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Abstract 

Dispatching rules are commonly applied to schedule jobs in Flexible 

Manufacturing Systems (FMSs). However, the suitability of these rules relies heavily on 

the state of the system; hence, there is no single rule that always outperforms the others. 

In this scenario, machine learning techniques, such as support vector machines (SVMs), 

inductive learning-based decision trees (DTs), backpropagation neural networks 

(BPNs), and case based-reasoning (CBR), offer a powerful approach for dynamic 

scheduling, as they help managers identify the most appropriate rule in each moment. 

Nonetheless, different machine learning algorithms may provide different 

recommendations. In this research, we take the analysis one step further by employing 

ensemble methods, which are designed to select the most reliable recommendations 

over time. Specifically, we compare the behaviour of the bagging, boosting, and 

stacking methods. Building on the aforementioned machine learning algorithms, our 

results reveal that ensemble methods enhance the dynamic performance of the FMS. 

Through a simulation study, we show that this new approach results in an improvement 

of key performance metrics (namely, mean tardiness and mean flow time) over existing 

dispatching rules and the individual use of each machine learning algorithm.  

 



  

 2 

Keywords 

Machine learning; Knowledge-based systems; Ensemble methods; Scheduling; 

Simulation; Flexible Manufacturing System 



  

 3 

1. Introduction 

Scheduling represents an essential part of the control of Flexible Manufacturing 

Systems (FMSs). It refers to the process of allocating a limited and shared set of 

resources (e.g. plant and machinery resources) when manufacturing several products 

during the same time window. It is aimed at maximizing the efficiency of the operation 

and minimizing production costs; by means of determining when each job must be 

processed (Shaw, Park, & Raman, 1992). In this sense, scheduling significantly impacts 

on the firms’ productivity and financial performance. 

A scheduling problem may comprise two different decisions (Wang & Usher, 

2005; Nouiri, Bekrar, Jemai, Niar, & Ammari, 2018). The first decision, which is 

known as job sequencing and is the root of the scheduling problem, entails calculating 

the sequence of the jobs awaiting their next operation in the machine queue. The second 

one, which is known as job routing, involves assigning the job operations to the 

different machines. This subproblem only appears when routing flexibility is allowed, 

and it makes the scheduling problem in FMSs significantly more complex than in 

traditional job shops, as both decisions strongly interact and impact on system 

performance (Chaudhry & Khan, 2016). Abedinnia, Glock, Grosse, and Schneider 

(2017), Chaudhry and Khan (2016), and Dios and Framinan (2016) offer recent reviews 

of the scheduling literature. 

The literature includes four main methodological approaches to the scheduling 

problem: (1) exact methods; (2) heuristic; (3) simulation; and (4) artificial intelligence 

(Priore, De la Fuente, Gómez, & Puente, 2006; Priore, Gómez, Pino, & Rosillo, 2014). 

The first approach includes classical exact resolution methods, such as branch-and-

bound and dynamic and integer programming, for which optimization packages like 

CPLEX and GLPK are usually employed. They provide the optimal solution of a 

scheduling optimization problem defined by an objective function and a set of 

constraints; see e.g. Azizoglu and Kirca (1998). However, this approach is only time-

efficient for small-scale scheduling problems (Cho & Wysk, 1993), which are 

commonly built on assumptions that may often be understood as unrealistic 

simplifications. For large-scale problems, which are generally NP-complete problems 

(Garey & Johnson, 1979), these methods become extremely time consuming or even 

unfeasible, and other methodological solutions are required.  
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The complexity of many scheduling problems led research into heuristic 

methods. They generally translate into simple dispatching rules —although they also 

may take other, more complex, forms— for prioritizing all the jobs that are awaiting for 

processing in a dynamic, or reactive, manner (Ouelhadj & Petrovic, 2009). Their value 

lies in being easy-to-implement strategies that are able to provide high-quality solutions 

with a low computational effort (Xanthopoulos, Koulouriotis, Tourassis, & Emiris, 

2013). However, their performance strongly depends on many factors, such as the 

selected optimization criteria, the system configuration, and the workload (Cho & 

Wysk, 1993). In this sense, a specific rule may work well in a certain state of the FMS, 

but may turn out to be inappropriate in a subsequent state. 

For this reason, the design of systems capable of modifying the dispatching rule 

over time in response to the changes in the state of the system gained the attention of 

researchers. To do this, there are two main research streams in the literature. The first 

one is based on simulating a set of predefined rules and selecting at every moment that 

one which provides the best performance (see, for example, Ishii & Talavage, 1991; 

Jeong & Kim, 1998; Kim & Kim, 1994; Kutanoglu & Sabuncuoglu, 2001; Wu & Wysk, 

1989).  

The second one is based on the use of artificial intelligence techniques. This 

approach aims to gain knowledge of the FMS from a set of examples in order to 

determine the best rule for each possible system state. These examples —which may be 

obtained through simulation and/or from the operation of the real system— are used to 

train a machine learning algorithm (Michalski, Carbonell, & Mitchell, 1983), which 

generates the knowledge. These algorithms generally offer high-performance solutions 

to the scheduling problem in reasonable computation times. Thus, intelligent decisions 

can be made in real time (see, for instance, Azadeh, Maleki Shoja, Moghaddam, 

Asadzadeh, & Akbari, 2013; Azadeh, Negahban, & Moghaddam, 2014; Choi, Kim, & 

Lee, 2011; Guh, Shiue, & Tseng, 2011; Heger, Branke, Hildebrandt, & Scholz-Reiter, 

2016; Mönch, Zimmermann, & Otto, 2006; Mouelhi-Chibani & Pierreval, 2010; Priore 

et al., 2006; Priore, Parreño, Pino, Gómez, & Puente, 2010; Shaw et al., 1992; Shiue & 

Guh, 2006; Shiue, Guh, & Lee, 2011). The reviews by Akyol and Bayhan (2007), 

Priore, De la Fuente, Gómez, and Puente, (2001), and Priore et al. (2014) provide 

further detail on machine learning applications to the scheduling problem. 
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In recent years, the sets of classifiers obtained through ensemble methods have 

been one of the research areas most explored within the machine learning field. A set of 

classifiers may be defined as a group of classifiers (that is, baseline machine learning 

algorithms) whose individual decisions are combined in some way to classify new 

examples (Dietterich, 1997). In this sense, various classifiers are employed at the same 

time with the aim of improving their individual accuracy.  

Several ensemble methods can be found in the problem-specific literature. Three 

of the most widely used techniques are bagging (Breiman, 1996), boosting (Freund & 

Schapire, 1996; Schapire, 1990) and stacking (Wolpert, 1992). The first two methods 

generate homogeneous classifiers given the fact that a single learning algorithm is used 

(Dietterich, 2000). In contrast, the stacking method generates heterogeneous classifiers 

as a consequence of the use of different learning algorithms. Another noticeable 

difference is that this method, unlike the bagging and boosting methods, does not 

employ a voting mechanism. In this sense, it aims to avoid a final misclassification 

caused by most classifiers awarding wrong predictions.  

In this article, we employ ensemble methods within the scheduling problem with 

the goal of improving the accuracy of the individual classifiers employed independently 

as well as the performance of the traditional use of dispatching rules. We apply and 

compare the bagging, boosting, and stacking mechanisms. It should be highlighted that 

to date sets of classifiers have been hardly employed in FMSs. One of the few studies is 

that by Shiue, Guh, and Lee (2012), who use the bagging method. These authors justify 

that this method fits better with the nature of the scheduling problem in real time than 

the boosting method, given that there is a substantial classification noise. Under this 

scenario, and to the best of our knowledge, ours is the first article employing and 

comparing different ensemble methods to solve the scheduling problem in FMSs.  

The rest of this paper has been structured as follows. First, Section 2 describes the 

machine learning algorithms used in this article and Section 3 details the ensemble 

methods. Next, Section 4 presents our approach to scheduling jobs based on machine 

learning, while Section 5 develops the experimental study we conducted. The proposed 

scheduling system is compared both to the static use of dispatching rules and to the 

individual application of each machine learning algorithm. Finally, Section 6 concludes 

by revisiting the research goals of this article. 
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2. Machine learning algorithms 

Ensemble methods use machine learning algorithms as baseline classifiers. To this 

end, we have selected four algorithms widely employed in practice: support vector 

machines (SVMs), inductive learning, backpropagation neural networks (BPNs) and 

case-based reasoning (CBR). 

SVMs (Cortes & Vapnik, 1995) were originally conceived for binary 

classification. Later, this technique was adapted to problems with a high number of 

classes. This cutting-edge algorithm generates complex mathematical models, whose 

strength lies in its ability to model nonlinearities (Wang, Hao, Ma, & Jiang, 2011). In 

light of this, SVMs have proven to achieve high performance in a wide range of 

applications, such as credit scoring, financial time series, and scheduling. 

Inductive learning algorithms sprang from the works of Hoveland and Hunt in the 

late 1950s, which culminated in the 1960s in the concept learning systems (Hunt, Marin, 

& Stone, 1966). These algorithms are able to generate a decision tree (DT) from a set of 

training examples —this set is recursively divided into subsets composed of single-class 

collections of examples. The C4.5 algorithm (Quinlan, 1993), which is the most well-

known inductive learning algorithm, also produces a set of decision rules, whereby new 

problems can be solved by determining the class of these new cases. 

Artificial neural networks are inspired by the structure and the operation 

principles of the nervous system of animals. BPNs, whose architecture is known as 

multilayer perceptron (Rumelhart, Hinton, & Williams, 1986), represent the most used 

type of neural networks for pattern classification and function approximation (Freeman 

& Skapura, 1991; Lippman, 1987). In the training process, this algorithm obtains the 

connection weights and thresholds that minimize the difference between the actual and 

the desired output. This allows the algorithm to classify new cases. 

Finally, CBR looks at similar problems in the past to solve the current one. It can 

be formalized as a four-step process (Watson, 1997): (i) Retrieving similar cases to the 

target problem; (ii) Reusing the solutions from these cases to the problem; (iii) Revising 

the suggested solutions to better fit the problem; and (iv) Retaining the experience as a 

new case in memory. The nearest neighbour (k-NN) algorithm (Aha, 1992) is one of the 

most popular algorithms in CBR applications for retrieving and reusing past cases. To 

classify a new case, the k-NN first measures the distance of this case to each training 
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example (past case). Then, the predominant class in the k ‘nearest’, or more similar, 

examples is assigned to the new case. 

 

3. Ensemble methods 

Ensemble methods aim to compensate the errors made individually by the 

baseline classifiers in the different parts of the data. Thus, they are designed to obtain a 

better predictive performance than could be achieved from any baseline classifier alone. 

It should be noted that the diversity among the baseline classifiers is generally 

promoted, as it allows to enrich the model. This diversity can be achieved in different 

ways, e.g. employing different learning algorithms, calibrating the classifiers through 

different sampling methods, or projecting examples onto different features subsets 

(Kim, 2009). Next, we describe three popular ensemble methods, which are employed 

in this work: bagging, boosting, and stacking. 

Bootstrap aggregating, commonly abbreviated as bagging, is one of the earliest 

ensemble learning methods (Breiman, 1996). In this method, each training subset is 

generated by randomly selecting n examples with replacement, where n is the size of the 

original training set. For this reason, some examples may be repeated in each training 

subset. From this point, each training subset is employed to obtain a baseline classifier 

of the same type. The classes of new examples are selected according to the majority of 

the baseline classifiers —that is, “one classifier, one vote” (Bramer, 2016). 

On the contrary, boosting adjusts the weights of the original sample set. This 

adjustment increases the weight of examples that are misclassified by the learning 

algorithm, while it decrements those weights of the examples that are correctly 

classified. Therefore, the final model obtained by this method is a linear combination of 

the baseline classifiers weighted by their own behaviour. We use the AdaBoost (Freund 

& Schapire, 1996) algorithm, which is the most popular in this area, to implement the 

boosting method. 

Stacking, or stacked generalization, was developed earlier, but it is less 

widespread since it is difficult to analyse from a theoretical perspective (Wang et al., 

2011). Unlike bagging and boosting, stacking is not commonly employed to combine 

classifiers of the same type but it deals with classifiers of different nature, which are not 

expected to be correlated. Figure 1 provides an overview of this ensemble method, 
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which uses the concept of meta-learning, according to which a learning algorithm 

(level-2) is employed over a new dataset formed by the predictions made by the baseline 

learning algorithms (level-1) with the original data. As in cross-validation, the data used 

to develop the level-1 classifiers should not be employed to generate the data that will 

be used by the level-2 learning algorithm.  

To implement this method, we employ different combinations of learning 

algorithms both in level-1 and in level-2. In addition, we use the Naïve Bayes algorithm 

(Mitchell, 1997) as a level-2 algorithm, given that simple algorithms commonly perform 

well at this level (Witten & Frank, 2005). Wang et al. (2011) provides further details, 

including the pseudocode, of the described ensemble methods.  

 

 

Figure 1. Structure of the stacking ensemble method. 

 

4. Scheduling using machine learning and ensemble methods 

According to Nakasuka and Yoshida (1992), a real-time scheduling system that 

dynamically modifies dispatching rules must verify two somewhat contrasting features 

in order to work properly. First, the selection of the best rule must take into 

consideration a wide variety of real-time information about the manufacturing system. 

Second, the selection process must be completed fast enough to avoid the delay of real 

operations. 

To successfully meet both requirements, some kind of knowledge about the 

interdependencies between the FMS state and the optimal rule is required. Then, the key 

question becomes how this knowledge can be acquired. To cope with this problem, we 

develop a solution based on machine learning algorithms. Figure 2 shows the 
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framework we propose for the FMS scheduling system built on artificial intelligence-

based techniques (Priore et al., 2006; Priore et al., 2010). 

The operation of the learning-based system requires a vast number of training 

and test examples, which may be obtained from the past operation of the FMS and/or 

from simulating its performance in a wide range of scenarios. In our case, we employ a 

FMS simulation model as the generator of examples. To generate each example, the 

simulation model randomly generates a state of the FMS —defined by the rate of arrival 

of parts, the relative workload, the due date tightness, and so on— and calculates the 

best dispatching rule for each state.  

 

 

Figure 2. General overview of a learning-based scheduling system. 

 

The knowledge required to regulate the FMS is generated by the different 

machine learning algorithms. It can be noted that each algorithm encapsulates the 

knowledge in a different manner; for instance, inductive learning algorithms construct a 

decision tree, which results in a set of decision rules. This knowledge would allow 

managers to make scheduling decisions in real time through a control system of the 

FMS. This real-time control system evaluates periodically, according to the monitoring 

period, the state of the system, and selects, employing the acquired knowledge, the best 

dispatching rule for scheduling jobs. In addition, the performance of the FMS is 

evaluated. It is relevant to highlight that this process results in a feedback loop emerging 

between the control system and the FMS, which can be seen in Figure 2. If at any time 

the performance of the system drops, further examples may be helpful to increase the 

accuracy of the algorithm by refining the knowledge about the manufacturing system. 
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The mathematical formulation of a learning-based scheduling system can be found in 

Park, Raman, and Shaw (1997) and Shiue et al. (2012). 

Following the explanations in the previous section, the application of ensemble 

methods represents an evolution in the development of the control system for the FMS, 

as they make the control system capable of considering the knowledge obtained by 

different machine learning algorithms at the same time. In this sense, Figure 3 illustrates 

the conceptual transition from a FMS governed by a fixed combination of dispatching 

rules to the architecture we propose based on ensemble methods, understanding the 

control by means of machine learning algorithms as the intermediate step.  

 

Figure 3. Conceptual evolution of the approaches for scheduling of FMS. 

  

5. Experimental study 

5.1. The proposed FMS 

In this research, we employ the FMS model developed by Min, Yih, and Kim 

(1998) and Kim, Min, and Yih (1998). The baseline model is shown in Figure 4. It is 

formed of four machining centres, each one of them having each own input and output 

buffer. In addition, the system contains a washing machine, a crane as the material 

handling system, thirty-two storage racks for work-in-process, and a loading/unloading 

station. Although in practice each machine centre has different interchangeable tool 

magazines —which enables each of them to process various operations by mounting 
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different tool magazines—, we have assumed that the FMS works on the basis of a 

predefined policy for tooling arrangement.  

 

 

Figure 4. Configuration of the FMS. 

 

Given that operations can be carried out on different machines, we consider two 

major decisions in the FMS: the job sequencing and the job routing problems (Wang & 

Usher, 2005; Nouiri et al., 2018). Firstly, the selection of the parts by the machines, i.e. 

the job sequencing problem. To prioritize the jobs that are competing for the use of each 

machine, we apply the following dispatching rules, which define various priority 

strategies: shortest processing time (SPT), earliest due date (EDD), modified job due 

date (MDD), and shortest remaining processing time (SRPT). In this sense, a priority 

index,   , is assigned to each job, and that with the lowest priority index will be 

executed first. The calculation of the priority index for each rule is shown below. For 

the SPT,  

        (1) 

for the EDD,  

       (2) 

for the MDD,  

                   (3) 

and for the SRPT 

        (4) 
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where di is the due date of job i; pij is the processing time of operation j of job i; Pij is 

the remaining processing time for job i at the beginning of operation j, and t is the 

moment when the scheduling decision is taken. The due date of job i (di) is calculated, 

following Baker (1984), by the following expression: 

            (5) 

where F is the flow allowance factor which measures due date tightness; ti is the 

moment when job i arrives at the system, and pi is the total processing time of job i. 

The second decision entails the selection of the machines by the parts i.e. the job 

routing problem. This involves assigning the job operations to the different machines, a 

problem which exist when routing flexibility is allowed, like in FMSs. The dispatching 

rules employed for this work are: 

- shortest processing time (SPT), which selects the machine that requires less 

time to carry out the operation; 

- number in queue (NINQ), which selects the machine with the lowest number 

of jobs in the buffer; 

- work in queue (WINQ), which selects the machine whose input buffer 

contains the smallest amount of work; and 

- lowest utilised station (LUS), which selects the machine with the lowest 

overall utilisation rate.  

It should be underlined that the rules for both decisions have been chosen since 

they have shown to perform well in foundational works (Kim et al., 1998; Min et al., 

1998; O’Keefe & Kasirajan, 1992; Shaw et al., 1992). 

We have considered the following control attributes to describe the FMS state in 

every moment: 

- flow allowance factor (F), measuring due date tightness (Baker, 1984); 

- mean number of alternative machines for an operation (NAMO); 

- mean utilisation of the FMS (MU); 

- utilisation of each machine (Un, where n refers to the machine);  

- mean number of parts in the system, or work-in-process (WIP),  

- ratio of the utilisation of the bottleneck machine to the mean utilisation of the 

FMS (RBM), that is, 
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  (6) 

- ratio of the standard deviation of the individual machine utilisations to the 

mean utilisation (RSDU), by 

     
                                    

 
  

  
(7) 

Finally, we employ the mean tardiness and the mean flow time to measure the 

dynamic performance of the FMS in our experimental study, since both criteria are 

widely employed in the scheduling literature (Fernandes, Thürer, Silva, & Carmo-Silva, 

2017; Fernandez-Viagas, Perez-Gonzalez, & Framinan, 2018). In this regard, it can be 

clarified that mean tardiness (MT) is defined as: 

   
   

 
  (8) 

where N is the number of finished jobs and Ti=max{0, Li}, being Li the difference 

between the date the job is finished and the agreed due date (di). 

By way of summary, Figure 5 demarcates the scope of the FMS in this research 

by highlighting the system-in-focus and its state variables together with the control 

inputs and the key performance indicators. 

 

 

Figure 5. Modeling approach of the FMS considered in this research work. 

 

5.2. Generating the examples 

The FMS model has been implemented by means of the WITNESS simulation 

software (Witness, 2006). To carry out the simulation runs, we have considered the 

following assumptions:  
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- Jobs arrive at the system following a Poisson statistical distribution. 

- Processing times for each operation are obtained from an exponential 

distribution with a mean of 1. 

- The actual number of operations of each job is a random variable following a 

uniform discrete distribution from 1 to 4. 

- The number of alternative machines for an operation varies between 1 and 2. 

- The arrival rate varies so that the overall use of the FMS fluctuates between 

55% and 95%. 

- The factor F ranges between 1 and 10. 

- To study the behaviour of the FMS in an unbalanced situation, we assume that 

the machining centres 1 and 2 have a greater workload. 

To generate the examples that will be used in the subsequent sections, we have 

randomly generated 1,100 combinations of the seven control attributes as per the 

previously defined assumptions —each one of them will translate into one example per 

each criterion. We selected this size for the dataset given that prior works, such as 

Priore et al. (2006), have shown that over this number of examples the accuracy of the 

machine learning algorithms does not increase significantly. Each combination of 

control attributes was simulated for the 16 possible alternatives of combinations 

between the two different (machines’ and parts’) dispatching rules, and the system 

stores the best one according to each criterion. The combination of the seven control 

attributes and the class, which refers to the best combination of rules, define each 

example. By way of illustration, Table 1 presents a small sample of the training dataset 

for the criterion of mean tardiness. 

 
Table 1. Extract of the training dataset for the criterion of mean tardiness. 

 Control attributes  

No. F NAMO MU RBM RSDU WIP U1 U2 U3 U4 Class 

1 5 1 61.5 1.48 0.45 10.7 87 91.1 32.9 34.9 MDD+SPT 

2 4 2 72.4 1.10 0.10 5.8 79.8 79.5 64.4 65.9 MDD+NINQ 

3 7 1 58.6 1.48 0.45 8.2 83.2 86.8 31.1 33.3 MDD+SPT 

4 7 2 74.1 1.12 0.12 6.2 82.9 82.6 64.6 66.3 EDD+NINQ 

5 8 2 77 1.09 0.10 6.7 84.3 84.3 69 70.4 EDD+NINQ 

6 7 1 58 1.48 0.45 7.7 82.6 85.9 30.8 32.9 MDD+SPT 

7 2 2 84.6 1.03 0.03 8 87.1 87.1 82.4 81.6 SPT+NINQ 

8 10 1 65.4 1.42 0.40 13.2 90.4 92.9 39.2 39.2 MDD+SPT 



  

 15 

9 7 2 67.9 1.16 0.14 5.3 75.8 78.5 63 54.4 EDD+WINQ 

10 2 2 85.8 1.04 0.05 8.4 89.1 89.3 86.8 78 SPT+WINQ 

 

Looking at the overall training data set, it can be observed that three 

combinations predominate for the criterion of mean flow time (SPT+SPT, SPT+NINQ, 

SPT+WINQ). However, most of the combinations are selected at some point for the 

criteria of mean tardiness. All in all, this fact clearly illustrates the need for modifying 

the dispatching rules in real time in response to the FMS state. 

 

5.3. Application of the machine learning algorithms and ensemble methods 

The experiments have been carried out by employing the data-mining software 

RapidMiner (Hofmann & Klinkenberg, 2013) with the Weka extension (Witten & 

Frank, 2005). For the machine learning algorithms, we use the same configuration both 

when they are employed individually and when they are employed within the ensemble 

methods —this allows us to ensure that the comparison has been carried out in a fair 

setting. In addition, the results have been validated through the cross-validation method, 

by which the example set is divided into ten different blocks —nine for obtaining the 

knowledge and the other for testing the classifier.  

Table 2 shows the average accuracy for the baseline classifiers and for the 

bagging and boosting methods, when we consider the criterion of the mean tardiness. 

First of all, we observe that the BPNs achieve the highest average accuracy, followed 

respectively by the SVMs, the DT and the CBR. When the bagging technique is used, 

both the DT and the BPNs are able to increase their performance —especially in the 

case of the DT. On the contrary, neither the CBR nor the SVMs are capable of 

improving their response. Interestingly, similar results have been obtained for the 

boosting technique, although the increase in the accuracy of the DT is smaller in this 

case. 

 
Table 2. Average accuracy of baseline classifiers, bagging, and boosting for the mean tardiness criterion. 

Baseline 

classifier 

Average 

accuracy (%) 
Bagging 

Average 

accuracy (%) 
Boosting 

Average 

accuracy (%) 

DT 81.82 DT 83.36 DT 82.36 
CBR 78.00 CBR 78.00 CBR 78.00 

SVMs 85.45 SVMs 85.45 SVMs 85.45 
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BPNs 86.73 BPNs 87.45 BPNs 87.45 

 

Table 3 includes the results of the stacking technique for different combinations 

of level-1 and level-2 classifiers. When comparing these results to those shown in Table 

2, it can be seen that many of these combinations achieve a higher average accuracy 

than the top-performer algorithm when employed as a baseline classifier, i.e. the BPNs 

(86.73%). From inspection of Table 3, we observe that when the DT, the BPNs or the 

CBR are employed in level-2, the SVMs and the BPNs provide the best results as 

baseline classifiers (level-1) —otherwise, the system will not outperform the individual 

results of the best baseline classifier. Note that, for example, when the BPNs are 

employed as level-2 algorithm and the DT, CBR, SVMs, and BPNs are employed as 

level-1 algorithms, the average accuracy (85.36%) is lower than the average accuracy 

obtained by the best baseline classifier, which in this case is the BPNs. Likewise, when 

the BPNs are used as level-2 algorithm and the DT, SVMs, and BPNs as level-1 

algorithms, the average accuracy is 86.73%, which is the same as that of the best 

baseline classifier. From inspection of Table 3, the same observation can be made, as 

we discussed previously, when we use the DT or the CBR as level-2 algorithms.  

However, when the SVMs are used in level-2, the three alternatives in level-1 

(DT, CBR, SVMs and BPNs; DT, SVMs and BPNs; SVMs and BPNs) offer an 

accuracy of 86.91%, 87.18% and 87.64 %, respectively. Therefore, they outperform the 

results obtained by the top-performer algorithm (BPNs, whose accuracy is 86.73%). 

Similarly, it can be seen from Table 3 that, when the Naïve Bayes is used at level-2, the 

system is also capable of achieving higher accuracy than the top-performer algorithm, 

regardless of the combination of algorithms at level-1. 

Finally, we would like to underline that among the 15 alternatives, the highest 

accuracy has been obtained for the stacking method when the Naïve Bayes is employed 

as level-2 algorithm and simultaneously the DT, the CBR, the SVMs, and the BPNs are 

employed as level-1 algorithms (88.70%). This combination improved the accuracy 

obtained by the best baseline classifier (86.73%), but also the best performance obtained 

by the bagging and boosting methods (87.45% in both cases).  

 
Table 3. Average accuracy (%) of stacking for the mean tardiness criterion. 

Baseline Algorithm (level-2) 



  

 17 

classifier (level-1) DT CBR SVMs BPNs Naïve Bayes 

DT, CBR, SVMs, BPNs 86.45 84.36 86.91 85.36 88.70 

DT, SVMs, BPNs 86.45 85.09 87.18 86.73 88.30 
SVMs, BPNs 87.18 87.27 87.64 86.91 87.95 

 

The same analysis can be conducted for the second criterion. As we highlighted 

in Section 5.2, a smaller number of combinations of dispatching rules are employed in 

this case. This explains why the errors are significantly lower for this criterion, and 

consequently the average accuracy increases. Table 4 shows these results. In general 

terms, we observe that the CBR achieves the highest accuracy (98.45%). Paradoxically, 

this was the algorithm that achieved the lowest accuracy for the mean tardiness 

criterion. In this case, this algorithm is followed closely by the DT, while the 

performance of the BPNs and, especially, the SVMs is significantly lower.  

 
Table 4. Average accuracy of baseline classifiers, bagging, and boosting for the mean flow time criterion. 

Baseline 

classifier 

Average 

accuracy (%) 
Bagging 

Average 

accuracy (%) 
Boosting 

Average 

accuracy (%) 

DT 98.36 DT 98.27 DT 98.82 
CBR 98.45 CBR 98.45 CBR 98.45 

SVMs 94.91 SVMs 94.91 SVMs 94.91 

BPNs 96.36 BPNs 97.09 BPNs 96.91 

 

When we apply the bagging method, only the BPNs are capable of increasing 

the performance obtained by the baseline algorithms employed independently (97.09% 

and 96.36%, respectively). The CBR and the SVMs present the same accuracy, while 

the DT slightly decreases its accuracy. When we apply the boosting method, both the 

BPNs and the DT experience a slight enhancement (0.46% in the former and 0.55% in 

the latter), while again the results of the CBR and the SVMs do not modify.  

 
Table 5. Average accuracy (%) of stacking for the mean flow time criterion. 

Base 

classifier (level-1) 

Algorithm (level-2) 

DT CBR SVMs BPNs Naïve Bayes 

DT, CBR, SVMs, BPNs 98.91 98.64 98.91 98.64 99.08 

DT, CBR, BPNs 98.91 98.64 98.91 98.64 99.08 

DT, CBR 99.00 98.82 98.91 98.18 99.00 

 

Finally, Table 5 presents the results of the stacking method for this second 

criterion. To a greater or lesser extent, all the combinations achieve a higher accuracy 
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than the employment of the CBR as the only baseline classifier (98.45%). In this case, 

the highest accuracy is again achieved when the Naïve Bayes is employed as level-2 

algorithm, while the overall result does not seem to be very sensitive to the combination 

of algorithms employed in level-1. This combination (99.08%) also outperforms the 

best results obtained by the top-performer baseline classifier (98.45%) as well as the 

bagging (98.45%) and boosting (98.82%) methods. With the other level-2 algorithms 

(DT, CBR, SVMs or BPNs), the learning-based system is also capable of increasing the 

accuracy over the best baseline classifier, with the exception of the BPNs being used as 

level-2 algorithms and the CBR and DT being used as level-1 algorithms. In this case, 

the accuracy (98.18%) is slightly lower than that achieved by the top-performer baseline 

classifier. 

 

5.4. Performance of the learning-based scheduling 

After evaluating the accuracy of the different knowledge-based mechanisms, we 

now quantify their operational performance. To this end, we implement the different 

scheduling systems in the FMS simulation model. We will compare the performance of: 

(a) the sixteen different combinations of dispatching rules employed statically; (b) the 

four machine learning algorithms controlling the FMS in real time according to the state 

of the system; and (c) the three ensemble methods controlling the FMS in real time 

according to the state of the system by considering the different results provided by the 

machine learning algorithms.   

A core question in the evaluation process is the selection of the monitoring 

period, as the frequency used to measure the control attributes may significantly impact 

on the results. For this reason, it is advisable to assess the performance of the different 

strategies under a wide range of monitoring periods —we have selected 2.5, 5, 10, and 

20 time units (see, for instance, Jeong & Kim, 1998; Kim & Kim, 1994; Wu & Wysk, 

1989). After carrying out a number of preliminary tests, we chose 2.5 time units as the 

most appropriate monitoring period.  

Under these circumstances, we have designed two different scenarios for the 

FMS. In the first one (scenario I), changes are generated in the FMS at given time 

periods, defined by an independent and identically distributed random variable 

following a uniform discrete distribution from 50 to 500 time units. In the second one 
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(scenario II), the time periods for generating the change range between 2.5 and 250 time 

units —that is, the FMS is subject to a significantly higher number of changes here. We 

note that the changes of the control attributes have been generated within the intervals 

described in Section 5.2 for the training dataset. Finally, it should be highlighted that 

have obtained each numerical result shown below as the average of ten independent 

replications of 100,000 time units. 

Having clarified all these important aspects, Table 6 presents the results that we 

have obtained. For the sake of readability, we show the values of the mean tardiness and 

mean flow time in each case referred to the lowest values obtained, which represents the 

optimal response of the FMS. In each column, we use italics to highlight the best static 

combination of dispatching rules, the best knowledge-based baseline classifier, and the 

best ensemble method. 

All in all, Table 6 first shows that the best alternative is to employ a dynamic 

scheduling system based on machine learning techniques. Second, this table provides 

evidence that the scheduling approach based on ensemble methods clearly generates the 

best results. And third, it may be concluded from Table 6 that the stacking method 

outperforms the bagging and boosting methods. 

 
Table 6. Mean tardiness and mean flow time, in relative terms, for the proposed strategies. 

Strategy used 
           Mean tardiness                     Mean flow time 

Scenario I Scenario II Scenario I Scenario II 

SPT+SPT 4.046 5.356 2.109 2.405 

SPT+NINQ 1.191 1.192 1.039 1.044 

SPT+WINQ 1.184 1.171 1.041 1.042 
SPT+LUS 2.469 2.528 1.511 1.519 

EDD+SPT 3.466 4.604 2.206 2.611 

EDD+NINQ 1.504 1.639 1.328 1.391 
EDD+WINQ 1.499 1.647 1.327 1.395 

EDD+LUS 2.834 3.215 1.865 2.050 

MDD+SPT 3.478 4.645 2.299 2.676 

MDD+NINQ 1.115 1.117 1.228 1.250 
MDD+WINQ 1.122 1.128 1.231 1.255 

MDD+LUS 2.351 2.470 1.773 1.854 

SRPT+SPT 4.437 5.994 2.280 2.655 
SRPT+NINQ 1.357 1.382 1.132 1.141 

SRPT+WINQ 1.360 1.374 1.137 1.142 

SRPT+LUS 2.792 2.950 1.671 1.710 

CBR 1.058 1.068 1.004 1.004 
BPNs 1.011 1.012 1.016 1.017 

DT 1.039 1.044 1.004 1.005 

SVMs 1.018 1.020 1.024 1.026 
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Bagging 1.007 1.008 1.004 1.004 

Boosting 1.007 1.008 1.002 1.002 

Stacking 1.000 1.000 1.000 1.000 

 

For the mean tardiness criterion, the combination of MDD and NINQ is the best 

alternative from a static perspective, followed closely by the combination of MDD and 

WINQ. However, this solution is clearly sub-optimal, since the four dynamic schedules 

controlled by machine learning algorithms perform significantly better. Specifically, the 

BPNs and the SVMs provide a relatively similar result, which outperforms the DT and 

the CBR. When the bagging and boosting techniques are employed in the BPNs, the 

FMS response improves in comparison with the alternative of employing exclusively 

the BPNs. In line with the discussion in the previous section, the optimal is achieved 

with the stacking method (employing Naïve Bayes in level-2 and simultaneously the 

DT, the CBR, the BPNs, and the SVMs in level-1), as a consequence of the significant 

increase in the average accuracy. In view of our results, we can conclude that the mean 

tardiness of the best static alternative is between 11.5% and 11.7% larger than the 

solution provided by the stacking method.  

We now focus on the criterion of the mean flow time, according to which the 

combinations of SPT and NINQ, for the first scenario, and SPT and WINQ, for the 

second one, are the best static alternatives. Consistent with the findings in the previous 

section, the CBR is the algorithm that minimizes the mean flow time, followed 

respectively by the DT, the BPNs, and the SVMs. The FMS behavior does not improve 

with the bagging method in comparison with the CBR; however, the boosting method is 

capable of generating a lower mean flow time. Again, the best results are obtained when 

we employ the stacking technique (employing Naïve Bayes in level-2 and 

simultaneously the DT, the CBR, the BPNs, and the SVMs in level-1). In this case, 

when the stacking method is employed, the indicator decreases by between 3.9% and 

4.2% over the best static alternative.  

A one-way ANOVA was conducted to test the differences between the top nine 

scheduling strategies (according to the previous analysis) in both scenarios: the best two 

static strategies (MDD+NINQ and MDD+WINQ for the criterion of mean tardiness, 

and SPT+NINQ and SPT+WINQ for the criterion of mean flow time), the four baseline 

classifiers (CBR, BPNs, DT, and SVMs), and the three different ensemble methods 
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(bagging, boosting, and stacking). For each strategy, we considered 10 different 

replications. Table 7 shows the results of this analysis, which reveal that that there are 

statistically significant differences (confidence level: 95%) in the performance of the 

nine strategies according to both criteria and for the two different scenarios. 

 

 

 
Table 7. One-way ANOVA table under the two different criteria in scenarios I and II. 

 

Table 8. Criterion of mean tardiness: p-values of comparisons among scheduling strategies. 

Criterion 

(scenario) 

Scheduling 

strategy 

MDD+ 

WINQ 

CBR BPNs DT SVMs Bagging Boosting Stacking 

MT - (I) MDD+NINQ 0.496 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 MDD+WINQ  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 CBR   0.000 0.017 0º.000 0.000 0.000 0.000 

 BPNs    0.004 0.814 0.563 0.563 0.009 
 DT     0.008 0.001 0.001 0.000 

 SVMs      0.416 0.416 0.005 

 Bagging       1.000 0.039 
 Boosting        0.039 

MT - (II) MDD+NINQ 0.603 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 MDD+WINQ  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 CBR   0.000 0.072 0.000 0.000 0.000 0.000 
 BPNs    0.060 0.929 0.925 0.925 0.035 

 DT     0.073 0.049 0.049 0.000 

 SVMs      0.854 0.854 0.029 
 Bagging       1.000 0.044 

 Boosting        0.044 

 

Performance 

criterion 

Source of Variation SS DF MS F-test p-value 

MT - (I) Between Groups 2.564 8 0.321 70.670 0.000 

 Within Groups 0.367 81 0.005   
 Total 2.932 89    

MT - (II) Between Groups 1.536 8 0.192 25.211 0.000 

 Within Groups 0.617 81 0.008   

 Total 2.153 89    

MFT - (I) Between Groups 2.151 8 0.269 19.815 0.000 

 Within Groups 1.099 81 0.014   

 Total 3.250 89    

MFT - (II) Between Groups 2.409 8 0.301 12.999 0.000 
 Within Groups 1.876 81 0.023   

 Total 4.285 89    

Note:  SS - sum of squares; DF - degree of freedom; MS - mean squares. 
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Once the differences have been verified, we compare the individual performance 

of the various strategies by means of Fisher’s least significant difference (LSD) test. 

Tables 8 and 9 provide this information via the relevant p-values. It should be 

highlighted that the stacking-based scheduling system stands out above the other 

strategies with a significance level of 0.05 for the criterion of mean tardiness in both 

scenarios. However, the bagging and boosting methods are not able to significantly 

outperform the best machine learning algorithms, which are BPNs and SVMs. As 

regards the criterion of mean flow time, there are no statistically significant differences 

between the top five scheduling strategies in neither of the two scenarios. It means that 

the use of ensemble methods does not translate into a significantly improved 

performance over the independent use of the best machine learning algorithms. 

 

Table 9. Criterion of mean flow time: p-values of comparisons among scheduling strategies. 

Criterion 
(scenario) 

Scheduling 
strategy 

SPT+ 
WINQ 

CBR BPNs DT SVMs Bagging Boosting Stacking 

MFT - (I) SPT+NINQ 0.991 0.000 0.000 0.000 0.004 0.000 0.000 0.000 

 SPT+WINQ  0.000 0.000 0.000 0.004 0.000 0.000 0.000 
 CBR   0.018 1.000 0.000 1.000 0.691 0.426 

 BPNs    0.018 0.112 0.018 0.006 0.002 

 DT     0.000 1.000 0.691 0.426 

 SVMs      0.000 0.000 0.000 
 Bagging       0.691 0.426 

 Boosting        0.689 

MFT - (II) SPT+NINQ 0.601 0.000 0.000 0.000 0.004 0.000 0.000 0.000 
 SPT+WINQ  0.000 0.000 0.000 0.017 0.000 0.000 0.000 

 CBR   0.076 0.889 0.003 1.000 0.783 0.580 

 BPNs    0.101 0.216 0.076 0.041 0.021 

 DT     0.005 0.889 0.679 0.489 
 SVMs      0.003 0.001 0.001 

 Bagging       0.783 0.580 

 Boosting               0.781 

 

6. Conclusions 

This paper suggests a new approach to scheduling based on the application of 

ensemble methods. Building on machine learning algorithms, which allow managers to 

deal with the scheduling problem from a dynamic perspective by selecting the most 

appropriate dispatching rule over time, the use of ensemble methods takes the solution 

mechanism one step further. These methods make the control system capable of 

considering the recommendations made by different machine learning algorithms in 
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order to detect those most reliable at each particular moment. Thus, this represents a 

conceptual evolution in the design of control systems for FMSs. 

The first step for practitioners wishing to implement this solution would be to 

replicate the real-world setting through a validated and verified simulation prototype. 

This would allow them to explore the optimal combination of dispatching rules in a 

wide range of scenarios. In light of this, different machine learning algorithms may be 

able to generate the required knowledge to control the system over time. From this 

perspective, ensemble methods would be able to consider the solutions provided by the 

different machine learning algorithms and evaluate their reliability; eventually 

proposing a combination of dispatching rules as the solution of the scheduling problem. 

Overall, this approach would equip managers with a decision-making tool to optimize 

the control of manufacturing systems in highly complex and dynamic environments. 

We have demonstrated that this approach results in a meaningful operational 

improvement in the FMS from the perspective of mean tardiness —however, the 

improvement was not statistically significant for the criterion of mean flow time since 

the average accuracy of the machine learning algorithms used independently was very 

high. The improvement in these key metrics is especially noticeable for the stacking 

method, which, unlike the bagging and boosting methods, does not employ a voting 

mechanism but uses the concept of a meta-classifier, i.e. a top-level algorithm which 

learns from the outputs of the set of classifiers obtained in the first phase.  

Future research in this field might focus on employing more decision types for the 

proposed FMS and/or evaluating the performance of our proposal in other structures of 

FMSs. In this regard, the more decision types are used and/or the more complex the 

system is, the more simulation runs are required to generate the training and test 

examples. Another interesting avenue for future research would be based on increasing 

the understanding on the sets of classifiers —a major limitation of this technique is the 

fact that humans struggle to understand the knowledge learned. Finally, we may explore 

the addition of a knowledge base refinement module. This mechanism would be aimed 

at modifying the core of the knowledge acquired once the FMS faces major changes.  
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Learning-based scheduling of flexible manufacturing systems using 

ensemble methods 

 

Research highlights 

 We propose a new approach to scheduling Flexible Manufacturing Systems. 

 Knowledge about the system is obtained through ensemble methods.  

 Three different techniques are used: bagging, boosting, and stacking.  

 Stacking is deeply explored through two-level combinations of classical algorithms. 

 This dynamic approach proves to outperform existing alternatives.  
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