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One of the highest priorities in the French health care system is to deal with the continuous growth of the
percentage population older than 65 years, expected to reach 31% in 2030. This development poses enor-
mous challenges to the operations of the health care system, especially, related to elder patients. The
elderly flow in the hospital services is typically uncertain and subject to variations on the length of stay
in each stage and on the path or sequence of stages followed by the patient. For that reason, we propose
to model the patient flow in a hospital as a continuous-time Markov chain with an absorbing state rep-
resenting the elderly discharge from the hospital. Three Markov chains are provided with different levels
of details and computation complexity. The first model called aggregated provides a prediction of the
length of stay per service, the second model called Coxian provides a reliable prediction of the total length
of stay, and the third model called detailed provides a prediction of the length of stay per class of elderly.
A classification of elderly based on multiple correspondence technique is considered before the applica-
tion of the third model. Our models are fitted with the data collected from Roanne Hospital, a typical
French health care structure.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction health authority has decided to conduct an exploration project
In France, it is expected that the rate of ageing, the percentage
of the population older than 65 years, will increase from 21% in
2011 to 31% in 2030 and the number of dependent elderly in
2040 will exceed 1.2 million (European Commission, 2015). Facing
with this continuous growth of the elderly population and their life
expectancy increase, the efficiency improvement of the health care
system operations becomes a social and an economic necessity for
the French health institutions.

The empirical part of this paper considers the city Roanne
located in the Rhône-Alpes region in La Loire department in France.
The rate of elderly older than 75 years in Raonne is around 12% of
the city population. This is higher than the departmental rate of La
Loire, around 11%, the regional rate of Rhone Alpes, around 8%, and
the national rate in France, around 9%. For this reason, the French
specifically designated for the Hospital Center of Roanne. In this
paper, we contribute to the research question on the statistical
analysis of elderly flow inside the Hospital Center based on realis-
tic accurate models. This study is as a preliminary step to provide
several decision support tools on the capacity and operational
planning of the required resources in the hospital.

The modeling of the elderly pathway in health care institutions
has been so far investigated in several papers in the literature. In
Irvine, McClean, and Millard (1994), a two-state Markov model is
proposed to capture the movement of patients through geriatric
hospitals in which the first state is devoted to acute/rehabilitative
patients and the second is for long-stay patients. A Coxian distribu-
tion incorporating a Bayesian belief network to integrate the
patient data is developed in Marshall and McClean (2003, 2004).
In Faddy and McClean (2005) the Coxian distribution is fitted to
the data, using the maximum likelihood method, on the time spent
by a geriatric patient in the hospital. This is done with a Coxian-
type model with multiple absorbing states representing discharge
to home, discharge to private nursing home, and the patient death.
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This model is applied to a real data set of stroke patients from the
Belfast City Hospital (McClean, Garg, Barton, & Fullerton, 2010). In
Spector, Mutter, Owens, and Limcango (2012), a model is proposed
with two categories of care; home care and institutional care. The
patients admitted to long-term care are more likely to be rejected
or die, especially for people aged 75 years and older. A continuous-
time Markov chain to model the length of stay of elderly people
moving within and between residential home and nursing home
is proposed in Xie, Chaussalet, and Millard (2005). In Xie,
Chaussalet, and Millard (2006), a model-based approach is pro-
posed to extract from a routinely health care dataset the high-
level length-of-stay patterns of residents in long-term care. The
modeling of the patient flow in the health care systems using a
closed queuing network is given (Chaussalet, Xie, & Millard,
2006), and a semi-open queuing network in Xie, Chaussalet, and
Rees (2007). The application of these models to a geriatric depart-
ment in the UK shows their usefulness in helping the managers in
gaining a better understanding of the patients flow within the
department. To the best of our knowledge, no equivalent study
has been so far considered within the French context.

In this paper, we provide three models to understand the
dynamics of elderly pathways admitted in a French healthcare
organization, namely the Roanne Hospital. These models are pro-
vided with different levels of details and computation complexity.
The first model called Coxian provides a reliable prediction of the
total length of stay, the second model called aggregated provides
a prediction of the length of stay per service, and the third model
called detailed provides a prediction of the length of stay per class
of elderly. We collect data from the Roanne Hospital to fit these
models. We use the data on the length of stays to calculate the stay
length distribution per service and the patients’ pathway to calcu-
late the transition rates. The other qualitative collected data such
as patients’ frailty, pathologies, and lifestyles are used to first clas-
sify and then calculate the length of stay per type of elderly (Avila-
Funes et al., 2008; D’Avignon & Mareschal, 1989; Loones, David-
Alberola, & Jauneau, 2008).

This paper is organized as follows. Section 2 contains an over-
view of the French healthcare system and a description of the data-
set collected from the Roanne Hospital center. Section 3 contains
three models for the elderly pathway in hospital, namely; the
aggregated model, the Coxian type model, and the detailed model.
Note, for the latter model a classification technique of patients type
is needed. In Section 4, we apply the models to Roanne Hospital
center and discuss the results. In Section 5, we give possible appli-
cations of our models. We conclude that paper in Section 6 and
give a future research direction.

2. French healthcare system for elderly people

The French healthcare system of elderly people consists of sev-
eral institutions. On one hand, we have the extra-hospital institu-
tions like the residential home, the nursing home, and the home
support services with home and nursing service. On the other
hand, we have the intra-hospital institutions with short, medium,
and long stay. These (intra) institutions are organized as follows:

– The short stay supports the patients coming most of the time
from emergency services. It comprises three services: SAU1 for
hosting and emergencies, UHCD2 for short term hospitalization
unit, and MCO3 for medical obstetric surgery. The SAU and UHCD
are the two services of the Emergency department (ED).
1 SAU: abbreviation of the French expression ‘‘Service d’Accueil des Urgences”.
2 UHCD: abbreviation of the French expression ‘‘Unité d’Hospitalisation de Courte

Durée”.
3 MCO: abbreviation of the French expression ‘‘Médecine Chirurgie Obstétrique”.
– The medium stay, referred to as SSR,4 provides rehabilitation and
reintegration.

– The long stay USLD5 provides accommodation and care for
elderly requiring constant medical supervision. This service can
be outside hospital, which is the case for the Roanne Hospital
Center.

In this study, we focus particularly on short and medium stay
institutions within the Roanne Hospital Center. At the short stay,
the elder patient is usually admitted at the SAU for consultation
by an emergency doctor then, according to the elderly case, the
patient is transferred to the short-term hospitalization unit UHCD
to be under supervision and to ensure the recovery. If the elder
patient requires additional care, she/he is transferred to medical
surgery and obstetrics MCO unit. In the medium stay SSR unit,
the patient is rehabilitated and reintegrated together with similar
patients. The long stay offers housing and care for elderly who
are independent in their daily life but requires a medical supervi-
sion. Typically, the majority of patients passes through SAU and
receives a short-term and/or medium term hospitalization. In our
case study, we focus on this stream of elderly as the project inter-
est lies in the challenging pathway of patients admitted at the SAU.

For the data acquisition and in consultation with a team of
gerontologists and clinical research doctors a form is jointly cre-
ated. This form is used by various medical actors that follow the
elderly from their admission in the SAU until their discharge from
the hospital. The collected data are digitized and analyzed to get
realistic figures representing the current situation in Roanne
Hospital center. Note, based on the collected data we know which
services have been visited by the patient and how much time is
spent in each of them. The form is consistent and includes informa-
tion on the elderly characteristics such as age, sex, area of origin,
type of residence, and medical record home aids, reported comor-
bidities, admission requirements, hospitalization motives, and fra-
gility. We also know the patient coming from the nursing home on
the elder faller and elder with cognitive troubles. We were able to
collect data of 241 elderly over 74 years following the intra-
hospitalization process in the periods between February 23 and
March 1, and March 30 and 5 April 2015. This category of patients
represents 70% of all admissions in Roanne Hospital center arriving
to the SAU in these periods. Among these patients, 45.2% are over
84 years old, 53.5% are females. These patients come from different
geographic departments: 80.9% from La Loire, 10.8% from the
Rhône, 7.8% from Rhône et Loire. Around 79% come from their pri-
vate home, 15.5% from nursing home, and 5.8% from residential
home. A percentage of 39% are living alone at home and the family
environment is present in 85.9% of the cases. Several stochastic
models are provided in the next section. The collected data is used
to fit these models.
3. Modeling the pathway of elderly persons in hospital with
phase type distribution

The time spent by an elderly in a service department in the hos-
pital is typically uncertain and subject to variations. In fact, inside
each service the patient can go through different phases (care’s
stages) depending on his medical case. The patient movement
(transition) from a phase to another is random and varies from a
patient to another. As a result, the process that keeps track of the
location of an elder patient at a certain time is a stochastic process.
Due to the limited number of phases in each service in a hospital
the state space of this process is finite. In addition, after certain
4 SSR: abbreviation of the French expression ‘‘Soins de Suite et de Réadaptation”.
5 USLD: abbreviation of the French expression ‘‘Unité de Soins Longue Durées”.
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time the patient is discharged from the hospital. There are several
reasons for patient discharge. In the case of Roanne Hospital Cen-
ter, the reasons are patient death, need of medical supervision in
USLD, release to the nursing home, residential home, home with
support, or his home without support. The event of a patient dis-
charge can be modelled as the transition to an absorbing (dis-
charge) state. Therefore, the location of a patient in a hospital is
an absorbing stochastic process.

In the literature, one class of the widely used stochastic pro-
cesses is the Markov process. The key property of a Markov process
is the so-called Markov property. According to this property, the
probability of transition to a specific state depends on the current
state of the process and, otherwise, is independent of the transi-
tions history. This motivates us to assume that the location of a
patient in a hospital is an absorbing Markov process that is contin-
uous in time. In the following, we consider and analyze three
absorbing Markov chains to represent patient length of stay: (1)
Coxian model with no differentiation between the type of patients
in which only the total length of stay in the hospital is modelled,
(2) aggregated absorbing Markov model with no differentiation
between the type of patients in the different services with each
modelled as a set of phases, (3) a detailed absorbing Markov chain
with patient differentiation depending on its type.

3.1. Coxian-type Markov chain model

A Coxian-type Markov chain is a special case of phase-type Mar-
kov chain. Namely, one-step transitions are only possible from
state i to i + 1 or to absorbing (discharge) phase. It is well used in
literature and provides a good prediction of the length of stay
(LOS) (Marshall & McClean, 2004).

Let {XðtÞ : t P 0g denote the continuous-time Markov chain
model, with a finite state space {phase 1, phase 2,. . ., phase n,
phase m}, phase m represents the absorbing state of discharge.
Note, in this model we do not link the phases to the services.
Therefore, it is only possible to give the estimate of the total length
of stay in the hospital. In Fig. 1, we give the transition diagram of
the Coxian-type Markov chain. Let bij denote the transition rate
between phase i and phase j, (i– j).

An elderly spends an exponentially distributed length of time in
phase i with parameters, li, i ¼ 1;2; . . . ;n, and once this time
elapses she moves to the next phase or she leaves the system.
The transition rate from phase i to phase i + 1 is
biiþ1; i ¼ 1; . . . ;n� 1, and the discharge rate is bim; i ¼ 1; . . . ;n. Let
T the random variable of the time to reach the discharge state m.
The distribution of T is a Coxian distribution, denoted as PH
(p;DÞ, whereD is the sub-matrix of transition rates restricted to
the transient phases matrix of dimension n, and d the column vec-
tor of transition rates from the transient phases to the discharge
Fig. 1. Coxian Markov chain model for the int
state. The number of parameters in a Coxian distribution is equal
to 2n � 1. The corresponding density functions, t > 0,
fðtÞ ¼ p expðDtÞd; where p is a vector of probabilities defining in
which phase the chain starts. In this model, we consider that all
the patients start in phase 1, i.e., p ¼ ð1;0; . . . ;0Þ. The statistical
approach that we use to estimate the parameters of the Coxian
model is based on the maximum-likelihood estimator and the
Expectation-Maximization Algorithm (EMA). For more details we
refer to Section 3.2.

3.2. Aggregated Markov chain model

In this section, we consider an aggregated absorbing Markov
chain model for the movement of elderly patient within and
between the hospital’s services. Generally, in France the hospitals
centers are composed of the ED (SAU, UHCD), MCO, and SSR. The
elderly patient starts at the ED, she spends a period of time after
that she can move to another service for more intensive care for
example to either MCO, SSR, or discharge from hospital. Being in
MCO and SSR there is also a chance that the patient is discharged
from the hospital. Note, the length of stay per service is modelled
as a set of phases. Let XðtÞ represents the location of a patient at
time t, i.e., in which phase the patient is currently present. Eventu-
ally, every patient will be discharged after a certain time. There-
fore, the process fXðtÞ : t P 0g is a continuous-time absorbing
Markov process. The transient state space is finite and is repre-
sented as follows fphase1; phase2; . . . ; phase vg. Let aij denote the
instantaneous transition rate between phase i and j, such thatP

jaij ¼ 0. In our model (Fig. 2), we group the phases into clusters
representing the hospital services. Therefore, the length of stay dis-
tribution per service consists of multiple phases. For ease of nota-
tion, we use E, M, and S, and D, to refer to ED, MCO, SSR, and
Discharge, respectively. Given the structure of the AMC, the Gener-
ator matrix Q of the model can be given as

Q ¼

QEE QEM 0 QED

0 QMM QMS QMD

0 0 QSS QSD

0 0 0 0

2
6664

3
7775;

where Qab is the submatrix of the transition rates between the
phases of clusters a and b 2 fE;M; S;Dg. Note Qaa represents the
transitions between the phases of cluster a. The length of stays in
a is denoted by ta.

The probability densities of the length of stay in cluster a (ser-
vice a) and in cluster a before jumping to cluster b are given by

f aðtÞ ¼ �pa expðQaataÞQaa1;
f abðtÞ ¼ pa expðQaataÞQab1;
ra-hospital path way of elderly patients.



Fig. 2. Aggregated Markov model for the intra-hospital pathway of elderly patients.
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where expðQaataÞ is the exponential of the matrix Qaa multiplied by
the time ta, 1 is column vector of one’s of appropriate length, pa isas
a row vector of the probabilities for the process to start in a phases
in cluster a.The survival probability of the length of stay in cluster a
(service a) is given by

FaðtÞ ¼ pa expðQaataÞ1:

We use statistical approach based on the maximum-likelihood
estimator and the Expectation-Maximization Algorithm (EMA), to
estimate the parameters aij. This is because since no known
closed-form solution this numerical search approach is typically
used to solve the system of equations derived by setting to zero
the partial derivatives of the likelihood function. Solving these
equations with the Newton-Raphson method turns out to be very
complicated, see (McLachlan & Krishnan, 2008).

The input parameters of the EMA are the sequence of services
visited by the elderly patient i; i ¼ 1; . . . ;n; and the duration in
the services before leaving the hospital or data collection period
stops whatever occurs first, til, l 2 fE;M; Sg. Let h denote the vector
of parameters aij to be estimated. The log-likelihood function of n
samples is given as

FðhÞ ¼
Xn
i¼1

FiðhÞ;

where FiðhÞ is the log-likelihood function of the ith sample. Note,
during the data collection period there are some patients who
joined and are discharged from the hospital and others who joined
and are still in the hospital at the end of the collection period. The
former patients can follow one of the following sequences: E-D, M-
D, S-D, E-M-D, E-M-S-D. However, the latter patients who are still in
the hospital can follow one the followings: E-E, M-M, S-S, E-M, M-S,
E-M-S. For example, M-M means a patient joined the ED before the
start of the collection period and at the end of collection she was
still in MCO. Therefore, the total time spent in MCO is greater than
the observed time. This gives that the likelihood function of this
patient is expressed as a function of the survival probability. The
M-D sequence means a patient joined the ED before the start of
the collection period and before the end of collection she was dis-
charged. In this case, the likelihood function of this patient is
expressed as a function to the density probability. In total there
are eleven possible sequences which gives that FiðhÞ can be written
as

FiðhÞ ¼
X11
k¼1

ci;klogðf i;kðhÞÞ; i ¼ 1; . . . ;n
where

ck ¼
1 if patient i passes through the sequence kg
0 otherwise

�

and, f i;kðhÞ, k ¼ 1; . . . ;11; is the likelihood function of the different
sequences. The sequences are ordered as follows: EE, ED (Emer-
gency department-discharge), MM, MD, SS, SD, EM, EMD, EMSD,
MS, EMS. The likelihood functions then read

f i;1ðhÞ ¼ f EEðhÞ ¼ pE expðQEEt
i
EÞ1

f i;2ðhÞ ¼ f EDðhÞ ¼ pE expðQEEt
i
EÞQED1

f i;3ðhÞ ¼ f MMðhÞ ¼ pM expðQMMt
i
MÞ1

f i;4ðhÞ ¼ f MDðhÞ ¼ pM expðQMMt
i
MÞQMD1

f i;5ðhÞ ¼ f SSðhÞ ¼ pS expðQSSt
i
SÞ1

f i;6ðhÞ ¼ f SDðhÞ ¼ pS expðQSSt
i
SÞQSD1

f i;7ðhÞ ¼ f EMðhÞ ¼ pE expðQEEt
i
EÞQEM expðQMMt

i
MÞ1

f i;8ðhÞ ¼ f EMDðhÞ ¼ pE expðQEEt
i
EÞQEM expðQMMt

i
MÞQMD1

f i;9ðhÞ ¼ f EMSDðhÞ ¼ pE expðQEEt
i
EÞQEM expðQMMt

i
MÞQMS expðQSSt

i
SÞQSD1

f i;10ðhÞ ¼ f MSðhÞ ¼ pE expðQMMt
i
MÞQMS expðQSSt

i
SÞ1

f i;11ðhÞ ¼ f EMSðhÞ ¼ pE expðQEEt
i
EÞQEM expðQMMt

i
MÞQMS expðQSSt

i
SÞ1

The objective is to maximize the log-likelihood function of n
individual using the EMA which is based on an iterative procedure
(Asmussen, Nerman, & Olsson, 1996). The first iteration of the algo-
rithm starts with an initial guess of the parameters vector h0. Based
on h0, we try to estimate a new value of the parameters h1. This is
done in a two steps: Expectation step (E-Step) and Maximization
step (M-Step). In the E-step, given h0 we compute the expectation
of FðhÞ. In the M-Step, we find h1, a new estimate of h, by maximiz-
ing the expectation of FðhÞ: These steps are repeated until the algo-
rithm converges. For more details we refer the reader to Asmussen
et al. (1996) and Olsson (1998).

3.3. Detailed absorbing Markov chain model

In this section, we consider a detailed absorbing Markov chain
to model the LOS of patients taking into account their characteris-
tics. The Markov models described in the previous two sections
assume that the transition rates are the same for all elderly
patients. In reality, these rates are dependent on the degree of ill-
ness and fragility of a patient. Therefore, the classification of
elderly patients according to their features gives better insight in
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modeling the patient flow in the hospital. Classification can be per-
formed using the expertise of geriatric doctors and the data analyt-
ics method.

In Fig. 3, we show the transition diagram of the detailed Markov
chain model for a single class. For this detailed Markov chain, we
consider that the LOS in a service depends on the patient class
f ; f ¼ 1; . . . ; F; and the type of care pathway p; p ¼ 1; . . . ;P, she/he
follows. For P = 3, we can differentiate between short pathway stay
consisting of ED, mid-stay of ED and MCO, and long stay of ED and
MCO and SSR. Note, we can have multiple phases per pathway.
Therefore, in this analysis the number of services is kept equal to
three: ED, MCO, and SSR. However, we impose that the stay in a
service is dependent on the patient class and his pathway. A path
p, p ¼ 1; . . . ;P; is followed with a probability pfp and has sp phases.
We noted the transition rate between phases i and j, in class f , by

afp
ij .Then, the transition rate to be discharge from phase i, by afp

id.
Given the structure of the Markov chain model in Fig. 3, the cor-

responding infinitesimal generator matrix between the transient
states Q f is as follows:

Q f ¼

Gf1 0 . . . 0 0
0 Gf2 . . . 0 0
0 0 . . . 0 0
..
. ..

.
. . . ..

. ..
.

..

. ..
. . .

. ..
. ..

.

0 0 0 0 GfP

2
6666666664

3
7777777775
;

where Gfp for p ¼ f1; . . . ;Pg are the generator matrices of the tran-
sient path p for a class f . Let the columns vectors hfp denote the
transition rates from the transient phases of path p to the discharge.

We denote w the class of distribution formed by a mixture of a
set Coxian distribution. W is a linear convex combination of the
density functions gf1ðtÞ, gf2ðtÞ; . . . ; gfPðtÞ for a class f, which repre-
sent, respectively, the density functions of the first, second, and
so on, until the Pth path for each class f . The density function of
is w given by the expression:

wf ðtÞ ¼
XP

p¼1

pfpgfpðtÞ; with gfpðtÞ ¼ pfp expðGfptÞhfp;

XP

p¼1

pfp ¼ 1; pfp > 0; t > 0;
Fig. 3. Markov Chain model for
where pfp, p ¼ f1; . . . ;Pg; denotes the initial probabilityvector of the
path p in the class f . The density function of an arbitrary type of
patients uðtÞ is alinear convex combination of the densities wfðtÞ
given as

uðtÞ ¼
XF

f¼1

XP

p¼1

pfpgfpðtÞ;
XP
p¼1

pfp ¼ 1;pfp > 0:t > 0

To estimate the parameters of the detailed aggregated Markov
model, we apply the EMA to each class. However, before applying
the detailed absorbing Markov model, we need to classify patients
according to their characteristics; patient’s demography, social cir-
cumstances, fragility; and comorbidities into a set of different
classes.
4. Applications and results

Three Markov chain models are provided in this paper to cap-
ture the flow of elderly within and between hospital services. In
this section, we apply these three modeling approaches to the
Roanne Hospital Center case. Real data of 241 elderly from Roanne
Hospital Center are considered to parameterize these three models
and show their accuracy.

4.1. Application of the Coxian model

The length of stay of elderly patients in the hospital is fitted
using a Coxian distribution. The procedure adopted to find the best
fit is sequential in nature consisting of increasing the number of
phases until there is very little improvement in the fit quality.
The best compromise between model complexity and goodness
of fit is obtained with four phases. Table 3 shows the results: the
number of phases by applying Akaike information criterion (AIC)
and Bayesian information criterion (BIC). According to this table,
we find that for four phases AIC and BIC criteria reach their small-
est value Therefore, the best fit is obtained with four phases. Note,
in this case ‘phase five’ will represent the discharge state. In Fig. 4,
we show the transition rate diagram of the Coxian model with four
phases (note that Phase five is the absorbing state which repre-
sents the discharge state).

The first phase of the Coxian model is considered the short
acute stay with an average LOS of 1=ðb12 þ b15) = 0.38659 days
class f of elderly patients.



Fig. 4. Transition diagram of the Coxian model fitted to the data of Roanne hospital (phase 5 represents the discharge state).

Fig. 5. Kaplan–Meier estimator (complete blue line, 95% confidence blue dotted lines) and Coxian model (red dotted line) cumulative distribution: length of stay of elderly in
Roanne hospital. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The number of phases per service department of the aggregated Markov model
applied to Roanne Hospital Center.

Service Num. of phases AIC BIC

ED p = 1 479.403135 480.626204
p = 2 367.268965 369.640009
p = 3 342.335675 345.777495
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(9.27 h), about b12=ðb12 þ b15Þ ¼ 69% of elderly-patients move to
the second phase to pass an average of 3.75 days (1=ðb23 þ b25).
The third phase is considered as the second phase in the medium
stay, elderly pass on an average an LOS of 3.75 days, 32%
(¼ b34=ðb34 þ b35Þ) of elderly move to the last phase and the rest
leave the hospital. The last phase is considered as the long stay,
the elderly-patient pass an average 15.67 days (¼ 1=b45Þ, before
being discharged from the hospital. The average total time in hos-
pital is 9.09 days.

In Fig. 5, we show the cumulative distribution of the LOS of the
fitted Coxian model to the data of Roanne hospital compared to the
non-parametric Kaplan-Meier estimator (Kaplan & Meier, 1958).
The root mean square error between the model and the estimator
is equal to 0.0252. We conclude the Coxian model is accurate and
gives interesting results at the global level on the length stay in the
hospital. However, the model does not provide much detail on the
Table 1
The number of phases of the Coxian model and its transition rates for the elderly in
Roanne Hospital Center.

Number of Phases AIC BIC Transition rate Value

P = 1 3425.77525 3427.05337 b12 1.796553
P = 2 3268.505 3271.06123 b15 0.790173
P = 3 3254.70562 3258.53997 b23 0.266546
P = 4 3239.97882 3242.53505 b25 0
P = 5 3247.97934 3253.0918 b34 0.085511
P = 6 3247.41537 3255.08406 b35 0.181035
P = 7 3256.21569 3265.1625 b45 0.063798

Bold values represent the smallest AIC and BIC criteria.
length of stay per service. In the following section, we will analyze
the aggregated model with more detailed view of the LOS of a
patient per service.

4.2. Application of the aggregated absorbing Markov model

The Aggregated Markov chain model was fitted to the Roanne
hospital data in two septs. In the first step, we determine the num-
p = 4 271.811699 277.154653
p = 5 279.747059 284.180273

MCO p = 1 2308.07143 2309.20248
p = 2 2178.58116 2180.71948
p = 3 2158.90451 2161.92068
p = 4 2156.57172 2160.33034
p = 5 2166.15612 2170.51544
p = 6 2161.31458 2166.12612

SSR p = 1 302.928334 304.206449
p = 2 288.847745 291.403975
p = 3 286.503041 290.337385
p = 4 287.915359 293.027818
p = 5 289.961542 296.352115

Bold values represent the smallest AIC and BIC criteria.



Fig. 6. Transition diagram of the aggregated Markov model fitted to the data of Roanne hospital center (Phase 12 represents the discharge state).
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ber of phases in each service. The chosen number of phases is the
one with the smallest AIC and BIC criteria (see Table 1 for the
results). We find that we need four phases for the LOS in the ED
service, four phases for the LOS in the MCO service, and three
phases for the LOS in the SSR service. In the second step, we pro-
ceed to fit the overall length of stay (LOS) with the mixture expo-
nential distribution to determinate the transition rate of the phases
(see Table 2 for the results). In Fig. 6, we show the transition rate
diagram of the aggregated Markov model (note that phase 12 rep-
resents the discharge state).

The best compromise between the AIC and BIC for the ED ser-
vice was obtained with 4 phases. The average LOS is about
Fig. 7. Kaplan–Meier estimator and aggregated Markov model cumu
0.10 days respectively, in the first phase (¼ 1=a1;2), second
(1=a2;3) and the third (¼ 1=ða3;4 þ a3;5 þ a3;12Þ) phases of ED. In
the third phase, 33.51% (a3;4=ða3;4 þ a3;5 þ a3;12Þ) and 66.38%
(¼ a3;5=ða3;4 þ a3;5 þ a3;12Þ) are the probability to move to phase
four in ED and to the first phase in MCO (Phase 5), respectively.
The rest, 0.11%, leave the hospital. In the last phase of ED, 0.34%
(¼ a4;12=ða4;12 þ a4;5Þ) leave the hospital and the rest pass to
MCO, i.e., to phase 5. The average LOS in ED is 0.56 days
(¼ 1=a1;2 þ 1=a2;3 þ 1=ða3;4 þ a3;5 þ a3;12Þ þ a3;4=½ða3;4 þ a3;5 þ a3;12Þ�
ða4;12 þ a4;5Þ�).

For MCO we have 4 phases. In the first phase of MCO, 65%
(¼ a5;6=ða5;6 þ a5;9 þ a5;12Þ), 1% (¼ a5;9=ða5;6 þ a5;9 þ a5;12Þ), and
lative distribution: length of stay of elderly in Roanne hospital.



Table 3
Estimated parameters of the aggregated Markov model in Roanne Hospital Center.

Service Average Los (days) Transition rate Value

ED 0.10004385 a1:2 9.995617
0.10004385 a2:3 9.995617
0.10004385 a3:4 3.349766

a3:5 4.386262
a3:12 2.259589

0.78475750 a4;5 0.841024
a4;12 0.433255

MCO 6.36719621 a5:6 0.137342
a5:9 0.002891
a5:12 0.072285

1.26019498 a6;7 0.616332
a6;9 0.023112
a6;12 0.154083

1.26017433 a7;8 0.168627
a7;12 0.624914

1.25945695 a8:9 0.126031
a8;12 0.667962

SSR 9.42693653 a9:10 0.106079
10.5260942 a10:11 0.031667

a10:12 0.063335
8.10696928 a11:12 0.123351

Fig. 8. Hierarchical clustering of elderly patients into three classes using MCA and
HAC in the statistical R tool.
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34% (¼ a5;12=ða5;6 þ a5;9 þ a5;12Þ),) are, respectively, the probability
to move to the second phase in MCO, SSR and discharge from hos-
pital. In the second phase of MCO, Phase 6, with an average LOS of
1.26 days (¼ 1=ða6;7 þ a6;9 þ a6;12Þ) and probability 80%, 3%, and
17%, respectively, to move to the third phase in MCO (Phase 7),
pass to the first phase in SSR (Phase 9), and to discharge from hos-
pital. Then, in the third phase in MCO 77% move to the last phase
(Phase 8), and 23% are discharged from the hospital. In the last
phase of MCO 16% move to the first in SSR (Phase 9) and 84% leave
the hospital. The average LOS in MCO is about 10 days and 28 days
in SSR.

The aggregated continuous Markov chain model gives interest-
ing results and provides a good tool to model the LOS, but it does
not differentiate between the types of patients. To examine the
model fit quality, in Fig. 7 we plot the LOS cumulative distribution
of the AMC model fitted to the data of Roanne Hospital center
using the estimated parameters in Table 3 and the non-
parametric Kaplan-Meier estimator with 95% confident interval.
The close agreement between the AMC and the non-parametric
Kaplan and Meier estimator shows the model accuracy and its per-
formance to capture the behavior of the LOS in the hospital. The
root mean square error between the AMC model and the estimator
is equal to 0.0191. We conclude that AMC model is more accurate
than the Coxian model.

4.3. Application of the detailed absorbing Markov model

In our case study a part of the collected data are qualitative. We
use the Multiple Correspondence Analysis (MCA) (Greenacre &
Blasius, 2006) to convert the qualitative data to quantitative val-
ues. This operation must be done before the classification. The
Hierarchical Agglomerative Clustering (HAC) (Greenacre &
Blasius, 2006; Guojun, Chaoqun, & Jianhong, 2007), a non-
monitored method, is then applied to classify the elderly patient
representing a similar behavior, especially, based on their fragility
criteria. The main idea of this method is to calculate a table of
Euclidean distance between individuals (patients) in order to
define the existing similarities among the different criteria of the
elder patient fragility. The algorithm starts with the attribution
of an elderly patient to a class. Then, for each iteration, it starts
to constitute number of classes by grouping the nearest individuals
from a partition using the minimum jump (WARD criteria). This
criterion allows the detection of similarities among groups of indi-
viduals. The algorithm stops after getting one class.

From MCA and HAC we get a hierarchical tree that represents
the different partitions. Fig. 8 shows the results; it is divided on
three classes depending on the inertia gain. The resulted eigen-
value gave us the rate of inertia associated to each dimension;
the first Dim1 explains 12.86% of global inertia, and the second
10.43%. The first class represents 48% from the global data, the sec-
ond 39%. Finally, the third one represents 13%. Multivariate logistic
regression is exploited to explain the classification results and
understanding the patient’s features effect on this classification.

We apply the procedure to fit all the variables integrated in the
classification as explicative variables and the clustering results
(class 1, class 2, or class 3) as dependent variable. The p-value of
the likelihood ratio test for an elderly, is considered to be non-
significant if p > 0.20. Following the Table 4, we can summarize
according to Khi2 tests probability, the influence of variables in
the clustering decision. The variables age influence in the cluster-
ing decision for the class 1 and the class 2. The patients belonging
to class 3 tend to be elder than those in class 1: the category D
(age � 90) with 11%, C (85 � age < 90) with 25%, B (80 � age < 85)
with 30%, and A (75 � age < 80) with 34%. For class 3, the category
D presents > 33% and A around 19%.

The residence place is the modality the more important in the
clustering. The totality of persons belonging to class 3 lives in tra-
ditional home. However, no one is in the nursing home. Class 1 has
the majority from home with support, but has also some persons
from the nursing home (see Fig. 7). We note that the totality of per-
sons belonging to class 3 is living in a traditional home. The major-
ity of persons in Class 1 are from home with support, but some are
from the nursing home (see Fig. 9). Persons in Class 2 are the
elderly with behavioral problems, cognitive difficulties, and neu-
rology problems. The majority in class 2 lives alone without family
(92.30%). The persons belonging to class 3, have neurology prob-
lem, Polypharmacy, idling problems, acute renal failure, or are
readmitted in hospital.

We now apply the detailed absorbing Markov model to the case
study. We consider 3-paths per class of elderly. The first one corre-
sponds to the short stay and represents the ED service. The second
path corresponds to the middle term stay, composed of a short stay
in ED, and then followed by a middle stay in the MCO service.
Finally, the last path, long stay, consists of the short stay, the mid-
dle stay, and the SSR service. The length of stay of elderly patients
in the hospital is modelled using a mixture of a set of Coxian mod-
els. The procedure adopted to find the best fit is sequential in nat-



Table 4
Cross tabulation of classification and regression results.

Class 1 Class 2 Class 3

Variables Modality Effectifs % Pr > Wald Pr > Khi2 % Pr > Wald Pr > Khi2 % Pr > Wald Pr > Khi2 %

Applicant’s demography Age 75 � a < 80 64 26.556 0.09510313 33.588 0.911 7.692 0.115 19.048
80 � b < 85 68 28.216 0.701 29.771 0.904 30.769 0.726 23.810
85 � c < 90 62 25.726 0.374 25.191 0.553 34.615 0.484 23.810
90 � d 47 19.502 0.061 11.450 0.578 26.923 0.059 33.333

Gendre Female 129 53.527 0.251 47.328 0.270 73.077 0.697 60.317
Male 112 46.473 0.251 52.672 0.270 26.923 0.697 39.683

Social circumstances Lieu Résidence Home with support 14 5.809 0.456 3.817 0.000 15.385 <0.0001 12.698
Traditional home 190 78.838 0.354 89.313 0.672 84.615 0.258 85.714
Ehpad 37 15.353 0.211 6.870 0.005 7.692 <0.0001 1.587

Living mode With children 10 4.149 0.137 6.107 0.348 92.308 0.212 3.175
Not alone 91 37.759 0.154 48.092 0.151 3.846 0.256 25.397
Alone 140 58.091 0.615 45.802 0.188 96.154 0.795 71.429

Social environment Fragile 33 13.693 0.282 9.924 0.462 96.154 0.176 26.984
Present 207 85.892 0.167 90.076 0.236 3.846 0.081 73.016
Nonexistent 1 0.415 0.272 87.786 0.977 30.769 0.685 90.476

Fragility Cancer No 215 89.212 0.931 12.214 0.985 69.231 0.957 9.524
Yes 26 10.788 0.931 97.710 0.985 88.462 0.957 80.952

Neurology-problem No 206 85.477 0.001 2.290 0.013 11.538 0.001 19.048
Yes 35 14.523 0.001 98.473 0.013 53.846 0.165 77.778

Mal Rhum. No 219 90.871 0.004 1.527 0.244 46.154 0.003 22.222
Yes 22 9.129 0.004 68.702 0.244 69.231 0.003 41.270

Acute renal failure No 144 59.751 0.007 31.298 0.775 30.769 0.006 58.730
Yes 97 40.249 0.007 86.260 0.775 26.923 0.006 61.905

Comorbidity Falls No 190 78.838 0.010 13.740 0.937 73.077 0.009 38.095
Yes 51 21.162 0.010 72.519 0.937 26.923 0.009 25.397

Marches (steps)problems No 130 53.942 0.004 27.481 0.238 73.077 0.007 74.603
Yes 111 46.058 0.004 94.656 0.238 76.923 0.007 77.778

Cognitifs-troubles No 199 82.573 0.000 5.344 0.004 23.077 0.098 22.222
Yes 42 17.427 0.000 88.550 0.004 61.538 0.098 82.540

Humor-troubles No 206 85.477 0.929 11.450 0.332 38.462 0.583 17.460
Yes 35 14.523 0.929 99.237 0.332 69.231 0.583 96.825

Behavioral problems No 225 93.361 0.109 0.763 0.024 30.769 0.791 3.175
Yes 16 6.639 0.109 88.550 0.024 92.308 0.791 61.905

Polypharmacy No 189 78.423 0.003 11.450 0.257 7.692 0.021 38.095
Yes 52 21.577 0.003 89.313 0.257 7.692 0.021 85.714

Readmission No 215 89.212 0.098 10.687 0.144 30.769 0.175 14.286
Yes 26 10.788 0.098 33.588 0.144 34.615 0.175 19.048
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Fig. 9. The residence place modality for each class (class 1 in black, class 2 in red, and class 3 in green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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ure consisting of increasing the number of phases until there is
very little improvement in the fit quality using the AIC and BIC.
The best compromise between model complexity and goodness
of fit are indicated in Table 5. In the class 1, we find the three path-
ways, with four phases, three phases and three phases, respec-
tively. However, the patients belonging to the second class have
only the possibility to pass by two paths; the short stay and the
middle stay. Class 3 has three pathways with three phases for first
two and two phases for the last.

4.3.1. Class 1 results
Following the maximum likelihood and the EMA in Table 6 we

show the transition rates and the probability of class 1 patients to
follow path p (=1, 2, 3). In Fig. 10, we show the transition rate dia-
gram of class 1 of the detailed Markov chain. Note, the vertical
transitions pointing to the bottom represent the transitions to
the discharge state.

Based on the detailed Markov model we find for class 1 that
57% of all admissions pass through the first path corresponding
to the short stay, then 33.3% (¼ a11

15=k
11
1 Þ will be discharged after

passing an average LOS of 0.44 days (¼ 1=k111 ), and the rest move
to the second phase, ‘Phase 1,2’, See Fig. 10. Note, k111 ¼ a11

12 þ a11
15.

In ‘Phase 1,2’, the patients spend about 1.23 h (=1/k112 ), 0.125%
(¼ a11

25=k
11
2 ) leave hospital, 0.875% (¼ a11

23=k
11
2 ) pass the third one,

‘Phase 1,3’, to spend the same average. Then, 7.14% (¼ a11
35=k

11
3 ) dis-

charge and the rest 92.86%, move to the last one, ‘Phase 1,4’, to
spend an average of 0.31 days (¼ 1=k114 ) before being discharged.
In the second path, the probability to follow it is 37% and a patient
spends 6.34 days (=1/k121 ) on average in the first phase, 23% dis-
charge, 77% pass to the second phase, ‘Phase 2,2’, and she spends
an average of 2.21 days (¼ k122 ). Then, 63.15% move to last one
phase, ‘Phase 2,3’, to spend an average LOS of 2.25 days. For the
third path, the long stay, 6% move through it and pass an average
of 39 days (¼ 1=k131 þ 1=k132 þ 1=k133 ) before leaving the hospital.

In Fig. 11, we plot the LOS cumulative distribution function of
the LOS of class 1 patients of the detailed model fitted to the data
of Roanne hospital center in comparison with the non-parametric
Kaplan and Meier estimator, the Coxian Model, and the AMC
model. According to Fig. 11, all the three models fit well the LOS
of class 1 patients. The root mean square error of the cumulative
function of class 1 detailed model is 0.0256, AMC model is
0.0318, and of Coxian model is 0.0351. In this case, we conclude
that the class 1 detailed model is the most accurate, then the
AMC model, and the Coxian model is the least accurate.

4.3.2. Class 2 results
Following the maximum likelihood and the EMA in Table 7 we

show the transition rates and the probability that a class 2 patient
follows path pð¼ 1;2Þ. Note, the probability that an elderly belongs
to class 2 is 39%. In Fig. 12, we show the transition rate diagram of
class 2 patients of the detailed Markov chain. Note, the vertical
transitions pointing to the bottom represent the transitions to
the discharge state.

The probability to follow path 1 is 48% with an average LOS of
0.30 days (=1/k211 ) and the rest, 52%, pass through the medium stay,
path 2. A patient spends an average of 4 days (=1/k221 ) in the first
phase, ‘Phase 2,1’. Then, the patient moves to the second phase,
‘Phase 2,2’, to spend the same average, but in this phase there is
36% (¼ a22

24=ða22
24 þ a21

24Þ) chance to leave the system. In the last
phase, ‘Phase 2,3’, the average LOS is also 0.30 days.

In Fig. 13, we plot the LOS cumulative distribution function of
class 2 patients of the detailed model fitted to the data of Roanne
hospital center in comparison with the non-parametric Kaplan
and Meier estimator, the Coxian Model, and the AMC model.
According to Fig. 13, Coxian and AMC models do not fit well the
LOS of class 2 patients. The root mean square error of the cumula-
tive function of class 2 detailed model is 0.0559, Coxian model is
0.1439, and of AMC model is 0.1455. In this case, we conclude that
the class 1 detailed model is the most accurate, then the Coxian
model, and the AMC model is the least accurate. Note, the differ-
ence between the Coxian and AMC models is small and they both
overestimate LOS class 2 patients.

4.3.3. Class 3 results
Following the maximum likelihood and the EMA in Table 8 we

show the transition rates and the probability that a class 3 patient
follows path pð¼ 1;2;3Þ. Note, the probability that an elderly
belongs to class 3 is 13%. In Fig. 12, we show the transition rate dia-
gram of class 2 patients of the detailed Markov chain. Note, the
vertical transitions pointing to the bottom represent the transi-
tions to the discharge state.

The probability to follow path 1 is 21.31% and the patients pass
an average 0.14 days (=1/ k311 ) in the first phase, ‘Phase 1,1’, after
that they move to the second phase, ‘Phase 1,2’, for passing the
same average. The discharge rate from the second phase is



Table 5
The number of phases for elderly pathway per class of detailed Markov model applied
to Roanne Hospital.

Class Path AIC BIC

Class1 Path 1 p = 1 121.476065 122.514179
p = 2 92.9699078 94.6928037
p = 3 93.8147478 95.8230048
p = 4 70.8464782 70.7151661
p = 5 82.4149995 83.5674775
p = 6 92.1075815 90.0017526

Path 2 p = 1 1143.42407 1144.53317
p = 2 1084.01193 1085.98845
p = 3 1076.74946 1079.33008
p = 4 1078.84098 1081.73805
p = 5 1085.47491 1088.37341
p = 6 1092.98284 1093.65153

Path 3 p = 1 176.677445 177.494021
p = 2 168.667674 169.405722
p = 3 168.408834 167.576511
p = 4 173.339908 168.166652
p = 5 185.656067 170.04664
p = 6 217.099283 172.767971

Class2 Path 1 p = 1 14.5874952 15.6751337
p = 2 32.8072028 34.7076944
p = 3 41.6465419 44.0571571
p = 4 48.4733875 51.0595304
p = 5 54.6339467 57.0245200

Path 2 p = 1 203.128477 204.180177
p = 2 191.268861 193.040777
p = 3 189.952399 192.072457
p = 4 192.835114 194.883743
p = 5 197.210484 198.712169
p = 6 202.571921 202.984795

Class3 Path 1 p = 1 24.3508503 25.6289650
p = 2 23.5487308 26.1049601
p = 3 22.464494 26.298838
p = 4 29.4599269 34.5723856
p = 5 33.4627591 39.8533324
p = 6 41.5231331 49.1918210

Path 2 p = 1 658.674314 659.952429
p = 2 624.385967 626.942196
p = 3 622.030099 625.864443
p = 4 624.603183 629.715642
p = 5 629.453044 635.843617
p = 6 631.890631 639.559319

Path3 p = 1 135.694577 136.972691
p = 2 131.158493 133.714723
p = 3 131.691459 135.525803
p = 4 126.094515 128.650744
p = 5 133.437173 138.549631
p = 6 137.304272 143.694845

Bold values represent the smallest AIC and BIC criteria.

Table 6
Estimated parameters of elderly pathway of class 1 of the detailed Markov model applied

Path Probability Rate parameter

Class1 Path 1 0.57 k111 ¼ a11
12 þ a11

15

k112 ¼ a11
23 þ a11

25

k113

k114
Path 2 0.37 k121

k122

k123
Path 3 0.06 k131

k132

k133
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74.86% (=a31
24=ða31

24 þ a31
23Þ). The rest pass to the last phase to pass an

average of 1 day. The probability to follow path 2, the medium stay,
is 72.13% and on average a patient spends 11.57 days. Finally,
8.19% patients spend an average LOS of 43.74 days in path 3, the
long stay, before being discharged (see Fig. 14)

In Fig. 15, we plot the LOS cumulative distribution function of
class 3 patients of the detailed model fitted to the data of Roanne
hospital center in comparison with the non-parametric Kaplan
and Meier estimator, the Coxian Model, and the AMC model.
According to Fig. 15, Coxian and AMC models do not fit well the
LOS of class 3 patients. The root mean square error of the cumula-
tive function of class 3 detailed model is 0.0230, AMC model is
0.0.0972, and of Coxian model is 0.1019. In this case, we conclude
that the class 1 detailed model is the most accurate, then the AMC
model, and the Coxian model is the least accurate. Note, the differ-
ence between the Coxian and AMC models is small and they both
underestimate the LOS of class 3 patients.

According to the expert opinion, doctors from Roanne Hospital
center, the obtained results of the detailed Markov model are rep-
resentative of reality.
5. Models utilization

In this paper, we focused our study on the elderly pathway
diagnostic and modeling. We collected data that concern elderly
patients (241 elderly over 74 years) following the intra-
hospitalization process in the periods between February 23 and
March 1, and March 30 and 5 April 2015. This category of patients
represents 70% of all admissions in Roanne Hospital Center arriving
to the SAU in these periods. We proposed three models with differ-
ent level of details (1) per elderly in the hospital (Coxian model),
(2) per elderly per service (Aggregated model), and (3) per elderly
class per service (Detailed model). These three models are comple-
mentary and provide accurate estimation of the LOS distribution
per phase, per service and per class of elderly. The first model, Cox-
ian model, is inspired from the literature and we apply it to our
case study to get a preliminary idea of the number of phases in
the care pathway and the global LOS of an elderly in the hospital.
Based on the AIC and BIC criteria we find that four main phases
are needed to model the global LOS of an elderly. The Coxian model
accuracy is measured by comparison of the model’s LOS cumula-
tive function with the non-parametric Kaplan-Meier estimator.
The Second model, aggregated Markov model, allows us to get
the LOS per service for all elderly in the considered population.
to Roanne Hospital.

Value Transition rate Value

2.2666502 a11
12

1.51110013

a11
15

0.75555007

19.427977 a11
23

2.42849713

a11
25

16.9994799

19.427977 a11
34

1.38771264

a11
35

18.0402644

3.1942797 a11
45

3.19427977

0.157632 a12
12

0.03621276

a12
14

0.12141924

0.451675 a12
23

0.16644065

a12
24

0.28526842

0.443712 a12
34

0.443712

0.076084 a13
12

0.076084

a13
14

0

0.075081 a13
23

0.075081

a13
24

0

0.076084 a13
34

0.076084



Fig. 10. Transition diagram of class 1 patients of the detailed Markov model fitted to the data of Roanne hospital center.

Fig. 11. Kaplan–Meier estimator and detailed absorbing Markov cumulative distribution of class 1 patients: length of stay of elderly in Roanne hospital center.

Table 7
Estimated parameters of elderly pathway of class 2 of the detailed Markov model applied to Roanne Hospital center.

Path Probability Rate parameter Value Transition rate Value

Class 2 Path 1 0.48 k211 3.233839 a21
12

3.233839

Path 2 0.52 k221 0.294118 a22
12

0.294118

a22
14

0

k222 0.294118 a22
23

0.09049785

a22
24

0.20362015

k223 0.294118 a22
34

0.294118

ig. 12. Transition diagram of class 2 patients of the detailed Markov model fitted
the data of Roanne hospital center.
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The obtained LOS cumulative function is compared to the Kaplan-
Meier estimator and we find that the model is more accurate than
the Coxian model even though a larger number of parameters is
required (11 parameters compared to 4 parameters). The third
model, detailed absorbing Markov model, allows differentiating
between the elderly classes in the hospital services. Based on their
several characteristics, the elderly are classified into three classes.
The detailed Markov model allows estimating the LOS per service
for each class of elderly in the considered population. The obtained
LOS cumulative function is compared to the Kaplan-Meier estima-
tor and we find that the model is accurate even though a larger
number of parameters is required (36 parameters in total).
F
to



Table 8
Estimated parameters of elderly pathway of class 3 patient of the detailed Markov model applied to Roanne Hospital.

Class Path Probability Rate parameter Value Transition rate Value

Class3 Path 1 0.2131 k311 7.069870 a31
12

7.069870

a31
14

0

k312 7.069870 a31
23

1.777184

a31
24

5.2926

k313 1.010442 a31
34

1.010442

Path 2 0.7213 k321 0.201101 a32
12

0.201101

a32
14

0

k322 0.199813 a32
23

0.199813

a32
24

0

k323 0.631571 a32
34

0.631571

Path3 0.0819 k331 0.045722 a33
12

0.045722

a33
15

0

k332 0.045722 a33
25

0.045722

Fig. 13. Kaplan–Meier estimator and detailed absorbing Markov cumulative distribution of class 2 patients: length of stay of elderly in Roanne hospital center.
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Proof of concept on other possible utilization of our models in prac-
tice: Our Markov chain based approach is generic and can be
applied to the whole categories of patients. This can allow us to
study the performance of the hospital services: to determine the
resources capacity in the hospital, for example the number of beds
Fig. 14. Transition diagram of class 3 patients of the detailed Markov model fitted
to the data of Roanne hospital center.
per service, to reduce the waiting time and by consequence the LOS
of patients. This needs the data of all patients including non-elderly
patients, which are not the focus of our study. The collection of
data of non-elderly patients could be part of a future study. When-
ever, this is done a simulation model using the results of the aggre-
gated Markov model can be used to determine the best beds
allocation in the MCO and SSR services. In practice, several scenar-
ios in the simulation could be considered by changing the assign-
ment of available beds to different services. In our case of study
the number of beds in the ED, MCO and SSR are equal to 12, 25
and 76, respectively. A simple way to generate these scenarios
can be done by increasing and decreasing the number of beds in
MCO and SSR by one unit while considering the same number of
beds in total. Moreover, nowadays, the hospitals are facing an
increase in the demand and are looking for optimizing their activ-
ities cost. To reduce the LOS in MCO, and cover the maximum of
the demand, the discharge of elderly to nursing home before SSR
is one of the possible decisions that could be taken based on the
elderly characteristics. Therefore, a simulation model based on
the results of the detailed Markov chain could be developed to
quantify the impact of discharge probability by class of elderly
on the LOS. In practice, several scenarios could be considered by
changing the discharge rate before the stay in SSR (after the stay
in the MCO) for the three classes of elderly. In our case of study



Fig. 15. Kaplan–Meier estimator and detailed absorbing Markov cumulative distribution of class 3 patients: length of stay of elderly in Roanne hospital center.
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the percentage of discharge is 40% and 60% for the first class, and
third class, respectively. The simulation scenarios can be generated
by increasing and decreasing the percentage of discharge by 1%.
The simulation could be performed with several replications for
each scenario to find the best scenario yielding the lowest global
LOS on average. In addition, this simulation model could be used
to make a cost study. For example, in the French refund system
the MCO cost depends on the activity and the SSR receives annual
endowment (Or & Renaud, 2009). The funding calculation of the
hospital is based on the Diagnosis Related Groups (DRG) with a
basic refund amount, and lower and upper bounds with the related
adjustment according to the LOS. The aim of this sort of funding is
to give incentive to the hospitals to reduce the patient LOS in the
service without sacrificing the care quality. For each patient, based
on his/her corresponding DRG, we can calculate the stay refund
and compare it to the money spent by each service during the
patient stay. The two changes of the discharge rate after MCO
and the capacities of MCO and SSR could be repeated here to gen-
erate different scenarios similarly to the scenarios considered
before. We keep the best scenario with the capacity of MCO and
SSR and the discharge rate for the first and third classes of elderly,
providing the highest extra revenue (refunding revenues minus
total cost).

6. Conclusion and perspective

In this paper, we are interested in the elderly pathway diagnos-
tic and modeling. We propose three ways to model the elderly
pathway. The first model, called aggregated model, is a
continuous-time finite size Markov chain. This model allows us
to estimate the length of stay of elderly in the hospital services
and their pathways. In the second model, the length of stay in
the hospital is fitted to a Coxian distribution. The third model,
called detailed model, is a continuous-time Markov chain with a
mixed of Coxian distribution. In this model we differentiate
between the types of patients. Therefore, as a preliminary step
we classify the elderly based on frailty, lifestyle, and pathology.
By knowing the patient characteristics we first identify her class
of fragility and the probability to follow a specific pathway. Here,
we differentiate between short, middle, and long stay within an
elderly class. We apply our models to a French healthcare system.
Comparing these models the aggregate model is richer in informa-
tion such length of stays per service and more accurate in predict-
ing the length of stay in the hospital than the simple Coxian model.
The detailed model is the richest in information since we differen-
tiate between patient types and length of stays.

The provided models are of interest to managers of French
Healthcare structures to master the elderly pathways and evaluate
the performance of intra-hospital services. Moreover, the local
authorities in France face real challenges when it comes to the
annual funding prediction for healthcare structures. In fact, the
length of stay and the healthcare cost of existing patients in addi-
tion to the unknown number of future admissions make the bud-
geting of local authority complex. Our study is a preliminary step
toward the development of decision support system that helps in
making more accurate cost prediction, to decide the patient admis-
sion strategy, and to meet decisions concerning resource alloca-
tion. Future work will focus on these aspects.
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