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A B S T R A C T

This paper proposes an approach to linguistic multiple attribute group decision making (MAGDM) problem with
single-valued neutrosophic 2-tuple linguistic (SVN2TL) assessment information by adding a subjective imprecise
estimation of reliability of the 2-tuple linguistic terms (2TLTs). SVN2TL includes the truth-membership (TM),
indeterminacy-membership (IM) and faulty-membership (FM), which can express the incomplete, indeterminate
and inconsistent information perfectly and avoid information and precision losing in aggregation process ideally.
We first propose the concept of SVN2TL set (SVN2TLS) and single valued neutrosophic 2-tuple linguistic element
(SVN2TLE), basic operational rules on SVN2TLEs via Hamacher triangular norms, and ranking method for
SVN2TLEs. Then, some SVN2TL aggregation operators including SVN2TL Hamacher weighted averaging
(SVN2TLHWA) operator, SVN2TL Hamacher geometric weighted averaging (SVN2TLHGWA) operator, are de-
veloped, their some properties are investigated as well. Moreover, we apply new operators to develop approach
to MAGDM problem with SVN2TL assessment information, where a model for optimal weighting vector is
constructed. Finally, an numerical example related to evaluation of emergency response solutions for sustainable
community development is provided to show the utility and effectiveness of the method described in this paper.
A sensitivity and comparative analysis are also conducted to demonstrate the strength and practicality of the
proposed method.

1. Introduction

Multiple attribute group decision making (MAGDM) is an important
and hot topic in modern decision fields. Since Zadeh (1965) proposed
the fuzzy set (FS) theory, researches on FS have made a large number of
achievements in many fields, including intelligent fuzzy control (Filip &
Szeidert, 2016; Mendel & Wu, 2010), decision support system (Gong,
Xu, Li, & Xu, 2015; Gong, Zhang, Forrest, Li, & Xu, 2015; Merigó, Gil-
Lafuente, & Martorell, 2012) and so on. However, one of the short-
comings of FS is that it only reflects the degree of membership, but dose
not take the degree of non-membership into consideration. Therefore,
as an extension of FS, Atanassov (1986) introduced the intuitionistic
fuzzy set (IFS), which can effectively make up the shortcomings of FS by
adding a non-membership. Although FS and IFS have been successfully
applied and improved, they are not capable of dealing with each sort of
special cases under fuzzy condition in practical matters. For instance, in
daily life, people prefer to express their evaluation by linguistic term

sets (LTSs), terms like ‘very bad’, ‘somewhat bad’, ‘good’ and so on
instead of numeric values or FS and IFS, thus, LTSs are effective when
dealing with complex or ill-defined situations.

When it comes to representation models of LTSs, the most fre-
quently-used three main methods for computing with words (CWW) are
as follows: (1) Models based on transformation functions, where there is
a one-to-one correspondence between fuzzy numbers and LTSs, such as
triangular fuzzy number, trapezoidal fuzzy number and so on (Delgado,
Herrera, Herrera-Viedma, & Martinez, 1998; Jiang, Fan, & Ma, 2008;
Zadeh, 1975); (2) Models based on the linguistic symbolic representa-
tion, which compute words with the index of linguistic labels directly
(Merigó, Casanovas, & Palacios-Marqus, 2014; Xu, Merigó, & Wang,
2012); (3) Models based on 2-tuple symbolic representation (Merigó &
Gil-Lafuente, 2013; Wu et al., 2015; Xu & Wang, 2011), which trans-
form linguistic information into consecutive 2-tuple linguistic terms
(2TLTs). For the former two methods, the evaluated LTSs are discrete,
so the calculation results may not meet the initial LTSs, which could
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cause loss of details and information. While the 2-tuple linguistic re-
presentation proposed by Herrera and Martínez (2000a, 2000b), has
exact characteristic in expressing any counting of information in the
universe of discourse, information distortion and losing in the linguistic
information processing can be solved satisfactorily, thus it has been
widely used in many domains and gotten favorable performance in the
past few years (Dong & Herrera-Viedma, 2015; Dong, Li, & Herrera,
2016; Gong, Forrest, & Yang, 2013; Martínez & Herrera, 2012; Tao,
Chen, Zhou, & Liu, 2014; Wang, Wang, Zhang, & Chen, 2016; Zhang,
Xu, & Wang, 2016).

Nevertheless, in fact, when we use LTs or 2TLTs to express our
preference, it is impliedly consented that the truth-membership (TM)
associated with the LTs or 2TLTs is 1, while the faulty-membership
(FM) associated with it is unclear. In order to conquer this deficiency,
more and more researchers turn their attention to the combination of
linguistic representation models and some specific FSs. For instance, the
intuitionistic linguistic sets (ILSs), proposed by Wang and Li (2009), can
be seen as the combination of LTSs and IFS. Chen, Liu, and Pei (2015)
proposed linguistic intuitionistic fuzzy numbers (LIFNs) by integrating
linguistic models and IFSs. The linguistic truth-valued intuitionistic
fuzzy sets (LTVIFSs) (Zou, Wen, & Wang, 2016), in which the LTVIFS is
based on the point view of IFS and linguistic truth-valued lattice im-
plication algebra.

For ILS, there still exists a defect that it can’t settle some incomplete
or inconsistent information in practical problems. For instance, in as-
sessment of emergency response solutions for sustainable community
development, suppose that one DM states his/her assessment on the
attribute of rescuing capacity is ‘good’, moreover, he/she estimates that
the possibility of that his/her judge is right is about 70%, the possibility
of that his/her judge is false is about 40%, the possibility of that his/her
judge is unsure is about 30%. This issue can’t be directly disposed by
means of FSs or IFSs. Therefore, new theory and method need to be
presented. To deal with this particular type of problem, Smarandache
(Smarandache, 1999) originally proposed the neutrosophic set (NS) by
adding an independent indeterminacy-membership (IM) on the basis of
IFS, which can be seen as a generalization of FS, IFS and so on. The NS
consists of three parts of memberships including the TM, the FM and the
IM, among which the three variables are completely independent. In
fact, the NS comes from the point of philosophical view, thus it is dif-
ficult to put it into practical scientific and engineering operations. To
overcome the complication mentioned above, several subclasses of NSs
have been put forward over the years, and it has become an interesting
and popular research subject. The single-valued neutrosophic set
(SVNS), proposed by Wang, Smarandache, Zhang, and Sunderraman
(2010), is a specific subclass of the NS which changes the condition to
that ∈T x I x F x( ), ( ), ( ) [0,1] and ⩽ + + ⩽T x I x F x0 ( ) ( ) ( ) 3. What we
can observe from the SVNS is that it gives us an additional possibility to
represent imprecise, incomplete and inconsistent information which
exists in real world. By this way, it would be more reasonable in
handling with indeterminate and inconsistent information. Since then,
other subclasses of NSs such as interval neutrosophic sets (INSs) (Wang,
Smarandache, Zhang, & Sunderraman, 2005), neutrosophic soft set
(Deli & Broumi, 2015), single-valued neutrosophic linguistic set
(SVNLS) and other NSs (Broumi & Deli, 2016; Broumi & Smarandache,
2014; Deli, 2017; Ji, Wang, & Zhang, 2016; Liang, Wang, & Li, 2016;
Liu & Wang, 2014; Li, Zhang, & Wang, 2017; Peng, Wang, Wang,
Zhang, & Chen, 2016; Tian, Wang, Wang, & Zhang, 2017; Tian, Wang,
Zhang, & Wang, 2016; Tian, Zhang, Wang, Wang, & Chen, 2016; Ye,
2013, 2014a, 2015a, 2015b, 2017a) have been investigated by many
researchers.

The solution for linguistic decision problems usually includes three
steps: (1) Selecting suitable LTS; (2) Choosing appropriate aggregation
technique; (3) Obtaining the best alternative(s). With the fact that step
(2) plays a key role in information fusion, therefore, researches on
linguistic aggregation operators under NS environment have been re-
ceiving more attention. For example, Liu and Shi (2017) proposed the

neutrosophic uncertain linguistic number improved generalized
weighted Heronian mean (NULNIGWHM) operator. Wang, Yang, and Li
(2016) extended a series of Maclaurin symmetric mean aggregation
techniques under single-valued neutrosophic linguistic environment
and applied them for solving MCDM problems. Tian, Wang, Zhang,
Chen, and Wang (2015) proposed a MCDM approach based on the
simplified neutrosophic linguistic normalized weighted Bonferroni
mean (SNLNWBM) operator. Ma, Wang, Wang, and Wu (2017) devel-
oped some prioritized harmonic mean operators in an interval neu-
trosophic linguistic environment and applied them to a practical med-
ical treatment selection problem. Ye (2014b) defined two aggregation
operators for interval neutrosophic uncertain linguistic information and
applied them to solve MAGDM problems.

All aforementioned aggregation operators rely on the simple
handling of subscripts of LTs in the linguistic part, and the NSs part are
mainly based on the Algebraic t-norm and t-conorm. It is noted that the
operational laws defined in the linguistic part are not closed and fail to
process original information. Drawbacks on granularity and logical
problems for existing operation laws are verified as follows:

(1) Granularity problem: All operations are carried out directly on the
basis of the subscripts of LTs. In fact, operational rules mentioned
above are defined on a given LTS, while the calculated results
would go out of the original LTS. For example, Let = …H h h h{ , , , }0 1 6
be a LTS, = 〈 〉a h ,(0.3,0.5,0.2)1 4 and = 〈 〉a h ,(0.6,0.2,0.2)2 5 be two
single-valued neutrosophic linguistic numbers (SVNLNs). According
to the operational rules defined in Ye (2014b), we can obtain

⊕ = 〈 〉a a h ,(0.72,0.1,0.04)1 2 9 and ⊗ = 〈 〉a a h ,(0.18,0.6,0.36)1 2 20 , it is
obvious that the LTs h9 and h20 exceed the range of H;

(2) Logical problem: On one hand, for a LTS = …H h h h{ , , , }0 1 6 , the
addition identifies a new LTS with g2 LTs, while the corresponding
number of LTs on multiplication operation is g2. In other words, we
need to use different granularity standards to give the assessment of
LTs; on the other hand, the linear operations cannot reflect the non-
linearity of logical thinking.

To overcome these drawbacks, aggregation operators based on the
Archimedean t-norms and t-conorms have been developed over the last
decades. Xia, Xu, and Zhu (2012) extended some intuitionistic fuzzy
aggregation operators based on Archimedean t-conorm and t-norm.
Qin, Liu, and Pedrycz (2016) developed a family of hesitant fuzzy ag-
gregation operators with the help of Frank t-conorm and t-norm. Garg
(2016) constructed a number of generalized intuitionistic fuzzy inter-
active geometric interaction operators using Einstein t-norm and t-
conorm. Peng, Wang, Wu, and Tian (2017) proposed the hesitant in-
tuitionistic fuzzy weighted averaging operator and the hesitant in-
tuitionistic fuzzy power weighted averaging operator based on the Ar-
chimedean t-norms and t-conorms. Tan, Yi, and Chen (2015)
introduced some new operational rules of hesitant fuzzy sets based on
the Hamacher t-norm and t-conorm, and then proposed a family of
hesitant fuzzy Hamacher operators.

As an important style of the Archimedean t-norm and t-conorm,
Hamacher t-norm and t-conorm (Hamacher, 1975) were used to con-
struct a number of fuzzy aggregation operators. The Hamacher t-norm
and t-conorm, which are interesting generalizations of Algebraic and
Einstein t-norms and t-conorms, are general and flexible family of
continuous triangular norms. Since the Hamacher t-norm and t-conorm
involve a certain parameter, this makes them more flexible in the
process of information fusion and more adequate to model practical
decision making problems. This indicates why Hamacher aggregation
operators are addressed in this paper.

There is also a certain point which needs to be highlighted, to the
best of our knowledge, there exists few literature dealing with neu-
trosophic 2-tuple linguistic set and neutrosophic 2-tuple linguistic ele-
ment, both of which are very important in practical decision applica-
tions. In order to express and deal with complex and imprecise
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linguistic assessment information, we define a new subclass of NSs,
single-valued neutrosophic 2-tuple linguistic sets (SVN2TLSs), which
can reflect uncertainty of DM and settle some incomplete or incon-
sistent information in practical problems perfectly. Meanwhile, we
notice that the operational rules defined for some subclasses of NSs are
not closed and may be irrational. Motivated by this fact, it becomes
beneficial to study a family of aggregation operators based on
Hamacher operations with regard to SVN2TL information and subse-
quently apply them to MAGDM problems. Those are the two strong
motivating factors behind the study reported in this paper.

At the same time, in practical MAGDM problem, the attribute
weights may be unknown. In this circumstance, we should determine
the attribute weights firstly. There are many methods for obtaining
attribute weights (Dong, Xiao, Zhang, & Wang, 2016; Jin, Ni, Chen, Li,
& Zhou, 2016; Tian, Wang, Wang, & Zhang, 2017; Xu & Da, 2010;
Yager, 1988; Zhou, Chen, & Liu, 2012), which can mainly be divided
into two categories: objective weighting methods (Dong et al., 2016; Jin
et al., 2016; Xu & Da, 2010; Yager, 1988) and subjective weighting
methods (Tian et al., 2017; Zhou et al., 2012). Objective weighting
methods are based on some mathematical models where DMs fail in
determining the relative importance of attributes, while subjective
weighting methods determine the weighting vector based on pre-
ferences of DMs. In this paper, an objective optimal weighting model
based on the maximizing deviation method is proposed to obtain the
effective and reliable weights of attributes. Finally, based on the
SVN2TL Hamacher operators and new model for the optimal weights,
we develop an approach for SVN2TL MAGDM problem.

To achieve above contents, the reminder of this paper is allocated as
follows. In Section 2, we briefly review some basic definitions and
notations including the 2-tuple linguistic representation model, SVNLSs
and the Hamacher t-norm and t-conorm. Section 3 proposes the concept
of SVN2TLS and Hamacher operational rules for SVN2TLEs, some
properties of proposed operational rules, such as the closure, commu-
tativity, associativity and so on, are also considered in this subsection.
Besides, a ranking method for SVN2TLEs related to four indexes is
proposed for comparison. The SVN2TLHWA and the SVN2TLHGWA
aggregation operators are put forward in Section 4, we also prove some
desirable properties and discuss some special cases. Section 5 proposes
a MAGDM method based on the new aggregation operators with
SVN2TLEs, where a new model for the optimal weights is proposed as
well. In Section 6, an example is provided to illustrate the efficiency of
the proposed method, and some previous methods are mentioned to
make comparisons with it. Section 7 gives some concluding remarks.

2. Preliminaries

This section succinctly introduces some basic concepts associated
with SVN2TLS, including the 2-tuple linguistic representation model,
the SVNLS and the Hamacher t-norm and t-conorm.

2.1. The 2-tuple linguistic representation model

Suppose that = …H h h h{ , , , }g0 1 is a pre-established finite and totally
ordered discrete term set with odd cardinalities, where = …h p g( 0,1, , )p
denotes the pth LT of H and represents a possible value for a linguistic
evaluation information, +g 1 is the cardinality of H and + ⩾g 1 0. H
satisfies the following characteristics:

(1) The set is ordered: ⩾h hp q if ⩾p q;
(2) There is a negation operator: =Neg h h( )p q, such that = −q g p;
(3) Maximum operator: =h h hmax{ , }p q p, if ⩾h hp q;
(4) Minimum operator: =h h hmin{ , }p q p, if ⩽h hp q.

To minimize the loss of linguistic information, the discrete LTS H

can be extended to a continuous linguistic label, such that
∈ = ∈h H h p g{ | [0, ]}p p . Just consider the opposite result, assume that

there exists an aggregation value ∈β g[0, ], but ∉ …β g{0,1, , }. To obtain
a better approximation for expressing the aggregation result β, a lin-
guistic representation model which represents the aggregation result β
by means of 2-tuples h α( , )p is defined as follows.

Definition 1 (Herrera and Martínez, 2000b). Suppose that
= …H h h h{ , , , }g0 1 is a pre-established finite and totally ordered discrete

LTS, ∈β g[0, ] is a number value representing the aggregation result of
linguistic symbolic. Then the function Δ identified to obtain the 2-tuple
linguistic representation that expresses information equivalent to β is
defined as:

→ × −g HΔ: [0, ] [ 0.5,0.5). (1)

= ⎧
⎨⎩

=
= − ∈ −

β h α with
h p round β
α β p α

Δ( ) ( , )
, ( )

, [ 0.5,0.5)p
p

(2)

where round (.) is the usual round operation. hp is the closest index label
to β and α is the value of the symbolic translation, h α( , )p is called a 2-
tuple linguistic term (2TLT)

Definition 2 (Herrera and Martínez, 2000b). Suppose that
= …H h h h{ , , , }g0 1 is a pre-established finite and totally ordered discrete

LTS and h α( , )p be a 2TLT. There always exists an inverse function −Δ 1 to
transform the 2TLT into its equivalent numerical value, ∈ ∈β g R[0, ] ,
where

× − →− H gΔ : [ 0.5,0.5) [0, ],1 (3)

= + =− h α p α βΔ ( , ) .p
1 (4)

Correspondingly, the additional characteristics of the 2TLTs can be
defined as follows:

(1) There is a negation operator: = − −Neg h α g h α(( , )) Δ( Δ ( , ))p p
1 ;

(2) Ranking method: Let h α( , )p p and h α( , )q q be two 2TLTs, then
(1) >− −h α h αΔ ( , ) Δ ( , )p p q q

1 1 , then h α( , )q q is smaller than h α( , )p p ;
(2) =− −h α h αΔ ( , ) Δ ( , )p p q q

1 1 , then h α( , )q q and h α( , )p p represent the
same information;

(3) <− −h α h αΔ ( , ) Δ ( , )p p q q
1 1 , then h α( , )p p is smaller than h α( , )q q .

2.2. The single-valued neutrosophic linguistic set

Definition 3 (Ye, 2015a). Let X be a space of points with a generic
element in X, denoted by x and H be a set of LTS. A SVNLS in X is
defined as:

= 〈 〉 ∈A x h T x I x F x x X{ ,[ ,( ( ), ( ), ( ))] | },θ x A A A( ) (5)

where ∈ ∈h H T x I x F x, ( ), ( ), ( ) [0,1]θ x A A A( ) , with the condition
⩽ + + ⩽T x I x F x0 ( ) ( ) ( ) 3A A A for any ∈x X . T x I x( ), ( )A A and F x( )A

represent the TM degree, the IM degree and the FM degree of the
element x in X, respectively.

For convenience, the quaternary 〈 〉h T x I x F x,( ( ), ( ), ( ))θ x A A A( ) is called a
single valued neutrosophic linguistic element and A can be viewed as
the collection of SVNLEs. Hence, the SVNLS can also be represented as:

= 〈 〉 ∈A h T x I x F x x X{ ,( ( ), ( ), ( )) | }.θ x A A A( ) (6)

Specially, if = =T x I x( ) 1, ( ) 0A A and =F x( ) 0A , then the SVNLE A
degenerates to a normal linguistic variable.

2.3. Hamacher t-norm and t-conorm

Since Zadeh first introduced the max and min operations, the
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triangular norms have been intensively studied (Garg, 2016; Peng et al.,
2017; Qin et al., 2016; Tan et al., 2015; Xia et al., 2012). Various tri-
angular norms and corresponding triangular conorms, such as product
t-norm and probabilistic sum t-conorm (Xia et al., 2012), Einstein t-
norm and t-conorm (Garg, 2016), Algebraic t-norm and t-conorm (Ye,
2017a), etc., are vehicles to operate on FSs.

Hamacher t-norm and t-conorm, as a generalized form of Algebraic
and Einstein triangular norms, are more general and flexible in prac-
tical operational rules.

The family ∈ ∞T( )λ
H

λ [0, ] of Hamacher t-norm is given by

=
+ − + −

⩾T x y xy
λ λ x y xy

λ( , )
(1 )( )

, 0.λ
H

(7)

The family ∈ ∞S( )λ
H

λ [0, ] of Hamacher t-conorm is given by

= + − − −
− −

⩾S x y x y xy λ xy
λ xy

λ( , ) (1 )
1 (1 )

, 0.λ
H

(8)

Some special cases of T x y( , )λ
H and S x y( , )λ

H are listed as follows:

(1) When =λ 0, the Hamacher t-norm and t-conorm reduce to the
Hamacher product and Hamacher sum, where:

=
+ −

T x y xy
x y xy

( , ) ,H
0 (9)

= + −
−

S x y x y xy
xy

( , ) 2
1

.H
0 (10)

(2) When =λ 1, the Hamacher t-norm and t-conorm reduce to the
Algebraic t-norm and t-conorm:

= =T x y T x y x y( , ) ( , ) · ,H
A1 (11)

= = + −S x y S x y x y x y( , ) ( , ) · .H
A1 (12)

(3) When , the Hamacher t-norm and t-conorm reduce to the Einstein t-
norm and t-conorm:

= =
+ − −

T x y T x y xy
x y

( , ) ( , )
1 (1 )(1 )

,H
E2 (13)

= = +
+

S x y S x y x y
xy

( , ) ( , )
1

.H
E2 (14)

3. The single-valued neutrosophic 2-tuple linguistic sets and
Hamacher operational rules of SVN2TLEs

This section introduces the advantages and applications of
SVN2TLS. Then, operational rules via Hamacher t-norm and t-conorm
and comparison rule for SVN2TLEs are presented.

3.1. The single-valued neutrosophic 2-tuple linguistic set

Definition 4. Let X be a space of points with a generic element in X,
denoted by x, and H be a set of LTS. A SVNLS in X is defined as:

= 〈 〉 ∈A x h α T x I x F x x X{ ,[( , ),( ( ), ( ), ( ))] | },θ x θ x A A A( ) ( ) (15)

where ∈ ∈ − ∈h H α T x I x F x, [ 0.5,0.5), ( ), ( ), ( ) [0,1]θ x θ x A A A( ) ( ) , with the
condition ⩽ + + ⩽T x I x F x0 ( ) ( ) ( ) 3A A A for any ∈x X . T x I x( ), ( )A A

and F x( )A represent the TM degree, the IM degree and the FM degree
of the element x in X to the 2TLT h α( , )θ x θ x( ) ( ) , respectively.

For convenience, the quintuplet 〈 〉h α T x I x F x( , ),( ( ), ( ), ( ))θ x θ x A A A( ) ( ) is
called a SVN2TLE and A can be viewed as the set of all SVN2TLEs.
Hence, the SVN2TLS can be represented as:

= 〈 〉∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f, , , , .a a a a a (16)

Specially, if = =∼ ∼t i1, 0a a and =∼f 0a , then the SVN2TLE ∼a degen-
erates to a normal 2TLT.

A SVN2TLE is an extension of the 2TLT and a single-valued neu-
trosophic number (SVNN). It is an interesting and new concept com-
bining many benefits and advantages of 2TLT and SVNN. On one hand,
the SVN2TLE can embody the closeness degree of an evaluation object
and a 2TLT, and it can depict uncertainty and fuzziness more accu-
rately. On the other hand, the SVN2TLE assigns TM IM FM, , functions to
a specific 2TLT. Thus, SVN2TLEs are effective tools in solving problems
with quantitative and qualitative expressions that involve incomplete
and inconsistent information.

Compared with some new linguistic variables based on FSs and LTSs
model, such as ILSs (Wang & Li, 2009), simplified neutrosophic lin-
guistic sets (SNLSs) (Tian et al., 2017), single-valued neutrosophic
linguistic set (SVNLS) (Ye, 2015a), the proposed SVN2TLSs have a
wider range of application. The SVN2TLSs can express and deal with
more complex linguistic assessment, such as incomplete or inconsistent
information of a LT. Compared with the SVNLS introduced by Ye
(2015a), SVN2TLSs can ensure information integrity in aggregation
process. For SVNLS, the calculated results maybe do not match the
initial LTs, so an approximation procedure should be introduced to
express the result in the initial expression domain. The approximation
procedure can make information lost. While SVN2TLSs do not need the
approximation procedure and can avoid information loss and distor-
tion.

3.2. Hamacher operational rules of SVN2TLEs

Definition 5 (Ye, 2015a). Let = 〈 〉 =a h T a I a F a p,( ( ), ( ), ( )) ( 1,2)p θ a p p p( )p
be two SVNLNs and ⩾λ 0, then the operations of SVNLNs are defined as
follows:

(1) ⊕ = 〈 +

− 〉
+a a h T a T a

T a T a I a I a F a F a

,( ( ) ( )

( ) ( ), ( ) ( ), ( ) ( ))
θ a θ a1 2 ( ) ( ) 1 2

1 2 1 2 1 2

1 2 ;

(2) ⊗ = 〈 + −

+ − 〉
×a a h T a T a I a I a I a I a F a

F a F a F a

,( ( ) ( ), ( ) ( ) ( ) ( ), ( )

( ) ( ) ( ))
θ a θ a1 2 ( ) ( ) 1 2 1 2 1 2 1

2 1 2

1 2 ;

(3) = 〈 − − 〉λa h T a I a F a,(1 (1 ( )) , ( ), ( ))λθ a
λ λ λ

1 ( ) 1 1 1i ;
(4) = 〈 − − − − 〉a h T a I a F a,( ( ),1 (1 ( )) ,1 (1 ( )) )λ

θ a
λ λ λ

1 ( ) 1 1 1λ i .

As for the issue discussed in Introduction part, the operational rules
presented above are not closed and illogical. Therefore, it is meaningful
and necessary to do some improvements. Hamacher’s family of t-norm
and t-conorm supply a wide class of t-norms and t-conorms operators.
According to the Hamacher t-norm and t-conorm, Tan et al. (2015)
proposed a family of hesitant fuzzy Hamacher operators for aggregating
hesitant fuzzy information. Since the operational rules produced by the
Hamacher t-norm and t-conorm are closed, inspired by this idea, we
will propose some closed operational rules as follows.

Definition 6. Let = 〈 〉∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f, , , ,a a a a a1 1 1 1 1 1 and =∼a2 〈 〉∼ ∼ ∼ ∼ ∼( ) ( )h α t i f, , , ,a a a a a2 2 2 2 2
be two SVN2TLEs, and ⩾λ 0, then the Hamacher operational rules of
SVN2TLEs are defined as

Example 1. Let = …H h h h{ , , , }0 1 6 be a LTS, = 〈 〉a h ,(0.3,0.5,0.2)1 4 and
= 〈 〉a h ,(0.6,0.2,0.2)2 5 be two SVNLNs, =η 2 and . According to the
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operational rules defined above, then:

(1) ⊕ = 〈 − 〉a a h( , 0.2143),(0.7627,0.0714,0.0244)1 2 6 ;
(2) ⊗ = 〈 〉a a h( ,0.1579),(0.1406,0.6364,0.3846)1 2 3 ;
(3) = 〈 − 〉a h2 ( , 0.4615),(0.5505,0.2,0.0604)1 6 ;
(4) = 〈 〉a h( ) ( ,0.4),(0.0604,0.8,0.3846)1

2
2 .

Example 1 shows that the new defined operational laws can com-
mendably overcome the granularity and logical problems for existing
operation laws.

Remark 1. Some special and reasonable properties about these
operational laws of SVN2TLEs are shown as follows:

(1) The linguistic part in SVNLNs must be hg no matter what LT plus the
maximum hg; Similarly, the linguistic part in SVNLNs must be itself
no matter what LT plus the minimum h0, the memberships part in
SVNLNs satisfies this similar property as well.

(2) The linguistic part in SVNLNs must be itself no matter what LT
multiplies the maximum hg, and the linguistic part in SVNLNs must
be h0 no matter what LT multiplies the minimum h0, the member-
ships part in SVNLNs satisfies this similar property as well.

(3) The linguistic part in SVNLNs must be hg no matter what positive
real number multiplies the maximum hg, and the linguistic part in
SVNLNs must be h0 no matter what positive real number multiplies
the minimum h0, the memberships part in SVNLNs satisfies this
similar property as well.

(4) The exponentiation operation of the maximum hg must be hg no
matter what the positive real number be, the memberships part in
SVNLNs satisfies this similar property as well.

All of these properties conform to the common sense of people, and
these operational laws of SVN2TLEs are reasonable and effective when
computing with SVN2TLEs.

Theorem 1. Suppose that = …H h h h{ , , , }g0 1 is a pre-established finite and
totally ordered discrete term set. Let =Ω

〈 〉 ∈ ∈ − ∈ ∈h α t i f h H α t i{ ( , ),( , , ) | , [ 0.5,0.5), [0,1],Λ Λ Λ Λ Λ Λ Λ Λ Λ ∈f[0,1], [0,1]}Λ
be the set of all SVN2TLEs generated based on ∈∼ ∼H a a, , Ω1 2 and ⩾η 0,
then operations rules on SVN2TLEs defined by the Hamacher t-norm and t-
conorm are closed, i.e.,

(1) ⊕ ∈∼ ∼a a ΩH1 2 ;
(2) ⊗ ∈∼ ∼a a ΩH1 2 ;
(3) ⊙ ∈∼η a ΩH 1 ;
(4) ∈∼a( ) Ωη

1 .

Theorem 2. Let = 〈 〉 =∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p, , , , ( 1,2,3)p a a a a ap p p p p be three SVN2TLEs,
⩾η η η, , 01 2 are three scalars, then the following Hamacher operational rules

of SVN2TLEs are true:

(1) ⊕ = ⊕∼ ∼ ∼ ∼a a a aH H1 2 2 1;
(2) ⊕ ⊕ = ⊕ ⊕∼ ∼ ∼ ∼ ∼ ∼a a a a a a( ) ( )H H H H1 2 3 1 2 3 ;
(3) ⊗ = ⊗∼ ∼ ∼ ∼a a a aH H1 2 2 1;
(4) ⊗ ⊗ = ⊗ ⊗∼ ∼ ∼ ∼ ∼ ∼a a a a a a( ) ( )H H H H1 2 3 1 2 3 ;
(5) ⊙ ⊕ = ⊙ ⊕ ⊙∼ ∼ ∼ ∼η a a η a η a( ) ( ) ( )H H H H H1 2 1 2 ;
(6) + ⊙ = ⊙ ⊕ ⊙∼ ∼ ∼η η a η a η a( ) ( ) ( )H H H H1 2 1 1 1 2 1 ;
(7) = ⊗∼ ∼ ∼+a a a( ) ( ) ( )η η η

H
η

1 1 21 2 1 2;
(8) ⊗ = ⊗∼ ∼ ∼ ∼a a a a( ) ( ) ( )H

η η
H

η
1 2 1 2 .

3.3. Ranking method for SVN2TLEs

For any two SVN2TLEs = 〈 〉 =∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p, , , , ( 1,2)p a a a a ap p p p p , how to
provide a rational comparison method is significant for ranking alter-
natives. We say that ⩽∼ ∼a aA1 2 if ⩽ ⩽ ⩾∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼h α h α t t i i( , ) ( , ), ,a a a a a a a a1 1 2 2 1 2 1 2 and

⩾∼ ∼f fa a1 2. Unfortunately, ⩽A is just a partial order. Up to now, there have
been several total orders of SVNLNs available in Wang et al. (2016),
Tian et al. (2015), Ma et al. (2017), Ye (2014b). In these literatures,
some meaningful indexes are proposed as follows:

Definition 7 (Ye, 2014b). For any SVNLN = 〈 〉a h T a I a F a,( ( ), ( ), ( ))θ a( ) ,
the score function, accuracy function and certainty function for a can be
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defined, respectively, as follows:

(1) = + − −S a T a I a F a h( ) (2 ( ) ( ) ( ))· θ a( );
(2) = −A a T a F a h( ) ( ( ) ( ))· θ a( );
(3) =C a T a h( ) ( )· θ a( ).

These three index functions are operated upon according to the
subscripts of the LTs and degrees of memberships. As we know, the
smallest LT h0 is regarded as 0 in their operations. Thus, if h0 is involved
in multiplicative operations in these three indexes, inaccurate results
could be obtained. These limitations yield unreliable and inaccurate
results.

Example 2. Let = 〈 〉a h ,(0.6,0.2,0.1)1 0 and = 〈 〉a h ,(0.5,0.3,0.2)2 0 be two
SVNLNs, Then according to the score, accuracy and certainty functions
introduced above, we have

= = = = = =S a S a A a A a C a C a( ) ( ) ( ) ( ) ( ) ( ) 0.1 2 1 2 1 2

Example 2 means that a1 and a2 cannot be compared using the above
functions. However, a1 is known to be superior to a2. In order to over-
come these limitations and improve their applicability, the linguistic
scale functions (Ma et al., 2017; Tian et al., 2015; Wang et al., 2016)
were modified. These modifications are efficient and flexible by con-
verting various LTs into real numbers.

Definition 8 (Tian et al., 2015). For any SVNLN
= 〈 〉a h T a I a F a,( ( ), ( ), ( ))θ a( ) , the score function, accuracy function and

certainty function for a can be defined, respectively, as follows:

(1) = + − + −∗S a f h T a I a F a( ) ( )( ( ) 1 ( ) 1 ( ))θ a( ) ;
(2) = −∗A a f h T a F a( ) ( )( ( ) ( ))θ a( ) ;
(3) = ∗C a f h T a( ) ( ) ( )θ a( ) ,

where ∗f is the linguistic scale function (LSF).

The LSFs are preferable in practice because they can yield more
deterministic results when faced with differences in semantics.
However, these functions do not equate the TM to the FM. This may
lead to unreliable and inaccurate results as well.

Example 3. Let = 〈 〉a h ,(0.5,0.3,0.1)1 2 and = 〈 〉a h ,(0.6,0.3,0.2)2 2 be two
SVNLNs, Then by Definition 8, we have

= = >S a S a A a A a C a C a( ) ( ), ( ) ( ), ( ) ( ).1 2 1 2 2 1

Then >a a2 1. However, the memberships in a SVNLN should be
treated equally, and we cannot conclude that >a a2 1 under the
condition of >C a C a( ) ( )2 1 . Because if we redefine an index called
uncertainty function (UF) for a, that is, = ∗UC a f h F a( ) ( ) ( )θ a( ) , then we
have >a a1 2 in the case of <UC a UC a( ) ( )1 2 , which bears an uncanny
resemblance to the method in Tian et al. (2015), but these two indexes
get the opposite results. In order to overcome these limitations and
improve their applicability, we provide four indexes to rank SVN2TLEs
including the score function, the score knowledge measure, the certain
knowledge measure and the hesitant-related knowledge measure. They
are represented as follows:

(1) Score function: ⎜ ⎟= ⎛
⎝

+ − − ⎞
⎠

∼ ∼ ∼ ∼
− ∼ ∼

S a t i f( ) Δ ( 2 )p
h α

a a a
Δ ( , )

3
ap ap

p p p

1
;

(2) Score knowledge measure: =∼ + − −∼ ∼ ∼
SK a( )

( )
p

t i f2

3
ap ap ap ;

(3) Certainty knowledge measure: =∼ + −

+ + +

∼ ∼ ∼

∼ ∼ ∼
CK a( )p

t f i

t f i

2( )

1

ap ap ap

ap ap ap
2 2 2

;

(4) Hesitant related knowledge measure: =∼HRK a( )p
− + + +∼ ∼ ∼ ∼( ) ( )t i f i1 · 1

6
ap ap ap ap .

The knowledge measures of a SVN2TLE is to evaluate the score,
certainty and hesitation knowledge of a SVN2TLE separately. Here,
some specific SVNSs and existing measures are proposed as evaluation

criterions, which provide a framework to describe and analysis data in a
flexible way. Some specific SVNSs such as the smallest SVNSs

= 〈 〉A 0,1,1S , the fuzziest SVNSs = 〈 〉A 0,1,0F and so on. It follows that
three new knowledge measures of a SVN2TLE on the basic of distance,
projection, distance-based measure to the smallest, fuzziest, largest
SVNSs are proposed. They are explained below:

(1) The score knowledge measure: The new knowledge measure is
defined as a normalized Hamming distance (Ye, 2017b) from SVNS

= 〈 〉∼ ∼ ∼ ∼A t i f, ,a a a ap p p p for the smallest SVNS = 〈 〉A 0,1,1S and can be
expressed as:

= 〈 〉 〈 〉 = − + − + −

= + − −

∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼

SK a d t i f t i f

t i f

( ) ( , , , 0,1,1 ) 1
3

(| 0| | 1| | 1|)

( 2 )/3.

p a a a a a a

a a a

p p p p p p

p p p

(2) The certain knowledge measure: The fuzziest and most certain
SVNSs are = 〈 〉 = 〈 〉A A0,1,0 , 1,0,0F C1 and = 〈 〉A 0,0,1C2 , respec-
tively. The new knowledge measure is defined by calculating the
combine harmonic averaging projection measure (Ouyang &
Pedrycz, 2016) between SVNS = 〈 〉∼ ∼ ∼ ∼A t i f, ,a a a ap p p p and above three
specific SVNSs, which is expressed as

= + −

=
+ + +

+
+ + +

−
+ + +

=
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+ + +

∼ ∼ ∼ ∼
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∼
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p p p

p
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p

p p p

p

p p p

p p p
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1 2

The projection P A A( , )1 2 is a measure that considers not only both
the distance and the included angle but also bidirectional projection
magnitudes between A1 and A2. In general, the larger the value of
P A A( , )1 2 is, the closer A1 is to A2. Clearly, the larger the value of

∼CK a( )p is, the closer the SVN2TLE ∼ap and its corresponding most
certain SVN2TLE are. Therefore, the defined index is effective to
measure the certain knowledge measure of a SVN2TLE.

(3) The hesitant related knowledge measure: The new knowledge
measure proposed is determined by the IM degree and the nor-
malized Hamming distance between SVNS = 〈 〉∼ ∼ ∼ ∼A t i f, ,a a a ap p p p and the
largest SVNS = 〈 〉A 1,0,0L , which can be presented as:

= + = − + − + −

+ =
− + + +

∼ ∼ ∼ ∼ ∼ ∼

∼
∼ ∼ ∼ ∼( ) ( )

HRK a d A A i t i f

i
t i f i

( ) 0.5· ( , )·(1 ) 1
6

(| 1| | 0| | 0|)·

(1 )
1 · 1

6
.

p L a a a a a

a
a a a a

p p p p p

p
p p p p

This index has the similar form as the ranking method for IFVs in
(Ju, Wang, & Liu, 2012). The hesitant related knowledge measure

∼HRK a( )p is constructed by strongly taking not only the amount of
information related to a SVN2TLE but also the reliability of in-
formation represented by a SVN2TLE into account. This knowledge
measure tells us about the quality of a SVN2TLE, that the lower the
value of ∼HRK a( )p , the better the SVN2TLE in the sense of the
amount of positive information included, and reliability of in-
formation.

The proposed four indexes above satisfy the following properties:

Remark 2. For any SVN2TLE ∼ap, if its linguistic part is h0, then it need
to be denoted as hε in the calculation process.

Remark 3. For a SVN2TLE ∼ap, in its SVNS part, if the distance from
SVNS = 〈 〉∼ ∼ ∼ ∼A t i f, ,a a a ap p p p for the smallest SVNS = 〈 〉A 0,1,1S is farther,
which means that ∼tap with respect to the 2TLT ∼ ∼( )h α,a ap p is bigger and

+∼ ∼i fa ap p corresponding to ∼ ∼( )h α,a ap p is smaller, then the larger the score
function ∼S a( )p .
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Remark 4. For two SVN2TLEs =∼a p( 1,2)p , in the condition that their
score functions are the same, if the difference between ∼tap and +∼ ∼i fa ap p

with respect to ∼ ∼( )h α,a ap p is bigger, then the SVN2TLE ∼S a( )p is more
affirmative, i.e., the score knowledge measure of ∼S a( )p is higher.

Remark 5. For two SVN2TLEs =∼a p( 1,2)p , if the projection value
between SVNS ∼Aap and the fuzziest SVNS AF is smaller, the projection
values between SVNS ∼Aap and the most certain SVNS AC1 and AC2 are
larger, then the SVN2TLE ∼ap is more determinate, i.g., the certain
knowledge measure of ∼ap is larger.

Remark 6. For a SVN2TLEs ∼ap, the best SV2TLE is = 〈 〉A 1,0,0L for
which =HRK A( ) 0L . The maximal value of HRK, i.e. 1, we obtain for

= 〈 〉A 0,1,1S for which both the distance from AL and IM are equal 1.

From the above analysis of the four new defined indexes that used
for making comparison among the SVN2TLEs, the ranking method for
SVN2TLEs can be obtained as follows:

Definition 9. Let = 〈 〉 =∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p, , , , ( 1,2)p a a a a ap p p p p be two SVN2TLEs.

(1) If >∼ ∼S a S a( ) ( )1 2 , then >∼ ∼a a1 2;
(2) If <∼ ∼S a S a( ) ( )1 2 , then <∼ ∼a a1 2;
(3) If =∼ ∼S a S a( ) ( )1 2 , then

(1) If >∼ ∼SK a SK a( ) ( )1 2 , then >∼ ∼a a1 2;
(2) If <∼ ∼SK a SK a( ) ( )1 2 , then <∼ ∼a a1 2;
(3) If =∼ ∼SK a SK a( ) ( )1 2 , then

(i) If >∼ ∼CK a CK a( ) ( )1 2 , then >∼ ∼a a1 2;
(ii) If <∼ ∼CK a CK a( ) ( )1 2 , then <∼ ∼a a1 2;
(iii) If =∼ ∼CK a CK a( ) ( )1 2 , then

① If <∼ ∼HRK a HRK a( ) ( )1 2 , then >∼ ∼a a1 2;
② If >∼ ∼HRK a HRK a( ) ( )1 2 , then <∼ ∼a a1 2.

Example 4. Let = 〈 〉a h ,(0.5,0.3,0.1)1 2 and = 〈 〉a h ,(0.6,0.3,0.2)2 2 be two
SVNLNs, then by Definition 9, we have

= = >S a S a SK a SK a CK a CK a( ) ( ), ( ) ( ), ( ) ( )1 2 1 2 2 1 , in this case, we can
say that SVNLNs a2 is better than a1.

The advantages and differences of the new defined ranking method
for SVN2TLEs can be concluded as follows:

(1) For the order based on the score and accuracy often only score is
taken into account, which may produce counter intuitive results,
such as SVN2TLEs with lower LTs and higher IM are pointed out as
the better ones. This paper proposes a ranking method with multi-

indexes, which provides a full and complete comparison.
(2) The existing accuracy function and certainty function for SVNLN

are related to the LTS, while the LTs are only used to show their

linguistic evaluation in fact, but cannot reflect the specific measures
of a SVNLNS, the proposed new ranking method here are mainly on
the basis of its SVN part, which is far easier and more rational.

(3) Projection measure is a very suitable tool when dealing with the
certain knowledge measure for that it can consider not only the
distance but also the included angle between objects evaluated,
while the existing cosine similarity measure of SNSs (Ye, 2015b)
introduced in vector space may show some unreasonable result in
some cases.

(4) The method takes into account the amount of the information (both
positive and negative) associated with an alternative (measured by
a distance to the positive ideal alternative), and how reliable the
information is (which is measured by the alternative’s IM).

4. Some new aggregation operators based on SVN2TLEs and
Hamacher t-norm and t-conorm

In course of practical application, there are more than two
SVN2TLEs need to be fused. Therefore, it’s necessary to apply such
operations to aggregate n SVN2TLEs. In the following, we propose the
SVN2TLHWA and SVN2TLHGWA operators.

4.1. Single-valued neutrosophic 2-tuple linguistic Hamacher weighted
averaging operator

The SVN2TLHWA operator is defined as follows:

Definition 10. Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p be n
SVN2TLEs, the Hamacher weighted averaging operator is mapping

→SVN TLHWA2 : Ω Ωn , with associated weighting vector
= …ω ω ω ω( , , , )n1 2 which satisfies that ∈ω [0,1]p and ∑ == ω 1p

n
p1 , such

that

… = ⊕ ⊙∼ ∼ ∼ ∼
=

SVN TLHWA a a a ω a2 ( , , , ) ( )n H
p

n
p H p1 2

1 (17)

where Ω is the set of all SVN2TLEs, then the mapping SVN TLHWA2 is
called the single-valued neutrosophic 2-tuple linguistic Hamacher
weighted averaging operator.

On the basic of the operational rules on SVN2TLEs via the
Hamacher t-norm and t-conorm described in Section 3.2, we can educe
the result shown as Theorem 3.

Theorem 3. Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p be n SVN2TLEs,
then the Hamacher weighted averaging of n SVN2TLEs by using Eq. (17) is
still a SVN2TLE, and

Proof.
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(2) When =n 2, it follows that
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Here we only need to prove that
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Therefore, when = +n k 1, Eq. (18) holds.
According to mathematical induction, we can get Eq. (18) holds true

for any n. □

In the following, we can investigate some desirable properties of the
SVN2TLHWA operator.
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Obviously, X Y/ is a monotonous increasing mapping of ∼ ∼( )h α,a ap p ,
and ∼ ∼( )h α,a a is a monotonous increasing mapping of X Y/ , therefore,
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Similarly, for the TM part, IM part and FM part, the following
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which completes the proof. □

In the following we can get some special cases of the SVN2TLHWA
operator with different parameters λ.

(1) If →λ 0, then we obtain the single-valued neutrosophic 2-tuple
linguistic maximum (SVN2TLMA) operator;

(2) If =λ 1, it follows that:
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which is the single-valued neutrosophic 2-tuple linguistic weighted
averaging (SVN2TLWA) operator;

(3) If , it follows that:
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which is the single-valued neutrosophic 2-tuple linguistic Einstein
weighted averaging (SVN2TLEWA) operator;

(4) If → +∞λ , then we can obtain the single-valued neutrosophic 2-
tuple linguistic minimum (SVN2TLMI) operator.

4.2. Single-valued neutrosophic 2-tuple linguistic Hamacher geometric
weighted averaging operator

The SVN2TLHGWA operator is defined as follows:

Definition 11. Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p be n
SVN2TLEs, the Hamacher geometric weighted averaging operator is
mapping →SVN TLHGWA2 : Ω Ωn , with associated weighting vector
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where Ω is the set of all SVN2TLEs, then the mapping SVN TLHGWA2 is
called the single-valued neutrosophic 2-tuple linguistic Hamacher
geometric weighted averaging operator.

Similar to the SVN2TLHWA operator, based on the Hamacher op-
erational rules of the SVN2TLEs, we can derive the following theorems.

Theorem 6. Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p be n SVN2TLEs,
then the Hamacher geometric weighted averaging of n SVN2TLEs is still a
SVN2TLE, and

Theorem 7 (Idempotency). Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p
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Theorem 8 (Boundedness). Let = 〈 〉 = …∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p n, , , , ( 1,2, , )p a a a a ap p p p p
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4.3. Analysis of Hamacher aggregation operators in MAGDM with
SVN2TLS assessments

To guarantee the rationality of decisions made with consideration of
the parameter λ, it is necessary and important to analyze the re-
lationships between the Hamacher weighted and geometric averaging

operators in SVN2TLS contexts from a theoretical point of view. Here,
two common rules can be extracted from the representative analysis of
the movement of score values with SVN2TLS assessments with variation
in the parameter λ in Hamacher weighted and geometric aggregation
operators. They are formally presented below.

Theorem 9. Score values decrease and increase with the increase of the
parameter λ in Hamacher weighted and geometric aggregation operators
respectively.

Proof. The definitions of two functions T x y( , )λ
H and S x y( , )λ

H in Eqs. (7)
and (8) indicate that the two parts in ∼S a( )WA

p (or ∼S a( )GWA
p ) are the

functions with respect to the parameter λ. In this context the
verification of Theorem 9 is equivalently transformed into the
discussion of the monotonicity of the functions T x y( , )λ

H and S x y( , )λ
H

with respect to λ. By Eq. (7), we have
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to know that the family of Hamacher t-norm is strictly decreasing and
the family of Hamacher t-conorm is strictly increasing as parameter λ
increases. Therefore, score values decrease and increase with the
increase of the parameter λ in Hamacher weighted and geometric

aggregation operators respectively. □

Based on this monotonicity, the relationship between ∼S a( )WA
p and

∼S a( )GWA
p can be obtained.

Theorem 10. Score values generated by Hamacher weighted operator
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MAGDM with SVN2TLS assessments, that is

> ∈ +∞∼ ∼S a S a λ( ) ( ), (0, ).WA
p

GWA
p (29)

Proof. Theorems 9 indicates ∼S a( )WA
p and ∼S a( )GWA

p are monotonously
decreasing and increasing with respect to λ, respectively. Thus, the
conclusion in Eq. (29) can be transformed into
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The function = +f x x x b( ) /( ) is monotonously increasing with
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holds, from which we deduce that
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Similarly, the remaining two inequalities could be proved.
With the score function for SVN2TLE, the conclusion in Eq. (29) is

verified for any ∈ +∞λ (0, ). □

5. The process of MAGDM based on SVN2TL Hamacher
aggregation operators

In this section, we will present the process of solving MAGDM
problem by using the SVN2TL Hamacher aggregation operators, where
the weights of DMs are given but the weights of attributes are com-
pletely unknown, the preference values take the form of SVNLNs.

5.1. Problem description

A MAGDM problem can be defined as a quadruple < >D X C A, , , ,
where

= …D d d d{ , , , }l1 2 is the finite set of DMs and is indexed by k and ⩾k 2;
= …X x x x{ , , , }m1 2 is the discrete set of alternatives for DMs and is in-

dexed by p and ⩾m 2;
= …C c c c{ , , , }n1 2 is the set of attributes for each alternative, and the

attributes are assumed to be confluent and independent in this paper
for simplicity;

= ×A a( )k
pq
k

m n
( ) ( ) is the decision matrix provided by DM

= …d k l( 1,2, , )k , and apq
k( ) represents the preference value of alter-

native xp with respect to attribute cq.
apq

k( ) is in the form of SVNLNs = 〈 〉∼ ∼ ∼a h t i f h,( , , ) ,pq
k

a a a a a
( )

pq
k

pq
k

pq
k

pq
k

pq
k( ) ( ) ( ) ( ) ( ) is

derived from a given LTS based on the subjective evaluation of all
DMs. = …μ μ μ μ( , , , )l1 2 is the weight of DMs = … ∈d k l μ( 1,2, , ), [0,1]k k

and ∑ == μ 1k
l

k1 , the attribute weights are completely unknown.

5.2. Generation of attributes’ weights by constructing optimization model
based on the maximizing deviation method

Due to complexity and uncertainty in many MAGDM problems, with
human thinking is inherently subjective, the information about attri-
bute weights maybe unknown, we must determine the attribute weights
in advance. Based on the maximizing deviation method (Xu & Da,
2010), here we extend it to the SVN2TL environment. Firstly, we define
the deviation degree between any two SVN2TLEs, which is on the basis
of Hamming distance measure, is defined as follows:

Definition 12. Let = 〈 〉 =∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f p, , , , ( 1,2)p a a a a ap p p p p be two
SVN2TLEs, then the Hamming distance measure between any two
SVN2TLEs is defined as
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To determine the differences among the performance values of all
alternatives, we adopt the deviation method. For the DM dk and the
attribute cq, the deviation of alternative xp to all the other alternatives
can be expressed as:

∑= = … = …∼ ∼
=

d ω ω d a a p m q n( ) ( , ), 1, , , 1, , ,pq
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1
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Then, the collective deviation degree (CDD) between the alternative
xp and all the other alternatives with respect to the attribute cq can be
given as follows:
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where μk is the weight of DM dk.
The idea of maximizing deviation method is that if the CDD among

alternatives is smaller for an attribute, then the attribute should be
assigned a smaller weight, otherwise, it should be assigned a larger
weight. Let
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where d ω( )q denotes the CDD of one alternative and others with respect
to the attribute cq, and then let

∑ ∑ ∑ ∑ ∑= = ∼ ∼
= = = = =

d ω d ω ω μ d a a( ) ( ) ( , ),
q

n

q
q

n

k

l

p

m

s

m

q k pq
k

sq
k

1 1 1 1 1

( ) ( )

(34)

which expresses the sum of the CDDs among all attributes.
Then we can construct the following single-objective optimization

model to determine the attribute weights = …ω ω ω ω( , , , )n1 2 so as to
make the UDDs d ω( ) as large as possible. To do so, we can construct the
model as follows:
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To solve the above model, we construct the Lagrange function:
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where η is the Lagrange parameter. Since both functions d ω( ) and
L ω η( , ) are differentiable for = …ω q n( 1, , )q ; differentiating Eq. (36) with
respect to = …ω q n( 1, , )q and setting the partial derivatives equal to
zero, we get the following set of equations:
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From Eq. (37), we get a simple and exact formula for determining
the attribute weights as follows:
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From Eq. (38), it can be verified easily that = …∗ω q n( 1, , )q are po-
sitive that they do satisfy the constrained conditions in model (M-1) and
the solution is unique. Furthermore, the normalized optimal weighting
vector = …ω ω ω ω( , , , )n1 2 can be obtained as follows:
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Let
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then

=
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q
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As a mater of fact, Dq represents the CDD of all alternatives for the
attribute cq and for all the DMs. Because the larger Dq, the more im-
portant the attribute cq is, Eq. (41) is obtained directly by using each Dq
divide the sum of Dq. The theoretic foundation of this method is based
on information theory, that is, the attribute providing more information
should be assigned a bigger weight.

5.3. The decision making procedure

To obtain the best option(s), the process with the SVN2TL
Hamacher aggregation operators in MAGDM involves the following
steps:

Step 1. Transform each SVNLNs decision matrix A k( ) into the SVN2TLEs
decision matrix = ∼∼

×A a( )k
pq
k

m n
( ) ( ) , where ∼apq

k( ) are in the form of
SVN2TLEs.

Step 2. Normalization of the decision matrix.
Generally speaking, with respect to attributes of alternatives,
there are two main types of attributes including benefit attri-
butes (Jb) and cost attributes (Jc). To eliminate the effect of the
final decision result caused by different types of attribute va-
lues, a normalization of the decision matrices needs to be de-
veloped. Thus, the cost attributes can be transformed into the
benefit attributes by using the negation operator in 2-tuple
linguistic environment. Of course, if all attributes are in the
same type, there is no doubt the normalized process can be
omitted.

Step 3. Generation of attributes’ weights by constructing optimization
model from an objective point of view based on the maximizing
deviation method.

Step 4. Input of decision information fusion
Aggregate all the individual decision matrix = ∼∼

×A a( )k
pq
k

m n
( ) ( )

into a synthesize decision matrix = ∼∼
×A a( )pq m n by using the

SVN2TLHWA operator or SVN2TLHGWA operator, where

= … = ⊕ ⊙∼ ∼ ∼ ∼ ∼
=
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H
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l
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H
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l
pq
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( ) k
(43)

Step 5. Output of comprehensive evaluation values for each alternative
Based on the attribute weighting vector obtained in Step 3,
utilize the SVN2TLHWA operator or SVN2TLHGWA operator
again to derive the overall collective preference values ̃rp in
terms of SVN2TLEs for each alternative = …x p m( 1,2, , )p , where

̃ = … = ⊕ ⊙∼ ∼ ∼ ∼
=

r SVN TLHWA a a a ω a2 ( , , , ) ( ),p p p pn H
q

n
q H pq1 2

1 (44)

̃ = … = ⊗∼ ∼ ∼ ∼
=
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q

n
pq
ω

1 2
1

q

(45)

Step 6. Calculation of score function, the score knowledge measures,
the certain knowledge measures and the hesitant-related
knowledge measures of ̃ = …r p m( 1,2, , )p .
Use the equations in Section 3.3 to calculate the Calculation of
score function, the score knowledge measures, the certain
knowledge measures and the hesitant-related knowledge mea-
sures of ̃ = …r p m( 1,2, , )p , denoted by ̃ ̃ ̃S r SK r CK r( ), ( ), ( )p p p and
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̃HRK r( )p of ̃ = …r p m( 1,2, , )p , respectively.
Step 7. Ranking of all alternatives

Use the comparison method described in Definition 3.6 to rank
all the alternatives and select the best one(s) according to

̃ ̃ ̃S r SK r CK r( ), ( ), ( )p p p and ̃HRK r( )p of ̃ = …r p m( 1,2, , )p .
Step 8. End.

6. Illustrative example

In this section, we employ an evaluation of emergency response
solutions for sustainable community development by applying the
proposed MAGDM approach, and give an example to demonstrate its
validity and effectiveness.

6.1. Background

Over the past several decades, economic development has been
recognized as the only approach to improve quality of life and social
status in communities and cities of different areas, especially devel-
oping countries. However, along with rapid economic development,
recently, increasing natural and man-made disasters (such as earth-
quakes, floods, air pollution, and urban fire disaster) have urged gov-
ernments to reconsider community development planning by encoura-
ging using local resources in a sustainable way that enhances economic
opportunities while improving social and environmental conditions.
During the process of planning and implementing sustainable commu-
nity development, one of the major components is emergency man-
agement that is designated to minimize the huge impacts by potentially
catastrophic events on every socioeconomic aspect in local community.
Emergency management is vital in implementing sustainable commu-
nity development, for which community planning must include emer-
gency response solutions to potential natural and man-made hazards.

6.2. Case study

In order to mitigate the damage of natural or man-made disaster in
highly populated areas, more and more municipal governments in
China have established emergency departments to provide rescue ca-
pacity. Considering one of the emergency management problems
(adapted from (Ju et al., 2012)), the community development depart-
ment of a major city that holds a state-level special economic zone
needs to regularly evaluate a set of alternative response solutions
against urban fire hazards.

Suppose there are four alternative rescue plans x x x x{ , , , }1 2 3 4 for eva-
luation against an urban fire disaster. Three DM teams =d k( 1,2,3)k ,
i.e., employees team (d1), external experts team (d2) and senior man-
agement team (d3), have been organized to evaluate the alternatives
under three attributes: (c1) Accident identifying capacity, (c2) Rescuing
capacity, (c3) Emergency response resources supplying capacity. Due to
the highly-unstructured characteristics of this management activity,
assessment values are hardly to be assigned with crisp numbers and
DMs are often inclined to be hesitant or irresolute in assigning those
assessments. Therefore, in this case study, DMs are empowered to
provide their preferences in terms of SVNLNs on the response solutions

=x p( 1,2,3,4)p under the three attributes =c q( 1,2,3)q . Assume that the
four alternative rescue plans are to be evaluated using the following
LTS =H h{ 0: Very bad, h1: Bad, h2: Somewhat bad, h3: Fair, h4:
Somewhat good, h5: Good, h6: Very good}.

To help maintain such solution repository, we investigate effective
MAGDM approach for the complex problems of evaluating alternative
emergency response solutions, where the weighting vector of DMs is

=μ (0.37,0.33,0.3)T , the attributes’ weights are completely unknown.
Then, three SVNLNs matrices are collected and listed in following
Tables 1–3.

6.2.1. Procedure of MAGDM problem based on SVN2TL Hamacher
aggregation operators

We adopt the proposed method to rank the alternatives in the ex-
ample and select the best one(s). The decision steps are as follows:

Step 1. Transform each SVNLNs decision matrix A k( ) into the
SVN2TLEs decision matrix = ∼∼

×A a( )k
pq
k( ) ( )

4 3, where ∼apq
k( ) are in the form of

SVN2TLEs, and they are shown as:

=

⎛

⎝

⎜
⎜
⎜

〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉

⎞

⎠

⎟
⎟
⎟

∼A

s s s
s s s
s s s
s s s

( ,0),(0.4,0.2,0.3) ( ,0),(0.4,0.2,0.3) ( ,0),(0.3,0.2,0.5)
( ,0),(0.6,0.1,0.2) ( ,0),(0.6,0.1,0.2) ( ,0),(0.5,0.2,0.2)
( ,0),(0.3,0.2,0.3) ( ,0),(0.5,0.2,0.3) ( ,0),(0.5,0.3,0.1)
( ,0),(0.7,0.1,0.1) ( ,0),(0.6,0.1,0.2) ( ,0),(0.3,0.1,0.2)

,(1)

4 5 5

3 5 4

4 4 3

4 3 2
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⎝
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⎟
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( ,0),(0.4,0.2,0.3) ( ,0),(0.3,0.2,0.3) ( ,0),(0.6,0.2,0.2)
( ,0),(0.4,0.2,0.4) ( ,0),(0.6,0.3,0.4) ( ,0),(0.6,0.1,0.3)
( ,0),(0.8,0.1,0.2) ( ,0),(0.5,0.2,0.3) ( ,0),(0.4,0.2,0.2)

,(2)

5 5 2

3 5 3

3 4 3

4 4 3
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⎝
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〈 〉 〈 〉 〈 〉
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〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉

⎞

⎠

⎟
⎟
⎟

∼A

s s s
s s s
s s s
s s s

( ,0),(0.5,0.2,0.3) ( ,0),(0.6,0.2,0.4) ( ,0),(0.2,0.1,0.6)
( ,0),(0.5,0.2,0.3) ( ,0),(0.7,0.2,0.2) ( ,0),(0.7,0.2,0.1)
( ,0),(0.5,0.1,0.3) ( ,0),(0.6,0.1,0.3) ( ,0),(0.6,0.2,0.1)
( ,0),(0.6,0.1,0.2) ( ,0),(0.5,0.2,0.2) ( ,0),(0.4,0.1,0.1)

.(3)

5 4 2

4 4 2

5 5 3

4 4 4

Step 2. Normalization of the decision matrix.
For all the measured attributes in this paper, we find that they are

all benefit attributes, thus, they do not need normalization.
Step 3. Generation of attribute weights by constructing optimiza-

tion model.
Utilize the objective optimal model (35), the attribute weights can

be derived as follows:

=
∑ ∑ ∑

∑ ∑ ∑ ∑
=

∼ ∼

∼ ∼
= = =

= = = =

ω
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4
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4 ( ) ( )
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Table 1
Decision matrix A(1).

c1 c2 c3

x1 〈 〉h ,(0.4,0.2,0.3)4 〈 〉h ,(0.4,0.2,0.3)5 〈 〉h ,(0.3,0.2,0.5)5
x2 〈 〉h ,(0.6,0.1,0.2)3 〈 〉h ,(0.6,0.1,0.2)5 〈 〉h ,(0.5,0.2,0.2)4
x3 〈 〉h ,(0.3,0.2,0.3)4 〈 〉h ,(0.5,0.2,0.3)4 〈 〉h ,(0.5,0.3,0.1)3
x4 〈 〉h ,(0.7,0.1,0.1)4 〈 〉h ,(0.6,0.1,0.2)3 〈 〉h ,(0.3,0.1,0.2)2

Table 2
Decision matrix A(2).

c1 c2 c3

x1 〈 〉h ,(0.4,0.3,0.4)5 〈 〉h ,(0.5,0.3,0.2)5 〈 〉h ,(0.3,0.1,0.6)2
x2 〈 〉h ,(0.4,0.2,0.3)3 〈 〉h ,(0.3,0.2,0.3)5 〈 〉h ,(0.6,0.2,0.2)3
x3 〈 〉h ,(0.4,0.2,0.4)3 〈 〉h ,(0.6,0.3,0.4)4 〈 〉h ,(0.6,0.1,0.3)3
x4 〈 〉h ,(0.8,0.1,0.2)4 〈 〉h ,(0.5,0.2,0.3)4 〈 〉h ,(0.4,0.2,0.2)3

Table 3
Decision matrix A(3).

c1 c2 c3

x1 〈 〉h ,(0.5,0.2,0.3)5 〈 〉h ,(0.6,0.2,0.4)4 〈 〉h ,(0.2,0.1,0.6)2
x2 〈 〉h ,(0.5,0.2,0.3)4 〈 〉h ,(0.7,0.2,0.2)4 〈 〉h ,(0.7,0.2,0.1)2
x3 〈 〉h ,(0.5,0.1,0.3)5 〈 〉h ,(0.6,0.1,0.3)5 〈 〉h ,(0.6,0.2,0.1)3
x4 〈 〉h ,(0.6,0.1,0.2)4 〈 〉h ,(0.5,0.2,0.2)4 〈 〉h ,(0.4,0.1,0.1)4
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Step 4. Input of decision information fusion.
Aggregate all the individual decision matrix = ∼∼

×A a( )k
pq
k( ) ( )

4 3 into a
synthesize decision matrix = ∼∼

×A a( )pq 4 3 by using the SVN2TLHWA
operator, where

= = ⊕ ⊙∼ ∼ ∼ ∼ ∼
=

a SVN TLHWA a a a μ a2 ( , , ) ( ),pq pq pq pq H
k

k H pq
k(1) (2) (3)

1

3
( )

then we can obtain the synthesize decision matrix with different
parameters λ:

(1) →λ 0 (the SVN2TLMA operator)

(2) =λ 1 (the SVN2TLWA operator)

(3) (the SVN2TLEWA operator)

(4) → +∞λ (the SVN2TLMI operator)

Step 5. Output of comprehensive evaluation values for each alter-
native.

Based on the synthesis weighting vector of attributes obtained in
Step 3, utilize the SVN2TLHWA operator again to derive the overall
collective preference values ̃rp in terms of SVN2LEs for each alternative

=x p( 1,2,3,4)p , where

̃ = = ⊕ ⊙∼ ∼ ∼ ∼
=

r SVN TLHWA a a a ω a2 ( , , ) ( )p p p p H
q

q H pq1 2 3
1

3

with different parameters λ, we have:

(1) →λ 0 (the SVN2TLMA operator)
̃ ̃= 〈 − 〉

= 〈 〉

r s r

s

( , 0.4029),(0.4099,0.1695,0.3649) ,

( ,0.0943),(0.5778,0.1634,0.1958)
1 5 2

4

,

̃ ̃= 〈 〉

= 〈 − 〉

r s r

s

( ,0.0368),(0.5302,0.1629,0.2034) ,

( , 0.3661),(0.5781,0.1196,0.1679)
3 4 4

4

.

(2) =λ 1 (the SVN2TLWA operator)
̃ ̃= 〈 〉

= 〈 − 〉

r s r

s

( ,0.3783),(0.3982,0.1827,0.3885) ,

( , 0.1334),(0.5631,0.1712,0.2072)
1 4 2

4

,

̃ ̃= 〈 − 〉

= 〈 − 〉

r s r

s

( , 0.1495),(0.5222,0.1783,0.2380) ,

( , 0.4440),(0.5455,0.1255,0.1783)
3 4 4

4

.

(3) (the SVN2TLEWA operator)
̃ ̃= 〈 〉

= 〈 − 〉

r s r

s

( ,0.3215),(0.3934,0.1840,0.3943) ,

( , 0.1813),(0.5585,0.1717,0.2083)
1 4 2

4

,

̃ ̃= 〈 − 〉

= 〈 − 〉

r s r

s

( , 0.1835),(0.5193,0.1798,0.2420) ,

( , 0.4692),(0.5372,0.1260,0.1793)
3 4 4

4

.

(4) → +∞λ (the SVN2TLMI operator)
̃ ̃= 〈 〉

= 〈 − 〉

r s r

s

( ,0.2085),(0.3803,0.1856,0.4047) ,

( , 0.2654),(0.5489,0.1724,0.2097)
1 4 2

4
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r s r

s

( , 0.2358),(0.5125,0.1817,0.2471) ,

( ,0.4777),(0.5212,0.1266,0.1804)
3 4 4

3

.

Step 6. Use the comparison method described in Definition 8 to
rank all the alternatives and select the most appropriate one(s) in
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( ,0.1107),(0.3962,0.1631,0.3305) ( ,0.3638),(0.5648,0.1875,0.3305) ( ,0.0000),(0.5648,0.1868,0.1455)
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accordance with the value of ̃ =S r p( )( 1,2,3,4)p . The results are shown in
Table 4. If the SVN2TLHWA operator is replaced by the SVN2TLHGWA
operator in the above step 4, Table 5 lists the score values and rankings
of the alternatives.

As we can see from Tables 4 and 5, depending on different ag-
gregation operators, different orderings can we get. But these results
may lead to the same decision that is, for all four rescue plans, response
solution x2 is the most appropriate one.

6.3. Sensitivity analysis of attribute weights and the parameter λ in
Hamacher aggregation operators

To explore the effect of attribute weights and parameter λ in
Hamacher aggregation operators on the ranking results, different
weighting vectors and parameter λ are assigned for analysis.

6.3.1. Sensitivity analysis of attribute weights
Firstly, different attribute weights are assigned, and their corre-

sponding score values and orderings are shown in Table 6. The final
ranking order is sensitive to the attribute weights. As Fig. 1 shows, no
matter how much the attribute weights change, the ranking values x2

fluctuates little, in most cases, response solution x2 is always the most
appropriate one except some limiting cases, such as the attribute c1 is
assigned a higher weight, while the ranking value of x1 is the most
sensitive to the attribute weights. When the attributes c1 and c2 are only
a small proportion of the all attribute weights, response solution x1 has
the lowest ranking value. In summary, the attribute weights have an
important impact on selection of rescue plans, thus, determining the
attribute weights is critical to the decision-making process. As the
maximizing deviation method is an objective weight determination
method, it can effectively avoid a subjective preference that may mis-
lead the results. Further, the proposed weighting method has a rela-
tively simple computation.

6.3.2. Meaning of the parameter λ in Hamacher aggregation operators
The analysis in Section 4.3 indicates that the parameter λ in Ha-

macher aggregation operators has a significant effect on the aggregated
results of alternatives, and further on the solution to a MAGDM pro-
blem. It is possible to analyze how the different parameters λ affect the
aggregation results. For ∈ +∞λ (0, ), in this case, we take different va-
lues of λ into consideration: 0.01,1,2,…,50, which are provided by
DMs. The results of collective overall score values ̃ =S r p( )( 1,2,3,4)p
obtained by the SVN2TLHWA operator and SVN2TLHGWA operator are
shown in Figs. 2 and 3, respectively.

It is observed from Fig. 2 that all the score values obtained by the
SVN2TLHWA operator decrease accordantly with the parameter λ in-
creases, while score values obtained by the SVN2TLHGWA operator
increase accordantly with the parameter λ increases. Cause for this is
twofold. One is the Hamacher triangular norms themselves, that is the
family of Hamacher t-norm is strictly decreasing with parameter λ in-
creases and the family of Hamacher t-conorm is strictly increasing with
parameter λ increases. Another is that the value of score function in-
creases as ̃trp, while decreases as ̃irp and ̃frp. Meanwhile, we can observe
that the score value obtained by the SVN2TLHWA operator is always
smaller than the score value obtained by the SVN2TLHGWA operator
for the same parameter value λ and the same aggregation argument
values. The above results are consistent with theoretical analysis in
Theorem 9 and 10.

With the use of Theorem 9 and 10, λ can be reasonably associated
with the risk attitudes, in terms of the optimism and pessimism of DMs.
To elaborate, a DM is risk-seeking when he/she prefers small λ, while

the DM is risk-averse if he/she prefers large λ when the Hamacher
weighted averaging aggregation operator is applied. The opposite
conclusion can be drawn when the Hamacher geometric aggregation
operator is applied. In the former situation, small λ indicates a large
alternative score, while it indicates a small alternative score in the
latter. DMs can choose the values of parameter λ in accordance with
their preferences. From Fig. 3, for the SVN2TLHGWA operator, there is
no influence on the final rankings of the alternatives for parameter,
while in Fig. 2, for the SVN2TLHWA operator, the choice of parameter
value λ has a great impact on the score values of the alternatives, and
the ranking of the alternatives is affected, the rankings of alternatives
with different parameter λ are given as follows:

(1) If ∈λ (0,1.33), then ≻ ≻ ≻x x x x2 3 1 4;
(2) If =λ 1.33, then ≻ ≻ ∼x x x x2 3 4 1;
(3) If ∈ +∞λ (1.33, ), then ≻ ≻ ≻x x x x2 3 4 1.

From Figs. 2 and 3, we can see that the ordering of the alternatives
is different, thus leading to different decisions. However, it seems that
response solution x2 is always the most appropriate one.

6.4. Comparative analysis and discussion

In order to demonstrate the feasibility and applicability of the
proposed neutrosophic linguistic MAGDM method in this paper, a set of
comparative study was conducted with the relevant frequently-used
aggregation approach and classical decision making method (Tian
et al., 2015; Wang et al., 2016; Ye, 2014b, 2015a), and the analysis is
based on the same illustrative example described above.

6.4.1. Comparison with existing neutrosophic linguistic aggregation
operators

Firstly, we compare our methods with previous neutrosophic lin-
guistic aggregation operators including the weighted single-valued
neutrosophic linguistic Maclaurin symmetric mean (WSVNLMSM) op-
erator (or WSVNLGeoMSM operator) (Wang et al., 2016), SNLNWBM
operator (Tian et al., 2015), interval neutrosophic linguistic weighted
arithmetic average (INLWAA) operator (or INLWGA operator) (Ye,
2014b), and interval neutrosophic uncertain linguistic weighted ar-
ithmetic averaging (INULWAA) operator (or INULWGA operator) (Ye,
2017a). Here, we focus on the calculation process of INLWAA and IN-
LWGA operators.

In Ye (2014b), Ye proposed the concepts of an interval neutrosophic
linguistic set (INLS) and an interval neutrosophic linguistic number
(INLN) as a further generalization of the concepts of an ILS and an
intuitionistic linguistic fuzzy number MADM problems with interval
neutrosophic linguistic information. In order to use the INLWAA op-
erator and INLWGA operator, the evaluation values of this paper need
to be transformed into interval 2-tuple neutrosophic linguistic in-
formation firstly. That is, = 〈 〉 =∼ ∼ ∼ ∼ ∼ ∼( ) ( )a h α t i f, , , ,a a a a a
〈 〉∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼( ) ([ ] [ ] [ ])h α t t i i f f, , , , , , ,a a a a a a a a , where the lower and upper bounds are
equal. In his method, the operational laws of INLNs have the similar
form as Definition 3.2. The steps involved by using the INLWAA and
INLWGA operators are as follows:

Step 1. According to the SVNLNs matrices =A k( 1,2,3)k( ) provided
by DMs, utilize the INLWAA or INLWGA operator to aggregate all the
individual SVNLNs matrices =A k( 1,2,3)k( ) into the collective SVNLNs
matrix A, where

= = ⊕ ⊙
=

a INLWAA a a a λ a( , , ) ( )pq pq pq pq
k

k pq
k(1) (2) (3)

1

3
( )

Thus, we can obtain the collective SVNLNs matrix A as
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=

⎛

⎝

⎜
⎜
⎜

〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉

⎞

⎠

⎟
⎟
⎟

A

s s s
s s s
s s s
s s s

,(0.4093,0.2286,0.3299) ,(0.4997,0.2286,0.2861) ,(0.2714,0.1292,0.5609)
,(0.5111,0.1548,0.2582) ,(0.5587,0.1548,0.2286) ,(0.6015,0.2000,0.1625)
,(0.3986,0.1625,0.3299) ,(0.5656,0.1857,0.3299) ,(0.5656,0.1849,0.1437)
,(0.7139,0.1000,0.1548) ,(0.5396,0.1548,0.2286) ,(0.3648,0.1257,0.1625)

4.63 4.70 3.11

3.30 4.70 3.07

3.97 4.30 3.00

4.00 3.63 2.93

Step 2. Utilize the INLWAA operator again to aggregate the neu-
trosophic linguistic argument collections to determine the collective
evaluation value of each alternative =x p( 1,2,3,4)p as follows:

= … = ⊕ ⊙
=

r INLWAA a a a w a( , , , ) ( )p p p pn
q

n
q pq1 2

1

Analogously, the overall assessment of each alternative can be ob-
tained

= 〈 〉

= 〈 〉

r s r

s

,(0.3982,0.1827,0.3885) ,

,(0.5631,0.1712,0.2072)
1 4.0551 2

3.6503

,

= 〈 〉

= 〈 〉

r s r

s

,(0.5222,0.1783,0.2380) ,

,(0.5455,0.1255,0.1783)
3 3.6929 4

3.4634

.

Step 3. Rank the overall evaluation value =r p( 1,2,3,4)p by using

the score function, where

= = = =S r s S r s S r s S r s( ) , ( ) , ( ) , ( ) .1 2.4695 2 2.6583 3 2.5923 4 2.5878

Then, the ranking order among the alternative is > > >x x x x2 3 4 1,
therefore, response solution x2 is the most appropriate one. The com-
parisons are shown in Table 7. Compared with the existing neu-
trosophic linguistic aggregation operators, our proposed approaches
have the following advantages:

(1) Compared with INLWAA (or INLWGA operator) proposed by Ye
(2014b), the proposed operators based on Hamacher t-norms are
more robust and can capture the relationship between the arguments.
The SVN2TL Hamacher aggregation operators can contain almost all
of the arithmetic aggregation operators and geometric aggregation
operators for SVN2TLEs according to different values of parameter λ.

Table 4
Orderings with different cases of SVN2TLHWA operators.

Aggregation operators Score values Score value rankings Final orderings

SVN2TLMI ̃ = −S r s( ) ( , 0.0014)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ =S r s( ) ( ,0.3763)2 2

̃ =S r s( ) ( ,0.3747)3 2

̃ =S r s( ) ( ,0.3313)4 2

SVN2TLGWA ̃ =S r s( ) ( ,0.2130)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.4987)2 3

̃ =S r s( ) ( ,0.4489)3 2

̃ =S r s( ) ( ,0.4385)4 3

SVN2TLEGWA ̃ =S r s( ) ( ,0.2930)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.4496)2 3

̃ =S r s( ) ( ,0.4843)3 2

̃ =S r s( ) ( ,0.4752)4 2

SVN2TLMA ̃ = −S r s( ) ( , 0.4889)1 3 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.3027)2 3

̃ = −S r s( ) ( , 0.3856)3 3

̃ = −S r s( ) ( , 0.4332)4 3

Table 5
Orderings with different cases of SVN2TLHGWA operators.

Aggregation operators Score values Score value rankings Final orderings

SVN2TLMI ̃ = −S r s( ) ( , 0.0014)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ =S r s( ) ( ,0.3763)2 2

̃ =S r s( ) ( ,0.3747)3 2

̃ =S r s( ) ( ,0.3313)4 2

SVN2TLGWA ̃ =S r s( ) ( ,0.2130)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.4987)2 3

̃ =S r s( ) ( ,0.4489)3 2

̃ =S r s( ) ( ,0.4385)4 3

SVN2TLEGWA ̃ =S r s( ) ( ,0.2930)1 2 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.4496)2 3

̃ =S r s( ) ( ,0.4843)3 2

̃ =S r s( ) ( ,0.4752)4 2

SVN2TLMA ̃ = −S r s( ) ( , 0.4889)1 3 ̃ ̃ ̃ ̃> > >S r S r S r S r( ) ( ) ( ) ( )2 3 4 1 > > >x x x x2 3 4 1

̃ = −S r s( ) ( , 0.3027)2 3

̃ = −S r s( ) ( , 0.3856)3 3

̃ = −S r s( ) ( , 0.4332)4 3
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By means of different parameter values, the dynamic variation trend
of rankings of alternatives can be shown clearly. Relative to a static
fixed evaluated result obtained by the existing neutrosophic linguistic
aggregation operators, the dynamic evaluated result can better reflect
the inherent variety law. So, our methods are more general.

(2) Compared with SNLNWBM operator proposed by Tian et al. (2015)
and the WSVNLMSM (or WSVNLGeoMSM) operator proposed by
Wang et al. (2016), the computational complexity of our methods

are more simple. Meanwhile, the proposed methods include only
one parameter, which can adjust the aggregate values based on the
real decision needs, and capture many existing SVNSs aggregation
operators, while the SNLNWBM operator includes two parameters,
which makes it hard to determine two appropriate parameter va-
lues. Therefore, the benefit is that the proposed operators come
with their higher conciseness and flexibility.

(3) Aggregation results obtained by comparative operators may not

Table 6
Orderings with different groups of attribute weights.

Attribute weights Score values Final orderings

=ω (0.2926,0.3147,0.3927)T1 ̃ ̃= − = −S r s S r s( ) ( , 0.3337), ( ) ( , 0.1843)1 3 2 2 > > >x x x x2 3 1 4

̃ ̃= − = −S r s S r s( ) ( , 0.2971), ( ) ( , 0.3429)3 3 4 3

=ω (0.0653,0.1390,0.7957)T2 ̃ ̃= = −S r s S r s( ) ( ,0.1870), ( ) ( , 0.4040)1 2 2 2 > > >x x x x2 3 4 1

̃ ̃= =S r s S r s( ) ( ,0.4449), ( ) ( ,0.2779)3 2 4 2

=ω (0.0959,0.2851,0.6190)T3 ̃ ̃= = −S r s S r s( ) ( ,0.4250), ( ) ( , 0.2052)1 2 2 3 > > >x x x x2 3 1 4

̃ ̃= − =S r s S r s( ) ( , 0.3978), ( ) ( ,0.4002)3 3 4 2

=ω (0.3291,0.3986,0.2724)T4 ̃ ̃= − = −S r s S r s( ) ( , 0.2004), ( ) ( , 0.0923)1 3 2 3 > > >x x x x2 1 3 4

̃ ̃= − = −S r s S r s( ) ( , 0.2364), ( ) ( , 0.2584)3 3 4 3

=ω (0.0196,0.3476,0.3409)T5 ̃ ̃= − =S r s S r s( ) ( , 0.4182), ( ) ( ,0.0142)1 3 2 3 > > >x x x x2 3 1 4

̃ ̃= − =S r s S r s( ) ( , 0.2835), ( ) ( ,0.4031)3 3 4 2

=ω (0.3114,0.3476,0.3409)T6 ̃ ̃= − = −S r s S r s( ) ( , 0.2760), ( ) ( , 0.1473)1 3 2 3 > > >x x x x2 3 1 4

̃ ̃= − = −S r s S r s( ) ( , 0.2705), ( ) ( , 0.3041)3 3 4 3

=ω (0.3218,0.5378,0.1404)T7 ̃ ̃= − =S r s S r s( ) ( , 0.0536), ( ) ( ,0.0495)1 3 2 3 > > >x x x x2 1 3 4

̃ ̃= − = −S r s S r s( ) ( , 0.1683), ( ) ( , 0.2004)3 3 4 3

=ω (0.6957,0.0314,0.2729)T8 ̃ ̃= − =S r s S r s( ) ( , 0.2876), ( ) ( ,0.4080)1 3 2 2 > > >x x x x4 1 3 2

̃ ̃= − = −S r s S r s( ) ( , 0.3750), ( ) ( , 0.0229)3 3 4 3

=ω (0.0478,0.1005,0.8518)T9 ̃ ̃= = −S r s S r s( ) ( ,0.1101), ( ) ( , 0.4613)1 2 2 3 > > >x x x x2 3 4 1

̃ ̃= =S r s S r s( ) ( ,0.3918), ( ) ( ,0.2323)3 2 4 2

=ω (0.7653,0.1390,0.0957)T10 ̃ ̃= − = −S r s S r s( ) ( , 0.1062), ( ) ( , 0.4492)1 3 2 3 > > >x x x x4 1 3 2

̃ ̃= − =S r s S r s( ) ( , 0.3124), ( ) ( ,0.1007)3 3 4 3

0 5 10 15 20 25 30 35 40 45 50
2.6

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

2.78

Sc
or

e 
va

lu
es

 

 
S(r1)
 S(r2)
S(r3)
 S(r4)

Fig. 1. Variation of the score values obtained by the SVN2TLHWA operator.
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Fig. 2. Variation of the score values obtained by the SVN2TLHGWA operator.
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match any of the LTSs. For example, = 〈r s ,1 4.0551
〉(0.3982,0.1827,0.3885) . In such a case, as Tao et al. (2014) have

pointed out in their introduction, there is an awareness that s4.172
does not have any syntax or semantics assigned, because such a
virtual LT makes sense only in comparison and operation. More-
over, in the calculation process, the product between the numerical
value and the LT is usually employed to calculate the alternative
collective evaluation value. For example, × s0.28 2, under the
meaning of linguistic label, means “ × Very low0.28 ”. However,
what does “ × Very low0.28 ” mean in the actual decision problem?
The 2-tuple linguistic representation model can make LTs con-
tinuous and prevent information from losing in aggregation pro-
cess. So SVN2TL aggregation operators are more efficient and can
avoid information loss and the lack of precision.

6.4.2. The TOPSIS method for neutrosophic linguistic MAGDM
In the following, the classical TOPSIS method is taken into con-

sideration. The basic principle of the TOPSIS method is that the chosen
alternative should have the shortest distance from the positive ideal
solution and the farthest distance from the negative ideal solution. The
steps are involved by using the TOPSIS method based on Ye (2015a).

Step 1. Same as Step 1 in Section 6.3.1, we can obtain the collective
SVNLNs matrix A as

Step 2. Define the neutrosophic linguistic positive-ideal solution
(NLPIS) and neutrosophic linguistic negative-ideal solution (NLNIS).
Since ∈h Hθ a( )p , the smallest LT is h0, and the largest LT is h6. Thus, the
NLPIS and NLNIS can be expressed as = 〈 〉+v h ,(1,0,0)s 6 and

= 〈 〉−v h ,(1,0,0)s 0 , respectively.
Step 3. Calculate the distance between each alternative from NLPIS

and NLNIS using the following equation, respectively:

∑ ∑= =+

=

+ −

=

−d ω d a v d ω d a v( , ), ( , ).p
q

n

p pq s p
q

n

p pq s
1 1 (46)

The separation between alternatives can be measured by the
Hamming distance or Euclidean distance. In order to measure the dis-
tances between SVN2TLEs, we adopt the SVNLNs Hammming distance
proposed by Ye (2015a). Then, we can get +dp and −dp , respectively.
Obviously, for the attribute weights given, the smaller +dp and the larger

−dp , the better alternative.
Step 4. Calculate the closeness coefficient to ideal solution as

=
+

=
−

+ −CC
d

d d
p, 1,2,3,4.p

p

p p (47)

It follows that we can get the CCp for alternative xp as:

=
+

= =
+

=
−

+ −

−

+ −CC
d

d d
CC

d
d d

0.4114, 0.4413,1
1

1 1
2

2

2 2

=
+

= =
+

=
−

+ −

−

+ −CC
d

d d
CC

d
d d

0.4235, 0.4295.3
3

3 3
4

4

4 4

According to the closeness coefficient, we can determine the
ranking of all alternatives as

≻ ≻ ≻x x x x .2 4 3 1

It is obvious that the ranking of alternatives obtained by the single
valued neutrosophic linguistic TOPSIS method is the same as that by the
SVN2TL aggregation operators, which reflects the validity of the pro-
posed method in this paper. Thus, response solution x2 is the most ap-
propriate one.

According to the comparison that focus on different angles, we find
the result based on the SVN2TLHWA operator is the same as NLNWAA
operator and TOPSIS methods. In fact, these methods have their own
advantages and disadvantages correspondingly. In summary, the
SVN2TLEs model proposed in this paper have the following char-
acteristics:

(1) The SVN2TLEs consist of the 2TLVs and the subjective evaluation
value on the reliability of the given 2TLVs, they not only reflect the
principal assessment information for alternatives but also show the
reliability of evaluation and the attitudes of the DMs in the process
of MAGDM, the representation of SVN2TLEs is more reasonable
than that of unique real numbers or 2TLVs. Thus, the decision-
making method based on the SVN2TLEs is useful in handling
complex decision-making problems.

(2) The primary advantage of using the SVN2TLHWA operator is that
the aggregated results belong to the initial LTs, which is more ap-
propriate and more easily comprehended. While in most of tradi-
tional linguistic MADM methods, the LTs may lead to information
distortion and losing that occur in the process of information fusion.

(3) Compared with most aggregation operators based on Algebraic t-
conorm and t-norm, new operational laws for SVN2TLEs based on
Hamacher t-norm and t-conorm are closed and can overcome
granularity and logical problems. The prominent characteristics of
the SVN2TLHWA operator are not only for its effectiveness dealing
with the preference information expressed by SVNLNs, but also for
that it provides a very general formula including a wide range of
aggregation operators, which can avoid losing and distorting the
given preference information so as to make the final results accord
with the real decision making problems, therefore, the aggregation
operators based on Hamacher t-norm and t-conorm can provide
another choice for DMs.

(4) Finally, we propose a model to deal with the situation where the
weights information is unknown. The proposed model for optimal

Table 7
Comparison with existing neutrosophic linguistic aggregation operators.

Aggregation operators Parameter number Computation Order of alternatives

INLWAA (or INLWGA operator) Ye (2014b) None Low > > >x x x x2 3 4 1
INULWAA (or INULWGA operator) Ye (2017a) None Low > > >x x x x2 3 4 1

WSVNLMSM (or WSVNLGeoMSM) operator Wang et al. (2016) None Median > > >x x x x2 3 4 1
SNLNWBM operator Tian et al. (2015) Two High > > >x x x x2 3 4 1

The proposed operators One Low > > >x x x x2 3 4 1

Fig. 3. The ranking of each response solution under ten different groups of attribute
weights.
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weight vector is advantaged and effective, which takes objective
weights information into consideration.

In summary, the developed method would be more suitable to
handle indeterminate information and inconsistent information in
complex decision-making problems. Therefore, it is more reasonable
than existing methods.

7. Conclusions

This paper proposes a new class of FSs, which can be see as an ex-
tension of SVNLs, named SVN2TLs, they can satisfactorily reflect im-
precise, incomplete, and inconsistent information in order to address
decision-making situations that involve qualitative information rather
than numerical information. Based on related research achievements in
the literature, we propose some basic operational rules on SVN2TLEs
via Hamacher triangular norms, which overcome the drawbacks of
traditional operational rules of LTs. We also propose the Hamacher
weighted averaging and Hamacher geometric weighted averaging of n
SVN2TLEs based on the proposed operational rules. Finally, we give an
numerical example to show the steps of the proposed method and dis-
cuss the influence of different parameters λ on the ranking results. In
the future research, we can extend the application scopes of the pro-
posed operators to other fields such as consensus models (Dong, Ding,
Martínez, & Herrera, 2017; Gong, Forrest, Zhao, & Yang, 2012; Xu,
Javier Cabrerizo, & Herrera-Viedma, 2017), preference relations (Chu,
Liu, Wang, & Chin, 2016; Nie, Wang, & Li, 2017; Xu, Rui, & Wang,
2017; Zhou, Merigó, Chen, & Liu, 2016), and so on, or we can extend
Hamacher triangular norms to several others decision environment
(Broumi, Ye, & Smarandache, 2015; Fang & Ye, 2017; Zhou & Chen,
2013).
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