
Accepted Manuscript

Learning-based scheduling of flexible manufacturing systems using ensemble
methods

Paolo Priore, Borja Ponte, Javier Puente, Alberto Gómez

PII: S0360-8352(18)30450-9
DOI: https://doi.org/10.1016/j.cie.2018.09.034
Reference: CAIE 5419

To appear in: Computers & Industrial Engineering

Received Date: 23 October 2017
Revised Date: 17 September 2018
Accepted Date: 19 September 2018

Please cite this article as: Priore, P., Ponte, B., Puente, J., Gómez, A., Learning-based scheduling of flexible
manufacturing systems using ensemble methods, Computers & Industrial Engineering (2018), doi: https://doi.org/
10.1016/j.cie.2018.09.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cie.2018.09.034
https://doi.org/10.1016/j.cie.2018.09.034
https://doi.org/10.1016/j.cie.2018.09.034

 1

Learning-based scheduling of flexible manufacturing systems using

ensemble methods

Paolo Priore
1*

, Borja Ponte
2
, Javier Puente

1
, Alberto Gómez

1

1
Departamento de Administración de Empresas, Escuela Politécnica de Ingeniería de

Gijón, Universidad de Oviedo, {priore, jpuente, albertogomez}@uniovi.es

2
 Department for People and Organisations, The Open University Business School,

Michael Young Building, Walton Hall, MK7 6AA, Milton Keynes, UK,

borja.ponte-blanco@open.ac.uk

*corresponding author.

Abstract

Dispatching rules are commonly applied to schedule jobs in Flexible

Manufacturing Systems (FMSs). However, the suitability of these rules relies heavily on

the state of the system; hence, there is no single rule that always outperforms the others.

In this scenario, machine learning techniques, such as support vector machines (SVMs),

inductive learning-based decision trees (DTs), backpropagation neural networks

(BPNs), and case based-reasoning (CBR), offer a powerful approach for dynamic

scheduling, as they help managers identify the most appropriate rule in each moment.

Nonetheless, different machine learning algorithms may provide different

recommendations. In this research, we take the analysis one step further by employing

ensemble methods, which are designed to select the most reliable recommendations

over time. Specifically, we compare the behaviour of the bagging, boosting, and

stacking methods. Building on the aforementioned machine learning algorithms, our

results reveal that ensemble methods enhance the dynamic performance of the FMS.

Through a simulation study, we show that this new approach results in an improvement

of key performance metrics (namely, mean tardiness and mean flow time) over existing

dispatching rules and the individual use of each machine learning algorithm.

 2

Keywords

Machine learning; Knowledge-based systems; Ensemble methods; Scheduling;

Simulation; Flexible Manufacturing System

 3

1. Introduction

Scheduling represents an essential part of the control of Flexible Manufacturing

Systems (FMSs). It refers to the process of allocating a limited and shared set of

resources (e.g. plant and machinery resources) when manufacturing several products

during the same time window. It is aimed at maximizing the efficiency of the operation

and minimizing production costs; by means of determining when each job must be

processed (Shaw, Park, & Raman, 1992). In this sense, scheduling significantly impacts

on the firms’ productivity and financial performance.

A scheduling problem may comprise two different decisions (Wang & Usher,

2005; Nouiri, Bekrar, Jemai, Niar, & Ammari, 2018). The first decision, which is

known as job sequencing and is the root of the scheduling problem, entails calculating

the sequence of the jobs awaiting their next operation in the machine queue. The second

one, which is known as job routing, involves assigning the job operations to the

different machines. This subproblem only appears when routing flexibility is allowed,

and it makes the scheduling problem in FMSs significantly more complex than in

traditional job shops, as both decisions strongly interact and impact on system

performance (Chaudhry & Khan, 2016). Abedinnia, Glock, Grosse, and Schneider

(2017), Chaudhry and Khan (2016), and Dios and Framinan (2016) offer recent reviews

of the scheduling literature.

The literature includes four main methodological approaches to the scheduling

problem: (1) exact methods; (2) heuristic; (3) simulation; and (4) artificial intelligence

(Priore, De la Fuente, Gómez, & Puente, 2006; Priore, Gómez, Pino, & Rosillo, 2014).

The first approach includes classical exact resolution methods, such as branch-and-

bound and dynamic and integer programming, for which optimization packages like

CPLEX and GLPK are usually employed. They provide the optimal solution of a

scheduling optimization problem defined by an objective function and a set of

constraints; see e.g. Azizoglu and Kirca (1998). However, this approach is only time-

efficient for small-scale scheduling problems (Cho & Wysk, 1993), which are

commonly built on assumptions that may often be understood as unrealistic

simplifications. For large-scale problems, which are generally NP-complete problems

(Garey & Johnson, 1979), these methods become extremely time consuming or even

unfeasible, and other methodological solutions are required.

 4

The complexity of many scheduling problems led research into heuristic

methods. They generally translate into simple dispatching rules —although they also

may take other, more complex, forms— for prioritizing all the jobs that are awaiting for

processing in a dynamic, or reactive, manner (Ouelhadj & Petrovic, 2009). Their value

lies in being easy-to-implement strategies that are able to provide high-quality solutions

with a low computational effort (Xanthopoulos, Koulouriotis, Tourassis, & Emiris,

2013). However, their performance strongly depends on many factors, such as the

selected optimization criteria, the system configuration, and the workload (Cho &

Wysk, 1993). In this sense, a specific rule may work well in a certain state of the FMS,

but may turn out to be inappropriate in a subsequent state.

For this reason, the design of systems capable of modifying the dispatching rule

over time in response to the changes in the state of the system gained the attention of

researchers. To do this, there are two main research streams in the literature. The first

one is based on simulating a set of predefined rules and selecting at every moment that

one which provides the best performance (see, for example, Ishii & Talavage, 1991;

Jeong & Kim, 1998; Kim & Kim, 1994; Kutanoglu & Sabuncuoglu, 2001; Wu & Wysk,

1989).

The second one is based on the use of artificial intelligence techniques. This

approach aims to gain knowledge of the FMS from a set of examples in order to

determine the best rule for each possible system state. These examples —which may be

obtained through simulation and/or from the operation of the real system— are used to

train a machine learning algorithm (Michalski, Carbonell, & Mitchell, 1983), which

generates the knowledge. These algorithms generally offer high-performance solutions

to the scheduling problem in reasonable computation times. Thus, intelligent decisions

can be made in real time (see, for instance, Azadeh, Maleki Shoja, Moghaddam,

Asadzadeh, & Akbari, 2013; Azadeh, Negahban, & Moghaddam, 2014; Choi, Kim, &

Lee, 2011; Guh, Shiue, & Tseng, 2011; Heger, Branke, Hildebrandt, & Scholz-Reiter,

2016; Mönch, Zimmermann, & Otto, 2006; Mouelhi-Chibani & Pierreval, 2010; Priore

et al., 2006; Priore, Parreño, Pino, Gómez, & Puente, 2010; Shaw et al., 1992; Shiue &

Guh, 2006; Shiue, Guh, & Lee, 2011). The reviews by Akyol and Bayhan (2007),

Priore, De la Fuente, Gómez, and Puente, (2001), and Priore et al. (2014) provide

further detail on machine learning applications to the scheduling problem.

 5

In recent years, the sets of classifiers obtained through ensemble methods have

been one of the research areas most explored within the machine learning field. A set of

classifiers may be defined as a group of classifiers (that is, baseline machine learning

algorithms) whose individual decisions are combined in some way to classify new

examples (Dietterich, 1997). In this sense, various classifiers are employed at the same

time with the aim of improving their individual accuracy.

Several ensemble methods can be found in the problem-specific literature. Three

of the most widely used techniques are bagging (Breiman, 1996), boosting (Freund &

Schapire, 1996; Schapire, 1990) and stacking (Wolpert, 1992). The first two methods

generate homogeneous classifiers given the fact that a single learning algorithm is used

(Dietterich, 2000). In contrast, the stacking method generates heterogeneous classifiers

as a consequence of the use of different learning algorithms. Another noticeable

difference is that this method, unlike the bagging and boosting methods, does not

employ a voting mechanism. In this sense, it aims to avoid a final misclassification

caused by most classifiers awarding wrong predictions.

In this article, we employ ensemble methods within the scheduling problem with

the goal of improving the accuracy of the individual classifiers employed independently

as well as the performance of the traditional use of dispatching rules. We apply and

compare the bagging, boosting, and stacking mechanisms. It should be highlighted that

to date sets of classifiers have been hardly employed in FMSs. One of the few studies is

that by Shiue, Guh, and Lee (2012), who use the bagging method. These authors justify

that this method fits better with the nature of the scheduling problem in real time than

the boosting method, given that there is a substantial classification noise. Under this

scenario, and to the best of our knowledge, ours is the first article employing and

comparing different ensemble methods to solve the scheduling problem in FMSs.

The rest of this paper has been structured as follows. First, Section 2 describes the

machine learning algorithms used in this article and Section 3 details the ensemble

methods. Next, Section 4 presents our approach to scheduling jobs based on machine

learning, while Section 5 develops the experimental study we conducted. The proposed

scheduling system is compared both to the static use of dispatching rules and to the

individual application of each machine learning algorithm. Finally, Section 6 concludes

by revisiting the research goals of this article.

 6

2. Machine learning algorithms

Ensemble methods use machine learning algorithms as baseline classifiers. To this

end, we have selected four algorithms widely employed in practice: support vector

machines (SVMs), inductive learning, backpropagation neural networks (BPNs) and

case-based reasoning (CBR).

SVMs (Cortes & Vapnik, 1995) were originally conceived for binary

classification. Later, this technique was adapted to problems with a high number of

classes. This cutting-edge algorithm generates complex mathematical models, whose

strength lies in its ability to model nonlinearities (Wang, Hao, Ma, & Jiang, 2011). In

light of this, SVMs have proven to achieve high performance in a wide range of

applications, such as credit scoring, financial time series, and scheduling.

Inductive learning algorithms sprang from the works of Hoveland and Hunt in the

late 1950s, which culminated in the 1960s in the concept learning systems (Hunt, Marin,

& Stone, 1966). These algorithms are able to generate a decision tree (DT) from a set of

training examples —this set is recursively divided into subsets composed of single-class

collections of examples. The C4.5 algorithm (Quinlan, 1993), which is the most well-

known inductive learning algorithm, also produces a set of decision rules, whereby new

problems can be solved by determining the class of these new cases.

Artificial neural networks are inspired by the structure and the operation

principles of the nervous system of animals. BPNs, whose architecture is known as

multilayer perceptron (Rumelhart, Hinton, & Williams, 1986), represent the most used

type of neural networks for pattern classification and function approximation (Freeman

& Skapura, 1991; Lippman, 1987). In the training process, this algorithm obtains the

connection weights and thresholds that minimize the difference between the actual and

the desired output. This allows the algorithm to classify new cases.

Finally, CBR looks at similar problems in the past to solve the current one. It can

be formalized as a four-step process (Watson, 1997): (i) Retrieving similar cases to the

target problem; (ii) Reusing the solutions from these cases to the problem; (iii) Revising

the suggested solutions to better fit the problem; and (iv) Retaining the experience as a

new case in memory. The nearest neighbour (k-NN) algorithm (Aha, 1992) is one of the

most popular algorithms in CBR applications for retrieving and reusing past cases. To

classify a new case, the k-NN first measures the distance of this case to each training

 7

example (past case). Then, the predominant class in the k ‘nearest’, or more similar,

examples is assigned to the new case.

3. Ensemble methods

Ensemble methods aim to compensate the errors made individually by the

baseline classifiers in the different parts of the data. Thus, they are designed to obtain a

better predictive performance than could be achieved from any baseline classifier alone.

It should be noted that the diversity among the baseline classifiers is generally

promoted, as it allows to enrich the model. This diversity can be achieved in different

ways, e.g. employing different learning algorithms, calibrating the classifiers through

different sampling methods, or projecting examples onto different features subsets

(Kim, 2009). Next, we describe three popular ensemble methods, which are employed

in this work: bagging, boosting, and stacking.

Bootstrap aggregating, commonly abbreviated as bagging, is one of the earliest

ensemble learning methods (Breiman, 1996). In this method, each training subset is

generated by randomly selecting n examples with replacement, where n is the size of the

original training set. For this reason, some examples may be repeated in each training

subset. From this point, each training subset is employed to obtain a baseline classifier

of the same type. The classes of new examples are selected according to the majority of

the baseline classifiers —that is, “one classifier, one vote” (Bramer, 2016).

On the contrary, boosting adjusts the weights of the original sample set. This

adjustment increases the weight of examples that are misclassified by the learning

algorithm, while it decrements those weights of the examples that are correctly

classified. Therefore, the final model obtained by this method is a linear combination of

the baseline classifiers weighted by their own behaviour. We use the AdaBoost (Freund

& Schapire, 1996) algorithm, which is the most popular in this area, to implement the

boosting method.

Stacking, or stacked generalization, was developed earlier, but it is less

widespread since it is difficult to analyse from a theoretical perspective (Wang et al.,

2011). Unlike bagging and boosting, stacking is not commonly employed to combine

classifiers of the same type but it deals with classifiers of different nature, which are not

expected to be correlated. Figure 1 provides an overview of this ensemble method,

 8

which uses the concept of meta-learning, according to which a learning algorithm

(level-2) is employed over a new dataset formed by the predictions made by the baseline

learning algorithms (level-1) with the original data. As in cross-validation, the data used

to develop the level-1 classifiers should not be employed to generate the data that will

be used by the level-2 learning algorithm.

To implement this method, we employ different combinations of learning

algorithms both in level-1 and in level-2. In addition, we use the Naïve Bayes algorithm

(Mitchell, 1997) as a level-2 algorithm, given that simple algorithms commonly perform

well at this level (Witten & Frank, 2005). Wang et al. (2011) provides further details,

including the pseudocode, of the described ensemble methods.

Figure 1. Structure of the stacking ensemble method.

4. Scheduling using machine learning and ensemble methods

According to Nakasuka and Yoshida (1992), a real-time scheduling system that

dynamically modifies dispatching rules must verify two somewhat contrasting features

in order to work properly. First, the selection of the best rule must take into

consideration a wide variety of real-time information about the manufacturing system.

Second, the selection process must be completed fast enough to avoid the delay of real

operations.

To successfully meet both requirements, some kind of knowledge about the

interdependencies between the FMS state and the optimal rule is required. Then, the key

question becomes how this knowledge can be acquired. To cope with this problem, we

develop a solution based on machine learning algorithms. Figure 2 shows the

 9

framework we propose for the FMS scheduling system built on artificial intelligence-

based techniques (Priore et al., 2006; Priore et al., 2010).

The operation of the learning-based system requires a vast number of training

and test examples, which may be obtained from the past operation of the FMS and/or

from simulating its performance in a wide range of scenarios. In our case, we employ a

FMS simulation model as the generator of examples. To generate each example, the

simulation model randomly generates a state of the FMS —defined by the rate of arrival

of parts, the relative workload, the due date tightness, and so on— and calculates the

best dispatching rule for each state.

Figure 2. General overview of a learning-based scheduling system.

The knowledge required to regulate the FMS is generated by the different

machine learning algorithms. It can be noted that each algorithm encapsulates the

knowledge in a different manner; for instance, inductive learning algorithms construct a

decision tree, which results in a set of decision rules. This knowledge would allow

managers to make scheduling decisions in real time through a control system of the

FMS. This real-time control system evaluates periodically, according to the monitoring

period, the state of the system, and selects, employing the acquired knowledge, the best

dispatching rule for scheduling jobs. In addition, the performance of the FMS is

evaluated. It is relevant to highlight that this process results in a feedback loop emerging

between the control system and the FMS, which can be seen in Figure 2. If at any time

the performance of the system drops, further examples may be helpful to increase the

accuracy of the algorithm by refining the knowledge about the manufacturing system.

 10

The mathematical formulation of a learning-based scheduling system can be found in

Park, Raman, and Shaw (1997) and Shiue et al. (2012).

Following the explanations in the previous section, the application of ensemble

methods represents an evolution in the development of the control system for the FMS,

as they make the control system capable of considering the knowledge obtained by

different machine learning algorithms at the same time. In this sense, Figure 3 illustrates

the conceptual transition from a FMS governed by a fixed combination of dispatching

rules to the architecture we propose based on ensemble methods, understanding the

control by means of machine learning algorithms as the intermediate step.

Figure 3. Conceptual evolution of the approaches for scheduling of FMS.

5. Experimental study

5.1. The proposed FMS

In this research, we employ the FMS model developed by Min, Yih, and Kim

(1998) and Kim, Min, and Yih (1998). The baseline model is shown in Figure 4. It is

formed of four machining centres, each one of them having each own input and output

buffer. In addition, the system contains a washing machine, a crane as the material

handling system, thirty-two storage racks for work-in-process, and a loading/unloading

station. Although in practice each machine centre has different interchangeable tool

magazines —which enables each of them to process various operations by mounting

 11

different tool magazines—, we have assumed that the FMS works on the basis of a

predefined policy for tooling arrangement.

Figure 4. Configuration of the FMS.

Given that operations can be carried out on different machines, we consider two

major decisions in the FMS: the job sequencing and the job routing problems (Wang &

Usher, 2005; Nouiri et al., 2018). Firstly, the selection of the parts by the machines, i.e.

the job sequencing problem. To prioritize the jobs that are competing for the use of each

machine, we apply the following dispatching rules, which define various priority

strategies: shortest processing time (SPT), earliest due date (EDD), modified job due

date (MDD), and shortest remaining processing time (SRPT). In this sense, a priority

index, , is assigned to each job, and that with the lowest priority index will be

executed first. The calculation of the priority index for each rule is shown below. For

the SPT,

 (1)

for the EDD,

 (2)

for the MDD,

 (3)

and for the SRPT

 (4)

 12

where di is the due date of job i; pij is the processing time of operation j of job i; Pij is

the remaining processing time for job i at the beginning of operation j, and t is the

moment when the scheduling decision is taken. The due date of job i (di) is calculated,

following Baker (1984), by the following expression:

 (5)

where F is the flow allowance factor which measures due date tightness; ti is the

moment when job i arrives at the system, and pi is the total processing time of job i.

The second decision entails the selection of the machines by the parts i.e. the job

routing problem. This involves assigning the job operations to the different machines, a

problem which exist when routing flexibility is allowed, like in FMSs. The dispatching

rules employed for this work are:

- shortest processing time (SPT), which selects the machine that requires less

time to carry out the operation;

- number in queue (NINQ), which selects the machine with the lowest number

of jobs in the buffer;

- work in queue (WINQ), which selects the machine whose input buffer

contains the smallest amount of work; and

- lowest utilised station (LUS), which selects the machine with the lowest

overall utilisation rate.

It should be underlined that the rules for both decisions have been chosen since

they have shown to perform well in foundational works (Kim et al., 1998; Min et al.,

1998; O’Keefe & Kasirajan, 1992; Shaw et al., 1992).

We have considered the following control attributes to describe the FMS state in

every moment:

- flow allowance factor (F), measuring due date tightness (Baker, 1984);

- mean number of alternative machines for an operation (NAMO);

- mean utilisation of the FMS (MU);

- utilisation of each machine (Un, where n refers to the machine);

- mean number of parts in the system, or work-in-process (WIP),

- ratio of the utilisation of the bottleneck machine to the mean utilisation of the

FMS (RBM), that is,

 13

 (6)

- ratio of the standard deviation of the individual machine utilisations to the

mean utilisation (RSDU), by

(7)

Finally, we employ the mean tardiness and the mean flow time to measure the

dynamic performance of the FMS in our experimental study, since both criteria are

widely employed in the scheduling literature (Fernandes, Thürer, Silva, & Carmo-Silva,

2017; Fernandez-Viagas, Perez-Gonzalez, & Framinan, 2018). In this regard, it can be

clarified that mean tardiness (MT) is defined as:

 (8)

where N is the number of finished jobs and Ti=max{0, Li}, being Li the difference

between the date the job is finished and the agreed due date (di).

By way of summary, Figure 5 demarcates the scope of the FMS in this research

by highlighting the system-in-focus and its state variables together with the control

inputs and the key performance indicators.

Figure 5. Modeling approach of the FMS considered in this research work.

5.2. Generating the examples

The FMS model has been implemented by means of the WITNESS simulation

software (Witness, 2006). To carry out the simulation runs, we have considered the

following assumptions:

 14

- Jobs arrive at the system following a Poisson statistical distribution.

- Processing times for each operation are obtained from an exponential

distribution with a mean of 1.

- The actual number of operations of each job is a random variable following a

uniform discrete distribution from 1 to 4.

- The number of alternative machines for an operation varies between 1 and 2.

- The arrival rate varies so that the overall use of the FMS fluctuates between

55% and 95%.

- The factor F ranges between 1 and 10.

- To study the behaviour of the FMS in an unbalanced situation, we assume that

the machining centres 1 and 2 have a greater workload.

To generate the examples that will be used in the subsequent sections, we have

randomly generated 1,100 combinations of the seven control attributes as per the

previously defined assumptions —each one of them will translate into one example per

each criterion. We selected this size for the dataset given that prior works, such as

Priore et al. (2006), have shown that over this number of examples the accuracy of the

machine learning algorithms does not increase significantly. Each combination of

control attributes was simulated for the 16 possible alternatives of combinations

between the two different (machines’ and parts’) dispatching rules, and the system

stores the best one according to each criterion. The combination of the seven control

attributes and the class, which refers to the best combination of rules, define each

example. By way of illustration, Table 1 presents a small sample of the training dataset

for the criterion of mean tardiness.

Table 1. Extract of the training dataset for the criterion of mean tardiness.

 Control attributes

No. F NAMO MU RBM RSDU WIP U1 U2 U3 U4 Class

1 5 1 61.5 1.48 0.45 10.7 87 91.1 32.9 34.9 MDD+SPT

2 4 2 72.4 1.10 0.10 5.8 79.8 79.5 64.4 65.9 MDD+NINQ

3 7 1 58.6 1.48 0.45 8.2 83.2 86.8 31.1 33.3 MDD+SPT

4 7 2 74.1 1.12 0.12 6.2 82.9 82.6 64.6 66.3 EDD+NINQ

5 8 2 77 1.09 0.10 6.7 84.3 84.3 69 70.4 EDD+NINQ

6 7 1 58 1.48 0.45 7.7 82.6 85.9 30.8 32.9 MDD+SPT

7 2 2 84.6 1.03 0.03 8 87.1 87.1 82.4 81.6 SPT+NINQ

8 10 1 65.4 1.42 0.40 13.2 90.4 92.9 39.2 39.2 MDD+SPT

 15

9 7 2 67.9 1.16 0.14 5.3 75.8 78.5 63 54.4 EDD+WINQ

10 2 2 85.8 1.04 0.05 8.4 89.1 89.3 86.8 78 SPT+WINQ

Looking at the overall training data set, it can be observed that three

combinations predominate for the criterion of mean flow time (SPT+SPT, SPT+NINQ,

SPT+WINQ). However, most of the combinations are selected at some point for the

criteria of mean tardiness. All in all, this fact clearly illustrates the need for modifying

the dispatching rules in real time in response to the FMS state.

5.3. Application of the machine learning algorithms and ensemble methods

The experiments have been carried out by employing the data-mining software

RapidMiner (Hofmann & Klinkenberg, 2013) with the Weka extension (Witten &

Frank, 2005). For the machine learning algorithms, we use the same configuration both

when they are employed individually and when they are employed within the ensemble

methods —this allows us to ensure that the comparison has been carried out in a fair

setting. In addition, the results have been validated through the cross-validation method,

by which the example set is divided into ten different blocks —nine for obtaining the

knowledge and the other for testing the classifier.

Table 2 shows the average accuracy for the baseline classifiers and for the

bagging and boosting methods, when we consider the criterion of the mean tardiness.

First of all, we observe that the BPNs achieve the highest average accuracy, followed

respectively by the SVMs, the DT and the CBR. When the bagging technique is used,

both the DT and the BPNs are able to increase their performance —especially in the

case of the DT. On the contrary, neither the CBR nor the SVMs are capable of

improving their response. Interestingly, similar results have been obtained for the

boosting technique, although the increase in the accuracy of the DT is smaller in this

case.

Table 2. Average accuracy of baseline classifiers, bagging, and boosting for the mean tardiness criterion.

Baseline

classifier

Average

accuracy (%)
Bagging

Average

accuracy (%)
Boosting

Average

accuracy (%)

DT 81.82 DT 83.36 DT 82.36
CBR 78.00 CBR 78.00 CBR 78.00

SVMs 85.45 SVMs 85.45 SVMs 85.45

 16

BPNs 86.73 BPNs 87.45 BPNs 87.45

Table 3 includes the results of the stacking technique for different combinations

of level-1 and level-2 classifiers. When comparing these results to those shown in Table

2, it can be seen that many of these combinations achieve a higher average accuracy

than the top-performer algorithm when employed as a baseline classifier, i.e. the BPNs

(86.73%). From inspection of Table 3, we observe that when the DT, the BPNs or the

CBR are employed in level-2, the SVMs and the BPNs provide the best results as

baseline classifiers (level-1) —otherwise, the system will not outperform the individual

results of the best baseline classifier. Note that, for example, when the BPNs are

employed as level-2 algorithm and the DT, CBR, SVMs, and BPNs are employed as

level-1 algorithms, the average accuracy (85.36%) is lower than the average accuracy

obtained by the best baseline classifier, which in this case is the BPNs. Likewise, when

the BPNs are used as level-2 algorithm and the DT, SVMs, and BPNs as level-1

algorithms, the average accuracy is 86.73%, which is the same as that of the best

baseline classifier. From inspection of Table 3, the same observation can be made, as

we discussed previously, when we use the DT or the CBR as level-2 algorithms.

However, when the SVMs are used in level-2, the three alternatives in level-1

(DT, CBR, SVMs and BPNs; DT, SVMs and BPNs; SVMs and BPNs) offer an

accuracy of 86.91%, 87.18% and 87.64 %, respectively. Therefore, they outperform the

results obtained by the top-performer algorithm (BPNs, whose accuracy is 86.73%).

Similarly, it can be seen from Table 3 that, when the Naïve Bayes is used at level-2, the

system is also capable of achieving higher accuracy than the top-performer algorithm,

regardless of the combination of algorithms at level-1.

Finally, we would like to underline that among the 15 alternatives, the highest

accuracy has been obtained for the stacking method when the Naïve Bayes is employed

as level-2 algorithm and simultaneously the DT, the CBR, the SVMs, and the BPNs are

employed as level-1 algorithms (88.70%). This combination improved the accuracy

obtained by the best baseline classifier (86.73%), but also the best performance obtained

by the bagging and boosting methods (87.45% in both cases).

Table 3. Average accuracy (%) of stacking for the mean tardiness criterion.

Baseline Algorithm (level-2)

 17

classifier (level-1) DT CBR SVMs BPNs Naïve Bayes

DT, CBR, SVMs, BPNs 86.45 84.36 86.91 85.36 88.70

DT, SVMs, BPNs 86.45 85.09 87.18 86.73 88.30
SVMs, BPNs 87.18 87.27 87.64 86.91 87.95

The same analysis can be conducted for the second criterion. As we highlighted

in Section 5.2, a smaller number of combinations of dispatching rules are employed in

this case. This explains why the errors are significantly lower for this criterion, and

consequently the average accuracy increases. Table 4 shows these results. In general

terms, we observe that the CBR achieves the highest accuracy (98.45%). Paradoxically,

this was the algorithm that achieved the lowest accuracy for the mean tardiness

criterion. In this case, this algorithm is followed closely by the DT, while the

performance of the BPNs and, especially, the SVMs is significantly lower.

Table 4. Average accuracy of baseline classifiers, bagging, and boosting for the mean flow time criterion.

Baseline

classifier

Average

accuracy (%)
Bagging

Average

accuracy (%)
Boosting

Average

accuracy (%)

DT 98.36 DT 98.27 DT 98.82
CBR 98.45 CBR 98.45 CBR 98.45

SVMs 94.91 SVMs 94.91 SVMs 94.91

BPNs 96.36 BPNs 97.09 BPNs 96.91

When we apply the bagging method, only the BPNs are capable of increasing

the performance obtained by the baseline algorithms employed independently (97.09%

and 96.36%, respectively). The CBR and the SVMs present the same accuracy, while

the DT slightly decreases its accuracy. When we apply the boosting method, both the

BPNs and the DT experience a slight enhancement (0.46% in the former and 0.55% in

the latter), while again the results of the CBR and the SVMs do not modify.

Table 5. Average accuracy (%) of stacking for the mean flow time criterion.

Base

classifier (level-1)

Algorithm (level-2)

DT CBR SVMs BPNs Naïve Bayes

DT, CBR, SVMs, BPNs 98.91 98.64 98.91 98.64 99.08

DT, CBR, BPNs 98.91 98.64 98.91 98.64 99.08

DT, CBR 99.00 98.82 98.91 98.18 99.00

Finally, Table 5 presents the results of the stacking method for this second

criterion. To a greater or lesser extent, all the combinations achieve a higher accuracy

 18

than the employment of the CBR as the only baseline classifier (98.45%). In this case,

the highest accuracy is again achieved when the Naïve Bayes is employed as level-2

algorithm, while the overall result does not seem to be very sensitive to the combination

of algorithms employed in level-1. This combination (99.08%) also outperforms the

best results obtained by the top-performer baseline classifier (98.45%) as well as the

bagging (98.45%) and boosting (98.82%) methods. With the other level-2 algorithms

(DT, CBR, SVMs or BPNs), the learning-based system is also capable of increasing the

accuracy over the best baseline classifier, with the exception of the BPNs being used as

level-2 algorithms and the CBR and DT being used as level-1 algorithms. In this case,

the accuracy (98.18%) is slightly lower than that achieved by the top-performer baseline

classifier.

5.4. Performance of the learning-based scheduling

After evaluating the accuracy of the different knowledge-based mechanisms, we

now quantify their operational performance. To this end, we implement the different

scheduling systems in the FMS simulation model. We will compare the performance of:

(a) the sixteen different combinations of dispatching rules employed statically; (b) the

four machine learning algorithms controlling the FMS in real time according to the state

of the system; and (c) the three ensemble methods controlling the FMS in real time

according to the state of the system by considering the different results provided by the

machine learning algorithms.

A core question in the evaluation process is the selection of the monitoring

period, as the frequency used to measure the control attributes may significantly impact

on the results. For this reason, it is advisable to assess the performance of the different

strategies under a wide range of monitoring periods —we have selected 2.5, 5, 10, and

20 time units (see, for instance, Jeong & Kim, 1998; Kim & Kim, 1994; Wu & Wysk,

1989). After carrying out a number of preliminary tests, we chose 2.5 time units as the

most appropriate monitoring period.

Under these circumstances, we have designed two different scenarios for the

FMS. In the first one (scenario I), changes are generated in the FMS at given time

periods, defined by an independent and identically distributed random variable

following a uniform discrete distribution from 50 to 500 time units. In the second one

 19

(scenario II), the time periods for generating the change range between 2.5 and 250 time

units —that is, the FMS is subject to a significantly higher number of changes here. We

note that the changes of the control attributes have been generated within the intervals

described in Section 5.2 for the training dataset. Finally, it should be highlighted that

have obtained each numerical result shown below as the average of ten independent

replications of 100,000 time units.

Having clarified all these important aspects, Table 6 presents the results that we

have obtained. For the sake of readability, we show the values of the mean tardiness and

mean flow time in each case referred to the lowest values obtained, which represents the

optimal response of the FMS. In each column, we use italics to highlight the best static

combination of dispatching rules, the best knowledge-based baseline classifier, and the

best ensemble method.

All in all, Table 6 first shows that the best alternative is to employ a dynamic

scheduling system based on machine learning techniques. Second, this table provides

evidence that the scheduling approach based on ensemble methods clearly generates the

best results. And third, it may be concluded from Table 6 that the stacking method

outperforms the bagging and boosting methods.

Table 6. Mean tardiness and mean flow time, in relative terms, for the proposed strategies.

Strategy used
 Mean tardiness Mean flow time

Scenario I Scenario II Scenario I Scenario II

SPT+SPT 4.046 5.356 2.109 2.405

SPT+NINQ 1.191 1.192 1.039 1.044

SPT+WINQ 1.184 1.171 1.041 1.042
SPT+LUS 2.469 2.528 1.511 1.519

EDD+SPT 3.466 4.604 2.206 2.611

EDD+NINQ 1.504 1.639 1.328 1.391
EDD+WINQ 1.499 1.647 1.327 1.395

EDD+LUS 2.834 3.215 1.865 2.050

MDD+SPT 3.478 4.645 2.299 2.676

MDD+NINQ 1.115 1.117 1.228 1.250
MDD+WINQ 1.122 1.128 1.231 1.255

MDD+LUS 2.351 2.470 1.773 1.854

SRPT+SPT 4.437 5.994 2.280 2.655
SRPT+NINQ 1.357 1.382 1.132 1.141

SRPT+WINQ 1.360 1.374 1.137 1.142

SRPT+LUS 2.792 2.950 1.671 1.710

CBR 1.058 1.068 1.004 1.004
BPNs 1.011 1.012 1.016 1.017

DT 1.039 1.044 1.004 1.005

SVMs 1.018 1.020 1.024 1.026

 20

Bagging 1.007 1.008 1.004 1.004

Boosting 1.007 1.008 1.002 1.002

Stacking 1.000 1.000 1.000 1.000

For the mean tardiness criterion, the combination of MDD and NINQ is the best

alternative from a static perspective, followed closely by the combination of MDD and

WINQ. However, this solution is clearly sub-optimal, since the four dynamic schedules

controlled by machine learning algorithms perform significantly better. Specifically, the

BPNs and the SVMs provide a relatively similar result, which outperforms the DT and

the CBR. When the bagging and boosting techniques are employed in the BPNs, the

FMS response improves in comparison with the alternative of employing exclusively

the BPNs. In line with the discussion in the previous section, the optimal is achieved

with the stacking method (employing Naïve Bayes in level-2 and simultaneously the

DT, the CBR, the BPNs, and the SVMs in level-1), as a consequence of the significant

increase in the average accuracy. In view of our results, we can conclude that the mean

tardiness of the best static alternative is between 11.5% and 11.7% larger than the

solution provided by the stacking method.

We now focus on the criterion of the mean flow time, according to which the

combinations of SPT and NINQ, for the first scenario, and SPT and WINQ, for the

second one, are the best static alternatives. Consistent with the findings in the previous

section, the CBR is the algorithm that minimizes the mean flow time, followed

respectively by the DT, the BPNs, and the SVMs. The FMS behavior does not improve

with the bagging method in comparison with the CBR; however, the boosting method is

capable of generating a lower mean flow time. Again, the best results are obtained when

we employ the stacking technique (employing Naïve Bayes in level-2 and

simultaneously the DT, the CBR, the BPNs, and the SVMs in level-1). In this case,

when the stacking method is employed, the indicator decreases by between 3.9% and

4.2% over the best static alternative.

A one-way ANOVA was conducted to test the differences between the top nine

scheduling strategies (according to the previous analysis) in both scenarios: the best two

static strategies (MDD+NINQ and MDD+WINQ for the criterion of mean tardiness,

and SPT+NINQ and SPT+WINQ for the criterion of mean flow time), the four baseline

classifiers (CBR, BPNs, DT, and SVMs), and the three different ensemble methods

 21

(bagging, boosting, and stacking). For each strategy, we considered 10 different

replications. Table 7 shows the results of this analysis, which reveal that that there are

statistically significant differences (confidence level: 95%) in the performance of the

nine strategies according to both criteria and for the two different scenarios.

Table 7. One-way ANOVA table under the two different criteria in scenarios I and II.

Table 8. Criterion of mean tardiness: p-values of comparisons among scheduling strategies.

Criterion

(scenario)

Scheduling

strategy

MDD+

WINQ

CBR BPNs DT SVMs Bagging Boosting Stacking

MT - (I) MDD+NINQ 0.496 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 MDD+WINQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 CBR 0.000 0.017 0º.000 0.000 0.000 0.000

 BPNs 0.004 0.814 0.563 0.563 0.009
 DT 0.008 0.001 0.001 0.000

 SVMs 0.416 0.416 0.005

 Bagging 1.000 0.039
 Boosting 0.039

MT - (II) MDD+NINQ 0.603 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 MDD+WINQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 CBR 0.000 0.072 0.000 0.000 0.000 0.000
 BPNs 0.060 0.929 0.925 0.925 0.035

 DT 0.073 0.049 0.049 0.000

 SVMs 0.854 0.854 0.029
 Bagging 1.000 0.044

 Boosting 0.044

Performance

criterion

Source of Variation SS DF MS F-test p-value

MT - (I) Between Groups 2.564 8 0.321 70.670 0.000

 Within Groups 0.367 81 0.005
 Total 2.932 89

MT - (II) Between Groups 1.536 8 0.192 25.211 0.000

 Within Groups 0.617 81 0.008

 Total 2.153 89

MFT - (I) Between Groups 2.151 8 0.269 19.815 0.000

 Within Groups 1.099 81 0.014

 Total 3.250 89

MFT - (II) Between Groups 2.409 8 0.301 12.999 0.000
 Within Groups 1.876 81 0.023

 Total 4.285 89

Note: SS - sum of squares; DF - degree of freedom; MS - mean squares.

 22

Once the differences have been verified, we compare the individual performance

of the various strategies by means of Fisher’s least significant difference (LSD) test.

Tables 8 and 9 provide this information via the relevant p-values. It should be

highlighted that the stacking-based scheduling system stands out above the other

strategies with a significance level of 0.05 for the criterion of mean tardiness in both

scenarios. However, the bagging and boosting methods are not able to significantly

outperform the best machine learning algorithms, which are BPNs and SVMs. As

regards the criterion of mean flow time, there are no statistically significant differences

between the top five scheduling strategies in neither of the two scenarios. It means that

the use of ensemble methods does not translate into a significantly improved

performance over the independent use of the best machine learning algorithms.

Table 9. Criterion of mean flow time: p-values of comparisons among scheduling strategies.

Criterion
(scenario)

Scheduling
strategy

SPT+
WINQ

CBR BPNs DT SVMs Bagging Boosting Stacking

MFT - (I) SPT+NINQ 0.991 0.000 0.000 0.000 0.004 0.000 0.000 0.000

 SPT+WINQ 0.000 0.000 0.000 0.004 0.000 0.000 0.000
 CBR 0.018 1.000 0.000 1.000 0.691 0.426

 BPNs 0.018 0.112 0.018 0.006 0.002

 DT 0.000 1.000 0.691 0.426

 SVMs 0.000 0.000 0.000
 Bagging 0.691 0.426

 Boosting 0.689

MFT - (II) SPT+NINQ 0.601 0.000 0.000 0.000 0.004 0.000 0.000 0.000
 SPT+WINQ 0.000 0.000 0.000 0.017 0.000 0.000 0.000

 CBR 0.076 0.889 0.003 1.000 0.783 0.580

 BPNs 0.101 0.216 0.076 0.041 0.021

 DT 0.005 0.889 0.679 0.489
 SVMs 0.003 0.001 0.001

 Bagging 0.783 0.580

 Boosting 0.781

6. Conclusions

This paper suggests a new approach to scheduling based on the application of

ensemble methods. Building on machine learning algorithms, which allow managers to

deal with the scheduling problem from a dynamic perspective by selecting the most

appropriate dispatching rule over time, the use of ensemble methods takes the solution

mechanism one step further. These methods make the control system capable of

considering the recommendations made by different machine learning algorithms in

 23

order to detect those most reliable at each particular moment. Thus, this represents a

conceptual evolution in the design of control systems for FMSs.

The first step for practitioners wishing to implement this solution would be to

replicate the real-world setting through a validated and verified simulation prototype.

This would allow them to explore the optimal combination of dispatching rules in a

wide range of scenarios. In light of this, different machine learning algorithms may be

able to generate the required knowledge to control the system over time. From this

perspective, ensemble methods would be able to consider the solutions provided by the

different machine learning algorithms and evaluate their reliability; eventually

proposing a combination of dispatching rules as the solution of the scheduling problem.

Overall, this approach would equip managers with a decision-making tool to optimize

the control of manufacturing systems in highly complex and dynamic environments.

We have demonstrated that this approach results in a meaningful operational

improvement in the FMS from the perspective of mean tardiness —however, the

improvement was not statistically significant for the criterion of mean flow time since

the average accuracy of the machine learning algorithms used independently was very

high. The improvement in these key metrics is especially noticeable for the stacking

method, which, unlike the bagging and boosting methods, does not employ a voting

mechanism but uses the concept of a meta-classifier, i.e. a top-level algorithm which

learns from the outputs of the set of classifiers obtained in the first phase.

Future research in this field might focus on employing more decision types for the

proposed FMS and/or evaluating the performance of our proposal in other structures of

FMSs. In this regard, the more decision types are used and/or the more complex the

system is, the more simulation runs are required to generate the training and test

examples. Another interesting avenue for future research would be based on increasing

the understanding on the sets of classifiers —a major limitation of this technique is the

fact that humans struggle to understand the knowledge learned. Finally, we may explore

the addition of a knowledge base refinement module. This mechanism would be aimed

at modifying the core of the knowledge acquired once the FMS faces major changes.

References

 24

Abedinnia, H., Glock, C.H., Grosse, E.H., & Schneider, M. (2107). Machine scheduling

problems in production: A tertiary study. Computers & Industrial Engineering,

111, 403–416

Aha, D.W. (1992). Tolerating noisy, irrelevant and novel attributes in instance-based

learning algorithms. International Journal of Man-Machine Studies, 36, 267-

287.

Akyol, D.E., & Bayhan, G.M. (2007). A review on evolution of production scheduling

with neural networks. Computers & Industrial Engineering, 53, 95-122.

Azadeh, A., Maleki Shoja, B., Moghaddam, M., Asadzadeh, S.M., & Akbari, A.

(2013). A neural network meta-model for identification of optimal combination

of priority dispatching rules and makespan in a deterministic job shop

scheduling problem. International Journal of Advanced Manufacturing

Technology, 67, 1549-1561.

Azadeh, A., Negahban, A., & Moghaddam, M. (2014). A hybrid computer simulation-

artificial neural network algorithm for optimisation of dispatching rule selection

in stochastic job shop scheduling problems. International Journal of Production

Research, 50, 551-566.

Azizoglu, M., & Kirca, O. (1998). Tardiness minimization on parallel machines.

International Journal of Production Economics, 55(2), 163-168.

Baker, K.R. (1984). Sequencing rules and due-date assignments in a job shop.

Management Science, 30, 1093-1104.

Bramer, M. (2016). Ensemble classification. In Principles of Data Mining (pp. 209-

220). London: Springer.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Chaudhry, I.A., & Khan, A.A. (2016). A research survey: review of flexible job shop

scheduling techniques. International Transactions in Operational Research, 23,

551-591.

Cho, H., & Wysk, R.A. (1993). A robust adaptive scheduler for an intelligent

workstation controller. International Journal of Production Research, 31, 771-

789.

 25

Choi, H.-S., Kim, J.-S., & Lee, D.-H. (2011). Real-time scheduling for reentrant hybrid

flow shops: A decision tree based mechanism and its application to TFT-LCD

line. Expert Systems with Applications, 38, 3514-3521.

Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 273-

297.

Dietterich, T. G. (1997). Machine-learning research: four current directions. AI

Magazine, 18, 97–136.

Dietterich, T. G. (2000). Ensemble methods in machine learning, in. Kittler, J., Roli, F.

(Eds.), First International Workshop on Multiple Classifier Systems, Lecture

Notes in Computer Science, 1-15, New York: Springer Verlag.

Dios, M., & Framinan, JM. (2016). A review and classification of computer-based

manufacturing scheduling tools. Computers & Industrial Engineering, 99, 229–

249.

Fernandes, N. O., Thürer, M., Silva, C., & Carmo-Silva, S. (2017). Improving workload

control order release: Incorporating a starvation avoidance trigger into

continuous release. International Journal of Production Economics, 194, 181-

189.

Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2018). The distributed

permutation flow shop to minimise the total flowtime. Computers & Industrial

Engineering, 118, 464-477.

Freeman, J.A., & Skapura, D.M. (1991). Neural Networks: Algorithms, Applications,

and Programming Techniques. Reading, MA: Addison Wesley.

Freund, Y., & Schapire, R.E. (1996). Experiment with a new boosting algorithm. In M.

Kaufmann, editor, Proceedings of the Thirteenth International Conference on

Machine Learning, pp. 148–156.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness. New York: Freeman.

Guh, R.-S., Shiue, Y.-R., & Tseng, T.-Y. (2011). The study of real time scheduling by

an intelligent multi-controller approach. International Journal of Production

Research, 49, 2977-2997.

 26

Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment

of dispatching rule parameters in flow shops with sequence-dependent set-up

times. International Journal of Production Research, 54, 6812-6824.

Hofmann, M., & Klinkenberg, R. (2013). RapidMiner: Data mining use cases and

business analytics applications. Boca Raton, FL: CRC Press.

Hunt, E.B., Marin, J., & Stone, P.J. (1966). Experiments in Induction. New York:

Academic Press.

Ishii, N., & Talavage, J. (1991). A transient-based real-time scheduling algorithm in

FMS. International Journal of Production Research, 29, 2501-2520.

Jeong, K.-C., & Kim, Y.-D. (1998). A real-time scheduling mechanism for a flexible

manufacturing system: using simulation and dispatching rules. International

Journal of Production Research, 36, 2609-2626.

Kim, C.-O., Min, H.-S., & Yih, Y. (1998). Integration of inductive learning and neural

networks for multi-objective FMS scheduling. International Journal of

Production Research, 36, 2497-2509.

Kim, M.H., & Kim, Y.-D. (1994). Simulation-based real-time scheduling in a flexible

manufacturing system. Journal of Manufacturing Systems, 13, 85-93.

Kim, Y. (2009). Boosting and measuring the performance of ensembles for successful

database marketing. Expert Systems with Applications, 36, 2161-2176.

Kutanoglu, E., & Sabuncuoglu, I. (2001). Experimental investigation of iterative

simulation-based scheduling in a dynamic and stochastic job shop. Journal of

Manufacturing Systems, 20, 264-279.

Lippman, R.P. (1987). An introduction to computing with Neural Networks. IEEE

ASSP Magazine, 3, 4-22.

Michalski, R.S., Carbonell, J.G., & Mitchell, T.M. (1983). Machine Learning. An

Artificial Intelligence Approach. Palo Alto, CA: Tioga Press.

Min, H.-S., Yih, Y., & Kim, C.-O. (1998). A competitive neural network approach to

multi-objective FMS scheduling. International Journal of Production Research,

36, 1749-1765.

Mitchell, T.M. (1997). Machine Learning. New York: McGraw-Hill.

 27

Mönch, L., Zimmermann, J., & Otto, P. (2006). Machine learning techniques for

scheduling jobs with incompatible families and unequal ready times on parallel

batch machines. Engineering Applications of Artificial Intelligence, 19, 235-245.

Mouelhi-Chibani, W., & Pierreval, H. (2010). Training a neural network to select

dispatching rules in real time. Computers & Industrial Engineering, 58, 249-

256.

Nakasuka, S., & Yoshida, T. (1992). Dynamic scheduling system utilizing machine

learning as a knowledge acquisition tool. International Journal of Production

Research, 30, 411-431.

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A.C. (2018). An effective and

distributed particle swarm optimization algorithm for flexible job-shop

scheduling problem. Journal of Intelligent Manufacturing, 29, 603-615.

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing

systems. Journal of Scheduling, 12, 417-431.

O’keefe, R.M., & Kasirajan, T. (1992). Interaction between dispatching and next station

selection rules in a dedicated flexible manufacturing system. International

Journal of Production Research, 30, 1753-1772.

Park, S.C., Raman, N., & Shaw, M.J. (1997). Adaptive scheduling in dynamic flexible

manufacturing systems: A dynamic rule selection approach. IEEE Transactions

on Robotics and Automation, 13, 486-502.

Priore, P., De la Fuente, D., Gómez, A., & Puente, J. (2001). A review of machine

learning in dynamic scheduling of flexible manufacturing systems. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 15, 251-263.

Priore, P., De la Fuente, D., Gómez, A., & Puente, J. (2006). A comparison of machine-

learning algorithms for dynamic scheduling of flexible manufacturing systems.

Engineering Applications of Artificial Intelligence, 19, 247-255.

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of

manufacturing systems using machine learning: An updated review. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 28, 83-97.

Priore, P., Parreño, J., Pino, R., Gómez, A., & Puente, J. (2010). Learning-based

scheduling of flexible manufacturing systems using support vector machines.

Applied Artificial Intelligence 24, 194-209.

 28

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann Publishers.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by

back-propagating errors. Nature, 323, 533-536.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197–

227.

Shaw, M.J., Park, S., & Raman, N. (1992). Intelligent scheduling with machine learning

capabilities: the induction of scheduling knowledge. IIE Transactions, 24, 156-

168.

Shiue, Y.-R., & Guh, R.-S. (2006). The optimization of attribute selection in decision

tree-based production control systems. International Journal of Advanced

Manufacturing Technology, 28, 737-746.

Shiue, Y.-R., Guh, R.-S., & Lee, K.-C. (2011). Study of SOM-based intelligent multi-

controller for real-time scheduling. Applied Soft Computing, 11, 4569-4580.

Shiue, Y.-R., Guh, R.-S., & Lee, K.-C. (2012). Development of machine learning-based

real time scheduling systems: using ensemble based on wrapper feature selection

approach. International Journal of Production Research, 20, 5887-5905.

Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble

learning for credit scoring. Expert Systems with Applications, 38, pp. 223-230.

Wang, Y.C., & Usher, J.M. (2005). Application of reinforcement learning for agent-

based production scheduling. Engineering Applications of Artificial

Intelligence, 18(1), 73-82.

Watson, I. (1997). Applying Case-Based Reasoning: Techniques for Enterprise Systems.

San Francisco, CA: Morgan Kaufmann Publishers.

Witness. (2006). User Manual. Release 8.0. Lanner Group Ltd.

Witten, I.H., & Frank, E. (2005). Data mining: Practical machine learning tools and

techniques. Boston: Morgan Kaufmann Publisher.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241–259.

Wu, S.-Y.D., & Wysk, R.A. (1989). An application of discrete-event simulation to on-

line control and scheduling in flexible manufacturing. International Journal of

Production Research, 27, 1603-1623.

 29

Xanthopoulos, A.S., Koulouriotis, D.E., Tourassis, V.D., & Emiris, D.M. (2013).

Intelligent controllers for bi-objective dynamic scheduling on a single machine

with sequence-dependent setups. Applied Soft Computing, 13, 4704-4717.

 30

Learning-based scheduling of flexible manufacturing systems using

ensemble methods

Research highlights

 We propose a new approach to scheduling Flexible Manufacturing Systems.

 Knowledge about the system is obtained through ensemble methods.

 Three different techniques are used: bagging, boosting, and stacking.

 Stacking is deeply explored through two-level combinations of classical algorithms.

 This dynamic approach proves to outperform existing alternatives.

 31

Acknowledgement

This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

