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Printed Circuit Board Assembly Time Minimisation Using  

A Novel Bees Algorithm  
 
 

 

Abstract 

This paper presents a novel version of the Bees Algorithm customised to solve combinatorial 
optimisation problems. This version was created to minimise assembly time in the manufacturing 
of printed circuit boards using a machine of the moving-board-with-time-delay type, and 
optimising the feeder arrangement and machine component placement sequence. The local 
search procedure of the standard Bees Algorithm was modified to include five new operators for 
combinatorial optimisation. The customised Bees Algorithm was first tested on the related 
travelling salesman problem, where it excelled in terms of performance and efficiency compared 
to three state-of-the-art optimisation methods. It was then applied to a well-known moving-
board-with-time-delay benchmark problem, where it performed favourably in comparison to the 
state-of-the-art in the literature, achieving fast and consistent solutions. 
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1 INTRODUCTION 

Printed Circuit Boards (PCBs) are widely used in three major industrial sectors: computers, 
telecommunications and consumer electronics (Crama et al. 2002). The world market for this 
kind of components was estimated to exceed $63 billion in 2016, and is expected to reach nearly 
$74 billion in 2022 (BCC Research, 2016).  
PCB assembly is the process of placing electronic components (resistors, capacitors, transistors) 
of different shapes and sizes at specific locations on the bare board. It is performed automatically 
employing various types of surface mount technology (SMT) placement machines. These 
machines are capable of fast component placement, and can handle high and rapid production 
demands. Despite the speed of the SMT placement machines, assembly is to date one of the most 
time consuming stages in PCB manufacturing.  
The main challenge in PCB assembly is the optimisation of the sequence of placement of the 
components, in order to minimise the total manufacturing time. This is an NP-complete 
combinatorial problem which was shown to be akin to the quadratic assignment (feeder 
arrangement) and travelling salesman (TSP) (component placement sequencing) problems (Khoo 
and Ng, 1998(Khoo and Ng, 1998; Alkaya and Duman, 2015)). In this kind of problems, the 
computational solution time using any known algorithm grows in non-polynomial fashion with 
the number of elements (feeders and electronic components in the PCB). 
Intelligent optimisation methods (Pham and Karaboga, 2000) are known to provide satisfactory 
solutions to complex tasks such as NP-complete combinatorial problems. They have been used 
by several authors to achieve PCB assembly time minimisation, including Genetic Algorithms 
(GAs) (Fogel, 2000), Simulated Annealing (Kirkpatrick et al. 1983), and Evolutionary 
Programming (EP) (Nelson and Wille, 1995).  



The Bees Algorithm (Pham et al. 2006: Pham and Castellani, 2009) is a popular intelligent 
technique that was proven effective on combinatorial (Pham et al. 2007b) as well as continuous 
optimisation problems (Pham and Castellani, 2013; Pham and Castellani, 2015). This paper 
focuses on the application of the Bees Algorithm to solve the Moving Board with Time Delay 
(MBTD) problem, where the goal is to optimise the placement time for a high speed turret-head 
chipshooter. On this kind of problem an early version of the Bees Algorithm showed great 
promise (Pham et al. 2007a). In this paper, a new problem-specific implementation of the Bees 
Algorithm with five new operators for combinatorial search is employed.  
The performance of the new Bees Algorithm implementation is first tested on the TSP. The TSP 
is a widely used combinatorial optimisation benchmark, and as such provides a familiar test case 
for the proposed algorithm. Moreover, the component placement sequence optimisation problem 
turns out to be a TSP variant (Khoo and Ng, 1998; Alkaya and Duman, 2015). The new Bees 
algorithm was compared to the performance of three state-of-the-art heuristic optimisers on the 
TSP, and then evaluated on the MBTD problem.  
Section 2 presents a review of the literature on the domain. Section 3 describes the PCB 
assembly problem. Section 4 describes the new version of the Bees Algorithm. The proposed 
algorithm is first tested on the TSP (Section 5), and then on a MBTD benchmark assembly 
problem (Section 6). Section 7 concludes the paper.   
 
 
2 LITERATURE REVIEW 

A variety of intelligent techniques were investigated to minimise PCB assembly time. These 
methods include Evolutionary Algorithms (Wong and Leu, 1993; EAs) (Nelson and Wille, 1995; 
Maimon and Brha, 1998; Ong and Khoo, 1999; Ho and Ji, 2007), Particle Swarm Optimisation 
(PSO) (Hsu, 2017), minimal spanning tree optimisation (Leipala and Nevalainen, 1989), integer 
programming (Seth et al. 2016; Li and Yoon, 2017), Tabu Search (Luo et al. 2016), and rule-
based expert systems (Yeo et al. 1996), as well as combinations of different optimisation 
algorithms (Alkaya and Duman, 2015; Luo et al. 2017; Han and Seo, 2017). For an overview of 
intelligent techniques for the general problem of assembly line planning the reader is referred to 
Rashid’s et al’s (2012) review. 
EAs are popular problem solvers due to their simple implementation and robustness against local 
fitness optima. Amongst the various kinds of EAs, Genetic Algorithms (GAs) were successfully 
employed by Wong and Leu (1993) and Ong and Khoo (1999) to solve the Moving Board with 
Time Delay (MBTD) problem. To optimise component placement and feeder assignment, Wong 
and Leu employed four genetic operators, whilst Ong and Khoo used crossover and a 
combination of mutation operators. It was shown that Ong’s and Khoo’s method is easily 
adaptable to many other types of assembly machine planning problems. Ong and Tan (2002) 
used a GA to solve the MBTD problem for a high-speed PCB assembly machine, employing 
eight genetic operators (four crossover operators and four mutation operators).  
Swarm Intelligence (Bonabeau et al. 1999) was successfully applied to several combinatorial 
optimisation problems. Perhaps the first use of this kind of algorithms on combinatorial problems 
was Dorigo’s and Gambardella’s (1997) solution of the TSP using Ant Colony Optimisation 
(ACO). The first application of Swarm Intelligence to the PCB assembly planning problem was 
Pham’s et al’s (2007a) implementation of the Bees Algorithm. Tested on a benchmark MBTD 
task, the Bees Algorithm obtained a significant reduction in assembly time compared to GA and 
EP optimisers (Pham, et al. 2007a; Otri, 2011). Ang et al. (2009) reported good results on the 



MBTD task from hybridisation of the Bees Algorithm with various operators created from 
Theory of Inventive Problem Solving (TRIZ) principles (Sheng and Kok-Soo, 2010). However, 
the TRIZ-enhanced Bees Algorithm used some form of population seeding, which brought the 
initial population already close to the found optimum.  
Hsu (2017) applied a customised version of PSO, and found it outperformed a GA optimiser. 
Alkaya and Duman (2015) tested different combinations of optimisers, and obtained the best 
results iterating cycles of SA for component placement search and ABC for feeder layout 
optimisation. 
In addition, intelligent techniques like EAs and Artificial Bee Colony optimisation were applied 
to time minimisation problems involving different PCB assembly devices like multi-head gantry 
machines (Lin and Huang 2017; Guo et al. 2018) or a Kuka robot (Andrzejewski et al. 2018). 
In the following sections of the paper, the performance of the new Bees Algorithm 
implementation will be compared with the performance of three different kinds of EAs (Leu et 
al. 1993; Nelson and Wille, 1995; Ong and Tan, 2002), one hybrid GA (Ho and Ji, 2007), two 
implementations of the standard Bees Algorithm (Pham, Otri. et al. 2007), and one Bees 
Algorithm implementation enhanced with TRIZ operators (Ang et al. 2013). 
 
 

3 THE PRINTED CIRCUIT BOARD ASSEMBLY OPTIMISATION PROBLEM 

This section describes the MBTD machine, and the assembly sequence optimisation problem.  
 
3.1 The PCB Moving board with the time delay (MBTD) Assembly Machine 

There are three types of machines for placing through-hole and surface-mount components in 
sequence onto a PCB (Pham et at. 2007a). The most complex type is considered in this study: the 
MBTD assembly machine (Figure 1). It comprises three moving parts: 

• An array of feeders that moves along a single axis (�). It brings the feeder with the 
required component to the fixed pick-up location for assembly.  The pickup location is the 
centre of the array of feeders. 

• An assembly fixed-axis multi-head rotating turret. It picks up components from the feeder 
array with one head, whilst one of the other head(s) simultaneously places another 
component onto the PCB board. After that, the turret rotates to pick up and deploy new 

components. The axis of rotation of the turret is fixed to the � axis. 

• A moving � − � table which carries the PCB. The table moves to bring the PCB to the 
fixed component placement location, in accordance with the assembly sequence and 
location of the components. 

Component pick-up and placement occur simultaneously after the correct feeder and the table 
have reached their designated positions, and the turret has completed indexing the appropriate 
pick-up and placement heads (Ayob et al. 2002). The MBTD machine can also place components 
of different types. In order to perform the task, the multiple feeders, the multi-head turret pick-
and-place system, and the assembly table need to be synchronised. 
Since there are three moving parts in this type of machine (the board, feeder, and turret), each of 
these three parts has to wait that the other two complete their movement, before the next 

component can be picked up or placed. Hence, the time �� needed for the placement of 
component � is the maximum between the times needed for the board movement, feeder 
movement, and indexing. The main difficulty in minimising the total assembly sequence time is 
that two optimisation problems need to be addressed concurrently (Ho and Ji, 2005):  



• The placement sequence of the board components needs to be determined  

• The various types of components need to be assigned to the feeders 
 
3.2 Printed Circuit Board Assembly Planning 

PCB assembly planning involves two tasks: set-up management and process optimisation. The 
ultimate goal is to reduce assembly cycle times.  
In the context of planning for a single assembly machine with an array of feeders, set-up 
management may include the solution of the component allocation problem: that is, the 
arrangement of the allocation of components among the different feeders. Alternatively, the 
relative position of the feeders in the array needs to be optimised (feeder arrangement problem). 
In this study, feeder arrangement will be included in the set-up management task. Henceforth, a 

given arrangement of � feeders will be denoted as a sequence	
 = {�, �, … , �}, where � is the 

��� feeder in the sequence. Each feeder � is instantiated to a different integer number (label) 

� ∈ �1, ��, representing the ��� type of component. The goal of the arrangement task is to 
minimise feeder movements, and hence component pick-up time. 
Process optimisation consists of finding the optimal sequence of placement for the components 
on the board. It is essentially a component sequencing problem. Henceforth, the sequence of 

placement of components will be denoted as � = {��, ��, … , ��}, where �� is the ��� component 

that is placed. Each �� is instantiated to a different integer number (label)  ∈ �1, !�, representing 

the  �� location on the board where the component has to be placed. The aim of process 
optimisation is to minimise the movements of the table, and hence placement time.  
 
3.3 Formalisation of the assembly problem 

As discussed above, in an MBTD machine the assembly time is affected by three factors. These 
are the movement of the PCB, the shifting time of the turret head, and the travelling time of the 
feeder carrier. The total assembly time needed for a PCB is the summation of the dominating 
times associated with these three factors for all board components. The formula for the total 

assembly time	�"#�$%  is defined as follows (Ho and Ji, 2007). 
 

�"#�$% = ∑ ���'(
)�*�          (1) 

 

where ! is the total number of components to be placed onto the PCB, ℎ is the total number of 
assembly heads on the turret, and �� is the time required to place component	��. �� depends on 
three terms, each one related to a different operation. The largest of the three terms (longest time) 

determines	��.  
 

�� = ,-� ./�0��1�, ��2, /� 3�'(
)1�

, �'(
)
4 , /56      (2) 

 

The first term /�0��1�, ��2 is the time required to move the table from the location of component 
��1� to the location 0�� , ��2 of component	��. It is given by the Chebyshev metric (Ho and Ji, 
2007): 
 

/�0��1�, ��2 = ,-� 3789:178;< , =89:1=8;> 4       (3) 



 

where ?@ = A?7 , ?=B is the velocity of the table (� − � plane) which brings the PCB to the fixed 

component placement location. The Chebyshev metric essentially takes into consideration the � 
and � movements of the board as independent motions. This is usually the case when the table is 
controlled by two motors, one for each axis. In this study, the starting position �C of the table is 
set at the origin	00,02 of the Cartesian frame of reference, and the maximum ?7 and ?= velocities 

along the two axes are fixed to 60 ∙ 1015	,G1�. 

The second term /� 3�'(
)1�

, �'(
)
4 is the time needed to move the feeder array from the slot 

where component ��'(
)1�

 is supplied, to the slot where component ��'(
)
 is supplied. Component 

��'(
)
 is picked up when component �� is placed onto the PCB. As �� is the last component to be 

assembled onto a given PCB, ��'� is the hth component to be placed onto the next PCB. The 
component pickups are considered to be at the centre of the feeders. The distance between 
feeders is measured using the Euclidean metric (Ho and Ji, 2007).  
 

/�A� , �B =
HI78J17KJL

)'I=8J1=KJL
)

;J  (4) 

 

where A��@ , ��@B are the Cartesian coordinates of feeder	� and M?@M = N?7� + ?=� is the norm of 

the table velocity vector. For the case studied in this paper, the feeders are arranged in a straight 

line along the � axis (Figure 1) and separated by a distance of 15 mm. Hence, there will be no 
movement along the � axis, and Equation 4 becomes: 
  

/�A� , �B = P=8J1=KJP
;J  (5) 

 

The third term /5 is the time taken by the turret to index the assembly heads by one position, and 
is set to 0.25 seconds per step. Generally, indexing takes place one position at a time and always 
in the same direction.  
In this study, the two problems of set-up management and process optimisation will be tackled 

simultaneously, with the goal of minimising �"#�$%. Formally, the task entails the solution of a 
combinatorial optimisation problem, where the sequence {�, 
} = {��, ��, … , ��, �, �, … , �} 
(Figure 2) needs to be optimised, in order to minimise �"#�$% = Q0�, 
2. The function Q0�, 
2 
depends on the combinatorial arrangement of the values of � and 
. 
The assembly problem can be visualised through a graph consisting of a finite number of nodes 
and links between nodes (Engelbrecht, 2005). Each node represents the position of one of the 
components on the board. A link between two nodes indicates a transition between the two 
corresponding sites on the board. It is associated to a cost, representing the travelling time 
between the two locations. A solution to the PCB assembly problem can be visualised as a 
complete path (assembly sequence) touching all nodes once and only once, and is associated to 

the cost �"#�$% (Equation 1). The objective of the Bees Algorithm is to find the graph of 
minimum total cost.  
 
 



4 THE BEES ALGORITHM FOR PCB OPTIMISATION 

Each solution to the PCB assembly problem comprises two concatenated arrays (Figure 2). The 
first array represents the sequence of component placements and the second represents the feeder 
arrangement. A valid feeder arrangement is any of the possible permutations of feeder labels, 

each label corresponding to a particular feeder and component type. For example, label	� ∈
�1, �� might indicate feeder � which supplies 100ΚΩ resistors. The number of labels � in a valid 
feeder arrangement must be equal to the number of feeders in the assembly machine. A valid 

placement sequence is also a permutation of labels, each label  ∈ �1, !� representing a 
placement position on the PCB. The total number of labels ! must be equal to the number of 
placement positions. The objective of the Bees Algorithm is to optimise the sequence of 
component placement steps and feeders in order to minimise assembly time.  
The Bees Algorithm (Pham and Castellani, 2009) models a colony of honeybees searching for 
and exploiting multiple food sources (solutions). Initially, a number of scout bees search 
randomly the space of feasible solutions for good candidates. That is, a number of random 
solutions are generated and evaluated. A scout is associated to the solution it visited.    

Each scout recruits a number of foragers according to the quality of the found solution (fitness =
�"#�$%), through a selection procedure inspired by the waggle dance of biological bees (Seeley, 
1996). The role of the foragers is to perform local exploitative search: that is, to search in the 
neighbourhood of the solution visited by the scout. Each neighbourhood in the search space can 
be visualised as a flower patch in nature, where forager bees are directed by the scouts. 
Foragers generate and evaluate solutions similar to those located by the scout. The Bees 
Algorithm keeps on searching the solution space in the neighbourhood of the best locations, until 
better solutions are found. The procedure can be summarised as a parallel local search on 
multiple local patches. When the search stops yielding improvements in a local neighbourhood 
(the flower patch is exhausted of nectar), the neighbourhood is abandoned and the scout is sent to 
search a new location (is randomly re-initialised). This procedure prevents the local search from 
being trapped into sub-optimal peaks of performance. If the abandoned site contained the best-
so-far found solution, this solution is saved, and if not bettered by any other local search site 
result, it will become the final solution of the Bees Algorithm procedure. 
Figure 3 shows the flowchart of Bees Algorithm. Each step is detailed below. The proposed 
procedure adapts the standard Bees Algorithm described by Pham and Castellani (2009) to the 
MBTD assembly problem. 
 
4.1 The Algorithm 

At start, X scout bees are placed at random with uniform probability in the solution space. That 
is, X valid solutions (Fig. 2) are randomly generated and evaluated (Equations 1, 2, 3 and 4). The 
algorithm then enters its main cycle, which is repeated for a given number �/� of times. The 
XY ≤ X scouts that found the solutions of highest fitness are called ‘elite bees’. They recruit the 

largest number of foragers (X�Y) for neighbourhood search. The remaining scouts recruit 
X�[ ≤ X�Y foragers for local search.  
Each of the X�Y (X�[) recruited foragers, visits (generates) a solution similar to the one marked 
by the scout. Five problem-specific operators were designed for neighbourhood search. They all 
generate valid solutions from permutations of existing feeder arrangement and component 
placement sequences. For each neighbourhood, the forager that found the best solution is 
selected as the new scout. If no forager landed on a better solution, the old scout is retained. The 
five operators are described below for the component placement sequence problem. The same 



procedures apply for the feeder arrangement problem. That is, the five operators are applied 
separately to the two arrays representing respectively the component placement sequence and 
feeder arrangement.  
During one optimisation cycle, neighbourhood search is performed either on the feeder 
arrangement or the component placement sequence. That is, feeder arrangement and components 
placement are optimised in alternate steps. Experimentally, the best results were obtained 
alternating one cycle of feeder arrangement to five cycles of component placement optimisation. 
The progress of the local optimisation procedure is checked in each neighbourhood. If no 
recruited forager landed on a solution that improved the local best marked by the scout, the 

search is said to stagnate. After a given number G/\�, of iterations where no local improvement 
is recorded, the local food source (neighbourhood) is considered exhausted (i.e. the optimum was 
found) and is abandoned. In this case, the scout is randomly re-initialised. 
The five problem-specific operators are described below. 
 

4.1.1 Block Insertion operator 

The action of this operator is illustrated in the example of Figure 4, where the placement 
sequence {��, ��, �5, �], �^, �_} = {3, 2, 5, 1, 4, 6} is modified as follows. The insertion operator 
picks two randomly chosen positions (�� and �]), and removes the sequence ({2, 5}) in between. 
The removed section is then inserted at a randomly selected point within the sequence, in this 

example after �^. The re-arranged sequence becomes: {��, ��, �5, �], �^, �_} = {3, 1, 4, 2, 5, 6}. The 
net effect is that a section of the sequence of placement operations is shifted forward or 
backward in the order (Pham et al. 2007a). 
 
4.1.2 Single-Point Insertion operator 

This operator works like the block insertion operator, but is limited to one single instead of a 

sequence of placement operations. Given the sequence {��, ��, �5, �], �^, �_} = {3, 2, 5, 1, 4, 6}, 
the Single-point insertion operator takes one random element (e.g. �5 = 5) and moves it at a 
randomly selected new position (e.g. after �^ = 4). The new sequence becomes {3, 2, 1, 4, 5, 6} 
 
4.1.3 The 2-Opt operator 

In combinatorial optimisation, edge exchange procedures (Lin, Kernighan, 1973) are amongst 
the best known and most effective tour improvement methods (Okano et al. 1999). The k-paths 
optimal (k-Opt) algorithm tests exhaustively all feasible exchanges of k edges to improve the 
current solution; this solution is said to be k-optimal. Since the number of feasible exchanges 

increases rapidly with the number of edges, d is usually set to 2 or 3.  
The 2-Opt operator randomly breaks a solution into two sections. The component placement 
sequence in one of the sections is reversed, and the two sections are then reconnected. Figure 5 

visualises the procedure for the same sequence {3, 2, 5, 1, 4, 6} of the previous examples. In the 
figure, the sequence is broken into two sections: {3, 2} and {5, 1, 4, 6}. The second section has its 
placement sub-sequence inverted ({6, 4, 1, 5}), and is then re-joined to the first to form the new 
sequence ({3, 2, 6, 1, 4, 5}). 
 
4.1.4 Simple Swap operator 

This operator takes two random components in the sequence, and swaps their placement order 

(Lin, Kernighan, 1973). For example, given the sequence {��, ��, �5, �], �^, �_} = {3, 2, 5, 1, 4, 6} 



and two randomly picked loci �5 = 5 and �^ = 4, the order of placement of components 5 and 4 
is swapped. The new sequence becomes {3, 2, 4, 1, 5, 6} 
 
4.1.5 Neighbour Swap operator 

This operator acts like the Simple Swap operator, but in a more localised fashion. It randomly 
selects two neighbouring elements in the placement sequence, and exchanges their placement 

order. For example, given the sequence {��, ��, �5, �], �^, �_} = {3, 2, 5, 1, 4, 6} and two randomly 

picked loci �5 = 5 and �] = 1, the order of placement of components 5 and 1 is swapped. The 
new sequence becomes {3, 2, 1, 5, 4, 6}. 
 
4.2 Comparison with other versions of the Bees Algorithm 

As outlined above, the proposed algorithm is a customised version of the Bees Algorithm for the 
MBTD assembly problem. The main adaptation is in the definition of the neighbourhood search 
operators. In this case, instead of defining a proximity metric as the neighbourhood size XQℎ 
(Pham and Castellani, 2009), a number of local operators were defined. These operators change a 
sequence of components or feeders into a reasonably similar sequence. Some of these operators 
(2-Opt, Block Insertion) are more disruptive than others (Simple Swap, Neighbours Swap, 
Single-point Insertion). As a consequence of the lack of a fixed neighbourhood, the 
neighbourhood shrinking procedure (Pham and Castellani, 2009) has not been implemented. 
Another modification of the standard Bees Algorithm is the suppression of the global search 
procedure. The rationale behind this amendment is the complexity of the solutions, which makes 
it highly unlikely that randomly generated solutions are able to compete in quality with solutions 
evolved through local search. Experimental tests confirmed that including additional scouts for 
global search brings no benefits to the effectiveness of the search.  
Pham et al. (2007a) used a simpler implementation of the standard Bees Algorithm (Pham and 
Castellani, 2009) which will be henceforth denoted as the Basic Bees Algorithm (BBA). The 
BBA does not use site abandonment, and does not differentiate between elite and best sites. The 
BBA used only two search operators: 2-Opt and Single-point Insertion. The two operators were 
randomly applied either to the feeder arrangement of component placement sequence. Pham et 
al. (2007a) tried also to seed each scout of the BBA with a good solution created from one 
preliminary run of the BBA. 
Ang et al. (2009) enhanced the BBA with a number of TRIZ-inspired operators. Henceforth, 
their algorithm will be called BBA+TRIZ. Also the BBA+TRIZ algorithm was seeded with good 
initial solutions. 
 
 
5 APPLICATION TO THE TRAVELLING SALESMAN PROBLEM (TSP) 

The performance of proposed Bees Algorithm was first evaluated on the well-known travelling 
salesman combinatorial optimisation problem. The TSP was shown by Khoo and Ng (1998) to 
be akin to the MBTD assembly problem. The performance of the new Bees Algorithm 
implementation was compared to the performance of three state-of-the-art optimisation methods: 
Ant Colony Optimisation (ACO), a Genetic Algorithm (GA), and a greedy Nearest Neighbour 
optimiser (NN).  
The population size for ACO, the GA, and the Bees Algorithm was set to 200 individuals, whilst 
the other parameters were experimentally optimised. To optimise the parameters, each algorithm 
configuration was tested on a set of 10 randomly generated maps, each comprising 100 cities. On 



each map, 10 independent optimisation trials were run for each configuration. The configuration 
that achieved the lowest cumulative distance over the 10	/��-\G × 10	,- G was chosen. Table 1 
shows the optimal parameter setting for ACO, the GA, and the Bees Algorithm. Being a greedy 
deterministic optimiser, the NN algorithm does not need parameter optimisation. 
 
5.1 Ant Colony Optimisation 

Dorigo’s and Gambardella’s (1997) original ACO algorithm was used. The problem is 
represented as a graph, and artificial ants use a combination of problem-specific (higher 
probability to take short graph links, viz. move to neighbouring cities) and general purpose 
(higher probability to follow graph links with high amount of pheromone) heuristics. Two main 

parameters define the behaviour of ACO: the pheromone evaporation rate 0 < g < 1 (a high rate 
favours random exploration of the search space, a low rate favours exploitation of promising 

areas); and the weight h > 0 giving the relative importance of the distance versus pheromone 
heuristics in picking the sequence of cities.  
To optimise the algorithm, a full factorial experiment was designed varying the evaporation rate 
from 0.05 to 0.25 in steps of 0.05 (set to 0.1 in Dorigo and Gambardella, 1997), the weight given 
to the nearest neighbour heuristics from 1 to 5 in steps of 1 (set to 2 in Dorigo and Gambardella, 
1997), and the number of optimisation cycles from 1000 to 5000 in steps of 1000. A total of 125 
tests were performed. 
 

5.2 Genetic Algorithm 

Kirk’s (2014) GA implementation available at MATLAB Central wad used. This GA version is 
specifically written for TSP optimisation, and uses tournament selection without replacement to 
select one parent out of four randomly selected individuals. Each parent is duplicated once, and 
generates other three children out of three problem-specific mutation operators such as genetic 
flip (the sequence of cities within a randomly selected sub-path is inverted), neighbours swap 
(see 4.1.5), and genetic slide (a sub-path is shifted one position ahead in the sequence). In 
summary, each evolution step one quarter of the population is selected for reproduction, and each 
selected individual generates four offspring: one copy of itself, and three mutants each created by 
a different operator.  
For this particular GA implementation, the number of evolution cycles (generations) is the only 
parameter that needs to be optimised. Five configurations were tested varying the number of 
generations from 1000 to 5000 in steps of 1000.  
 
5.3 Nearest Neighbour 

The deterministic NN procedure starts from the two closest cities in the map, and from there 
moves to the closest city to the first two. The algorithm iteratively moves to the nearest unvisited 
city to the last added, until all cities have been visited (Johnson and McGeoch, 1997). NN is thus 
a greedy local optimisation procedure, always choosing the most advantageous move with a local 
outlook of one step. The strong points of NN are its low computational overheads and ability to 
find acceptable (albeit rarely optimal) solutions. Like all local optimisation procedures, NN is 
liable to occasional failures (Gutin et al. 2002). 
 

5.4 Bees Algorithm 

Twenty-five different configurations of the Bees Algorithm implementation described in Section 
4 were tested. These configurations comprised different combinations of parameters giving a 

total colony size of 200 individuals. The number XY of elite sites was varied from 1 to 4, the 



number X�Y of recruited bees for the elite sites was varied from 25 to 100, the number X[ of best 
(non elite) sites was varied from 2 to 10, the number X�[ of recruited bees for the best sites was 
varied from to 10 to 50, and the stagnation limit G/\�, from 10 to 50 steps. For each of the 
twenty-five configurations, the number of evolution steps was varied from 1000 to 5000 in steps 
of 1000. A total of 125 configurations were thus evaluated. 
 
5.5 Experimental Results (TSP benchmark) 

Using the optimised parameters in Table 1, each algorithm was evaluated on a new set of 10 
randomly generated maps of 100 cities. For each map, 10 independent optimisation trials were 
performed. Table 2 reports for each map the results in terms of first, second (median value), and 
third quartile of the minimised travelling distances attained in the 10 independent optimisation 
trials. The best results are highlighted in bold. For each map, the statistical significance of the 
differences between the results obtained by the three stochastic algorithms was evaluated using 
Mann-Whitney U-tests at 5% level of significance. In Table 2, results that are not significantly 
different from the best are shaded in grey. Table 2 reports also the number of fitness evaluations 
performed by each stochastic algorithm, and the cumulative sum over the 10 maps of the Q1, Q2, 
and Q3 values. Figure 6 uses the cumulative Q1, Q2, and Q3 values to visualise the spread and 
central tendency of the results obtained by the four algorithms. Since NN is deterministic, it is 
visualised as one unique point. 
The results highlight the superiority of the Bees Algorithm and GA over the other two 
techniques. The Bees Algorithm always obtains the shortest overall path in all 10 maps. The 
Bees Algorithm is also slightly more consistent than the GA in terms of performance, as 
indicated by the narrower spread of the results attained (Q3-Q1 difference). However, the current 
tests show no statistical evidence that the Bees Algorithm is significantly superior to the GA. 
Increasing the sample size (number of optimisation trials per map) may reveal statistical 
differences between the two algorithms that are not detectable with the current experimental set 
up. This is however outside the scope of the paper. The most important result is that the Bees 
Algorithm needs 25% less function evaluations to attain at least the same results as the GA, 
which proves the efficiency of the proposed method. 
 
 
6 APPLICATION TO THE MBTD BENCHMARK PROBLEM 

The proposed Bees Algorithm is tested on the MBTD benchmark assembly problem described 
by Leu et al. (1993). The set up consists of 10 feeders, each supplying a different type of 
component. A total of 50 components need to be placed at fixed positions on the PCB. The 
coordinates of the placement positions and the parameters of the assembly machine (speed of 
movement of the table, assembly heads and indexing time of the turret) are fully described in 
Leu et al. (1993), and summarised in Table 3. 
The parameters of the Bees Algorithm were experimentally optimised testing a total of 192 
different configurations, performing for each configuration 10 MBTD optimisation trials. The 
final parameter setting is shown in Table 4. Once the parameters were fixed, 100 independent 
runs of the algorithm were executed, and the statistical average and spread calculated.  
 
 
 
 



6.1 Experimental Results (MBTD benchmark)  

The five-number summary of the optimisation results obtained using the customised Bees 
Algorithm is presented in Table 5. The table proves the consistent performances of the proposed 
algorithm. The best solution is given in figure 7.  
A comparison of the obtained results with the state-of-the-art in the literature is difficult, since 
different authors used different benchmarks  (Hsu [20] and Alkaya [14]) and tailored their 
solutions to different optimisation problems (e.g. Seth et al. 2016 focused on component 
placement only). Table 6 reports the best solutions obtained in seven published studies which 
used the same PCB assembly benchmark, and compares them with the best and average results 
obtained using the customised Bees Algorithm.  
Table 6 shows that the proposed method outperforms all algorithms that did not use a seeding 
procedure. The results are also competitive with those obtained by the algorithms that use a 
seeding procedure. Indeed, the proposed method found the solution of minimum assembly time 
(23.46 s).  
Unfortunately, the average and spread of the solutions are not available for the other studies. It is 
therefore impossible to ascertain whether the figures reported in the literature are the expected 
values of the distribution of results, or the maxima of several attempts (and hence potential 
outliers to said distribution). Moreover, the methods that used a seeding procedure (Ho and Ji, 
2007, Pham et al. 2009, Ang et al. 2013) started the search relatively close to the optimum (see 

third row of Table 6). In this case, it is difficult to distinguish the merits of the optimisation 
technique from those of the seeding procedure.  
It is also difficult to compare the time complexity of the various algorithms. In most cases, the 
authors reported the number of fitness evaluations performed by the main routine until the 
optimum was found, and not the whole duration of the optimisation procedure (possibly 
including the seeding subroutine). Firstly, the result of one run is not representative of the 
performance of a stochastic optimisation algorithm. Secondly, optimisation algorithms must be 
run for a duration that guarantees adequate and consistent results, which may be considerably 
longer than the time the optimum is found in one ‘lucky’ run. For the above reasons, the number 
of fitness evaluations was not compared in Table 6. For the customised Bees Algorithm the total 

number of fitness evaluations executed in one run is equal to the bee colony size (X = 2000, 
Table 3) times the duration of the algorithm (�/� = 3000 optimisation cycles, Table 3), namely 

6 ∙ 10_ evaluations. As a term of comparison, Ang et al. (2013) obtained a solution of 23.58 s 
total assembly time, only slightly worse than the solution obtained by the proposed method 

(23.46 s assembly time). However, their TRIZ-enhanced Bees Algorithm needed nearly 12 ∙ 10_ 

evaluations to find the optimal solution, and the algorithm ran for a total of more than 23 ∙ 10_ 
evaluations. Therefore, it can be concluded that the proposed version of the Bees Algorithm is 
able to find top quality solutions at a modest computational cost. 
 
 
7 CONCLUSIONS 

This paper described the application of a customised version of the Bees Algorithm to the 
optimisation of pick-up and placement sequences for a PCB assembly machine. The proposed 
method was first tested against 3 state-of-the-art procedures on the TSP, and then applied to the 
MBTD assembly benchmark problem. 
One the TSP, the Bees Algorithm excelled for performance and efficiency. Out of 10 randomly 
generated maps each containing 100 cities, the proposed algorithm always found the shortest 



travelling distance, requiring 25% less function evaluations than the GA, and 40% less function 
evaluations than ACO. 
On the benchmark assembly problem, the proposed algorithm was able to obtain a solution 
requiring an assembly time of 23.46 seconds, and average solutions requiring 24.96 seconds. 
These results compare favourably with the state-of-the-art in the literature. 
It is worth noticing that, differently from many recent examples in the literature, the proposed 
algorithm does not seed the initial population with ‘good’ (partly optimised) solutions. On the 
one hand, solution seeding is likely to speed up the search procedure, and possibly help the 
algorithm to discover better solutions. On the other hand, solution seeding may bias the 
algorithm towards sub-optimal minima, particularly those characterised by a large basin of 
attraction. Future work should ascertain the pros and cons of introducing this kind of 
initialisation procedure. 
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Figure 1. PCB Assembly Machine of the MBTD Type 

(with 2 Rotary Turret Heads, 10 Feeder Slots and a Moveable Assembly Table) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2. Representation of a PCB Assembly Sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3. Flowchart of Bees Algorithm 

 

 

 

 

 

 

 

 



Original sequence : {3, 2, 5, 1, 4, 6} 
Sequence after removal of section {2, 5}: {3, 1, 4, 6} 

Sequence following shift of {2, 5}: {3, 1, 4, 2, 5, 6} 
 

a) procedure                  

 

b) original sequence                  

 

c) re=arranged sequence              

 

Figure 4. Block insertion 



Original sequence : {3, 2, 5, 1, 4, 6}  
Broken-up sequence: {3, 2} ↔ {5, 1, 4, 6} 

Section 1: {3, 2}  
Section 2: {5, 1, 4, 6}  

Section 2 – inverted sub-sequence: {6, 4, 1, 5}  
New sequence (Section 1 + Section 2): {3, 2, 6, 1, 4, 5}  

 
a) procedure                  

 

b) original sequence                  

 

c) re-arranged sequence   

            

Figure 5. 2-Opt Operator 



 

 

Figure 6. Cumulative results of TSP optimisation on randomly generated maps. 

 

 

 

 

 

 

 

 

 

 

 



 

a) solution 

 

  

b) path on the PCB board 

 

Figure 7. Optimal solution (23.46 s assembly time) 



Table 1. Optimal configurations for the TSP benchmark 

Parameter Symbol Value 

ACO  

Evaporation rate α 0.2 

Distance relative to pheromone weight β 1 

Number of iterations itrA 5000 

GA  

Number of iterations itrG 4000 

Bees Algorithm  

Elite sites ne 1 

Recruited bees for elite e sites nre 100 

Best (non elite) sites ne 4 

Recruited bees for non elite sites nrb 25 

Stagnation limit stlim 50 

Number of iterations itrB 3000 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. TSP optimisation results on 10 randomly generated maps. For each stochastic algorithm, 
the first (Q1), second (Q2, median value), and third (Q3) quartile of 10 independent optimisation 

trials are reported. The best (median) result for each map is marked in bold. Results that 
are not significantly different from the best (Mann-Whitney U-test at 5% significance level) are 

shaded in grey. 
 

Map 
ACO GA Bees Algorithm NN 

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3  

1 139.7 145.9 147.5 135.0 136.1 136.9 135.4 135.9 137.8 164.8 

2 134.2 136.6 138.6 128.5 130.5 131.9 127.1 129.5 132.2 174.9 

3 146.4 147.8 148.9 135.6 136.1 136.6 134.7 135.4 136.3 158.2 

4 147.8 151.4 152.8 139.6 140.8 141.8 137.8 139.8 141.9 170.9 

5 140.6 141.5 145.8 132.5 133.5 134.7 132.2 133.5 135.0 153.1 

6 130.0 131.8 134.1 126.7 127.5 129.2 124.7 125.7 126.6 152.1 

7 138.6 139.6 143.0 134.1 134.9 140.2 132.8 133.5 134.9 148.3 

8 146.9 148.0 149.8 133.4 136.5 139.4 131.8 133.0 134.7 178.3 

9 143.5 145.3 147.9 135.4 136.0 138.7 134.5 135.6 136.0 181.1 

10 129.4 130.3 132.7 128.8 129.7 130.8 128.4 129.7 131.0 153.5 

Cumulative 1441.0 1397.1 1417.9 1360.2 1329.5 1341.5 1346.4 1319.3 1331.6 1635.2 

Samples 1 × 10_ 0.8 × 10_ 0.6 × 10_ - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. The Parameters of the MBTD Assembly Machine 
 

Number of components  50 

Number of feeders 10 

Number of turret heads 2 

Indexing time of turret 0.25s/index 

Average PCB mounting table speed 60mm/s 

Average feeder system speed 60mm/s 

Distance between feeders 15mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. The Parameters of the Bees Algorithm for the MBTD problem 

 
Bees Algorithm parameters Symbol Value 

Total colony size N 2000 

Number of elite sites ne 4 

Number of recruited bees for elite e sites nre 300 

Number of best (non elite) sites ne 8 

Number of recruited bees for non elite 
sites 

nrb 100 

Stagnation limit stlim 100 

Number of iterations itr 3000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 5. Optimisation results for the MBTD benchmark: five-number summary of 100 
statistically independent trials. The statistics of the assembly times are given in seconds. 

 
Statistic Value (s) 

Minimum 23.46 

First quartile 24.71 

Median (second quartile) 24.96 

Third quartile 25.13 

Maximum 25.63 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6. MBTD benchmark: comparison between the results obtained using the customised Bees 
Algorithm (cBA) and the state-of-the-art in the literature. Methods 4, 5, and 6 include an initial 

seeding procedure. The statistics of the assembly times are given in seconds. 
 

References 1 2 3 4 5 5 6  

Optimisation 
technique 

GA EP GA HGA BBA 
BBA + 

seeding 

BBA + 

TRIZ 
cBA 

Average initial 
solution 

70 n/a 60 28.83 54.59 29 35.5 71.08 

Best solution 51.5 36 26.9 25.5 25.92 24.08 23.58 23.46 

Average 
solution 

n/a n/a n/a n/a n/a n/a n/a 24.96 

1: (Leu et al. 1993) 
2: (Nelson and Wille, 1995) 

3: (Ong and Tan, 2002) 
4: (Ho and Ji, 2007) 

5: (Pham, Otri. et al. 2007) 
6: (Ang et al. 2013) 

 
 


