
HAL Id: hal-02283211
https://hal.science/hal-02283211v2

Submitted on 13 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Risk management and Distributed Simulation in
Papyrus tool for Decision Making in industrial context
Simon Gorecki, Judicael Ribault, Grégory Zacharewicz, Yves Ducq, Nicolas

Perry

To cite this version:
Simon Gorecki, Judicael Ribault, Grégory Zacharewicz, Yves Ducq, Nicolas Perry. Risk management
and Distributed Simulation in Papyrus tool for Decision Making in industrial context. Computers &
Industrial Engineering, 2019, 137, pp.106039. �10.1016/j.cie.2019.106039�. �hal-02283211v2�

https://hal.science/hal-02283211v2
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/null

To cite this version :

Simon GORECKI, Judicael RIBAULT, Gregory ZACHAREWICZ, Yves DUCQ, Nicolas PERRY -
Risk management and distributed simulation in Papyrus tool for decision making in industrial
context - Computers & Industrial Engineering - Vol. 137, p.106039 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/null
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/

1

Risk management and Distributed Simulation in Papyrus tool for Decision

Making in industrial context

Simon Gorecki*, Judicael Ribault*, Gregory Zacharewicz**, Yves Ducq*,

Nicolas Perry***
*Univ. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France {firstname.lastname}@u-

bordeaux.fr,

**LG2IP lab. IMT – Mines Ales, gregory.zacharewicz@mines-ales.fr,

***Arts et Métiers ParisTech ENSAM of Bordeaux, perry.nicolas@ensam.eu

ABSTRACT

Modeling and Simulation (M&S) are important steps in the design of industrial systems and production plants.

They help in anticipating and understanding these complex systems in order to make decisions about strategic

implementations before effective development. Once the models are satisfyingly built, namely they correctly

reflect the system, the simulation can offer many behavioral information to the user. In this paper, we are

proposing to integrate risk management, hazard generation, and complexity issues in process modeling with

data coming from industrial context: polar power plant design. In this context, risks and hazards must be

modeled, but are too large to be in the main model. For this purpose, the paper presents some extensions to the

modeling and simulation open source tool: Papyrus. This proposition consists in developing the Papyrus

features for outsourcing risks and hazards out of the model, exporting simulation’s data in different components

for decision making, and implementing distributed simulation mechanisms for dealing with reusability, and

interoperability of components.
Keywords: Model Driven Architecture; HLA; Papyrus; Simulation; Risk management.

1. INTRODUCTION

In industry, risk management was becoming a huge challenge facing on one hand the increasing

complexity of manufacturing systems and on the other hand the evolution of legal context which

force companies to prove their maturity in this domain as recommended in the new ISO 9001

standard. Moreover, the design and steering of complex systems requires Modeling & Simulation

(M&S) steps to represent behaviors and interactions in and between the systems.

As technologies are growing, complexity also increase and makes systems more and more difficult

to model and simulate. In M&S, Modeling allow to represent any complex system according to a

standard. Once the modeling phase is completed, Simulation of these systems will allow to virtually

design our subject to anticipate and avoid problems in future. This growing complexity can be handle

by simulating risks, hazards, and taking threat in account during the modeling phase.

Once the model is designed, the performance indicators and the dashboard can be setup for helping

the user to define the better choice in a given situation. Many works have been done in project’s risk

mailto:gregory.zacharewicz@mines-ales.fr

2

management and have proven this fact (Altuhhova et al., 2013; Better et al., 2008). All these

disturbances can impact the process of decision making which implies the need of simulation tools

as a decision-making tool.

 According to (Barki et al., 1993), the notion of risks and hazards are “the uncertainty surrounding

a project and the magnitude of potential loss associated with project failure” or the “Probability and

consequences of different outcome scenarios associated with a hazard” according to (Paté-Cornell,

2002). In this paper, risks, hazards and complexity must be considered separately even if risks and

hazards are linked, a risk being able to generate a hazard and vice versa. Hazards are present at every

steps of the process. Hence, they must be relocated outside of the model. Then, complexity must be

relocated by Distributed Simulation (DS). We will use this concept in an industrial context providing

the application case with Papyrus tool.

Papyrus, an open source UML / SysML modeler, provides a tool to users and developers to specify

UML models and then to execute them with the Foundation UML Subset (fUML) standard (OMG

Publication 2018). Papyrus is already used by our partner company to model and simulate the

production of solar power plant. This software is used for its user-friendly modeling and simulation

features in terms of the fUML standard. Specific behaviors can also be described according to the

UML profile. Those profiles can be considered during the simulation run through the Moka execution

engine. Modeling all the risks and hazards impacts implied by the complexity growth would make

the initial model unreadable (Gorecki et al., 2018). For this reason, every issue in this paper is solved

by adding a new UML profile and Moka extensions over Papyrus and Moka implementations.

Helping the users in the decision-making process will be done by developing a specific Moka

extension. This layer over the Moka execution engine is able to export the simulation indicators and

provide a customizable dashboard. The users can select important variables in the model which must

be readable in the dashboard. Later, after the simulation ending, the users can access them through

different graphs.

Risks and hazards simulation are an important point in our context. Our case study consists in models

disturbed by a great number of hazards. Hazards and risks are various, can influence main model in

every task. Hence the need of “hazard injection”. The main goal consists in having a main model,

without risk management, connected to a risks management scenario which influence the model at

the simulation time.

The injection of hazards in the model is outsourced with a second UML profile and a specific Moka

extension. This UML profile contains a unique ID associated to each task which must be affected by

hazards. During the execution process, a specific Moka extension alters the execution of these tasks

thanks to a database containing risks equations.

3

Finally, the complexity is treated by managing Papyrus instances as DS components to allow the

users and developers to deal with complexity and time constraints. More specifically, the goal is to

implement mechanisms of synchronization points in several Moka instances. This complex problem

implies defining a synchronization, communication algorithm which is not defined by the Functional

Mock-up Interface (FMI) Co-Simulation standard.

To solve the time related issues in distributed context, the use of High Level Architecture (HLA)

standard (IEEE Computer Society, 2010a, 2010b, 2003) offered as one of the most used standard in

DS. In HLA, the Run Time Infrastructure (RTI) can solve interoperability issues between

components, provide communication mechanism and time management.

The rest of the paper is structured as follows. Section 2 provides an introduction to essential

background knowledge on the domain. Section 3 presents the state of art of the research efforts to

address the risks issues, hazards and complexity management in M&S. Section 4 presents our

proposition to overcome the above-mentioned issues. A case study provided by our partner company

is presented in section 5. Finally, conclusion and discussion are done in section 6.

2. MATERIAL AND METHODS

2.1 Risks and hazards management

Risks and hazards are polysemous subjects and can have many definitions.

In the connection of danger management, the literature presents an amount of ideas revolving around

hazard. Project risks is identified with the occurrence of events from internal or external origin, which

might influence the accomplishment of the initial target. The risk qualifies the impact on these

hazards and final project objectives.

In the literature, several practical steps related to management were identified: identification,

analysis, evaluation and treatment of risks. These keywords are used in brainstorming tools in order

to conceptualizing rules, anticipate and minimize dangers in projects. However, these methods are

not structured, basically can only handle qualitative data. Furthermore, they are often restrained to a

specific background. In the following, we refer to tools and methods which were suggested in

literature to deal with risks management.

In the Information Systems Security Risk Management (ISSRM) methods by (Dubois et al., 2010),

a method consists in processing guidelines which help to identify vulnerable assets, security

objectives, and risks in order to implement security requirements to treat the risks. Using this method

decreases the chances to trigger events causing security issues. However, these tools generally does

not offer modeling support. They rather use informal documentation in a natural language (not

formal) and diagrams as explanations. The analysis method available in Figure 1 allows to classify

4

and identify risks in several categories: -asset-related part is used to identify the system, skills and

main risks which must be avoided. -Risk-treatment part depends on risks eventualities. This part

represents the risk treatment decision. A treatment decision solves a security issue, defined in

functional and generic terms and can lead to security requirements.

Another risk management method was developed by (Marcinkowski and Kuciapski, 2012). In this

method, Business Process Modeling Notation Extension for Risk Handling, the users have to identify

several types of risks: - Business-driven risks, aim at protecting the business and keeping it available

to whoever and whenever in support of continuous business operations. - Data-driven risks are about

availability of information and data in every different form which can be used by the organization. -

Event-driven risks, which are more focused on events that create risk. This paper proposes to

implement risk management over BPMN standard in order to model risks, hazards and handle them.

This proposition allows to deal with risks in four different ways: reduce them, retain them, avoid

them or transfer them.

2.2 Papyrus

Papyrus is a UML/SysML modeling and simulation tool of the Eclipse foundation. UML allows the

use of several modeling notations to represent structures and behaviors of the system. This standard

is however not very efficient for system description. Therefore, the UML profile exists. Created by

the Object Management Group (OMG), a UML profile allows users to specify their own UML

language on its own semantic objects.

Papyrus provides tools for modeling and executing these two standards. It is based on Eclipse and is

an open source project. The execution part is handled by MOKA, a fUML execution engine. Papyrus

implements the complete UML2 standard specification. It provides an extensive support for UML

profiles.

Moka is a Papyrus plugin designed to provide an execution environment complying with the OMG

standards UML. The Foundational UML Subset (fUML) is an executable subset of the UML standard

which can be used to define, in an operational style, the structural and behavioral semantics of

systems in order to be simulated. (Guermazi et al., 2015). With this standard, Moka is able to execute

UML models designed under the Papyrus UML editor. Moreover, designed for Papyrus, Moka is

open source and can be extended to support the UML Profile or alternative execution semantics, and

thereby be adapted to multiple usages.

In our industrial context, a UML Profile and Moka extension is developed in order to provide to users

a decision-making tool. Important simulation parameters can be defined by user in the UML Profile.

During the execution process, a Moka extension monitors those parameters and store them in influx

5

database. At the end of a simulation, each parameter can be visualized over the time with Graphana,

an open source software allowing visualization and monitoring of data available in database.

2.3 HLA

HLA defines a framework which allows the creation of a Distributed Simulation (DS). DS

participants are called federates. They can communicate with each other. The standard was originally

created by the Office of Defense Modeling and Simulation (DMSO) of US Department of Defense

(DoD) to facilitate the assembly of stand-alone simulations with a different architecture. The original

goal was the reuse of military applications, simulations and sensors. This standard is designed to

resolve interoperability issues and reusability between software components.

HLA specification bring synchronization advantages. It enables the management of exchanges

between simulations: messages are sent right in time, in the right order, without violating causal

constraints. To do so, HLA and its Run Time Infrastructure provide various systems for time

management and synchronization process.

According to the HLA standard, a simulation participating to the distributed simulation is called a

"federate". A federate is composed of the simulation model and solver, plus a Local RTI Component

(LRC). A simulation model is a mathematical, logical or physical (with real time simulation or

sensors network) representation of a system. These federates are able to communicate with each other

through a Run-Time Infrastructure (RTI): the federation manager which can authorize federates to

communicate (or not) and provides services such as file or data exchange, time management, etc. To

enable communication, a XML (Federation Object Model - FOM) file must contain description of

interactions and communications between federate.

3. STATE OF ART

HLA is well known standards of Co-Simulation and Distributed Simulation. It is described in

different specification books. HLA (IEEE Computer Society, 2003) describes how interactions can

be done between each component of de DS: Exchange mechanisms are done by Subscribe (read) and

Publish (write) provided by the RTI. Those communications are described by SOM and FOM XML

files. However, there is no simple way to describe the federate behavior inside the federation: each

federate is autonomous.

HLA imposes an architectural rule for its federates. Each one of them has to assume its own time

management. HLA architecture can handle three advancing time mechanisms for each federate

member of the federation.

● Coordinated time, each federate advancing time is coordinated with each other

6

● On messages, when the advance in time of a federate is triggered by reception of a message

over HLA communication mechanism

● Optimistic, where each federate can advance in time at its own speed independently from the

others. This is often used when the federate´s time is real time. If not, it receives a message from the

past and triggers a rollback of the simulation.

Several authors worked on merging the HLA and the FMI standards. Yilmaz et al. presented in their

paper (Yilmaz et al., 2014) a method to automatically generate an FMU entity able to join an HLA

federation as member. A wrapper reads the FMU specification and generates the HLA layer. To

demonstrate the FMUFd (FMU-Federate) usage, authors developed a simple DS example with MAK

HLA RTI. In this paper, time synchronization between the two standards (FMI & HLA) is solved by

updating the federate time at each running step of the FMU model.

(Bouanan et al., 2018) presents an application running several federates connected to the same RTI

and communicating together. Among these federates, one of them is a hybrid federate hosting an

FMU making a communication bridge between HLA classical federates and a hybrid HLA FMI

element.

Efforts have been also done to upgrade the FMI standard by adding extensions and enabling the

treatment of discrete-time models (Franke et al., 2017). In this paper, authors proposed a solution to

synchronize in time FMUs with other elements by adding a clock in the model description and

implementing interface to call it. An FMI export with synchronous features was implemented into

the tools Dymola and OpenModelica. An FMU import was implemented in the optimization solver

HQP.

Other papers are also interesting concerning the use of the/this Papyrus software. (Guermazi et al.,

2015) discuss about the fUML and the Alf standards available in Papyrus which allow to execute

UML models. Authors highlight four major concerns regarding the design of the fUML execution

engine: Extensibility, control and observability, time support and connectivity with external tools.

In (Ellner et al., 2011), authors highlight the limits of the fUML standard by explaining its lack of

support for distributed execution in order to guide and support team members with their activities.

The FUML language requires explicit modeling of user specific attributes and behavior on many

elements, which is a repetitive and error-prone task. In this paper, authors present a fUML extension

able to support distributed execution. With these FUML extensions it becomes feasible to enact

reusable standard software process models in realistic projects.

In (Gorecki et al., 2018), authors proposed an entry point in the Moka execution engine allowing

control on local scheduler. This paper demonstrates how to interact with time management during an

execution process in order to simulate hazards. This Moka extension allows to outsource risk

7

management in an independent tool in order to connect an FMU during the simulation execution

process and outsource tasks. This concept will be more explained in the next section.

4. MOKA EXTENSION FOR SUPPORTING RISKS, HAZARDS AND COMPLEXITY MANAGEMENT

4.1 Outsourcing risk treatment

One of the first solution to deal with risk management in our simulation tool was to integrate it

directly on models. However, modeling risk management on a complex process implies complex

methodologies and make the modeling heavy and not systematic for the user.

Figure 1 : Risks modeling process

Figure 1 presents a BPMN model describing a database login process between a user and the system.

The top diagram represents the model without consideration of risks which can occur in the system.

The bottom diagram represents the same model, but with risk occurrence taken in account. We can

observe that this second kind of model can be very complex. In our context, modeling a global solar

8

power plant with this method is too heavy for modelers and users, hence the need to relocate risk

treatment outside of the model rises. Therefore, risk must be handled in a different way.

● A risk can impact a task. It is be able to block, slow down or shorten (depending on a degree)

as described in Figure 2

Figure 2 : Risk impacts a task

● As illustrated in Figure 3, a risk can influence in chain (increase or decrease the impact) or
generate another risk.

Figure 3 : Risk causality chain

The first objective of this contribution is about defining an extension to Papyrus for dealing with risk

management, which is outsourced from the model. Papyrus, an Eclipse based project, allows

developers to model a UML diagram, and thanks to UML-profile mechanism, enable a UML-based

diagram modeling language such as SysML or BPMN.

Figure 4 presents the abstract structure of the proposed architecture. The process model editor and

the Moka execution engine are combined into the Papyrus tool. They both are connected to our

external risk management module and can communicate with him.

The goal of this architecture is to create an ad-hoc extension to Papyrus in order to consider risks,

hazards, and simulation constraints. This sub system is able to generate risk related events as inputs

for tasks described by process modeler in the main simulation. All risks and issues are described

according to equations defined in the ad-hoc extension, outside of the main model within an Excel

file. The initial model and the risk management extension are external one to the other to keep them

easier to manipulate. The main simulation reacts depending on constraints and hazards referenced

and generated by the risk management module (as described in Figure 4).

9

Figure 4 : Defining and using risks in Papyrus

Because of the described objective to relocate and factorize risk computation (management) out of

the main model, interoperability is required between the workflow process simulation and external

risk features. To address the interoperability, this work proposes to involve a co-simulation standard

which provides communication mechanisms between several external modules. Another way to

communicate with the Moka engine is to request web services API. Thanks to this proposition, any

complex system compliant with FMI standard, or providing a web API can be coupled to the

simulation tool.

Functional Mockup Interface (FMI) standard proposes two modes of operation. - "Simulation

exchange" used in this proposition and - "model exchange" mode which is still under development

in the Papyrus community. Using this standard as model exchange would imply to model process in

an external FMU and load it in the simulation.

4.2 Risk treatment handling

(Guermazi et al., 2015) explain that the Moka engine executes a fUML model. A mechanism called

"Visitors" is executed in Moka at each steps of the simulation process. Visitors can be surcharged;

developers can implement java code at each steps and define a custom behavior for a specific UML

profile. This is our entry point to the Moka engine. During simulation execution, each task in the

model are executed by the engine, specific visitor is called and executed. At this step, the engine can

test the tasks names and parameters of the UML profile (see “Reference” link between “Risk &

Hazard management” and “Process Model” in Figure 4). At the execution of the simulation, this risk

module must know the name of each task of the model for allowing interactions with it.

The entry point of the MOKA engine is a java function. From it, we can communicate with an Excel

file containing risks equations defined by the company engineers. Each equation is linked to a task

and determines the delay to apply on subject (described in Figure 5).

10

Figure 5 : Interaction between Moka extension and Excel file

The second step consists in adding a co-simulation environment with Java-FMI. This library allows

developers to use an FMU for interacting with another external simulation. In our case, we are using

OpenWeatherMap, a weather information web service. In our example, the location is given to the

API and returns to the Moka visitor weather information. This information is relevant for a solar

power plant: clouds or sunshine can impact the electricity production.

The Moka execution engine allows us to develop preconditions for tasks and resources. These

conditions determine laws for tasks or resources in order to set them available, or not. With an FMU

component coupled, a collaborative environment can control the elements execution (tasks or

resources). For example, an element can only start under several additional conditions defined by

other external tools.

The implementation consists in creating a new extension of the UML metamodel (Figure 6). The

users can add new concepts (classes) and relationships (associations) by using the profile and the

stereotype mechanism. In our proposition, we created a specialized object “Failure Element” which

can suspend the execution of an UML element (task or resource) based on the mean time between

failure indicator and external variables (e.g. weather condition).

11

Figure 6 : UML Profile for loading Weather FMU

● stereotype “FailableAction”: applied on a UML actions with two attributes (by inheritance):

(i) “MTBF”, Mean Time Between Failure, defines the average time during an action, can be

executed before a failure occurs over a specified time. (ii) “MTTR”, Mean Time To Repair,

is the average time required to repair a failed action (during this time the task ca not be

executed).

● stereotype “FailableResource”: applied on a UML Class with the two same attributes by

inheritance. Algorithme of failableResource is close to FailableAction’s stereotype. The only

difference remains on thestereotype applied on a UML Class.

After defining the new UML profile, the second step consists in generating source code of this profile

by using the Eclipse Modeling Framework (EMF). This code generator provides interfaces and a

factory to create java object (see Figure 7).

Figure 7 : Code generated using EMF

The final step consists in associating the new Advices to the execution visitors, interacting with a

FailureManager class. This can be done by customizing the execution engine and adding this

implementation on a new Papyrus version. The FailureManager counts the number of

FailableElement executions and can activate failures during the simulation. We also add the

implementation of the two advices (FailureResource and FailureAction). The first one is associated

to UML Class (Figure 6) which uses Resources with FailableResource stereotype. This advice asks

to the failure manager if a task can start or finish, and it also executes additional start/finish actions

for a given task. Concerning the second advice, it runs on/uses the same algorithm than

12

FailableResource. It checks with failure manager if a task can start or finish and executes additional

start/finish actions for a given task. In the FailureManager, java code allows us to import and execute

an FMU. This allows us to relocate complex calculations.

4.3 Time execution manager

In this context, dealing with complexity is about allowing a Papyrus instance to be synchronized with

another one. To do so, technologies used in the previous chapter will be employed.

Figure 8 : Papyrus + Moka extension connected to Time Management FMU

Figure 8 represents a Papyrus instance with a simple BPMN model with custom UML profile, and a

Moka extension connected to a federate. The Moka extension has access to the content of our current

custom UML profile, as well as the whole simulation. In this extension, we are able to define (with

java code) specific behaviors according to what is given by the UML profile. Figure 9 describes a

simple example of how the UML profile and the Moka extension can affect a simple model. The left

sequence flow diagram shows a normal process execution, without applying our Moka extension:

each task is executed according to its “normal” time (normal time is the time affected to a task in

fUML Papyrus model). In the right side of the figure, we applied our UML profile on Task 3 (as in

Figure 8). We can see when Task 3 is executed, the Moka extension sends all the information

contained in the UML profile to the federate. The FMU determines (based on the information

contained in the UML profile) if this task should be delayed or not, and if yes, for how long. We can

see on the right sequence flow diagram that the Moka extension extends the simulation time of Task

3 to 3 units of time.

Figure 9 : Sequence flow diagram of Papyrus execution VS Papyrus execution with custom risks management profile

13

In this example, the federate determines the delay time according to the content of the UML profile

(name of the task, simulation time, etc) and uses databases, web services, and statistics algorithm to

determine the delay.

(Bouanan et al., 2018) presents a hybrid HLA/FMU connected to an RTI, which communicates with

an external application through the FMI standard. In our paper, we use the same approach: a hybrid

HLA/FMU component able to communicate with one local Papyrus execution and a HLA federation.

4.4 HLA - Papyrus Bridge

The objective here is to run several Papyrus instances, each one having its own hybrid HLA

component. We use the HLA standard for its functionality of time management, and communication

protocols. The main objective is implementing waiting points between Papyrus instances. Using a

HLA component enable also connection of other simulations to the final DS.

When an instance of Papyrus has to wait for another instance of Papyrus, messages are exchanged

amongst them through the HLA communication mechanism. At the beginning of the federation, each

federate subscribes to an interaction class “Message” (described in Figure 11) in order to be informed

of every modification state during the global distributed simulation. The HLA mechanism does not

allow a federate to address a message directly to a recipient. The federates can only publish and

subscribe Objects or Interactions. During the simulation, each federate receives all interactions. They

use “src” and “dst” attributes to identify if there are concerned by the message or not. If not, they

simply ignore the message. If yes, they can publish an answer. When an instance of Papyrus enters

in a synchronized state, the associated federate publishes an interaction in order to inform the other

members.

Each Papyrus instance has the same UML Profile and the Moka extension corresponding to the

Figure 10 below.

Figure 10 : Custom UML Profile

Every synchronized Task (Action in UML syntax) inherits from “SynchronizedAction” Stereotype

which contains:

14

● idTask: a unique identifier. It allows any federate to identify where it comes from. For

example, P1.3 is the id of the Task 3 in the federate 1.

● idLink: id of the associated locker/unlocker task.

● isLocked: a Boolean variable which determines if it is a locking task or an unlocking task.

At the execution of a synchronized task, the Moka extension shares with the HLA federate

information contained in the profile. The federate behaviors depend on the status of the system.

Figure 11 : HLA FOM file

Figure 11 above corresponds to the content of the Federate Object Model (FOM) file. It describes

every interaction which can occur between federates.

● src contains the unique id of the message transmitter. If it is a “lock” or “unlock” message,

it contains ID of the linked task. If it is a reply to a lock message, it only contains its Papyrus

id: “P1”.

● dst contains the target id of the message. With the HLA subscription and publication

mechanism, it is impossible to address a message to a specific person. So, the federate is able

to filter which messages are for them and which are not (if not, ignore them).

● localTime is given by the Moka extension. When a lock message is received, the recipient

must reply by its own local time.

● isLocked is about the semantic of the message. 0 corresponds to an unlocking message. 1

corresponds to a locking message. 2 corresponds to a locking reply (the federate has to give

its Papyrus local time).

During the simulation, each federate has the opportunity to send:

● a “lock message” when Papyrus enters into a synchronized point which needs an unlocking

from another Papyrus process.

● an “unlock message” when Papyrus enters into a synchronized point which unlocks another

Papyrus process.

● a “time reply message” when a federate receives a notification from a locked Papyrus

process, it has to reply its actual local time.

15

From a technical point of view, we are using in this application the HLA Run Time Infrastructure

(RTI) Pitch, a free version of RTI HLA 1516e compliant. The HLA federation works as a time

regulating and time constraining federate. On the Papyrus instance side, the time is managed by the

DEScheduler of the Moka engine.

At each nanosecond of the simulation, a function is called by the time scheduler to check if nothing

commits in the event buffer. We added a function which check modifications in the federate outputs.

If any modification is noticed, a new event is triggered in order to treat this event. If the Papyrus

simulation has to send a message, the Moka extension asks to DEScheduler the local time and get in

return the simulation time in nanoseconds after a conversion to milliseconds. This time is given to

the federate.

4.5 Time management between Papyrus instances

The time synchronization between Papyrus instances is an important point. When an instance of

Papyrus is locked by another one, its local clock must continue to fly. This waiting time must be

simulated by the Moka extension. The federate interactions goal is to calculate this duration. Figure

12 illustrates a simple example of this time synchronization mechanism.

Figure 12 : Simple example of two Papyrus in BPMN

Here are two Papyrus instances which are interconnected by a synchronization point. They both have

their own local time, and are completely autonomous until they reach the synchronization point

(locked Task 3 and Unlock Task 6 of both process). Moreover, Papyrus instances 1 and 2 do not start

at the same time, this delta t is visible on Figure 13. We can see that Papyrus instance 1 (P1) needs

to wait for a message from P2 in order to achieved its local process. The synchronization point did

not have a duration, in synchronized task P1.3, P1 must wait for an unknown number of ticks, so

Moka cannot anticipate how much time this lock costs to P1. Hence, we need to calculate this

duration and give it to Moka in order to observe the waiting time in the P1 simulation.

Figure 13 explains the main exchanges between the components of the simulation. In our example,

each Papyrus instance has two normal tasks (e.g. P1.1, P1.2 & P2.4, P2.5), and two synchronized

tasks (P1.3 & P2.6). Those two last tasks extend a custom UML profile.

16

Figure 13 : Sequence flow diagram of two Papyrus with synchronized points

At the beginning of the sequence flow diagram, each Papyrus instance has its own local time and

starts its local process. To make it more realistic, each Papyrus instance starts at a different time. Δt

represents the time gap between two Papyrus instances launches. It impacts time synchronization in

order to illustrate time management mechanism proposed in this contribution. When P1 is locked (at

t=2), Papyrus 1 federate (F1) publishes this information to all other federates. Then, the federate

which will unlock P1 in the future must send back its own local time. Here, when P1 is locked, P2 is

at t=1. P1 is now waiting to be unlocked and its local time is frozen.

P2 process execution continues until it has to unlock P1.6. The federate publishes this information

with its own local time t=10. Federate 1 receives this information and knows which federate unlocked

it. It can now determinate the duration of the lock: duration of P1.3 synchronized task = Tend -

Tbegin = 10 - 1 = 9 ticks. Now, the Moka extension can unlock its local time and create a waiting

time with a duration of 9 ticks. This process allows the use HLA mechanism in order to synchronize

the local time of the different Papyrus instances.

A more complex example was setup in order to test synchronization mechanisms. As a result, Figure

14 is a BPMN diagram describing this simulation scenario. P1 starts and unlocks P2 & P3. Secondly,

P1 must wait for P2 and P3 to finish their own simulation. Another interesting point is that P3 releases

P1 after P2, even if P1 must first wait for P2. In that case, P1 stays naturally locked and wait for P2

message. Then, P1.5 is immediately unlocked (more explanation later in the paper with Figure 15).

17

Figure 14 : BPMN process of 3 interconnected Papyrus

Figure 15 describes the technical architecture of our example. As introduced in Figure 14, there are

three Papyrus instances working together. Each one of them has its own Hybrid HLA/FMI federate

allowing communication between them through HLA Run Time Infrastructure.

Figure 15: Architecture of Papyrus Distributed Simulation

Figure 15 illustrates a second sequence flow diagram extracted from our example. To simplify

graphical rendering, we decided to merge all local tasks and each instance of Papyrus in one single

line: “Local tasks”. We also merged the synchronized task with the hybrid federate line (excepted

for Papyrus instance 1), and hide the RTI component.

18

Figure 15 : Sequence flow diagram

According to Figure 15, we can track the execution steps of the Figure 14 model. This example

allows to test the algorithm delay with a specific case study. P1 must firstly be unlocked by P2.24

and secondly by P3.34. When P1 enters in P1.3 lock, it asks to P2 about its current local time: starting

time = 2 and stores this information for later.

P3 process is faster than P2. As a result, Figure 14 diagram shows that P3 send a release message at

t=7, but P1 is not yet locked by P3. So, Federate 1 saves this message and does not impact P1

simulation.

Later, at t=10, P2 releases P1.4 lock. At this time, the federate first unlocks P3.34 and determines its

delay: d = release time (10) - starting time (2). The Moka engine of Papyrus instance 1 can unlock

its local time and set delay time to 8.

Then subsequently, the execution process goes in a second synchronized task P1.5, but it is

immediately released: d = release time (7) - starting time (12) < 0 so no delay. Then, the distributed

simulation ends since each Papyrus instance has reached its final task.

5. CASE STUDY

This paper was developed in an industrial context. This company which designs solar power plants

has specific needs: this project consists in installing solar (panels fields) to provide electricity

(between 5 and 100 megaWatt per hour, depending on the field size), heat (steam), drinkable water,

and ice in a large area which is not powered so far. However, transport of solar panels fields is

extremely expensive. To reduce the costs, the company is designing a mobile factory able to

manufacture and assemble solar panels directly on production site. Transporting finished products

are very bulky, only raw materials would be brought on construction spot. The main challenges of

this project are : risks management in process conception and project management (Rodney, 2014),

19

factory miniaturization to fit in the least transport containers possible (Benama, 2014), and designing

strongest structure at the lowest cost depending on the environment of the power plant (El Amine,

2016; Gorecki et al., n.d.; Piegay, 2015).

The complexity of this project leads the company to develop and use a custom M&S tool able to

satisfy its needs: Papyrus. In this section, we will solve an issue with our paper propositions. Several

models were created for several objectives. In our example, we use a high-level abstraction model

about the power plant deployment. For this example, the model has the advantage of being clear,

simple, it can reuse each proposition made in this paper, and technical values can easily be modified

for intellectual property needs.

Modeling a power plant deployment can have several objectives. It can be done from an engineering

point of view for studying and anticipate each technical issue. It can be done from a financial point

of view in order to estimate costs of deployment. Or, in our example, from a seller point of view.

Otherwise, in this example the goal is to determinate the end date of power plant deployment,

depending on associated risks.

This context offers us the best conditions to validate our proposition. The proposition presented in

the previous chapters as example were used in our company to solve their own issues, applied on

their own models. Figure 16 represents a solar power plant deployment process from the higher

abstraction level drawn on Papyrus. We use this model as example to illustrate the propositions, in

particular the 4 bottom tasks surrounded by a rectangle.

Figure 16 : Main industrial model

The beginning of the process is represented by the black dot in top left of Figure 16. The first step

“container carrying” consists on transporting and delivering containers on production site. Then,

several processes can be simultaneously launched. “Mobile factory carrying”, “civil engineering”,

20

and “Row materials” steps are executed independently. The civil engineering part is required at

several steps, so they are divided in 3 sub-parts “GC1”, “GC2” and “GC3”. Once the mobile factory

is carried, the company has to deploy it and start it in the “Mobile Factory deployment + starting”

step followed by the testing phase “Test Mobile Factory production”. Solar panels can be now

deployed according the “GC1” in “Setup Solar Panels”. Finally, the company can finish installation

of the power plant according to delivery of raw materials and tools in the “Team installation” step.

“Commissioning” and “Delivery” are the final steps of the process.

As mentioned in the previous chapter, a Papyrus extension is associated to a custom UML profile

applied on every task of the model in Figure 16. This profile (Figure 17) implements a fUML

specification by defining a task duration (bringing capacity to execute the model over the time), and

a Boolean “isLogged” allows task traceability.

With the implementation of a second UML profile for dealing with risks and hazards, the company

is able to outsource time management out of the model.The user can apply a risk management profile

on any task, and define to this task a unique ID (See Figure 17)

This UML profile implies a dedicated and a customizable Moka extension. During the execution

phase, the extension is able to read a spreadsheet containing data about risks and hazards. The Moka

engine can influence the current task duration according to information stored in the sheet. In our

case, risks and hazards information are stored in an Excel sheet. Outsourcing risks management to

Excel allows the user to reuse already existing models, databases, enjoy the power of Excel equations

and VBA language.

Figure 17 : Risk management UML profile

In Figure 17, the user applies the risk & hazard profile DbActionFailure on “Mobile Factory

deployment + starting” task. At the execution, the Moka extension refers to an Excel file which

contains all mentioned ID in the main model. In the figure’s example, the Mobile Factory deployment

+ starting” task is delayed of 20 days. This result can be checked on Figure 21.

21

As we can see, the definition of this impact on simulation time is done in a spreadsheet, outside the

model. However, this impact can be defined according to the current simulation result. At the

execution of our task, Moka writes in the sheet the task’s execution date (see Figure 17).The user is

therefore able to use this date in his own risk equation.

In our example, the definition of Mobile Factory deployment + starting length depends on several

parameters / information:

● A seed generated for random parameters in equations

● Simulation date

● Location of the power plant

● Weather information (depending on location and date), with requesting a web service API

● Information about human resources

Those equations can be very complex or very simple. It only depends on what the user needs to

describe. In our case, there were defined by the company.

The complexity management module deals with synchronization between Papyrus instances. As

explained earlier, it allows the relocation models complexity in other Papyrus instances. This module

also offers several advantages like intellectual protection of models or remote execution through

a/thenetwork. This is done thanks to a second UML profile (Figure 18). In our case study, the

synchronization point is needed at “Mobile Factory Carrying” step. This step is a locking task and

will wait for an unlock message from another Papyrus instance. We can see on Figure 18 two Papyrus

instances connected by a synchronization point.

22

Figure 18 : Complexity management UML profile

Papyrus 1 (Figure 18 left side) contains a locked task. At the execution of «Mobile Factory

Carrying”, the simulation engine executes a Moka extension and freeze the Papyrus 1 simulation

time. A time-request is then sent to Papyrus 2 (Figure 18 right side, as described in section 4.5).

Simultaneously, Papyrus 2 is executed with its own local time. At the execution of «Checking

components integrity”, a message is sent to Papyrus 1 in order to determine the freeze duration and

unlock the Papyrus 1 simulation time.

23

Figure 19 : simulation sequence flow diagram

Finally, the decision-making extension is associated to a custom UML profile applied on every task

of the model. This profile (Figure 20) implements fUML specifications by defining to the task a

duration, and a Boolean “isLogged” allowing the task’s traceabilit. If parameter is true, the dedicated

Moka extension would watch this task and print the logs in influx database.

Figure 20 : Decision making UML profile

After the simulation execution, the user can observe the Tasks logs through Graphana UI (Figure 21).

This dashboard is fully customizable, it can access to all data which are present in InfluxDB, added

by the UML profile in Figure 20.

24

Figure 21 : Graphana simulation result

Figure 21 shows the simulation result of the “Mobile factory deployment + starting” and “Mobile

Factory Carrying” models presented earlier. Based on the risks’ extension and co-simulation

extension, their delay is defined at the execution time by an Excel sheet containing scenario

parameters. After simulation execution, we can observe main simulation results: time consumed to

deploy the solar power plant. In our context, several scenarios were implemented by the company.

Optimistic, Pessimistic, and several other possible scenario (depending on production site location,

date of delivery, subcontractor engaged, etc.).

 OPTIMISTIC PESSIMISTIC

Mobile Factory Carrying 30 days 45 days

Mobile Factory deployment 20 days 37 days

Test Mobile Factory 10 days 15 days

… … …

Total 137 days 212 days

25

Figure 22 : Optimistic and Pessimistic simulation results

Figure 22 above, contain results of Optimistic and Pessimistic simulation result defined by the

company. The first column contains KPI labels, column 2 and 3 are for optimistic and pessimistic

results. This table is a summary of many KPI defined. Here, we only got 4 mains of them. We can

see that there is a difference of 75 days between the two-opposite scenario. From these results, the

company can create custom scenario in order to be optimistic in some tasks, and pessimistic in others.

6. DISCUSSION

In this paper, we have proposed a set of extensions to Papyrus for dealing with risk management,

hazard generation and other complexity issues coming from our industrial context. This complexity

has been separated into two objectives. The first one was consisting in distributed simulation, while

the second one was focusing in outsourcing risk management. HLA mechanism implemented

between Papyrus instances allow user to divide complexity of a model in several sub models. All

these models can be relocated on several computers thanks to HLA standard. The second point is the

outsourcing risk management aspect. As described in previous sections, we are able to separate main

simulation model and risk simulation.

Figure 23: Discussion Papyrus proposition

As we can see on le left side of Figure 23, each Papyrus instances can load a model to represent a

perfect system (or sub-system), without risk or hazard generation. This model will be reused in other

future simulations. In a second point, several risk/hazard scenarios can be defined (right side of Figure

23) and applied to a model. They role will be to modify / deteriorate the perfect model loaded earlier.

With this proposition, we are now able to build one single model, and to apply to it many risks

management scenario defined by user.

7. CONCLUSION AND PERSPECTIVES

The main propose of this paper is divided in two objectives. We have in the one hand proposed an

outsourcing risk management from the main model in order to obtain a more modular approach to

ease the composition of complex models. Those propositions were made in the aim of helping users,

26

non-specialist of modeling and simulation, to identify and manage domain models. Those features

are integrated into a decision-making tool with domain specific GUI in order to easily set and monitor

M&S parameters.

On the other hand, the Papyrus community made the choice to open the software to Model Exchange

(ME) of FMI standard. FMI ME permit the interoperability of Papyrus models with other simulation

components of different kind. Nevertheless, this subpart of the standard does not include time and

execution management. Therefore, we proposed in this paper to extend co-simulation mechanism of

FMI with the time management mechanism of HLA. The end of this contribution implemented a first

running distributed simulation version of Papyrus tool, being concretely used by our industrial

partner.

Future works consist in the implementation of experimental framework for replicability of

simulations. Introduction of hazard can be useful with the capacity of doing thousands of simulations

in the same time and compare them together. Definition of more complex shared resources is also

one of our future jobs. Indeed, actually, only time trigger can be exchanged between Papyrus

simulations. Another goal would be to exchange resources and tasks between several Papyrus

instances.

8. REFERENCES

Altuhhova, O., Matulevicius, R., Ahmed, N., 2013. An Extension of BPMN for Security risk
management. International Journal of Information System Modeling and Desigh pp 93-113.

Barki, H., Rivard, S., Talbot, J., 1993. Toward an assessment of software development risk.
Journal of Management Information Systems 203–225.

Benama, Y., 2014. Supporting make or buy decision for reconfigurable manufacturing system,
in multi-site context. Ajaccio, France 150–158.

Better, M., Glover, F., Kochenberger, G., Wang, H., 2008. Simulation optimization
Applications in risk management. International Journal of Information Technology & Decision
Making, vol. 7, No. 4 571–587.

Bouanan, Y., Gorecki, S., Ribault, J., Zacharewicz, G., Perry, N., 2018. Including in HLA
Federation Functional Mockup Units for Supporting Interoperability and reusability in Distributed
Simulation. Proceedings of the 50th Computer Simulation Conference 1–12.

Dubois, E., Heumans, P., Mayer, N., Matulevicius, R., 2010. A Systematic Approach to Define
the Domain of Information System Security Risk Management, edit dubois, Patrick Heymans.
Intentional Perspectives on Information Systems Engineering 289–306.

El Amine, M., 2016. Integration of concept maturity in decision-making for engineering design:
An application to a solar collector development. Springer-Verlag, London 235–250.

27

Ellner, R., Al-Hilank, S., Drexler, H., Jung, M., Kips, D., Philippsen, M., 2011. A FUML-Based
Distributed Execution Machine for Enacting Software Process Models. ECMFA : Modeling
Foundations and Application 2011 pp 19-34.

Franke, R., Mattsson, S.E., Otter, M., Wernersson, K., Olsson, H., Ochel, L., Blochwitz, T.,
2017. Discrete-time models for control applications with FMI. Presented at the The 12th International
Modelica Conference, Prague, Czech Republic, May 15-17, 2017, pp. 507–515.
https://doi.org/10.3384/ecp17132507

Gorecki, S., Bouanan, Y., Ribault, J., Zacharewicz, G., Perry, N., 2018. Including Co-
Simulation in modeling and Simulation tool for supporting risk management in industrial context.
International multidisciplinary modeling & simulation multiconference. (not yes published)

Gorecki, S., Zacharewicz, G., Perry, N., n.d. Using High Level Architecture in the SEE Project
for Industrial Context. Proceedings of SOHOMA 2017 762, 281–290.

Guermazi, S., Tatibouet, J., Cuccuru, A., Dhouib, S., Gérard, S., 2015. Executable Modeling
with fUML and Alf in Papyrus: Tooling and Experiments. EXE MoDELS 3–8.

IEEE Computer Society, 2010a. 1516.2-2010 - IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)-- Object Model Template (OMT) Specification.
(https://standards.ieee.org/standard/1516_2-2010.html)

IEEE Computer Society, 2010b. 1516-2010 - IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)-- Framework and Rules.
(https://ieeexplore.ieee.org/document/5553440)

IEEE Computer Society, 2003. IEEE Recommended Practice for Distributed Simulation
Engineering and Execution Process. (https://standards.ieee.org/standard/1730-2010.html)

Marcinkowski, B., Kuciapski, M., 2012. A Business Process Modeling Notation Extension for
Risk Handling. International Conference on Computer Information Systems and Industrial
Management 374–381.

Paté-Cornell, E., 2002. Risk and uncertainty analysis in government safety decisions. Risk
Analysis 633–646.

Piegay, N., 2015. Optimisation et aide à la décision multi-objectifs pour la conception robuste
de structures métalliques sur fondations superficielles isolées. Geotechnical Safety and Risk,
Rotterdam, the Neterlands pp 419-424.

Rodney, E., 2014. Integrating Risks in Project Management. 16th International dependency and
structure modelling, Paris 419–424.

Yilmaz, F., Durak, U., Taylan, K., Oguztuzun, H., 2014. Adapting Functional Mockup Units for
HLA-compliant Distributed Simulation. 10th International Modelica Conference 247–257.

	1. INTRODUCTION
	2. Material and methods
	2.1 Risks and hazards management
	2.2 Papyrus
	2.3 HLA

	3. State of art
	4. Moka extension for supporting risks, hazards and complexity management
	4.1 Outsourcing risk treatment
	4.2 Risk treatment handling
	4.3 Time execution manager
	4.4 HLA - Papyrus Bridge
	4.5 Time management between Papyrus instances

	5. case study
	6. Discussion
	7. Conclusion and Perspectives
	8. References

