= {0.2155,0.4563,0.7022,0.1727} 73.6541

the maximized log-likelihoods, the mixture gamma process fits the GaAs laser data better than
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Figure 3: Plot of percent increase in operating current for GaAs lasers tested at 80 ◦C.

the mixture Wiener process. Therefore, we might treat the mixture gamma process to be the
underlying stochastic law.

We implement the inspection-replacement policy on the GaAs laser devices to illustrate
the procedure for determining the optimal condition-monitoring epoch and the optimal critical
threshold. The mixture gamma process is assumed to be the underlying stochastic law with
the parameters assuming the values estimated: w2 = 0.2646, α1 = 8.6129, α2 = 12.9727, and
β = 19.1764. The cost configuration of the inspection-replacement policy is given: CI = 1,
Cr = 50, and C f = 500. The reliability threshold, i.e. δ , is assigned with value 0.9, such that
devices will function with 0.1 probability of failure. Some direct-search techniques that do not
require numerical or analytic gradients can be used to minimize the cost rate function. Rep-
resentatives are the pattern search, the genetic algorithm and the Nelder-Mead method. In the
following, we use the MATLAB function ‘fminsearch’ to minimize the cost rate function. We
try various starting points to guarantee that the minimized cost rate is globally optimal. Under
the above parameter setting and cost configuration, the optimal condition-monitoring time is
b∗ = 12.4776. The optimal critical threshold is ϑ ∗ = 6.6727. The corresponding minimized
long-run cost is c∗ = 4.2188 per unit time. The optimal inspection-replacement policy is hence
carried out as follows. After the installation of a GaAs laser device, the operating current of
the device will be measured at time b∗ = 12.4776. If the percent increase in operating current
is larger than the critical threshold ϑ ∗ = 6.6727, the device will be treated like defective and
immediately replaced by a new one. If the percent increase is smaller than the critical thresh-
old, the device will be treated like normal and left untouched. The accepted ‘normal’ device
will be preventively replaced at a specific preventive-replacement time point or upon failure,
whichever occurs first. The preventive-replacement time is the time at which the reliability of
the device drops to 0.9.
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For illustrative purpose, we implement the inspection-replacement policy on other 24 GaAs
laser devices which are randomly sampled (simulated) from the heterogeneous population1. In
Table 2, the devices highlighted in red are from the weak sub-population. The percent increase

Table 2: Implement the inspection-replacement policy on other 24 devices.

device 1 2 3 4 5 6 7 8
Xb∗ 4.5650 5.9240 5.0045 5.7226 6.1297 6.6211 5.6950 5.2053
R 23.1307 20.3083 22.2150 20.7248 19.8822 18.7485 20.7819 21.7975

device 9 10 11 12 13 14 15 16
Xb∗ 5.8063 8.6244 6.0386 8.5035 5.8126 6.0069 5.2671 5.4225
R 20.5517 NA 20.0711 NA 20.5386 20.1368 21.6689 21.3466

device 17 18 19 20 21 22 23 24
Xb∗ 8.8244 5.4806 5.4592 5.8277 5.7365 8.4850 5.2647 7.3163
R NA 21.2259 21.2704 20.5074 20.6961 NA 21.6739 NA

in operating current is recorded upon the optimal condition-monitoring time (see Xb∗ in Table
2). If the percent increase is larger than the optimal critical threshold, the device is immediately
replaced by a new one (e.g., devices 10, 12, 17, 22, 24). If the percent increase is smaller than
the critical threshold, a specific preventive-replacement time is scheduled for the device (see R
in Table 2). It can be seen in Table 2 that all the weak devices have been identified, showing
the capability of the inspection-replacement policy in dealing with heterogeneous populations.

As a comparison, we implement the joint policy on the GaAs laser devices. The derivation
of the cost rate function of the joint policy, when the deterioration follows the gamma process, is
given in Appendix B. The unit-time burn-in cost is C1 = 20. The per-component manufacturing
cost is C2 = 30. The per-component fixed burn-in cost is C3 = 20. By using the ‘fminsearch’
function, the optimal burn-in duration is b̈∗ = 2.9735× 10−2. The optimal cut-off level is
ϑ̈ ∗ = 0.4038. The optimal preventive-replacement time is R̈∗ = 12.6024. The corresponding
minimized long-run cost is c̈∗ = 5.8827 per unit time, which is larger than c∗. The larger c̈∗

evinces the feasibility and competence of the inspection-replacement policy. The optimal joint
policy is hence carried out as follows. Put all the GaAs laser devices in a burn-in test with
burn-in duration b̈∗. After the burn-in test, devices with percent increase in operating current
larger than the cut-off level ϑ̈ ∗ are discarded. Devices with percent increase smaller than the
cut-off level are put into field operation. The accepted burnt-in devices will be preventively
replaced at the preventive-replacement time point R̈∗ or upon failure, whichever occurs first.

Note that the optimal burn-in duration b̈∗ is much smaller than the optimal condition-
monitoring time b∗. The phenomenon indicates a fundamental difference between the inspection-
replacement policy and the joint policy: The inspection-replacement policy is advanced with
the intention to take full advantage of weak components. Although the optimal preventive-
replacement time R̈∗ is close to the optimal condition-monitoring time b∗, it is much smaller
than the preventive-replacement time R (see Table 2). Therefore, we say that the inspection-
replacement policy is able to yield much more income than the joint policy, by making the most
of both weak components and normal components.

1Generate a random number from the binomial distribution with the number of trials being 1 and the probability
of success being 0.7354. If the generated number is 1, we simulate Xb∗ from the normal sub-population. Otherwise,
if the generated number is 0, we simulate Xb∗ from the weak sub-population. Repeat the procedure for 24 times.
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4.2 Simulation Study
Having illustrated the procedure for determining the optimal condition-monitoring epoch and
the optimal critical threshold, this section performs sensitivity analysis and contradistinctive
analysis. Sensitivity analysis is performed to gain some insights into the impact of the weak
proportion, w2, on the optimal condition-monitoring epoch and the optimal critical threshold.
Contradistinctive analysis is performed to indicate the conditions under which the inspection-
replacement policy is more cost-efficient than the joint policy.

4.2.1 Gamma Process

The parameter setting and cost configuration are identical to what have been given in Section
4.1: α1 = 8.6129, α2 = 12.9727, β = 19.1764, l = 10, δ = 0.9, C1 = 20, C2 = 30, C3 = 20,
CI = 1, Cr = 50, and C f = 500. The degradation paths of twenty components, randomly drawn
from a heterogeneous population (with w2 = 0.05), are depicted in Figure 4. It is observed that,
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Figure 4: Gamma degradation paths with 20 entities.

in the drawn sample, two components are non-conforming, deteriorating faster than the others.
We gradually increase the weak proportion w2 from 0.02 to 0.28 with step size 0.02. For each
value of w2, we seek for the minimal long-run cost per unit time of each policy. The optimal
results of the inspection-replacement policy are summarized in Table 3. The optimal results of
the joint policy are summarized in Table 4. In Table 3, the optimal condition-monitoring epoch
is denoted by b∗. The optimal critical threshold is denoted by ϑ ∗. The minimized long-run cost
per unit time is denoted by c∗. In Table 4, the optimal burn-in duration is denoted by b̈∗. The
optimal cut-off level is denoted by ϑ̈ ∗. The optimal preventive-replacement time is denoted by
R̈∗. The minimized long-run cost per unit time is denoted by c̈∗.
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Table 3: Optimal inspection-replacement policy for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b∗ 14.0990 13.5867 13.2754 13.0896 12.9590 12.8591 12.7787
ϑ ∗ 5.5844 5.6713 5.7900 6.3023 6.4911 6.4962 6.5264
c∗ 3.4736 3.9350 4.0045 4.0499 4.0836 4.1102 4.1322
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28
b∗ 12.7117 12.6544 12.6045 12.5605 12.5210 12.4853 12.4528
ϑ ∗ 6.5380 6.6036 6.6486 6.6541 6.6602 6.6671 6.6842
c∗ 4.1509 4.1672 4.1815 4.1943 4.2059 4.2165 4.2262

Table 4: Optimal joint policy for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b̈∗(×10−2) 3.3790 3.1052 3.0898 3.0774 3.0664 3.0583 3.0434

ϑ̈ ∗ 0.3913 0.3933 0.3944 0.3952 0.3964 0.3972 0.3980
R̈∗ 14.2382 13.8991 13.4985 13.2799 13.13045 13.0641 12.9050
c̈∗ 4.6303 5.4555 5.5648 5.6340 5.6845 5.71 7.75
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28

b̈∗(×10−2) 3.0352 3.0220 3.0115 2.9920 2.9858 2.9779 2.9683
ϑ̈ ∗ 0.3992 0.3994 0.4010 0.4017 0.4025 0.4032 0.4045
R̈∗ 12.8561 12.7935 12.7392 12.7029 12.6663 12.6106 12.5823
c̈∗ 5.7840 5.8078 5.8287 5.8401 5.8593 5.8794 5.8896

It is observed in Table 3 that, with the weak proportion increasing, the optimal condition-
monitoring epoch decreases, the optimal critical threshold increases, and the minimized cost
rate increases. There would be more unexpected failures if the weak proportion increases, re-
sulting in a higher expected cost. By bringing forward the inspection, we are able to prevent
before-the-inspection failures. Therefore, a larger weak proportion results in a smaller optimal
condition-monitoring epoch and a larger optimal cost rate. It is interesting to observe that an
increasing weak proportion results in an increasing optimal critical threshold. One reasonable
explanation is that the optimal critical threshold depends on the expected degradation at the
condition-monitoring epoch. Because a weak component degrades faster than a normal com-
ponent, the expected degradation at the same time point shall increase if the weak proportion
increases. Therefore, a larger weak proportion results in a larger optimal critical threshold.

It is observed in Table 4 that, with the weak proportion increasing, the optimal burn-in du-
ration decreases, the optimal cut-off level increases, the optimal preventive-replacement time
decreases, and the optimal cost rate increases. The results in Table 4 are similar to the results
in Table 3. Decreasing optimal burn-in duration corresponds to decreasing optimal condition-
monitoring epoch; increasing optimal cut-off level corresponds to increasing optimal critical
threshold. With the weak proportion increasing, the weak components in the burnt-in popula-
tion are expected to increase. Hence, the optimal preventive-replacement time is shortened to
prevent costly in-use failures. As might have been expected, for each value of w2, the optimal
condition-monitoring epoch b∗ is close to the optimal preventive-replacement time R̈∗, but is
much larger than the optimal burn-in duration b̈∗. By comparing c∗ and c̈∗, it is obvious that
the inspection-replacement policy outperforms the joint policy, showing that the inspection-
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replacement policy is more cost-efficient.
One may argue that the reason for larger c̈∗ is that the joint policy includes two additional

costs: the unit-time burn-in cost and the fixed burn-in cost. To reassure the sceptics, we set
the unit-time burn-in cost and the fixed burn-in cost to be zero; that is C1 = 0 and C3 = 0.
Under the circumstances, the inspection-replacement policy and the joint policy consume the
same amount of money. With all the other costs and parameter values remain the same, we re-
minimize the cost rate function of the joint policy. The results are summarized in Table 5. With

Table 5: Optimal joint policy (with no burn-in costs) for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b̈∗(×10−2) 4.0857 3.8123 3.7796 3.7639 3.7540 3.7433 3.7304

ϑ̈ ∗ 0.4803 0.4809 0.4814 0.4815 0.4817 0.4830 0.4833
R̈∗ 14.0559 13.5494 13.2305 13.0520 12.9219 12.7288 12.6857
c̈∗ 3.4835 3.9477 4.0184 4.0633 4.0972 4.1559 4.1654
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28

b̈∗(×10−2) 3.7209 3.7171 3.7041 3.6828 3.6771 3.6644 3.6515
ϑ̈ ∗ 0.4852 0.4869 0.4876 0.4884 0.4978 0.5010 0.5153
R̈∗ 12.6668 12.6131 12.5527 12.4871 12.4168 12.3492 12.2972
c̈∗ 4.1767 4.1939 4.2090 4.2118 4.2201 4.2307 4.2404

the weak proportion increasing, the evolving trend of the optimal burn-in duration in Table 5 is
identical to that in Table 4. So are the optimal cut-off level, the optimal preventive-replacement
time and the minimized cost rate. For each value of w2, the minimized cost rate in Table 5
is still larger than the minimized cost rate in Table 3. Table 5 shows that even if the burn-in
test does not introduce any cost, the inspection-replacement policy is still superior to the joint
policy. The reason for its superiority is that the inspection in the inspection-replacement policy
and the burn-in test in the joint policy contribute equally: weeding out weak components. How-
ever, the preventive-replacement time R is dynamically determined, depending on the physical
degradation at time b obtained by the inspection. In other words, the inspection-replacement
policy takes full advantage of the information obtained by the inspection. By contrast, the
preventive-replacement time R̈ is identical for all the burnt-in components. Although the phys-
ical degradation of each component is measured after the burn-in, it is not used for making
maintenance decision. Indeed, R̈ is determined by only using the information on the original
heterogeneous population. Therefore, the inspection-replacement policy dominates the joint
policy.

4.2.2 Wiener Process

To show the wide applicability of the inspection-replacement policy, we apply it to the Wiener
process. The following heterogeneous population will be investigated: η1 = 0.4563, η2 =
0.7022, and σ = 0.1727. The parameters are indeed assigned with the values estimated from
the GaAs laser data. To be consistent, all the costs are identical to what have been given in
Section 4.1: CI = 1, Cr = 50, C f = 500, C1 = 20, C2 = 30 and C3 = 20. The failure threshold
and reliability threshold are, respectively, l = 10 and δ = 0.9. The degradation paths of twenty
components, randomly drawn from a heterogeneous population (with w2 = 0.05), are depicted
in Figure 5. It is observed that one component is non-conforming, deteriorating faster than the
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Figure 5: Wiener degradation paths with 20 entities.

others. We gradually increase the weak proportion w2 from 0.02 to 0.28 with step size 0.02.
For each value of w2, we seek for the minimal long-run cost per unit time of each policy. The
derivation of the cost rate function of the joint policy, when the deterioration follows the Wiener
process, is given in Appendix C. The optimal results of the inspection-replacement policy are
summarized in Table 6. The optimal results of the joint policy are summarized in Table 7.

Table 6: Optimal inspection-replacement policy for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b∗ 13.7483 13.0596 12.8198 12.6757 12.5743 12.4965 12.4333
ϑ ∗ 5.5933 5.6293 5.7501 6.0196 6.1522 6.6139 6.8841
c∗ 3.9325 4.0543 4.1113 4.1483 4.1756 4.1970 4.2142
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28
b∗ 12.3800 12.3341 12.2937 12.2577 12.2254 12.1960 12.1693
ϑ ∗ 7.1377 7.3107 7.3674 7.4329 7.4731 7.5427 7.6043
c∗ 4.2284 4.2403 4.2505 4.2593 4.2669 4.2737 4.2798

It is observed that the results in Table 6 (Table 7) are in accordance with the results in Table
3 (Table 4). For the inspection-replacement policy, with the weak proportion increasing, the
optimal condition-monitoring epoch decreases, the optimal critical threshold increases, and the
minimized cost rate increases. For the joint policy, with the weak proportion increasing, the
optimal burn-in duration decreases, the optimal cut-off level increases, the optimal preventive-
replacement time decreases, and the optimal cost rate increases. The homology with the gamma
process demonstrates the robustness of the inspection-replacement policy. As is obvious, when
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Table 7: Optimal joint policy for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b̈∗(×10−2) 5.3190 5.2284 5.1536 5.0352 4.8790 4.7794 4.6915

ϑ̈ ∗ 0.5685 0.5748 0.5793 0.5834 0.5858 0.5893 0.5961
R̈∗ 13.2683 13.1030 13.0090 12.8419 12.7263 12.6395 12.5704
c̈∗ 4.7206 5.3048 5.6602 5.7161 5.7567 5.7885 5.8145
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28

b̈∗(×10−2) 4.6104 4.5126 4.4427 4.3820 4.3093 4.2354 4.1497
ϑ̈ ∗ 0.6006 0.6057 0.6121 0.6252 0.6333 0.6358 0.6400
R̈∗ 12.5132 12.4649 12.4229 12.3859 12.3529 12.3233 12.2962
c̈∗ 5.8365 5.8554 5.8721 5.8869 5.9003 5.9125 5.9236

the deterioration follows the Wiener process, the inspection-replacement policy still outper-
forms the joint policy. To make the contradistinctive analysis sounder, we study the scenario
in which the unit-time burn-in cost and the fixed burn-in cost are zero. The optimal results are
given in Table 8. By comparing c̈∗ in Table 8 with c∗ in Table 6, the inspection-replacement

Table 8: Optimal joint policy (with no burn-in costs) for each value of w2.

w2 0.02 0.04 0.06 0.08 0.10 0.12 0.14
b̈∗(×10−2) 5.3369 5.2603 5.1835 5.0503 4.9765 4.8850 4.8079

ϑ̈ ∗ 0.5813 0.5875 0.5914 0.5968 0.6044 0.6082 0.6095
R̈∗ 13.2503 13.0582 12.8189 12.6746 12.5731 12.4959 12.4335
c̈∗ 3.9497 4.0676 4.1245 4.1616 4.1878 4.2103 4.2280
w2 0.16 0.18 0.20 0.22 0.24 0.26 0.28

b̈∗(×10−2) 4.7143 4.6573 4.5834 4.4825 4.3990 4.3286 4.2435
ϑ̈ ∗ 0.6155 0.6191 0.6243 0.6316 0.6370 0.6421 0.6497
R̈∗ 12.3813 12.3373 12.2988 12.2646 12.2341 12.2066 12.1816
c̈∗ 4.2429 4.2559 4.2673 4.2765 4.2867 4.2950 4.3027

policy is undoubtedly superior to the joint policy. The contradistinctive analysis verifies the
feasibility and efficiency of the inspection-replacement policy.

In real-life practice, engineers can make decisions based on the operating income as well
as the burn-in costs. It should be noted that, with the weak proportion decreasing, the opti-
mal critical threshold does not necessarily increase. Neither does the optimal burn-in duration.
The relation between the optimal critical threshold (optimal burn-in duration) and the weak
proportion is also controlled by other factors, e.g., the cost configuration. In real-life practice,
the joint policy is suitable for immature products, whereas the inspection-replacement policy
is suitable for both immature products and mature products. For immature products, the pro-
portion of defective components is large. The burn-in procedure can be used to weed out most
of the defective components. However, as a product’s design, manufacturing, and testing pro-
cesses mature, weak proportion in future generations of such product will decrease over time.
When the proportion of defective components is small, the burn-in procedure is no longer cost-
efficient. Because the inspection-replacement policy is also capable of weeding out defective
components, it is suitable for both immature products and mature products.
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5 CONCLUSIONS
This study recommended an inspection-replacement policy for heterogeneous populations. The
inspection-replacement policy possesses three main advantages. First, the inspection-replacement
policy saves the burn-in costs. Second, the inspection-replacement policy makes full use of
weak components. Third, the inspection-replacement policy takes into account the reliability
criterion. Both sensitivity analysis and contradistinctive analysis were performed to demon-
strate the feasibility and efficiency of the inspection-replacement policy. By comparing the
minimized cost rates, it was shown that the inspection-replacement policy outperforms the
joint policy. In real-life practice, the joint policy is suitable for the launch of a newly devel-
oped product, whereas the inspection-replacement policy is cost-efficient for both immature
and mature products.

Future research can be done in many directions:

• The reliability threshold, δ , can be included into the decision variables. The impact of
the reliability threshold on the optimal maintenance can be investigated.

• In real-life practice, failures may not be easily identified. A component can be declared as
‘failed’ as soon as a defect or an important deterioration is presented even if the compo-
nent is still functioning. The study of the case in which the failure is non-self-announcing
is of great interest. Moreover, future research can be continued by considering random
failure threshold, since in practice the failure threshold may not be deterministic.

• The gamma process is an increasing stochastic process while the Wiener process is non-
monotone. When assuming the Wiener process to be the underlying degradation process,
one might use the last exit time from a critical threshold rather than the first hitting time
to a failure threshold. The last exit time can be employed in future study to determine
maintenance actions.

6 APPENDIX

A Deriving the expectation E[T I(0 < T ≤ b)]

By definition, we have

E[T I(0 < T ≤ b)] =
∫ b

0

l
σ
√

2πt
exp
(
−(ηt− l)2

2σ2t

)
dt

=
∫ √

ηb

0

2l
σ
√

2πη
exp
(
−(z− l/z)2

2σ2/η

)
dz,
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in which z is defined by z =
√

ηt. We might denote z− l/z by v: v = z− l/z. Because z > 0,
we have z = v/2+

√
l + v2/4 and

2l
σ
√

2πη

∫ √
ηb

0
exp
(
−(z− l/z)2

2σ2/η

)
dz
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√
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∫ √
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)
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On one hand, we have

l
σ
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−∞
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On the other hand, we have
√
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√
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Hence, we obtain

E[T I(0 < T ≤ b)] =
l
η

Φ

(
− l−bη

σ
√

b

)
− l

η
exp
(

2lη
σ2

)
Φ

(
− l +bη

σ
√

b

)
.

B Joint policy for the gamma process
In the gamma case, the expected cost to obtain an accepted (i.e., Xb̈ < ϑ̈ ) burnt-in component
is

Cb̈,ϑ̈ =
C1b̈+C2 +C3 +CI

w1
∫

ϑ̈

0 g
(
x; α1b̈

)
dx+w2

∫
ϑ̈

0 g
(
x; α2b̈

)
dx

.

For an accepted burnt-in component, the probability that it belongs to the normal sub-population
is

w
′
1 =

w1
∫

ϑ̈

0 g
(
x; α1b̈

)
dx

w1
∫

ϑ̈

0 g
(
x; α1b̈

)
dx+w2

∫
ϑ̈

0 g
(
x; α2b̈

)
dx

.

The probability that it belongs to the weak sub-population is

w
′
2 =

w2
∫

ϑ̈

0 g
(
x; α2b̈

)
dx

w1
∫

ϑ̈

0 g
(
x; α1b̈

)
dx+w2

∫
ϑ̈

0 g
(
x; α2b̈

)
dx

.

The expected total cost incurred in a replacement cycle is

E[C] =Cr−C2 +Cb̈,ϑ̈ + C f w
′
1

∫
ϑ̈

0
FGa(R̈; α1R̈, l− x)g

(
x; α1b̈

)
dx

+ C f w
′
2

∫
ϑ̈

0
FGa(R̈; α2R̈, l− x)g

(
x; α2b̈

)
dx.

The expected length of a replacement cycle is

E[V ] = w
′
1

∫ R̈

0

∫
ϑ̈

0
[1−FGa(t; α1t, l− x)]g

(
x; α1b̈

)
dxdt

+w
′
2

∫ R̈

0

∫
ϑ̈

0
[1−FGa(t; α2t, l− x)]g

(
x; α2b̈

)
dxdt.

The cost rate function for the joint policy is simply

c(b̈, ϑ̈ , R̈) =
E[C]

E[V ]
.

C Joint policy for the Wiener process
In the Wiener case, the expected cost to obtain an accepted (i.e., T > b̈ and Xb̈ < ϑ̈ ) burnt-in
component is

Cb̈,ϑ̈ =
C1b̈+C2 +C3 +CI

P(T > b̈, Xb̈ < ϑ̈)
,
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in which we have
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For an accepted burnt-in component, the probability that it belongs to the normal sub-population
is

w
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The probability that it belongs to the weak sub-population is
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For ease of exposition, define a function on t > 0:
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The expected total cost incurred in a replacement cycle is

E[C] =Cr−C2 +Cb̈,ϑ̈ +C f
[
1−P(T > b̈+ R̈|T > b̈, Xb̈ < ϑ̈)

]
.

It can be evidenced that

P(T > b̈+ R̈|T > b̈, Xb̈ < ϑ̈) = Q
(
R̈
)
.

The expected length of a replacement cycle is

E[V ] =
∫ R̈

0
P(T > b̈+ t|T > b̈, Xb̈ < ϑ̈)dt =

∫ R̈

0
Q(t)dt.
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