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ABSTRACT

This work addresses a tactical railway traffic scheduling problem focused on the optimiza-
tion of train sequencing and routing decisions and timing decisions related to short-term
maintenance works in a railway network subject to disturbed process times. This is mod-
eled as a mixed-integer linear programming formulation in which the traffic flow and track
maintenance variables, constraints and objectives are integrated under a stochastic envi-
ronment. The resulting bi-objective optimization problem is to minimize the deviation
from a scheduled plan and to maximize the number of aggregated maintenance works
under stochastic disturbances. The two objectives require to schedule competitive train
operations versus maintenance works on the same infrastructure elements. Computational
experiments are performed on a realistic railway network. We measure the quality of the
integrated solutions in terms of their robustness to stochastic perturbations of the train
travel times and of the maintenance works. Pareto optimal methods are compared for the
bi-objective problem. We also evaluate the impact of introducing routing stability con-
straints in order to force the trains to keep the same route among the different stochastic
disturbed scenarios. The experiments show that forcing the routing stability reduces the
routing flexibility and the ability to optimize the two performance indicators when dealing
with stochastic disturbances.

Keywords: Railway Traffic Management; Train Scheduling; Infrastructure Maintenance;
Disturbance Robustness; Routing Stability; Mixed-Integer Linear Program.
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1 Introduction

We daily interface with a lot of different complex systems, like manufacturing, communica-
tion or transport systems, with ever increasing complexity. Proper maintenance activities
are needed since each component of a complex system is affected by degradation and thus
by wear and failures. Maintenance should be performed in every deteriorating system.
The goals of Preventive Maintenance (PM) is to ensure any system remains in a specified
working condition, basically managing the process of ageing of its components. Preven-
tive maintenance actions are taken before failures happen, typically at pre-specified time
intervals, in this perspective different from predictive maintenance (where an individual
estimate of the system conditions is available at any time, to drive maintenance actions)
and run-to failure or reactive maintenance (only once things are broken, they are fixed).
In railway systems, PM is performed to ensure a state that allows trains to run with high
safety standard and a high level of service. From 15 to 25 billion euros are being annually
spent in Europe for maintenance and renewal of railway infrastructure, and maintenance
cost is generally recognized as representing a large part of the railway operation costs [11].

Maintenance works are carried out during a reserved period (non-available for full
use by train traffic) on part of a rail network, named possession, mostly defined during
a rather complex planning process. A general structure of the maintenance planning
process is reported in Budai et al. [2] for the Netherlands. The process is organized in the
following major decision phases: 1) budget determination; 2) long-term quality prediction;
3) project identification & definition (diagnosis); 4) project prioritization and selection;
5) possession allocation and timetabling of track possession; 6) project combination; 7)
short term maintenance and project scheduling; 8) work evaluation and feedback loop.
A similar structure is proposed by Lidén in [30], as identified in the Swedish practice.
The structure is made of the following steps: 1) major possessions (large infrastructure
maintenance activities) are coordinated with the international freight trains according to
established prearranged paths; 2) preparation and publishing of the network statement; 3)
yearly timetable planning considering the major possession activities; 4) timetable revision
planning; 5) planning of minor possession activities; 6) operational planning and control.
Overall, the maintenance planning process embraces strategic, tactical and operational
phases, where different levels of detail and knowledge of the processes are available.

This paper deals with the integration of train scheduling and maintenance activities
through optimization techniques at a tactical stage, where enough detail is available about
infrastructure maintenance actions and the train services to put into operation.

The interaction between maintenance and train schedules is obviously critical, espe-
cially on high traffic density lines, at both strategic, tactical and operational phases. In
fact, those two problems aim to conflicting purposes and the nature of their relationship
is competitive, since they simultaneously subtract capacity from the network, one for
keeping the network in good state, the other one to make revenues. Railway managers
have to deal with a growing demand for transport of goods and people, while ensuring
safety, punctuality and reliability of the freight and passenger services. Moreover, a better
maintenance planning allows for higher utilization of railway infrastructure and improved
services and customer quality [53].

As discussed in a recent survey [30], the management of train traffic and maintenance
activities on the railway infrastructure are two key problems for the railway managers.
However, these are often treated separately, although the two management issues are
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strongly interconnected. In what follows we examine the specific optimization problems
related to train traffic and infrastructure maintenance management at timetabling, oper-
ational and tactical levels.

Typically, the management of railway traffic is based on solving a Train Timetabling
Problem (TTP) [6], that is to compute a train schedule specifying the physical route of
each train in the network, its arrival, dwell and departure times at each station, and
its travel time between consecutive stations, such that some key performance indicators,
such as the minimization of the total travel time of the trains in the network in order
to cover all services, are optimized. TTP is widely treated in the classical and recent
literature (see, e.g. the recent surveys of Cacchiani et al. [4, 5, 6]), and despite different
perspectives, all share a common a-priori setup. Timetables are determined more than
a year in advance of operations for a set of trains, providing optimality of an objective
function of interest for the railway system, with a macroscopic detail of the operations,
a very limited (when not absent) inclusion of maintenance processes, and a very limited
(when not absent) modelling of possible delays.

In fact, including maintenance determines a partially non-periodic timetabling prob-
lem (for cyclic timetables, the cycle time of a timetable, usually an hour, is of much
different length than the period of maintenance, typically weeks or months). Moreover,
the exact length of maintenance slots and their arrangement are typically unknown at
timetabling phase.

Considering delays leads to forms of robust timetabling, where the goal is to determine
schedules that try, in case of unexpected events arising in the railway network, to keep
good solutions as much as possible, avoiding the propagation of train delays. Robust
timetabling typically considers minor disturbances and rescheduling actions, such as fine-
tuning the timing of trains (typically no more than a handful of minutes variations), which
allow better absorption of unknown delays (see, e.g., [25]).

On the other hand, unpredicted disturbances and disruptions are inevitable during
operations. Typically, a disturbance is a small perturbation of the process times, while a
disruption is a large disturbance (e.g. a track blockage, a serious accident or bad weather
conditions) that requires strong adjustments of traffic, like re-timing, re-sequencing, re-
routing services, or even leads to the cancelation of some services (see, e.g., [1, 18, 29, 41]).
Once a perturbation occurs (and it can be identified and quantified), the timetable must
be adjusted in order to recover feasibility of railway operations, by adjusting the existing
timetable. The time horizon to this is typically in the range of a hour. This is the goal of
the a-posteriori view followed by the Train Rescheduling Problem (TRP) [15, 17, 23, 35],
which can be seen as the operational phase of TTP [4].

A different perspective arises at tactical stage, which is an intermediate stage between
the two reported so far, with a time horizon of few days. We could refer to this problem as
the Tactical Traffic and Possession Scheduling Problem (TTPSP) where decisions about
re-timing, re-sequencing and re-routing of trains have to be taken, before the operational
day, with some knowledge of maintenance actions and traffic perturbations.

At this level, the impact between perturbations and maintenance is bidirectional,
as disturbances have also impact on the infrastructure maintenance management, and
maintenance actions themselves can be viewed as a form of unavoidable perturbation to
timetabled operations. To this end, we argue that planning of traffic and minor possessions
requires a significant coordination effort with train planning plans. Despite that, there
are currently no tools to assist the railway managers in the coordination task, and minor
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possession planning is often carried out regardless of detailed knowledge about the impact
on railway traffic flow management.

The current limitations of the railway traffic management practice motivate the current
paper, that addresses the problem of integrating train traffic planning and minor posses-
sion planning at a tactical level, with inclusion of robustness and stochastic dynamics.
This leads to the following practical requirements and problem setting:

1. the maintenance activities are scheduled on the same infrastructure resources and
during the same time period required by the trains to perform the services;

2. a (given) preliminary planning of the maintenance actions needs to be adjusted in
order to improve the integration of traffic and maintenance processes;

3. estimates of traffic flow perturbations are considered, that can be included in a
stochastic optimization framework;

4. the performance indicators related to maintenance activities and to the train services
are in competition, and need to be optimized in a multi-objective setting;

5. the quality of the integrated solutions is evaluated in terms of planned and realized
performance, for each evaluated scenario.

As regards the first point, we refer to a mathematical modeling based on a network
cumulative flow variable based formulation and to a reformulation based on the big-
M method. These formulations were proposed by Meng at al. [39] for solving an N -
track simultaneous train rerouting and rescheduling problem (i.e. TRP). Meng et al.
[37] extended the big-M formulation in order to deal with robust dispatching plans and
stable routing decisions. However, previous versions of these formulations neglect the
optimization of maintenance aspects and their interaction with traffic flows. This work
addresses this aspect by proposing a revised version of the big-M formulation.

As for points 2 and 3, we investigate the integrated solutions to random perturbations
of the train travel times and of the maintenance works. These uncertainties are modeled
as multiple scenarios weighed with an appropriate probability of occurrence, by which
an average performance can be computed. We evaluate stability constraints (as in Meng
et al. [37]) which force the traffic to deliver the same service (i.e. to maintain train
routing decisions), under still-unknown (at a tactical stage) realizations of the stochastic
scenarios. This has the potential to keep train traffic regular, represents an interface to
traffic demand, and reduces the complexity of operational rescheduling.

As for point 4, we propose two scalarization methods for the computation of Pareto-
optimal solutions based on a standard weighted-sum approach, and ε-constraint methods
(iteratively fixing a value of an objective while optimizing the other one, see e.g., [14, 54]).

As for the last point, we refer to computational experiments based on the train schedul-
ing and routing instances introduced for the first time in the INFORMS RAS Competition
2012 [24], and now extended in order to deal with maintenance activities.

This work is organized as follows. Section 2 provides a literature review and research
motivations. Section 3 explains the problem characteristics with respect to well-know
problems. Section 4 presents the mathematical optimization framework. Section 5 gives
the computational results regarding Pareto-optimal, robust and stable solutions. Section
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6 discusses the paper contents and suggests directions for further work. Appendix sec-
tions report the list of input parameters (Appendix A), present numerical examples of
Pareto-optimal solutions (Appendix B) and robust versus stable solutions (Appendix C),
illustrate some optimized timetables (Appendix D).

2 Review of the related literature

The literature review proposed in this section provides a brief contextualization of the
present work with respect to the recent state-of-the-art on railway operations manage-
ment, and refers to extensive surveys for a more detailed review of some research streams.
We first review papers related to the separate optimization of either traffic flows (i.e. TTP
and TRP) or maintenance works. We then focus on the papers related the integration of
railway operations management problems. We also cite some papers on the application of
multi-objective optimization to railway problems. The section concludes with a discussion
of what needs to be addressed in the problem studied in this paper.

TTP and TRP are well treated topics in current and past literatures. Periodic and
non-periodic TTPs have been introduced, respectively, by Serafini and Ukovich [52] and
Szpigel [55]. The extensive survey papers of Fang et al. [15], Hansen and Pachl [23]
and Lusby et al. [35] (Cacchiani et al. [4, 5, 6]) review more recent works on the TRP
(TTP). Among the recent TRP literature, we mention two main streams of research: a
tactical version of the TRP (see, e.g., [27, 37, 38, 39, 51]) and an operational version of
the TRP (see, e.g., [12, 13, 46, 49, 50]). In the tactical level, the TRP includes robustness
and stability considerations (see, e.g. [7, 21, 37, 46]) in order to prevent that traffic
disturbances make the plans infeasible in practice. In the operational level, the TRP
deals with the creation of feasible plans in presence of traffic disturbances. In both levels,
several contributions investigate the potential benefits of train routing flexibility (see, e.g.,
[9, 40, 43]). Our work can be viewed as a tactical TRP approach with flexible routing.

Maintenance planning is also a well-studied problem in the literature. Lee and Cha
[28], Lin et al. [33], Gustavsson et al. [22], Manzini et al. [36] Wang et al. [57] and
Pargar et al. [42] provide recent and comprehensive analysis of the literature related,
respectively, to preventive maintenance policies, preventive maintenance for deteriorating
complex repairable systems, preventive maintenance of system components, scheduling
preventive maintenance in a production environment with complex machines, classifica-
tions of maintenance strategies, grouping for preventive maintenance scheduling. In the
railway context, Lidén [30] recognized that few works have been published about how to
schedule train traffic and railway maintenance jointly. Previous papers mostly focus on
optimizing the maintenance aspect while trains are dispatched in a later stage. However,
there is an increasing need to optimize the coordination of train traffic and maintenance
activities in order to improve the quality of services and to reduce the railway operat-
ing costs. Coordination methods have to be evaluated in an integrated framework that
considers the objectives of the different optimization problems.

A few papers have been found regarding the coordination of train scheduling and
infrastructure maintenance in the literature. Budai et al. [2] highlight the importance
of developing decision support tools, for infrastructure maintenance planners, that are
able to suggest optimal schedules of maintenance works. To this aim, they propose a
mathematical programming formulation for clustering of maintenance activities on the
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same link in a network in order to reduce the disturbance of railway traffic. However, the
railway traffic is not directly modeled in their formulation. Peng et al. [44] propose a time-
space network model and include some constraints about how maintenance works impacts
on railway operations while solving a preventive maintenance scheduling problem. Peng et
al. [45] extend their previous approach in order to solve a large-scale rail inspection routing
and scheduling problem. Forsgren et al. [16] develop a MIP model that reschedules trains
such that the impact on traffic flows is as much limited as possible. An original timetable
is given as well as a fixed set of track possessions. Vansteenwegen et al. [56] propose an
algorithm with the ability to reschedule the train timing and routing decisions for a given
schedule of maintenance activities. Albrecht et al. [1] address the problem of developing
good quality timetables in which both train movements and scheduled track maintenance
activities are simultaneously considered. The approach is shown to be applicable as
an operational tool to generate feasible train schedules when disruption occurs. Lidén
and Joborn [31] minimize maintenance costs and traffic limitations when dimensioning
maintenance windows. However, there is no planned timetable to be-revised, i.e. the
timetable is unknown.

Recently, Luan et al. [34] present a first attempt to insert rail maintenance constraints
in the train scheduling formulation of [37]. However, the objective function proposed in
[34] only addresses train scheduling decisions, disregarding the optimization of mainte-
nance schedules. There are other works on integrated problems but they study different
levels of integration. For example, Corman et al. [8] and Dollevoet et al. [13] integrate
the schedules related to trains and passengers and optimize both the train schedules and
the transfer connections; Giacco et al. [19] and Lai et al. [26] investigate how to improve
the integration between rolling stock circulation and maintenance planning.

From the above discussion of the literature, there are a few approaches dealing with
the integration of train scheduling and maintenance planning, since the two problems
have different modeling characteristics in terms of constraints and objective functions (we
assume that planning and scheduling are referring to the same problem, and use them
interchangeably in what follows, for the sole purpose of ensuring clarity). Furthermore,
their modeling requires to deal with uncertainties related to both types of operations.
The problem of planning trains is subject to rescheduling actions in case of disturbances
due to delays of some trains plus differences between planned and realized maintenance
works. As a result, the robustness and stability of the traffic flows, i.e. the impact of
stochastic phenomena to the actual decisions and their performance, need to be studied
in an integrated framework.

Another issue to be addressed is related to the usual assumptions made for planning
the maintenance activities. While in most of the reviewed literature the combination of
maintenance activities is pre-defined at each site, an advanced approach should be able to
compute an optimal timing of the maintenance activities. Furthermore, the simultaneous
problem of planning trains and scheduling maintenance activities on common resources,
at any time scope, requires to deal with competing objectives.

Some recent literature focuses on multi-objective optimization for the management
of public transport operations (see, e.g., weighted-sum method for a collaborative opti-
mization of train stop planning and train scheduling [60], weighted-sum and ε-constraint
methods for optimal railway capacity allocation [3], bi-objective conflict detection and res-
olution approaches for scheduling trains and transfer connections [10], ε-constraint and
distance-based methods for a multi-objective and multi-track train scheduling problem
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[20], constraint generation procedures to optimize multiple objectives in terminal control
area air traffic management [48, 47], compromise approaches to minimize passenger travel
time and energy consumption [58, 59, 62] or to minimize passenger delays and train oper-
ating costs [61] in busy metro lines). However, there is no previous work that investigates
the bi-objective integrated optimization problem addressed in this paper.

3 Problem description

The problem studied in this paper can be defined as follows. Given a railway network, a
set of planned arrival and departure times of the trains at stations, a set of maintenance
activities at some network locations, a time horizon of traffic prediction, the problem
is to find an optimal integrated schedule that simultaneously determines the traffic flow
and maintenance related aspects. In more detail, the traffic flow aspects are related to
scheduling and routing trains, while the maintenance aspects are related to timing these
aspects. Clearly, the two aspects are interrelated, since train operations and maintenance
activities ask for the same infrastructure resources during the same time horizon.

3.1 Traffic and maintenance

We assume that the rail network is given at a microscopic level of representation, i.e. at
the level of block sections. The timetable information on scheduled arrival and departure
times of the trains comes from earlier planning phases. Similarly, maintenance activities
and their sequencing are given, at the tactical planning level studied in this paper. Instead,
the definition of a detailed traffic flow, a detailed maintenance plan and their integration
are the variables of the studied problem. From a temporal point of view, this tactical
problem has to be solved a few days or weeks before the operational day.

We now introduce the technical terms used in this paper. A node is a specific physical
point of the network. For example, it can be used to specify the start or end of a block
section, a point of convergence or divergence of two or more tracks, a stopping location at a
station platform (where a train is allowed to embark/disembark passengers, or to perform
loading/unloading of goods). Two nodes are connected by a cell, which is therefore by
definition limited between a node i and a node j. A cell is often referred as a block section
in the literature, thus cell and block section are synonymous. A cell allows the passage of
a train at a time, which means implicitly that the capacity of a block section is one.

Based on the above definitions, we refer to a network as a set of sequences of nodes
and cells. A route in the network is a subset of subsequent cells from a so-called origin
node to a so-called destination node assigned to a train. Each train has one origin and
one destination node, but multiple alternative routes from origin to destination. All the
routes of each train have the same origin and destination node. A planned departure time
(earliest start time) and planned arrival time (due date time) are respectively defined
for the origin and destination nodes. We refer to a planned dwell time as the time a
train spends on a station cell without moving. A planned travel time is the time required
by a train to travel on a cell. For each train, the timetable defines a minimum dwell
time at each station cell and a minimum travel time at each cell. However, in presence
of disturbances, planned departure and arrival times of the trains can be delayed, while
travel and dwell times of trains can be larger than the planned values.
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The maintenance activities need to be carried out on maintenance areas, that are spe-
cific cells of the network. Each cell of a maintenance area requires the same maintenance
volume, i.e. the sum of the processing times of all the maintenance works on that cell.
Cells belonging to different maintenance areas may require different maintenance volumes.

In each maintenance area, we assume that maintenance works have a given duration
and cannot be carried out simultaneously due to a limited availability of resources. They
have to be performed in a pre-defined processing order. However, an optimal process-
ing order between train operations and maintenance works is unknown and needs to be
computed for each area. Beyond classic TRP constraints , we thus need to detect and
solve conflicting requests of the same cells by different train operations and maintenance
works. Specific capacity constraints are required to model occupation and release times of
each cell. We introduce these constraints via the computation of safety time intervals, or
safety headways, between pairs of consecutive trains, or pairs of consecutive maintenance
works, or mixed pairs of train operations and maintenance works. All train operations
and maintenance works have to be carried out within a given time horizon.

As regards the performance indicators to be optimized, we consider train traffic flow
aspects as well as maintenance related aspects. Since the nominal timetable requires
adjustments in an uncertain environment, the goal of our tactical approach to the TRP is
to minimize the positive and negative deviations from the nominal timetable. Regarding
the maintenance aspect, we aim at pairing as many as possible maintenance works in
each area. Two works are paired if they are processed one immediately after the other.
Pairing maintenance works can be considered as a process of establishing possession of
the appropriate length. This kind of objective function has been recognized to generate
substantial benefits ([2], [31], [32], [42]).

Figure 1 presents an illustrative example regarding the interaction between train
scheduling and routing decisions and the allocation of a maintenance work on the main-
tenance area. The example considers two trains traversing the network in opposite di-
rections. Train 1 travels from right to left and can use two routes: route 1 includes the
cell requiring maintenance works, while route 2 is partially overlapping with the route
assigned to train 2. The latter train travels from left to right via the assigned route.

Figure 1: Example of interaction between traffic and maintenance scheduling

Four solutions are possible for the example of Figure 1. Solution A (B): Train 1 uses
route 1 and the maintenance work is scheduled before (after) train 1 occupies the cell.
Solution C (D): Train 1 is rerouted via route 2 and is scheduled before (after) Train 2. The
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selection of a solution clearly depends on the importance given to the different objectives
and to the level of routing flexibility adopted regarding the management of traffic flows.

3.2 Stochastic and uncertain dynamics

At the tactical level followed in this study, we have some limited knowledge of traffic and
maintenance operations, and we should include the fact that both processes may perform
different than the plan. This is achieved by considering small perturbations of process
times in a stochastic modeling environment. The variability of process times is applied
to the travel times of trains and to the duration of maintenance works. We assume that
the former times can vary in a considerably smaller window of values compared to the
latter times, since typically there is more uncertainty related to the railway infrastructure
maintenance. The stochastic environment is modeled by defining a set of scenarios: a
nominal scenario, i.e. the process times are exactly as in the nominal timetable and there
is no uncertainty regarding their values, and some disturbed scenarios, where the process
times can be equal, larger or shorter than planned in the nominal timetable, depending
on a given variance and a specified probability distribution that we assume Gaussian.

We assess the quality of the solutions computed in this way by considering the weighted
average over all scenarios, in a similar way to Corman et al. [7]. The proposed indicators
are related to the objective function of the train scheduling aspect of the problem, and to
the objective function of the infrastructure maintenance aspect. We optimize the train-
related and maintenance-related indicators for each stochastic scenario and compute the
average variability of the objective functions (which can be seen as measure of robustness
of the performance indicators).

For the disturbed scenarios, we can also look at the variability of the train routing
variables (which can be seen as a measure of stability of the solution). This basically
determines a stochastic problem where the re-routing decisions kept fixed are a first stage
of a stochastic programming, and where the other variables define the second stage. We
focus on re-routing as this is one of the strongest actions that can be taken in an opera-
tional perspective, and it is not very often performed during rail operations; and moreover
because a route decision would allow much more substantial room in the network when
maintenance works have to be performed on adjacent tracks, compared to other typical
operational actions such as re-sequencing and re-timing, which would then be the second-
stage decisions (for instance, following approaches based on D’Ariano et al. [12]). In
particular, we use routing stability constraints (as in Meng et al. [37]), forcing trains to
keep the same route in all disturbed scenarios.

4 Problem formulation

This section describes the mathematical programming formulation that is proposed in
this paper for the integrated problem. We next summarize the main assumptions that
characterize the formulation:

• The network is divided into a set of block sections and stations. In each station, we
consider up to two alternative tracks, a main and a secondary track for each train.

• Each block section or station track (i.e. a cell) can host at most one train or one
maintenance work at a time.
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• In each maintenance area, the maintenance works follow a pre-defined order of
processing.

• All trains are of the same type and we do not consider prioritization of train se-
quencing and routing decisions.

• The occupation time, release time, and safety time intervals are modeled at a macro-
scopic level, i.e. the granularity of train traffic flow representation is in minutes.

• The duration of maintenance works is also modeled at a macroscopic level.

• The travel times of each train are computed for a given speed profile. This can be
specific for the train. However, we do not consider adjustments of the travel times
due to re-sequencing decisions, causing unscheduled waiting times (which would
be performed in an operational perspective). In order words, we do not consider
possible modifications of train speed profiles when computing scheduling solutions.

• Trains can pass through a station or have a scheduled stop. However, we measure
the deviation from the nominal timetable only at the exit of each train from the
network. Furthermore, trains have a planned arrival time at their destination and
a planned departure time from their origin.

• We consider a minimum and maximum dwell time for each train on each cell.

• All operations must start after a given start time Ts = 0 and must be completed
within a given end time Te = T .

The input data can be grouped in the following sets: V is the set of nodes and E is
the set of cells of the infrastructure, F is the set of trains, B is the set of maintenance
areas, P(i,j) is the set of maintenance works on cell (i, j) ∈ E, and S is the set of random
scenarios. A detailed list of the input parameters of the formulation and related subscripts
is reported in Tables 14 and 15 of Appendix A.

All the modeled train traffic flows and infrastructure maintenance activities must be
completed within a given time horizon T . The possible routes for a train f ∈ F are given
as a set Ef of cells and a set Vf of nodes that the train is allowed to use. Each train f has a
traveling direction δf in the network. For instance, if train f drives through (i, j) and train
f

′
drives through (j, i), they will travel on the same cell, but in opposite directions. This

situation requires to introduce δf in order to model some capacity constraints correctly.
The origin and destination nodes of f are respectively Of and Df . Planned times to
get in and out the network for train f are ESTf and PCTf . For each train, a planned
(minimum) travel time FTf(i, j, s) is given to traverse (travel on) cell (i, j) under scenario
s ∈ S. Minimum and maximum dwell times are also defined for train f on cell (i, j)
under scenario s. wmin

f (i, j, s) and wmax
f (i, j, s) are the minimum and maximum dwell

time values allowed for a train on cell (i, j). In practise, the travel and dwell times can be
subject to random variations depending on the scenario s and its occurrence probability
Prs.

We have to consider the following safety time intervals: hf(i, j) is required between
the occupation end of train f from cell (i, j) and the release of cell (i, j); gf (i, j) is
required between the preparation of cell (i, j) and the occupation start of train f on cell
(i, j); mhp(i, j) is required before/after the processing of the maintenance work p ∈ P(i,j).
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Therefore, gf (i, j) and hf (i, j) represent time periods required for safety reasons. In more
detail, a cell (i, j) is released hf(i, j) time units after the occupation end of train f, while
a cell (i, j) needs to be ready for processing gf (i, j) time units before the occupation start
of train f. Regarding the maintenance works, mhp(i, j) represents the time units required
for the pre-processing [post-processing] of a cell (i, j) in case the work p is executed after
[before] a train operation. Furthermore, we assume that the time period required for the
pre-processing [post-processing] of a cell is null in case the work p is executed after [before]
another work.

Figure 2: Safety time intervals between two trains f and f
′
and a maintenance work p

Figure 2 shows an illustrative example of the safety time intervals for two consecutive
trains f and f

′
traveling on a cell (i, j) in the same traveling direction. After train f

′
, a

maintenance work p is performed. All the required safety time intervals are shown both
for the two consecutive trains and between f

′
and p.

Each maintenance area b ∈ B is made by Eb cells and requires a maintenance volume
Hb to be carried out within a given time horizon T for the completion of all the activities.
The latter value represents the maintenance works to be carried out within T on each cell
in Eb. Each maintenance work p on a cell (i, j) has a pre-defined duration MTp(i, j, s) for
scenario s.

The formulation of the integrated problem presents the following decision variables:

Traffic aspect : Timing, sequencing and routing variables for modeling the trains in the
network. Specifically, the timing variables of a train f are related to its entrance,
exit, planned travel and dwell times on each cell.

Maintenance aspect : Timing and pairing variables for modeling the maintenance
works. Specifically, the timing variables of a maintenance work are related to its
start and end of processing on each cell, while the pairing variables are used to mea-
sure whether two consecutive maintenance works are processed one immediately
after the other one.

Integration aspect : Sequencing variables between maintenance works and trains for
modeling their integration. These variables are required in order to schedule both
the traffic and maintenance aspects on common cells.

The decision variables are specified in Table 1.

4.1 Objective functions

The integrated problem requires to optimize the view point of competing entities: the
dispatchers of the train traffic flows and the managers of the maintenance activities are
asking for the same infrastructure resources in overlapping time periods.
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We model the objective function of the dispatchers as the minimization of the total
deviation from the nominal timetable. The total deviation is defined for all trains as the
absolute difference between the actual arrival time and the planned arrival time at their
destination node. This objective function can be formulated as follows:

min f1 = min
∑

s∈S

[Prs

∑

f∈F

∑

i:(i,Df)∈Ef

| df (i,Df , s) − PCTf |] (1)

We surrogate the infrastructure managers’ objective as the maximization of the num-
ber of paired works, since the maintenance works should be performed in as little time
as possible in order to save personnel and tool costs. The number of paired works is
defined for all maintenance areas as the number of consecutive maintenance works that
are processed one immediately after the other. This objective function can be formulated
as follows:

max f2 = max
∑

s∈S

[Prs

∑

b∈B

∑

(i,j)∈Eb

∑

p=2,...,|P(i,j)|

yp(i, j, s)] (2)

For both the objective functions, we consider all scenarios according to their proba-
bility of occurrence.

Symbol Description
xf(i, j, s) Binary variable for train routing. xf (i, j, s) = 1, if cell (i, j) is chosen

for train f under scenario s. Otherwise, xf(i, j, s) = 0.
o(f, f

′
, i, j, s) Binary variable for train sequencing. o(f, f

′
, i, j, s) = 1 if train f travels

from i to j and is scheduled before train f
′
(traveling in any direction)

on cell (i, j) under scenario s. Otherwise, o(f, f
′
, i, j, s) = 0.

o(f, f
′
, j, i, s) Binary variable for train sequencing. o(f, f

′
, j, i, s) = 1 if train f travels

from j to i and is scheduled before train f
′
(traveling in any direction)

on cell (j, i) under scenario s. Otherwise, o(f, f
′
, j, i, s) = 0.

af(i, j, s) Integer variable for the entrance time of f on cell (i, j) under scenario
s.

df (i, j, s) Integer variable for the exit time of f from cell (i, j) under scenario s.
tf(i, j, s) Integer variable for the sum of planned travel and dwell times of f on

cell (i, j) under scenario s.
lp(f, i, j, s) Binary variable for sequencing maintenance works and trains.

lp(f, i, j, s) = 1, if train f is scheduled after execution of work p on
cell (i, j) or (j, i) under scenario s. Otherwise, lp(f, i, j, s) = 0.

yp(i, j, s) Binary variable for pairing maintenance works. yp(i, j, s) = 1, if main-
tenance works p−1 and p are processed one immediately after the other
one on cell (i, j) under scenario s. Otherwise, yp(i, j, s) = 0.

ap(i, j, s) Integer variable for the start time of maintenance work p on cell (i, j)
under scenario s.

dp(i, j, s) Integer variable for the end time of maintenance work p on cell (i, j)
under scenario s.

Table 1: List of decision variables
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4.2 Constraints

This section describes the constraints of the integrated problem. For clarity reasons, they
are grouped into nine sets, concerning specific constraints regarding the studied problem.
We next explain them set by set. The constraints are defined for all scenarios.

Set I: Flow balance constraints.

• Flow balance constraints at the origin nodes:
∑

j:(Of ,j)∈Ef

xf(Of , j, s) = 1 ∀f ∈ F,∀s ∈ S (3)

• Flow balance constraints at intermediate nodes:
∑

i:(i,j)∈Ef

xf (i, j, s) =
∑

k:(j,k)∈Ef

xf (j, k, s) ∀f ∈ F,∀j ∈ Vf\{Of ,Df},∀s ∈ S

(4)

• Flow balance constraints at the destination nodes:
∑

i:(i,Df)∈Ef

xf(i,Df , s) = 1 ∀f ∈ F,∀s ∈ S (5)

In set I, constraints (3) and (5) ensure that each train f occupies exactly one cell
that starts from the origin node of f and one cell that ends in the destination node of f .
Constraints (4) ensure that if a train f occupies a cell that ends in an intermediate node
j, then train f must also occupy a cell that starts from node j.

Set II: Time-space network constraints.

• Entrance time constraints at the origin nodes:

af(Of , j, s) ≥ ESTf xf (Of , j, s) ∀f ∈ F,∀j : (Of , j) ∈ Ef ,∀s ∈ S (6)

• Cell-to-cell transition constraints:
∑

i:(i,j)∈Ef

df (i, j, s) =
∑

k:(j,k)∈Ef

af(j, k, s) ∀f ∈ F,∀j ∈ Vf\{Of ,Df},∀s ∈ S (7)

• Mapping constraints between time-space network and physical network:

xf(i, j, s) − 1 ≤ af(i, j, s) ≤ xf(i, j, s)M ∀f ∈ F, (i, j) ∈ Ef ,∀s ∈ S (8)

xf (i, j, s)− 1 ≤ df (i, j, s) ≤ xf(i, j, s)M ∀f ∈ F, (i, j) ∈ Ef ,∀s ∈ S (9)

In set II, constraints (6) specify that the routing of each train must start from its
origin node after its earliest start time. Constraints (7) ensure that the exit time of each
train from a cell (i, j) must coincide with the entrance time of the train in the following
cell (j, k). Clearly, the end node of cell (i, j) must be equal to the star node of cell (j, k),
i.e. the intermediate node j. Constraints (8) and (9) allow that the arrival and departure
times of each train f are larger than zero only on the cells traversed by the selected route.

Set III: Travel and dwell time constraints.

14



• Entrance and exit time constraints:

tf (i, j, s) = df (i, j, s)− af(i, j, s) ∀f ∈ F, (i, j) ∈ Ef ,∀s ∈ S (10)

• Minimum and maximum dwell time constraints:

tf(i, j, s) ≥ [wmin
f (i, j, s) + FTf(i, j, s)] xf(i, j, s) ∀f ∈ F,∀(i, j) ∈ Ef ,∀s ∈ S

(11)
tf (i, j, s) ≤ [wmax

f (i, j, s) + FTf(i, j, s)] xf (i, j, s) ∀f ∈ F,∀(i, j) ∈ Ef ,∀s ∈ S
(12)

In set III, constraints (10) specify that the sum of travel and dwell times of each train
f on a cell (i, j) must be equal to the difference between the exit time and the entrance
time of f on (i, j). Constraints (11) and (12) specify that the travel and dwell times of
each train f on a cell (i, j) must be equal or larger (smaller) than its planned travel time
plus its minimum (maximum) planned dwell time. Specifically, the difference between
the minimum and maximum planned dwell times is larger than zero, only if there is a
scheduled stop in the timetable for train f on cell (i, j).

Set IV: Mapping constraints between train sequencing and routing.

xf(i, j, s) + xf
′(i, j, s) − 1 ≤ o(f, f

′
, i, j, s) + o(f

′
, f, i, j, s) ≤ 3 − xf (i, j, s)− xf

′ (i, j, s)

∀f, f
′ ∈ F : f 6= f

′
, δf = δf ′ ; ∀(i, j) ∈ Ef ∩ Ef ′ ; ∀s ∈ S

(13)

xf(i, j, s) + xf
′(j, i, s) − 1 ≤ o(f, f

′
, i, j, s) + o(f

′
, f, i, j, s) ≤ 3 − xf (i, j, s)− xf

′ (j, i, s)

∀f, f
′ ∈ F : f 6= f

′
, δf 6= δf ′ ; ∀i, j ∈ V : (i, j) ∈ Ef ∧ (j, i) ∈ Ef ′ ;∀s ∈ S

(14)

o(f, f
′
, i, j, s) ≤ xf (i, j, s)

∀f, f
′ ∈ F : f 6= f

′
, δf = δf

′ ;∀(i, j) ∈ Ef ∩ Ef
′ ;∀s ∈ S

(15)

o(f, f
′
, i, j, s) ≤ xf ′ (i, j, s)

∀f, f
′ ∈ F : f 6= f

′
, δf = δf

′ ;∀(i, j) ∈ Ef ∩ Ef
′ ;∀s ∈ S

(16)

o(f, f
′
, i, j, s) ≤ xf (i, j, s)

∀f, f
′ ∈ F : f 6= f

′
, δf 6= δf

′ ;∀i, j ∈ V : (i, j) ∈ Ef ∧ (j, i) ∈ Ef
′ ;∀s ∈ S

(17)

o(f, f
′
, i, j, s) ≤ xf (j, i, s)

∀f, f
′ ∈ F : f 6= f

′
, δf 6= δf ′ ;∀i, j ∈ V : (i, j) ∈ Ef ∧ (j, i) ∈ Ef ′ ;∀s ∈ S

(18)

For set IV, constraints (13) and (14) specify how an ordering decision between two
trains f and f

′
on the same cell (i, j) or (j, i) is modeled, respectively when f and f

′

travel in the same direction (δf = δf
′) or opposite directions (δf 6= δf

′ ). Specifically,

if f preceeds f
′
, the binary variables related to train sequencing decisions are as fol-

lows: o(f, f
′
, i, j, s) = 1 and o(f

′
, f, i, j, s) = 0. Alternatively, o(f, f

′
, i, j, s) = 0 and
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o(f
′
, f, i, j, s) = 1. Therefore, both in constraints (13) and (14), the sum of the ordering

variables must be equal to 1 when an ordering decision is taken on cell (i, j) between trains
f and f

′
. However, this type of constraints must be activated only when both trains f

and f
′
use the same cell, i.e. both the route of train f and the route of train f

′
contain

cell (i, j). Table 2 shows how constraints (13) work in detail. The first column shows the
case in which a train sequencing decision must be activated between trains f and f

′
, i.e.

when both routing variables of f and f
′
are equal to 1. The other two columns represent

the case in which at least one of the two trains does not use cell (i, j). Constraints (14)
work similarly.

Constraint xf(i, j, s) = 1 ∧ xf (i, j, s) = 0 ∨ xf(i, j, s) = 0 ∧
Bounding xf ′(i, j, s) = 1 xf ′ (i, j, s) = 0 xf ′(i, j, s) = 0

Left bound 1 0 -1
Right bound 1 2 3

Table 2: Values for the left and right bounds of constraints (13)

Constraints (15), (16), (17) and (18) complete the mapping between the train sequenc-
ing variables and the train routing variables, i.e. the cell occupation variables. This is
achieved by specifying, in all cases, that the value of an ordering variable between trains
f and f

′
can never be larger than the value of the routing variables of trains f and f

′
.

In other words, train f can be scheduled first or after than train f
′
on a cell (i, j) only if

both trains f and f
′
use that cell.

Set V: Capacity constraints between trains.

af
′ (i, j, s) + [3 − xf(i, j, s) − xf

′(i, j, s) − o(f, f
′
, i, j, s)]M ≥ df (i, j, s) + gf

′ (i, j) + hf(i, j)

∀f, f
′ ∈ F : f 6= f

′
, δf = δf ′ ;∀(i, j) ∈ Ef ∩ Ef ′ ;∀s ∈ S

(19)

af(i, j, s) + [3 − xf(i, j, s) − xf
′(i, j, s) − o(f

′
, f, i, j, s)]M ≥ df

′ (i, j, s) + gf (i, j) + hf
′ (i, j)

∀f, f
′ ∈ F : f 6= f

′
, δf = δf ′ ;∀(i, j) ∈ Ef ∩ Ef ′ ;∀s ∈ S

(20)

af
′ (j, i, s) + [3 − xf(i, j, s) − xf

′(j, i, s) − o(f, f
′
, i, j, s)]M ≥ df (i, j, s) + gf

′ (j, i) + hf (i, j)

∀f, f
′ ∈ F : f 6= f

′
, δf 6= δf ′ ;∀i, j ∈ V : (i, j) ∈ Ef ∧ (j, i) ∈ Ef ′ ;∀s ∈ S

(21)

af(i, j, s) + [3 − xf(i, j, s) − xf
′(j, i, s) − o(f, f

′
, i, j, s)]M ≥ df

′ (j, i, s) + gf (i, j) + hf
′ (j, i)

∀f, f
′ ∈ F : f 6= f

′
, δf 6= δf

′ ;∀i, j ∈ V : (i, j) ∈ Ef ∧ (j, i) ∈ Ef
′ ;∀s ∈ S

(22)

Sets V represent a set of typical safety constraints for the management of traffic flows.
The aim is to impose a minimum safety time interval between two consecutive trains f
and f

′
on a cell (i, j), as shown in Figure 2. Specifically, constraints (19) [constraints

(20)] model the case in which f preceeds f
′
[f

′
preceeds f ] and the two trains travel on

the cell (i, j) in the same direction (δf = δf ′ ). This type of constraints is activated when
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the variables xf (i, j, s), xf
′ (i, j, s) and o(f, f

′
, i, j, s) are equal to one, i.e. the big-M value

disappears from the constraint. The activation means that the entrance time af
′(i, j, s) of

f
′
on cell (i, j) must be equal or greater than the exit time df (i, j, s) of f from cell (i, j)

plus the safety time interval hf (i, j) required by f to release the cell and the safety time
interval gf

′ (i, j) required by f
′
to be ready to start its occupation of the cell. Similarly,

constraints (21) and (22) model the minimum safety time intervals required between two
trains traveling on cell (i, j) in opposite directions (δf 6= δf

′).
Set VI introduces the capacity constraints required to model the minimum safety time

interval between a train f and a maintenance work p on the same cell (i, j). We assume
that a fictitious direction is assigned to each work p on each cell (i, j), and all works are
processed according the same direction. We distinguish the case in which f is performed
in the same direction of p, as modeled by constraints (23) and (24), and the case in which
f and p are performed in opposite directions, as modeled by constraints (25) and (26).

Constraints (23) [constraints (24)] model the case in which p is scheduled before f
[f is scheduled before p] on cell (i, j) and the following minimum safety time interval is
required: the entrance time af (i, j, s) of f [the start time ap(i, j, s) of p] on cell (i, j) must
be equal or greater than the end time dp(i, j, s) of p [the exit time df (i, j, s) of f ] on cell
(i, j) plus the safety time interval mhp(i, j) required after [before] the processing of the
maintenance work p and the safety time interval gf (i, j) [hf(i, j)] required by f to be
ready to start its occupation of the cell [to release the cell].

Set VI: Capacity constraints between trains and maintenance works.

af (i, j, s) + [2 − xf(i, j, s) − lp(f, i, j, s)]M ≥ dp(i, j, s) + mhp(i, j) + gf (i, j)

∀f ∈ F,∀b ∈ B,∀(i, j) ∈ Ef ∩ Eb,∀p ∈ P(i,j),∀s ∈ S
(23)

ap(i, j, s) + lp(f, i, j, s)M ≥ df (i, j, s) + [mhp(i, j) + hf(i, j)]xf(i, j, s)

∀f ∈ F,∀b ∈ B,∀(i, j) ∈ Ef ∩ Eb,∀p ∈ P(i,j),∀s ∈ S
(24)

af(j, i, s) + [2 − xf (j, i, s)− lp(f, i, j, s)]M ≥ dp(i, j, s) + mhp(i, j) + gf (j, i)

∀f ∈ F,∀b ∈ B,∀(i, j) : (j, i) ∈ Ef ∧ (i, j) ∈ Eb,∀p ∈ P(i,j),∀s ∈ S
(25)

ap(i, j, s) + lp(f, i, j, s)M ≥ df (j, i, s) + [mhp(i, j) + hf (j, i)]xf(j, i, s)

∀f ∈ F,∀b ∈ B,∀(i, j) : (j, i) ∈ Ef ∧ (i, j) ∈ Eb,∀p ∈ P(i,j),∀s ∈ S
(26)

Variables Constraints (23) Constraints (24)

lp(f, i, j, s) = 1
xf(i, j, s) = 1 activated not activated
xf(i, j, s) = 0 not activated not activated

lp(f, i, j, s) = 0
xf(i, j, s) = 1 not activated activated
xf(i, j, s) = 0 not activated not activated

Table 3: The activation cases regarding constraints (23) and (24)

Table 3 shows the cases in which constraints (23) and (24) are activated. A con-
straint (23) [constraint (24)] is activated when p preceeds f [f preceeds p] on cell (i, j),
i.e. lp(f, i, j, s) = 1 [lp(f, i, j, s) = 0], and a route is selected for f , i.e. xf (i, j, s) = 1.
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We note that if lp(f, i, j, s) = 0 and xf(i, j, s) = 0 then ap(i, j, s) ≥ 0 (i.e. the corre-
sponding constraint (24) is not activated), since the corresponding constraint (9) enforces
df (i, j, s) ≤ 0.

Constraints (25) and (26) work in a similar way to constraints (23) and (24), except
for considering the case in which f and p are performed in opposite directions.

Set VII models some constraints related to the processing of the maintenance works
and their pairing in each maintenance area. Constraints (27) ensure that the start time
of a work on a cell is after the end time of the previous work (if any) on the same cell.
Constraints (28) ensure that the duration of a maintenance work is equal to the difference
between the start time and the end time of the work. Constraints (29) and (30) model the
possible pairing of two maintenance works on a cell. We recall that two works are paired
if and only if the end time of the previous work p − 1 on a cell (i, j) is equal to the start
time of the subsequent work p on the same cell under scenario s. The pairing is verified
by setting yp(i, j, s) = 1. In this case, the corresponding constraint (29) is activated,
while the corresponding constraint (30) is not activated. The case yp(i, j, s) = 0 activates
the corresponding constraint (30) and does not activate the corresponding constraint (29).

Set VII: Maintenance works constraints.

• Consecutive maintenance works:

ap(i, j, s) ≥ dp−1(i, j, s)

∀b ∈ B,∀(i, j) ∈ Eb,∀p ∈ P(i,j)\{1},∀s ∈ S
(27)

• Duration of the maintenance works:

MTp(i, j, s) = dp(i, j, s)− ap(i, j, s)

∀b ∈ B,∀(i, j) ∈ Eb,∀p ∈ P(i,j),∀s ∈ S
(28)

• Pairing of the maintenance works:

M [1 − yp(i, j, s)] ≥ ap(i, j, s) − dp−1(i, j, s)

∀b ∈ B,∀(i, j) ∈ Eb,∀p ∈ P(i,j)\{1},∀s ∈ S
(29)

− Myp(i, j, s) ≤ ap(i, j, s) − dp−1(i, j, s) − 1

∀b ∈ B,∀(i, j) ∈ Eb,∀p ∈ P(i,j)\{1},∀s ∈ S
(30)

Set VIII represents the deadline constraints related to the time horizon T . Constraints
(31) model the maximum (allowed) end time for each maintenance work, while constraints
(32) model the maximum (allowed) time for each train to exit from the network.

Set VIII: Deadline constraints.

• Maintenance work completion:

dp(i, j, s) ≤ T ∀b ∈ B,∀(i, j) ∈ Eb,∀p ∈ P(i,j),∀s ∈ S (31)

• Train exit time from the network:

df (i,Df , s) ≤ T ∀f ∈ F,∀s ∈ S (32)

18



Set IX models the routing stability constraints. These constraints enforce that the
route selected for each train in the nominal scenario s = 1 is applied to all the other
|S| − 1 scenarios. In this way, each train keeps the same route among the |S| scenarios.

Set IX: Routing stability constraints.

xf(i, j, s) = xf(i, j, s − 1) ∀f ∈ F,∀(i, j) ∈ Ef ,∀s ∈ S\{1} (33)

4.3 Weighted-sum formulation

This section presents a first method to combine the two objective functions of the inte-
grated problem. We propose a formulation based on a revised version of the weighted-sum
method, in which both the objective functions are directly optimized proportionally to the
assigned weights. This is achieved by means of two input parameters α1 and α2 defined
by the decision maker. The following three conditions hold: α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1.

Figure 3 reports the main steps of the weighted-sum method proposed in this work. We
recall that f1 and f2 are the objective functions of the dispatchers and of the infrastructure
managers. We let f∗

1 (f∗
2 ) be the value of the optimal solution of the integrated problem

with min f1 (min f2). Also, we let f
′
1 (f

′
2) be the value of the performance indicator f1

(f2) for the optimal solution of the integrated problem with the weighted-sum method,
i.e. with the objective function minZ.

Weighted-sum method
Input: α1, α2

Begin
Step 1: min f1 subject to constraints (3)−(33), and set β1 = f∗

1

Step 2: max f2 subject to constraints (3)−(33), and set β2 = f∗
2

Step 3: set γ1 = α1/β1, γ2 = α2/β2, Z = γ1f1 − γ2f2

Step 4: min Z subject to constraints (3)−(33)
Step 5: Return the pair (f

′
1, f

′
2)

end

Figure 3: Sketch of the weighted-sum method

The proposed weighted-sum method is based on five steps: the first two steps are
required for the computation of f∗

1 and f∗
2 ; the third step normalizes the values α1 and α2

and sets the function Z to be minimized; the fourth and fifth steps compute and return
the values f

′
1 and f

′
2. The decision maker can vary the values α1 and α2 and repeat steps

3−5 in order to search for new compromise solutions, giving greater relevance to either
the traffic or the maintenance aspect.

We observe that the weighted-sum method identifies a non-dominated solution by
giving weights to the objective functions. However, this method requires the investigation
of numerous values of the parameters α1 and α2 for the identification of the Pareto frontier,
since it is difficult to set α1 and α2 values in order to obtain a Pareto-optimal solution in
a desired region of the objective space.
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4.4 ε-constraint formulation

This section describes an alternative method for the computation of non-dominated so-
lutions. We propose an iterative procedure based on the ε-constraint method. At each
iteration, we solve a single-objective formulation for the integrated problem, in which
one performance indicator is directly optimized in the objective function, while the other
performance indicator is indirectly optimized via the insertion of an additional bound
constraint in the single-objective formulation.

Figure 4 explains the main steps of the interactive procedure. At each iteration i, the
values f∗

1 (i) and f∗
2 (i) are computed as for the weighted-sum method. In addition, we let

f
′′
2 (i) be the value of the performance indicator f2 regarding the optimal solution of the

integrated problem with min f1 at iteration i.

ε-constraint method
Begin
Step 1: set i = 1
Step 2: min f1 subject to constraints (3)−(33), and set β1 = f∗

1 (i), ϕ2 = f
′′
2 (i)

Step 3: max f2 subject to constraints (3)−(33), and set β2 = f∗
2 (i)

Step 4: insert the pair (β1, ϕ2) in the set of solution values Φ
Step 5: while (ϕ2 < β2) do

Begin
set i ++
min f1 subject to constraints (3)−(33) plus constraint: f2 > ϕ2

set β1 = f∗
1 (i), ϕ2 = f

′′
2 (i)

insert the pair (β1, ϕ2) in the set of solution values Φ
end

Step 6: return the non-dominated pairs from the set Φ
end

Figure 4: Sketch of the ε-constraint method

The proposed ε-constraint method is based on six steps: step one is the initialization
of a counter of the number of iterations; steps two and three are identical to the first
two steps of the weighted-sum method; step four inserts the solution computed in step
1 (in terms of the values of the two performance indicators) in a set Φ; step five is the
iterative phase of the procedure that solves a new formulation with the addition of a
bound constraint, stores this solution in Φ, and updates the iteration counter; step six
filters the solutions in Φ and returns the non-dominated solutions.

5 Computational experiments

This section presents computational results on a realistic test case based on the benchmark
instances proposed for the INFORMS RAS 2012 Competition [24]. The instances are
extended in order to deal with the constraints and objectives of the integrated problem.
The experiments are performed on a computer with processor Intel Xeon (3.4 GHz) and
32 GB Ram. We used Windows 7 and IBM-ILOG-CPLEX MILP solver 12.7.
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Section 5.1 describes the test case and the data used for the generation of the in-
stances. Section 5.2 gives a set of preliminary results in order to assess the computational
performance of the solver for various types of instances. Section 5.3 presents a first round
of experiments with a deterministic setting of the integrated problem. The bi-objective
problem is studied by comparing the results obtained for the weighted-sum and the ε-
constraint methods in terms of Pareto-optimal solutions. Section 5.4 shows the results
obtained for a second round of experiments with a stochastic problem setting. We in-
vestigate the robustness of the solutions computed with constraints regarding stability of
control actions, i.e. constraints (33), providing a quantitative assessment on the impact
of uncertainty towards the performance of the models (robustness and stability).

5.1 Test case description

The computational experiments are proposed for a realistic test case based on an adap-
tation of the railway data introduced for the INFORMS RAS 2012 Competition [24]. We
next describe the network, maintenance and traffic flow data.

Network data: Figure 5 shows the railway network that consists of 84 nodes and 81
cells, i.e. |V | = 84 and |E| = 81. The network is partially single-track (main 0 ) and
partially double-track (main 1 plus main 2 ). There are four sidings (one siding) for train
re-routing on the single-track (double-track).

Figure 5: The studied railway network

Maintenance data: Figure 5 also reports the maintenance areas (Maintenance of Way,
MOW ) of the network. We have two maintenance areas, i.e. |B| = 2, and six maintenance
works to be performed on some cells of each area, i.e. |P(i,j)| = 6. Each maintenance work
lasts 25 minutes, i.e. MTp(i, j, 1) = 25. It follows that the each area requires 150 minutes
of maintenance works, i.e. Hb = 150.

Traffic flow data: Each train traversing the network of Figure 5 has the following
routing alternatives. The odd-numbered trains travel from left to right, with the option
to change their routing in the first, third and/or fourth siding. The even-numbered trains
travel from right to left, with the option of change their routing in the second and/or fifth
siding. The travel time of each train in each cell varies between 0 and 6 minutes. The
dwell times are set equal to 0. The safety time intervals are set as follows: gf (i, j) = 0,
hf (i, j) = 3 minutes, mhp(i, j) = 2 minutes.
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5.2 Computation time versus instance size

In this section, the solver is assessed when varying the number of trains, i.e. between 2 and
20 trains, to be scheduled in the network. We assume that the traffic is not disturbed.
Table 4 presents the following quantitative information on the tested instances: train
routing (xf(i, j, s)), train sequencing (o(f, f ′, i, j, s)), sequencing of maintenance works
and trains (lp(f, i, j, s)), pairing of maintenance works (yp(i, j, s)).

Type of Variable xf(i, j, s) o(f, f ′, i, j, s) lp(f, i, j, s) yp(i, j, s)
2-train case 122 488 72 36
4-train case 244 1952 144 36
6-train case 366 4392 216 36
8-train case 488 7808 288 36
10-train case 610 12200 360 36
12-train case 732 17568 432 36
14-train case 854 23912 504 36
16-train case 976 31232 576 36
18-train case 1098 39528 648 36
20-train case 1220 48800 720 36

Table 4: Key binary variables for the investigated instances

The computational assessment is reported on Figure 6 and is based on two indicators:
one related to the time required to find the best known solution (grey curves), and another
one related to the time to proof optimality (black curves). Both indicators are reported
in seconds, and we give up to one hour of computation time to the solver. Specifically,
Figure 6 shows six plots: case a (c) [e] one routing is fixed for each train and the model
optimizes f1 (f2) [f1 and f2]; case b (d) [f ] each train has a flexible routing (i.e. routing
alternatives) and the model optimizes f1 (f2) [f1 and f2]. For e and f cases, the two
performance indicators have equal weight and the resulting bi-objective problem is solved
with the weighted-sum method.

From the results of Figure 6, we conclude that the solver can easily solve the c and d
cases, since the maintenance-related variables are much less compared to the train-related
variables, and it is thus simple searching for an optimal solution for the former variables.
When optimizing the train-related variables, the problem is still easy to solve for the a
case, while it becomes difficult for the b case when dealing with a large number of trains.
This is due to the train-related variables that exponentially increase when alternative
routings are available for each train. The most complicated cases are e and f , since the
bi-objective problem is harder to solve than the single-objective problems. In Sections 5.3
and 5.4, further experiments will be performed on the instances with 10 trains that (in
the undisturbed case) are solved to optimality in a quite modest computation time.
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Figure 6: Time to find the best solution (in grey) and to proof optimality (in black)
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5.3 Search for Pareto-optimal solutions

This sections studies the bi-objective problem for the instance (Table 4) with |F | = 10
trains and T = 520 minutes of time horizon, both in case of fixed train routing (Tables 5
and 6) and flexible train routing (Tables 7 and 8). We compare the results obtained by
the weighted-sum (Tables 5 and 7) and ε-constraint (Tables 6 and 8) methods.

For the case with fixed train routing, Table 5 shows the computation time (in sec-
onds) required by the weighted-sum method when varying α1 and the value of f1 and
f2 indicators. In total, we tested several dozen settings of α1 but we only obtained five
non-dominated solutions for α1 = 0.95, 0.8, 0.5, 0.37, 0.2 (as reported in bold in Table 5).

Table 6 presents the results obtained by the ε-constraint method in case of fixed train
routing. For each iteration, we report similar information as in Table 5. In 19 iterations,
this method identified nine non-dominated solutions (as reported in bold in Table 6).
Figures 11 and 12 of Appendix D show the non-dominated solutions obtained at iteration
10 (with the best value of f1) and iteration 19 (with the best value of f2) of Table 6.

For the case with flexible train routing, we tested several settings of α1 for the weighted-
sum method. However, the solver reached most of the times the given time limit of
computation (i.e. one hour). Table 7 only reports three cases: the two extreme values (α1

equal to 0 and 1) and an intermediate value (α1 = 0.5, reported in bold) corresponding
to a non-dominated solution.

Table 8 presents the results obtained by the ε-constraint method in case of flexible train
routing. For this method, the time limit of computation is never reached. In 22 iterations,
it identified six non-dominated solutions (as reported in bold in Table 8). Figures 13 and
14 of Appendix D show the non-dominated solutions obtained at iteration 17 (with the
best value of f1) and iteration 22 (with the best value of f2) of Table 8.

Overall, we have the following observations: the ε-constraint method outperforms the
weighted-sum method in terms of number of non-dominated solutions. Furthermore, the
instances generated by the ε-constraint method are easier to solve, since this method
treats the bi-objective problem as an iterative single-objective optimization problem.
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α1 Comp. Time (sec) f1 f2

1 30.69 350 8
0.95 234.24 350 21
0.8 204.22 351 22
0.5 364.94 355 23
0.37 773.22 392 25
0.2 222.34 548 30
0 13.84 1212 30

Table 5: Weighted-sum method for the case with 10 trains and fixed routing

Iteration Comp. Time (sec) f1 f2

1 30.69 350 8
2 36.64 350 12
3 34.52 350 14
4 35.70 350 15
5 50.78 350 16
6 53.92 350 17
7 46.33 350 18
8 42.98 350 19
9 46.58 350 20
10 60.73 350 21
11 1602.86 351 22
12 117.92 355 23
13 341.27 374 24
14 339.08 392 25
15 2100.51 520 26
16 636.97 520 27
17 272.19 524 28
18 113.66 532 29
19 42.52 548 30

Table 6: ε-constraint method for the case with 10 trains and fixed routing
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α Comp. Time (sec) f1 f2

1 76.89 168 5
0.5 436.00 168 25
0 27.80 1178 30

Table 7: Weighted-sum method for the case with 10 trains and flexible routing

Iteration Comp. Time (sec) f1 f2

1 76.89 168 5
2 47.81 168 10
3 90.58 168 11
4 72.16 168 12
5 203.80 168 13
6 257.69 168 14
7 65.48 168 15
8 68.70 168 16
9 67.88 168 17
10 112.61 168 18
11 97.53 168 19
12 102.81 168 20
13 364.47 168 21
14 135.59 168 22
15 575.86 168 23
16 1420.92 168 24
17 631.14 168 25
18 2701.30 352 26
19 2014.53 376 27
20 1805.11 394 28
21 2648.55 418 29
22 315.81 449 30

Table 8: ε-constraint method for the case with 10 trains and flexible routing
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5.4 Impact of uncertainty towards stability and robustness

This section presents computational results on the stochastic modeling environment of
Section 3.2.

We recall that a set of scenarios is considered, around a nominal case where mainte-
nance and train traffic follow the plan, combined with some disturbed case studies. In
the latter case studies, the maintenance and train traffic follow the nominal duration, but
some (known) trains have a starting (known) delay. Those case studies are as follows:

Disturbed case study I. The two trains i and j with the smallest planned (earliest)
entrance (start) time are delayed by 100 minutes, i.e. EST ′

i = ESTi + 100 and
EST ′

j = ESTj + 100.

Disturbed case study II. The two trains i and j with the smallest planned (earliest)
entrance (start) time are delayed by 100 minutes, i.e. EST ′

i = ESTi + 100 and
EST ′

j = ESTj + 100. The two trains h and k with the largest planned (earliest)
entrance (start) time are anticipated by 100 minutes, i.e. EST ′

h = ESTh − 100 and
EST ′

k = ESTk − 100.

The scenario set is instead constructed as follows. It considers a Nominal (labelled No)
scenario and scenarios with longer or shorter length of process times (labelled Pessimistic
(Pe) or Optimistic (Op), respectively), for both maintenance and train traffic. The latter
scenarios have the following characteristics:

Traffic flows. The travel time of trains is disturbed on the basis of a Gaussian distribution.
For each train, a negative (positive) variation of the travel time in the No scenario
is randomly chosen in a time window: [-10%, 0%] ([0%, +10%]).

Maintenance works. The duration of works is disturbed on the basis of a Gaussian
distribution. A negative (positive) variation of their duration in the No scenario is
randomly chosen in a time window: [-30%, 0%] ([0%, +30%]).

In case study I the disturbed works are related to the maintenance area (MOW)
involving nodes 21–28, while in case study II the disturbed works are related to both
maintenance areas. We consider for all cases |F | = 10 trains, T = 520 minutes of time
horizon and routing flexibility.

Table 9 summarizes the characteristics of train traffic flows and maintenance works
regarding the two disturbed case studies (I and II) investigated in this section.

Case Study Delayed Trains Disturbed Travel Times Disturbed Works
I First 2 All Trains (No, Pe, Opt) Nodes 21–28
II First 2 and Last 2 All Trains (No, Pe, Opt) Nodes 21–28 and 48–54

Table 9: Key characteristics of the disturbed case studies

Tables 10 and 11 (12 and 13) present the best known solutions computed by the solver
within 3 hours for case study I (II). In order to consider both objective functions with
equal weight, we use the weighted-sum method of Figure 3 with α1 = α2 = 0.5.

In Tables 10 and 12 (Tables 11 and 13), we consider the following probabilities for the
three scenarios: PrNo = 0.33 (0.7), PrPe = 0.33 (0.15), and PrOp = 0.33 (0.15).
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Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 380 24 506 24 100 100 305 25 100 100
Constr.(33) Off 366 25 486 24 97 70 298 25 99 90

Table 10: Case Study I: Results for PrNo = 0.33, PrPe = 0.33, PrOp = 0.33

Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 366 24 586 24 100 100 301 24 100 100
Constr.(33) Off 366 25 490 23 96 60 304 25 99 90

Table 11: Case Study I: Results for PrNo = 0.7, PrPe = 0.15, PrOp = 0.15

The measured variability of f1 and f2 values between the nominal and evaluated
scenarios is considered a measure of robustness for what concerns the objective function.
Moreover, we also investigate the variability of the decision variables , by inserting or not
the stability constraints for routing, i.e. constraints (33) On or constraints (33) Off, in
Pe and Op scenarios.

The routing stability Stab.1 (Stab.2 ) is measured, in percentage, as the number of
times that each train is assigned to the same resources of its nominal route (respectively,
to the whole of its nominal route) in the evaluated scenarios.

We, moreover, consider different relative probabilities for the scenarios, which vary
from 75% nominal to a case in which all scenarios are equiprobable (i.e. 33% for nominal,
33% for a pessimistic case, 33% for an optimistic case).

From the results in Tables 10 and 11, we have the following observations:

• Constraints (33) On/Off : Setting train routing flexibility between the different
scenarios (i.e., removing constraints (33) from the formulation) is often beneficial
in terms of f1 and f2 values. The advantage is more evident in Table 10, where f1

values always improve and f2 values never deteriorate. However, using train routing
flexibility generates instability, that we measure in terms of deterioration of Stab.1
and Stab.2 values. The instability is the largest for the Pe scenario of Table 11.

• No/Pe/Op scenarios: Comparing the performance improvement when constraints
(33) are off versus on, the No scenario improves in terms of both f1 and f2 values
(Table 10), while the Pe and Op scenarios improve either f1 or f2 value.

• Probability of occurrence: The equiprobability setting (Table 10) is always equal or
better (in terms of both f1 and f2 values) than the other setting (Table 11) when
constraints (33) are off, while this is not the case when constraints (33) are on.

Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 419 24 677 23 100 100 265 25 100 100
Constr.(33) Off 366 24 623 23 97 80 259 25 98 80

Table 12: Case Study II: Results for PrNo = 0.33, PrPe = 0.33, PrOp = 0.33
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Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 384 24 689 23 100 100 294 24 100 100
Constr.(33) Off 366 24 681 23 96 70 287 25 98 80

Table 13: Case Study II: Results for PrNo = 0.7, PrPe = 0.15, PrOp = 0.15

From the results in Tables 12 and 13, we have the following observations:

• Constraints (33) On/Off : Train routing flexibility is always beneficial in terms of
f1 values. Sometimes it also improves the f2 value. As for the previous case study,
using train routing flexibility deteriorates the Stab.1 and Stab.2 values.

• No/Pe/Op scenarios: Comparing the performance improvement when constraints
(33) are off versus on, the three scenarios always improve the f1 value. The Op
scenario of Table 13 also improves the f2 value.

• Probability of occurrence: When constraints (33) are off, equiprobability (Table 12)
presents a larger improvement of f1 compared to the other setting. However, PrNo

= 0.7 (Table 13) helps to better minimize f1 for No when constraints (33) are on.
Regarding f2, equiprobability is always equal or better than the other setting.

6 Conclusions and further research

This paper investigates mathematical models and methods for managing a bi-objective
problem of practical interest for railway managers who have to deal with the integration
of train traffic flow and maintenance work decisions. To address this problem, we present
a mathematical model in which the railway infrastructure is modeled at a microscopic
level of detail. State-of-the-art train scheduling approaches are used as a basis for the
model proposed in this paper. The novel modeling features are related to constraints and
objective functions for the integration of train and maintenance schedules.

Computational experiments on the INFORMS RAS Competition 2012 [24] instances
show that the proposed methodology can be used to identify Pareto-optimal solutions,
to investigate the potential benefits of using train routing flexibility in order to optimize
train-related and maintenance-related objectives, to quantify the impact of routing sta-
bility in case of various stochastic disturbance scenarios, and to find a trade-off between
indicators of solution stability and robustness to the disturbance scenarios.

Future work should address a number of research directions. Even more detailed
mathematical formulations of both train traffic flow and maintenance process could be
investigated. Problem-dedicated algorithms and solution methods could be developed in
order to handle even more detailed mathematical formulations and to further improve the
management of practical instances with more trains and complex railway infrastructures,
which might include also temporary speed restrictions or need for global rerouting or
cancellation of train services due to disruptions.
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Appendix A. List of notations

Symbol Description
i, j, k Node index, i, j, k ∈ V . V is the set of nodes.
e Cell index, e = (i, j) ∈ E. E is the set of cells.
f Train index, f ∈ F . F is the set of trains. Vf (Ef) are the nodes (cells)

used by train f .
b Maintenance area index, b ∈ B. B is the set of maintenance areas.
p Maintenance work index, p ∈ P(i,j). P(i,j) is the set of works on (i, j).
s Scenario index, s ∈ S. S is the set of random scenarios.

Table 14: List of subscripts for input parameters

Symbol Description
T Time horizon for the completion of all the activities.
δf Direction of traveling of train f.
Of Origin node of train f.
Df Destination node of train f.
ESTf Planned (earliest) entrance (start) time of train f at its origin node.
PCTf Planned (due) arrival (completion) time of f at its destination node.
hf (i, j) Safety time interval between the occupation end of train f from cell

(i, j) and the release of cell (i, j).
gf (i, j) Safety time interval between the preparation of cell (i, j) and the occu-

pation start of train f on cell (i, j).
mhp(i, j) Safety time interval required before/after the processing of the mainte-

nance work p on cell (i, j).
Prs Occurrence probability of scenario s.
wmin

f (i, j, s) Minimum dwell time of train f on cell (i, j) under scenario s.
wmax

f (i, j, s) Maximum dwell time of train f on cell (i, j) under scenario s.
FTf(i, j, s) Planned travel time of f to traverse cell (i, j) under scenario s.
MTp(i, j, s) Duration of maintenance work p on cell (i, j) under scenario s.
Eb Set of cells of maintenance area b.
Hb Maintenance volume to be carried out on each area b.
M A number sufficiently larger than T .

Table 15: List of other input parameters
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Appendix B. Example: Pareto-optimal solutions

A numerical example illustrates the methods proposed for the computation of Pareto-
optimal solutions. We consider a deterministic setting of the formulations with a single
(nominal) scenario |S| = 1. Also, we assign a particular route to each train.

Figure 7: The network, the maintenance area and the trains of the example

Figure 7 shows the railway network that is composed of |V | = 17 nodes and |E| = 19
cells. The cell (11, 12) is subject to maintenance activities. Four trains (|F | = 4) are
traversing the network and the route assigned to each train (named 1, 2, 3, or 4) is
illustrated in Figure 7. The time horizon for the completion of all the maintenance works
in the maintenance area and for the exit of all trains from the network is set as 75 time
units (|T | = 75).

The example considers a maintenance area (|B| = 1) and three maintenance works
to be performed on cell (11, 12) (|P(11,12)| = 3). Each maintenance work is performed
on the same maintenance cell (b = 1) and lasts 10 time units (MTp(11, 12, 1) = 10 with
p = 1, 2, 3). Therefore, the maintenance volume on the maintenance area is 30 (H1 = 30).

Table 16 provides the planned entrance time ESTf at the origin node, the planned
arrival time PCTf at the destination node, and the traveling direction δf of each train f .

Train 1 2 3 4
ESTf 2 12 30 35
PCTf 30 50 60 79

δf 1 2 1 2

Table 16: Input parameters for the four trains

Table 17 reports the planned travel time of each train f to traverse each cell of the
network under the nominal scenario s = 1. For the sake of simplicity, we assume that all
trains have the same planned travel time in each cell. The safety time intervals are set as
follows: gf (i, j) = 0, hf (i, j) = 3, mhp(i, j) = 2.

Cells of the railway network FTf(i, j, 1)
(1,2)(3,4)(5,6)(8,9)(11,12)(12,15)(12,13)(16,17) 1

(3,6)(4,5)(7,8)(7,10)(10,11)(13,14)(14,15) 2
(2,3)(6,7)(9,10)(15,16) 3

Table 17: Planned travel time in each cell for the nominal scenario s = 1
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Table 18 gives the size of key binary variables for: train routing (xf (i, j, s)), train se-
quencing (o(f, f ′, i, j, s)), sequencing of maintenance works and trains (lp(f, i, j, s)), pair-
ing of maintenance works (yp(i, j, s)).

Type of Variable xf(i, j, s) o(f, f ′, i, j, s) lp(f, i, j, s) yp(i, j, s)
Number of Variables 50 608 12 3

Table 18: Size of the problem instance in terms of key binary variables

Table 19 reports the optimal solutions for the weighted-sum method for 11 values of
the parameter α1 (α2 = 1−α1), while Table 20 the optimal solutions for the ε-constraint
method. The solutions are reported in terms of the value of performance indicators f1 and
f2. The latter method requires three iterations and computes a non-dominated solution
at each iteration, while the former method returns two non-dominated solutions only.

As a general remark, the weighted-sum method has the advantage to easily set the
importance of each performance indicator in the objective function, while it is difficult to
identify the set of non-dominated solutions by varying the value of parameters α1 and α2.

α1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
f1 17 17 17 17 17 29 29 29 29 29 35
f2 0 0 0 0 0 2 2 2 2 2 2

Table 19: Values of f1 e f2 for various settings of α1 in the weighted-sum method

Iteration 1 2 3
f1 17 23 29
f2 0 1 2

Table 20: Values of f1 e f2 for the various iterations of the ε-constraint method

Figures 8, 9 and 10 illustrate a time-space diagram for the non-dominated solutions
obtained at the first, second and third iterations of the ε-constraint method.
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Figure 8: Solution of the first iteration of the ε-constraint method

Figure 9: Solution of the second iteration of the ε-constraint method
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Figure 10: Solution of the third iteration of the ε-constraint method

Appendix C. Example: Robust versus stable solutions

The numerical example of Appendix B is generalized to the stochastic case with multiple
scenarios and with alternative routings available for each train. Under this setting, we
study the robustness of the nominal solution to random perturbations of the train travel
times and of the maintenance works. We also investigate the impact of the routing stability
constraints, i.e. constraints (33), for the stochastic scenarios.

The four trains of the example can traverse the network of Figure 7 by using all possible
combinations of routing alternatives. Specifically, each train has 8 routing alternatives,
since the network of the example includes 3 sidings and all the possible permutations.

Three scenarios (|S| = 3) are considered: the nominal (No) scenario of Appendix B
plus two other scenarios. The latter scenarios, named pessimistic (Pe) and optimistic
(Op), are generated as follows. The pessimistic (optimistic) scenario is obtained by in-
creasing (decreasing) by 10% the travel time of trains 1 and 2 (trains 3 and 4) compared to
the nominal scenario. In the pessimistic (optimistic) scenario, the processing time of the
maintenance works is also enlarged (reduced) by 30% compared to the nominal scenario.

Tables 21 and 22 present the optimal solutions computed for the formulation generated
by the weighted-sum method of Figure 3 with α1 = α2 = 0.5 (for this setting of α1 and α2

we have f∗
1 = 9 and f∗

2 = 2). In Table 21 (Table 22), we consider the following probabilities
for the three scenarios: PrNo = 0.33 (0.7) for the nominal, PrPe = 0.33 (0.15) for the
pessimistic and PrOp = 0.33 (0.15) for the optimistic. The three scenarios have thus equal
probability in Table 21, while in Table 22 a higher probability of occurrence is assigned
to the nominal scenario compared to the other two scenarios.

In Tables 21 and 22, the robustness of an optimal solution computed for a Pe/Op
scenario is measured as the variability of the value of performance indicators f1 and f2

between the nominal and the evaluated scenario. The routing stability Stab.1 (Stab.2 ) is
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measured, in percentage, as the number of times that each train is assigned to the same
resources of its nominal route (to its nominal route) in Pe and Op scenarios. Clearly, the
routing stability of a scenario is 100% when constraints (33) are enforced.

Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 15 1 18 1 100 100 17 1 100 100
Constr.(33) Off 9 1 9 1 43 25 10 1 45 0

Table 21: Results for PrNo = 0.33, PrPe = 0.33, PrOp = 0.33

Stoch. Scenarios Nominal (No) Pessimistic (Pe) Optimistic (Op)
Perf. Indicators f1 f2 f1 f2 Stab.1 Stab.2 f1 f2 Stab.1 Stab.2
Constr.(33) On 9 1 31 1 100 100 20 1 100 100
Constr.(33) Off 9 1 10 1 22 0 13 1 46 0

Table 22: Results for PrNo = 0.7, PrPe = 0.15, PrOp = 0.15

From the results of Tables 21 and 22, we have the following observations: better results
are often achieved for f1 (while f2 does not vary in this example) when a scenario has a
higher probability of occurrence; the solutions are more robust in case of equal probability;
a trade-off exists between the performance robustness and the solution stability.

Appendix D. Optimal timetables

This appendix presents the time-space diagrams regarding four non-dominated solutions
for the case study described in Section 5.3.

• Figure 11: iteration 10 (f1 = 350, f2 = 21) of Table 6 (with fixed routing);

• Figure 12: iteration 19 (f1 = 548, f2 = 30) of Table 6 (with fixed routing);

• Figure 13: iteration 17 (f1 = 168, f2 = 25) of Table 8 (with flexible routing);

• Figure 14: iteration 22 (f1 = 449, f2 = 30) of Table 8 (with flexible routing).

From the solutions reported in the four figures, we have the following observations.
Assessing the solutions in terms of the number of pairings of maintenance works, the
f2-gap is more evident when the train routing is fixed, i.e. Figure 11 versus Figure 12.
Assessing the solutions in terms of the total deviation of all trains from the nominal
timetable, the f1-gap is more evident when the train routing is flexible, i.e. Figure 13
versus Figure 14. The different trend obtained for the two performance indicators is
due to the fact that train routing flexibility offers additional alternatives to reduce train
deviations from the nominal timetable (i.e. a better f1 minimization), even if the number
of alternatives reduces when f2 is set equal to the best possible value. Furthermore, train
routing flexibility also helps to compute a more compact train schedule and, therefore,
to increase the number of pairings of maintenance works (i.e. a better f2 maximization).
The latter result is evident when comparing Figure 11 with Figure 13.
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