

DIPARTIMENTO DI MECCANICA ◼ POLITECNICO DI MILANO
via G. La Masa, 1 ◼ 20156 Milano ◼ EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it
Rev. 0

Multi-objective scheduling in hybrid flow shop:
Evolutionary algorithms using multi-decoding
framework

Chunlong Yu, Pietro Andreotti, Quirico Semeraro

This is a post-peer-review, pre-copyedit version of an article published in Computers &
Industrial Engineering. The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.cie.2020.106570

This content is provided under CC BY-NC-ND 4.0 license

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1016/j.cie.2020.106570
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Multi-objective scheduling in hybrid flow shop: Evolutionary
algorithms using multi-decoding framework

Chunlong Yu

Département de mathématiques et génie industriel, École Polytechnique de Montréal, Montréal, Canada

Quirico Semeraro, Pietro Andreotti

Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Abstract

Hybrid flow shops are common manufacturing environments applied in many industrial fields. This

paper tackles the scheduling problem in hybrid flow shop with unrelated machines, machine eli-

gibility and sequence-dependent setup times (SDST) to minimize the bi-criteria of total tardiness

and total setup time. Evolutionary algorithms (EAs) are adopted to solve the problem. Firstly,

four efficient decoding algorithms using different machine selection rules are developed for con-

structing a schedule from a job permutation. These decoding algorithms are able to map the job

permutation space to distinct regions in the objective space. Then, we propose a multi-decoding

framework (MDF) for taking advantage of multiple decoding algorithms along one evolution path.

The hybridization of MDF and EAs leads to the hyper-heuristic approach. The proposed MDF is

coupled with a genetic algorithm to solve the problem in “a priori” approach, that is, to optimize

a convex combination of the objectives given user preference information. The framework is also

embedded to a multi-objective genetic algorithm, known as NSGA-II, to solve the problem in “a

posteriori” approach, which aims at approximating the Pareto-optimal set for the user to make

posterior decisions. The efficiency of the proposed methods is validated by numerical results. More

specifically, when “a priori” approach is used, the proposed MDF helps EAs adjusting the adopted

decoding scheme and generating solution aligned to the user preference; when “a posteriori” ap-

proach is applied, the MDF extends the search space and improves the solution quality.

Keywords: Scheduling; multi-objective optimization; hybrid flow shop; hyper-heuristic; genetic

algorithm; evolutionary algorithm.

1. Introduction

Hybrid flow shops (HFS) are common manufacturing environments in which a set of n jobs are

to be processed in a series of m stages [1]. The HFS scheduling problem has attracted significant

research attention due to its wide application in a variety of industrial fields such as the electronics,

paper, textile, pharmaceutical and sheet metal industry. The scheduling problem aims at the5

creation of a production Gantt chart to optimize certain objective functions. To this end, two

types of decisions are to be made jointly: assigning jobs to machines, and sequencing jobs on

∗Corresponding author
Email address: chunlong.yu@polimi.it (Chunlong Yu)

the assigned machine. This is not a trivial task. In fact, even for a simple two-stage HFS, the

scheduling problem is already NP-hard [2].

In the literature, the majority of researches on HFS scheduling consider only one objective func-10

tion [1]. However, in manufacturing, important criteria such as throughput, due-date performance

and production costs are closely associated with the production schedule and should be considered

simultaneously. For this reason, the trend of considering multiple objectives in the HFS scheduling

is increasing. Dugardin et al. [3] studied a HFS with reentrant jobs to minimize makespan and

maximize the bottleneck machine utilization. The same objective functions were also considered15

in Wang and Liu [4]. Karimi et al. [5] tackled the scheduling problem with makespan and total

tardiness as objectives. In Lu et al. [6], the authors studied a scheduling problem in a real-world

welding industry to minimize the makespan, machine load and instability simultaneously. Recently,

with the growing research interest in green manufacturing, researchers are trying to save energy

consumption via proper scheduling. Luo et al [7] optimized the makespan as well as the electricity20

consumption during the machining process in a HFS with uniform parallel machines. Zeng et al

[8] investigated the manufacturing process in a real-world tissue paper mill company, and proposed

an efficient solution for reducing electricity consumption, material wastes and makespan.

In this work, we consider a HFS with sequence-dependent setup times (SDST), unrelated ma-

chines and machine eligibility. The objective is to minimize the total tardiness and total setup time.25

Unrelated machines assumption indicates that the parallel machines in a stage could be different

in terms of, e.g., processing technology, brand, model and condition. Thus, the processing time of

a job is not necessary equal on the parallel machines. Machine eligibility represents the fact that

not all parallel machines are eligible to process a job because of certain technological constraint.

These two characteristics correspond to the most general situation of the parallel machines in a30

stage [9]. For the objective functions, the total tardiness concerns the due-date performance and

acts as a critical factor for customer satisfaction, especially in Make-to-order environment. On the

other hand, setups are non-value-added activities during manufacturing and are usually associated

with certain costs. Setups could be the activities like cleaning the dyeing tank before dyeing a yarn

in the textile manufacturing, switching the tool set of the punching machine in the sheet metal35

manufacturing, etc. The setup time is usually sequence-dependent, i.e., it depends on the similarity

of the previously processed job and the current job. It is therefore important to decide properly

the job processing sequence to avoid unnecessary setups. The importance of considering setups in

scheduling is emphasized by Allahverdi [10], and it has been shown in Trovinger and Bohn [11] that

by reducing setup time, a direct saving of 1.8 million per year was obtained in a printed circuit40

board assembly plant. Considering the total tardiness and total setup time simultaneously allows

the manufacturing companies to respect due-dates meanwhile reducing non-value-added activities.

As far as we know, this problem has not been tackled in the literature.

We propose evolutionary algorithms (EAs) to solve the scheduling problem in both a priori

and a posteriori fashion. A priori approach refers to the optimization of a scalarized objective45

function with user preference input; a posteriori approach pursues the generation of a set of Pareto

non-dominated solutions, from which the user selects the final solution. The contributions of this

research are:

2

� We develop several decoding algorithms for the HFS with sequence-dependent setup times.

These build the complete schedule from a given job permutation using different machine50

selection rules in the simulation. Compared to the conventional decoding method, they are

able to map the design space to different portions of the objective space which are more

favorable to the total setup time objective, and thus provides better options for companies

focusing on setup reduction.

� When more than one objective functions are considered, the superiority of certain decoding55

algorithm is dependent on the user preference. For this reason, we develop a multi-decoding

framework (MDF) that allows using multiple decoding algorithms in EAs. The hybridization

of MDF and EAs leads to the hyper-heuristic paradigm. For a priori approach, EAs using the

proposed MDF is able to adjust the adopted decoding algorithm during the evolution, and

provides efficient solution aligned to the user preference; whilst when a posteriori approach is60

adopted, the MDF extends the search region in the objective space and helps EAs to generate

a better non-dominated solution set.

The main body of the paper is organized as follows. In Section 2, we provide a problem de-

scription and a mix-integer linear programming model for the problem. In Section 3, a literature

review is given. In Section 4, we present the proposed methods. Firstly, four decoding algorithms65

are developed, then we report the multi-decoding framework. In Section 5, the proposed decod-

ing algorithms and the MDF are coupled with EAs to solve the multi-objective HFS scheduling

problem. We validate the efficiency of the proposed methods by numerical experiments. Finally,

Section 6 draws the conclusions.

2. Problem description70

2.1. The problem

There are n jobs to be processed at m production stages sequentially from stage 1 to stage m.

The i-th stage consist of hi unrelated machines, and for at least one stage hi > 1. Each job j

consists of a sequence of m operations. The execution of the i-th operation of job j requires one

machine out of an eligible machine set Eij ⊆ {1, . . . , hi} at stage i. Parameter pilj is the processing75

time of job j on the l-th machine at stage i. Siljk is the machine-based sequence-dependent setup

time on the l-th machine at stage i when processing job k, after having processed job j. The setup

time is anticipatory, i.e., the setup might be done before the job is released at the previous stage.

Any job, say j, has a release date rj = 0 and a nonzero due date dj . Let Cij be the completion

time of job j at stage i, the tardiness of job j is given by Tj = max{Cmj − dj , 0}. The objective80

is to minimize the following two objectives:

� f1 total tardiness

� f2 total setup time

Other assumptions are as below:

� the processing of the jobs cannot be preempted;85

3

� machines are reliable and no machine failures can happen;

� each machine has an upstream buffer of unlimited capacity;

� each machine can process only one job at a time, and each job can be processed on only one

machine at a time;

� job transportation time between machines is neglected.90

The scheduling problem can be denoted using a triplet α|β|γ notation as in Ruiz and Vázquez-

Rodŕıguez[1]. The described scheduling problem is denoted as:

FHm, ((RM (i))mi=1)|Mj , Ssd|
∑

Tj , TST.

Here, FHm indicates a HFS with m stages; ((RM (i))mi=1) represents that each stage consists of

multiple unrelated machines; Mj represents machine eligibility constraint, Ssd stands for sequence-

dependent setup times;
∑
Tj indicates the total tardiness and TST is total setup time objective.

2.2. Mathematical model

In this section, we provide a mix-integer linear programming model of the defined problem.95

Let J = {1, . . . , n} be the set of jobs, I = {1, . . . ,m} be the set of stages, Mi = {1, . . . , hi} be the

set of machines at stage i, Eij ⊆Mi be the eligible machine set of job j at stage i. Below are the

other notations of the model:

Parameters:100

w: weight of the total tardiness objective function

pilj : processing time of job j on machine l at stage i

Siljk: sequence-dependent setup time on machine l at stage i after switching from job j to job k

dj : due-date of job j

V : a very large number105

Decision variables:

xiljk: equal to 1 if job j precedes immediately job k on machine l at stage i, 0 otherwise.

Auxiliary variables:110

Tj : tardiness of job j,

Cij : completion time of job j at stage i.

The objective is to

minw
∑
j

Tj + (1− w)
∑
i∈I

∑
l∈Mi

∑
j∈{J,0}

∑
k∈J,k 6=j

xiljkSiljk (1)

s.t. ∑
j∈{J,0},j 6=k

∑
l∈Mi

xiljk = 1,∀i ∈ I, k ∈ J (2)

4

∑
j∈J,j 6=k

∑
l∈Mi

xilkj ≤ 1,∀i ∈ I, k ∈ J (3)

∑
j∈J

xil0j ≤ 1,∀i ∈ I, l ∈Mi (4)

∑
s∈{J,0},s 6=j,s 6=k

xilsj ≥ xiljk,∀i ∈ I, l ∈Mi, j, k ∈ J, j 6= k (5)

∑
l∈Mi

(xiljk + xilkj) ≤ 1,∀i ∈ I, j ∈ J, k = j + 1, . . . , n (6)

∑
j∈{J,0},j 6=k

∑
l∈Mi\Eik

xiljk = 0,∀i ∈ I, k ∈ J (7)

∑
j∈J,j 6=k

∑
l∈Mi\Eik

xilkj = 0,∀i ∈ I, k ∈ J (8)

Ci0 = 0,∀i ∈ I (9)

Cik + V (1− xiljk) ≥ Ci−1,k + pilk,∀k ∈ J, j ∈ {J, 0}, j 6= k, i = 2, . . . ,m, l ∈ Eik (10)

Cik + V (1− xiljk) ≥ Cij + Siljk + pilk,∀k ∈ J, j ∈ {J, 0}, j 6= k, i ∈ I, l ∈ Eik (11)

Tj ≥ Cmj − dj ,∀j ∈ J (12)

xiljk ∈ {0, 1},∀i ∈ I, l ∈Mi, j ∈ {J, 0}, k ∈ J, j 6= k (13)

Cij ≥ 0,∀i ∈ I, j ∈ {J, 0} (14)

Tj ≥ 0,∀j ∈ J (15)

The objective is to minimize the weighted sum of the total tardiness and the total setup time.

Constraints (2) ensure that each job is preceded exactly by one job on only one machine at every115

5

stage. A job is scheduled as the first job on a machine if it is preceded by the dummy job 0.

Constraints (3) ensure that each job is succeeded by at most one job on each machine at every

stage. Constraints (4) impose that the dummy job can be succeeded by at most one job on each

machine. Constraints (5) impose that if a job precedes any other job on a machine, it must has a

predecessor on the same machine. This is a way to realize the assignment consistency. Constraints120

(6) prevent the cross-precedence. Constraints (7) and (8) impose the machine eligibility constraint.

Constraints (9) set the completion time of the dummy job at each stage. Constraints (10) impose

the job precedence constraint. A job cannot start to process at the current stage until the operation

at the previous stage is finished. Constraints (11) impose the machine capacity constraint. A

machine can process only one job at a time and therefore, a job can be started only after the125

completion of its predecessor and the machine setup. Constraints (12) calculate the job tardiness.

Constraints (13) - (15) define the decision variables.

3. Literature review

The classical mean of solving the multi-objective optimization (MOO) problem is to optimize

the scalarized objective function. By pre-multiplying the objectives with a user-defined weight130

vector w = [w1, w2, . . .], the multi-objective problem is converted to a single objective problem,

i.e., P : minx∈X wF (x). This approach is known as the a priori approach [12]. This approach

has also been adopted in many multi-objective HFS scheduling problems [13, 14, 15, 16, 17, 18].

Jungwattanakit et al. [18] optimized a weighted sum of the makespan and the number of tardy jobs

in a HFS with unrelated machines and SDST. The authors have performed a thorough study on135

the comparison of different methods including constructive heuristics and metaheuristics such as

simulated annealing (SA), tabu search (TS) and genetic algorithms (GA). One interesting insight

is that the user preference has impact on the ranking of the algorithms under comparison. For

a priori approach, the main difficulty resides in the correct specification of the weight vector

due to the vagueness nature of human decision-making, especially when the user is not provided140

any information on the possible trading-off behavior of different objective functions. Another

disadvantage is that this approach cannot be used to find Pareto-optimal solutions which lie on

the non-convex portion of the Pareto-optimal front [12].

Another stream of methods, known as the a posteriori approach, try to find a set of non-

dominated solutions or Pareto-optimal set for the posterior decision-making procedure. For this145

purpose, various methods were proposed, including the classical weighted-sum approach, ε-constraint

method [19] and multi-objective evolutionary algorithms. EAs are stochastic search methods that

simulate the process of evolution, incorporating ideas such as reproduction, mutation and the Dar-

winian principle of “survival of the fittest”. VEGA is the first practical EA for MOO problem.

Schaffer [20] extended the simple GA for MOO by modifying the selection phase. The idea is150

to select individuals according to each objective function in turn. However, the main problem

of VEGA is its bias toward some Pareto-optimal solutions, making it difficult to find a complete

Pareto front. To overcome this weakness, Goldberg [21] suggested the use of a niching technique

in the selection procedure. Later, Fonseca and Fleming [22], Horn et al. [23] and Srinivas and

6

Deb [24] implemented that suggestion and succeeded by applying the resulting algorithms, i.e.,155

MOGA, NPGA and NSGA, to some problems. Zizler and Thiele [25] compared four different EAs

with a 0/1 knapsack problem and showed that NSGA provided the best performance. Then, they

proposed the SPEA, which uses an external elite archive and applies a fitness assignment method

based on the so-call individual strength. The authors showed that SPEA outperformed the other

four algorithms. The idea of using elite archive is also found in PAES (Knowles and Corne [26]),160

but instead of population-based search, the author suggested a simple (1+1) evolution strategy.

Deb et al. [27] summarized the main criticisms received by NSGA and proposed the NSGA-II. The

three main improvements are: a faster nondominated sorting approach, the use of elitism, and a

parameter-free crowding-comparison approach. Compared to PAES and SPEA, NSGA-II obtains

better spread of solutions in all the test problems, and converges closer to the true Pareto set in165

most of the problems. Zitzler and Thiele [28] improved their SPEA algorithm to obained SPEA2.

By comparison, the authors showed that SPEA2 and NSGA-II have similar performance in most

problems but in higher dimensional objective spaces, SPEA2 has advantages. We refer to [12] for

more information on multi-objective EAs. Among these algorithms, NSGA-II is considered as one

of the most efficient method for Pareto-optimal set approximation.170

EA-based methods are adopted in many multi-objective HFS problems. In Ebrahimi [29], the

NSGA-II has been adopted to optimize the makespan and the total weighted tardiness of a HFS

with SDST. Results showed the superiority of NSGA-II comparing to a multi-objective genetic

algorithm and a multi-phase genetic algorithm. Dugarding et al. [3] addressed the scheduling

problem in a HFS with reentrant flow. Based on the NSGA-II framework, the authors proposed175

a new algorithm called L-NSGA which replaces the Pareto dominance with the Lorenz dominance

relationship aiming at improving the search intensification. The proposed method has been shown

better than the NSGA-II and the SPEA2. Abyaneh et al. [30] considered the minimization of

the makespan and the total tardiness in a HFS with finite buffer capacity and SDST. They have

adapted the NSGA-II and a sub-population genetic algorithm for the problems and reported that180

the solution quality can be improved by integrating a local search procedure. The hybridization of

multi-objective EA with local search procedure was also adopted in Behnamian et al. [31], Asefi

et al. [32] and Zandieh et al. [33]. Li et al. [34] developed a hybrid algorithm which employs two

exploitation phases and two exploration phases for a balance in global and local search abilities, and

have applied it to solve the HFS scheduling problem with setup energy consumption. Recently, Zeng185

et al. [8] investigated the scheduling problem in a real-world paper mill manufacturing environment

to optimize the makespan, electricity consumption and material wastage. The authors hybridized

the NSGA-II with a tabu search as well as a job merging strategy which reduces the production

switches. The hybrid algorithm outperforms the NSGA-II by a large amount. The job merging

strategy contributes much more than the embedded tabu search. This is an example of using190

problem structure knowledge to promote the optimization performance.

Besides EAs, there are researches extending other metaheuristics, such as ant colony optimiza-

tion, tabu search and iterated local search, to MOO and have obtained state-of-art results on some

multi-objective HFS scheduling problems. Luo et al. [7] proposed a multi-objective ant colony

optimization algorithm for optimizing the makespan and the electric power consumption. The195

7

proposed method has been shown to outperform the NSGA-II and SPEA2 in terms of solution

quality even it is slower. Wang and Liu [4] considered the scheduling problem in a two-stage

HFS with preventive maintenance. A multi-objective tabu search which employs several parallel

searching paths has been proposed and is shown superior than the NSGA-II. In a recent research,

Schulz et al. [35] developed a multiphase iterated local search algorithm to approximate a three-200

dimensional Pareto front regarding three objectives: makespan, total energy costs and peak load.

However, the scheduling problem is not just about the searching scheme. A metaheuristic-

based scheduling algorithm usually employs an optimization model for searching the best solution

in the design space and a simulation model for fitness evaluation. In the optimization model,

a schedule is encoded as a string of decision variables. Such string is decoded into a complete205

schedule in the simulation model for performance evaluation. Because the solution space of HFS

scheduling problems is large, in most of the researches, not all the decision variables are encoded

but just a subset of them. So, it raises the problem of how much detailed the encoding scheme

should be. Apparently, the smaller the encoded space, the easier for the optimizer to find the

best therein but the risk of losing the global optimal is greater. Fernandez-Viagas et al. [36]210

investigated the potential optimum reachable by using different encoding schemes and concluded

that a job permutation representation, while maintaining the search efficiency, can lead to high

quality solutions. Such scheme is also adopted in the majority of HFS researches. On the other

hand, the decoding algorithms, or saying, the methods constructing a complete schedule from

a job permutation, also play an important role in the solution quality. For job permutation215

representation, common decoding algorithms are the list scheduling (LS) [16] and the permutation

scheduling (PS). In Ruiz and Maroto [37], the typical PS was adapted for HFS with SDST by

modifying the machine selection rule from first-available-machine to earliest-finish-machine. Li

et al. [34] developed three different decoding algorithms based on the LS framework. These use

distinct machine selection rules taking the machine setup time and setup energy into consideration.220

Yu et al. [38] proposed a dynamic scheduling (DS) for optimizing the total tardiness objective and

reported its advantage over LS and PS on the testing problems. Yet, they considered the machine

setup time is sequence independent and can be included in the job processing time, which is not

practical in many scenes.

To the best of our knowledge, the problem defined in this paper has not been tackled in the225

literature. Also, no ad-hoc decoding algorithm has been proposed considering simultaneously

the total tardiness and total setup time. In this research, instead of developing a complicated

hybridization of search mechanisms, we focus on the development of efficient decoding algorithms

and the systematic use of them to solve the defined problem.

4. Proposed algorithm230

4.1. Decoding algorithms

In this research, we use the permutation-based encoding scheme which is widely applied in the

literature. A solution is represented by a job permutation π = {1, 2, . . . , n}.

8

Table 1: The original and the proposed DS versions

Decoding algorithm Machine selection indicator φ(t) Comments

DS BTPT + PT + MTTI Aim at balancing the machine workload

DS2 BTPT+PT+MTTI+MDST Major workload + few setup information

DS3 PT + MDST A balance between machine workload and

setup information

DS4 MTST Only total setup time

DS5 MDST Only difference on the setup time

For decoding algorithm, we develop four variants of the dynamic scheduling (DS) for our prob-

lem. DS is basically a simulation procedure with embedded machine selection rule and job se-235

quencing rule. The jobs are assigned to the machine selected according to the least workload rule,

and then they are sequenced in the machine buffer according to their priorities indicated by the

encoded job permutation. Whenever a machine becomes idle, it takes the first job waiting in its

upstream buffer and starts the process; whenever a job is released by a machine, it is assigned to

the next stage. This simulation continues when all jobs are finished. We refer the readers to Algo-240

rithm 1 in Yu et al. [38] for more technical details of DS. More specifically, under the framework

of DS, we modify the machine selection rule in order to allow the SDST information being taken

into account. Details of the modifications are as follows.

In DS, the machine selection is based on an indicator. When assigning a job j∗ to one of the

eligible machines at simulation time t, the machine k∗ with the lowest indicator φ(t) is selected.245

This indicator φ(t) is calculated as φ(t) =
∑
ω∈Ω ω(t), where ω(t) is called machine selection

metric, and Ω is the set of metrics to be considered for machine selection. In the original DS, the

machine selection considers only metrics related to machine workload. However, when SDST exist,

the machine with the lowest workload may require a long setup time, leading to inefficiency. For

this reason, we develop four DS versions denoted by DS2, DS3, DS4 and DS5, which use different250

combinations of SDST-related metrics. The φ(t) of each version is reported in Table 1, where the

candidate metrics composing Ω are: Processing time (PT), Buffer Total Processing Time (BTPT),

Machine Time to Idle (MTTI), Machine Total Setup Times (MTST) and Machine Differential

Setup Times (MDST).

Figure 1 shows an example of calculating those machine selection metrics when assigning the255

job j∗ to a machine. Here, colorful circles stand for jobs, gray rectangles represent setup operations

between jobs, the numbers represent the time length. PT is the processing time of job j∗, i.e., 4;

BTPT is the sum of processing time of jobs already in the buffer at this moment, i.e., 8+ 6+5 =

19; MTTI is the remaining processing time of the current job in the machine, i.e., 1. MTST is

the total setup time after assigning job j∗ to the machine and sorting the jobs according to their260

encoded priorities, i.e., 3+1+3+1 = 8; MDST is the increment of setup time after the assignment,

i.e., (3+1+3+1) - (3+2+1) = 2. The mathematical formulations for these metrics are provided in

Appendix A.

Apparently, different machine selection rules result in different dynamics in the simulation and

may favor the two objective functions, i.e., total tardiness and total setup time, to different extents.265

9

����
�

��	��
��

� � �
�

����
�

��	��
��

� � �
�

����

���

�

�

������ � ����

	�
�!∗

Figure 1: An example for machine selection metrics calculation

���������
��
����	���

Figure 2: Solution distribution of different decoding algorithms

To show this, we have performed a preliminary experiment. For a scheduling problem with 50 jobs

and 10 stages, two thousand randomly generated job permutations are decoded by different versions

of DS, as well as by the modified PS [37]. The performance of each job permutation is plotted in

the objective space in Figure 2. In the figure, the Voronoi cells are used to calculate data density

and the contours of densisty are provided. It shows that different decoding algorithms map the270

same set of job permutations to different regions. By considering SDST information, the new DS

versions perform better than the original DS in terms of total setup time. From DS2 to DS5, the

tendency of favoring the setup time objective is increasing. Similar results are observed in other

experiments, where we increase the number of random generated job permutation to 20000 and

summarize the results from 90 different instances. Details are provided in Appendix B.275

This phenomenon, however, raises questions for the multi-objective scheduling. For a priori

approach, the best decoding algorithm no doubt depends on the user preference. How to select the

most proper decoding algorithm given a preference vector? For a posteriori approach, using only

one decoding algorithm is insufficient for generating a representative non-dominated front. How

to embed several decoding algorithms together in EAs? To answer these questions, we present a280

multi-decoding framework in the next section.

10

4.2. The proposed multi-decoding framework

The decoding algorithm is a heuristic for schedule construction. In the combinatorial optimiza-

tion literature, using several heuristics simultaneously on a problem is not new. This branch of

research is known as hyper-heuristic. More specifically, a hyper-heuristic is an automated method-285

ology for selecting heuristics to solve hard computational search problems [39]. To do so, a hyper-

heuristic uses some feedback from the search process and learns the adaptability or utility of the

low-level heuristics on the problem. Meta-heuristics have been adopted as hyper-heuristics in many

researches. These include evolutionary algorithms [3, 40, 41], tabu search [42, 43] and single-point

local search [44].290

In this section, we propose a simple framework for using a set of candidate decoding algorithms

for scheduling based on EAs. Under this framework, EAs work as high-level hyper-heuristics to

search the joint space of low-level heuristic (decoding algorithm) and job sequence. The basic idea

is to treat the decoding algorithm type as one of the decision variables. This is made by adding a

digit in the typical job-permutation-based chromosome to represent the decoding algorithm used295

to decode the job sequence. In this way, the fitness of the chromosome depends not only on

the quality of the job sequence but also on the performance of the decoding algorithm. The set

of chromosomes using the same decoding algorithm can be considered as a tribe. In the initial

population, several tribes exist. During the evolution, the tribe better fitting the environment will

be more likely to survive. In this way, the proper decoding algorithm is chosen by the evolution300

process itself.

4.2.1. Hyperchromosome

Denote the job sequence as π and the decoding algorithm as D : π → X, where X are the deci-

sion variables for constructing a complete schedule. In our framework, an individual is encoded as

a tuple chrom = (D , π). To distinguish it from the convention, chrom is named hyperchromosome.305

The decoding procedure of chrom is performed by X = decode(chrom) = D(π).

4.2.2. Crossover and mutation

In EAs, crossover and mutation are the two main genetic operators for reproduction. In our

framework, individuals from different tribes are allowed to mate and produce offspring. To this

end, the hypercrossover operator ⊗H for two hyperchromosomes chrom1 = (D1, π1) and chrom2 =

(D2, π2) is defined as below:

⊗H(chrom1, chrom2) = (D1,⊗(π1, π2)) ∪ (D2,⊗(π1, π2)) (16)

where ⊗ stands for the common crossover operator applicable to two job permutations, such as

one-point crossover, partial mapped crossover and order-based crossover [45]. ⊗(π1, π2) represents

the child given by π1 and π2 through common crossover. In case π1, π2 generate multiple children310

c1, c2, . . . , cr, (D ,⊗(π1, π2)) is the union set of (D , c1), (D , c2), . . . , (D , cr).

Remark 1. The hypercrossover operator is designed considering the principle of equality. It gen-

erates equal number of children for each of the parents’ tribe. This can be treated as a sampling

11

scheme that generates a full-factorial design with two factors: decoding algorithm = {D1,D2} and

job permutation = {c1, c2, . . . , cr}.315

Here we give an example of the hypercrossover operator. Let the parents be chrom1 = (PS, π1)

and chrom2 = (DS, π2), where π1 = {5, 2, 3, 4, 1} and π2 = {4, 2, 1, 5, 3}. Let ⊗ be the order-based

crossover [45]. With a binary vector of, say, {1, 1, 0, 0, 1}, ⊗(π1, π2) generates two offsprings,

c1 = {5, 2, 4, 3, 1} and c2 = {4, 2, 5, 1, 3}. Then, according to equation 16, ⊗H(chrom1, chrom2)

generates four offsprings, (PS, c1), (DS, c1), (PS, c2) and (DS, c2).320

The hypermutation operator �H is defined as below. Let D be the set of candidate decoding

algorithms, we have:

�H((D , π)) = {(D ,�(π)),∀D ∈ D} (17)

where � stands for the common mutation operator applicable to a job permutation π, such as

insert, swap and reverse.

Remark 2. The hypermutation operator aims at introducing diversity into the population in terms

of both job sequence and decoding algorithm. It aims at preventing the premature convergence of

the population due to the advantage of certain decoding algorithm over the others in early search325

phase.

4.2.3. Generational scheme

In EAs, the generational scheme defines how the new generation of the population is created. In

our framework, a preservation strategy is used. Indeed, the quality of certain tribe may be poor in

the initial search phase but improves only after several generations. For this reason, we preserve for330

each tribe some promising individuals for the next generation. Actually, specie preservation is an

important strategy for the multi-modal optimization [46]. The generational scheme is implemented

as Algorithm 1.

Algorithm 1: Generational scheme

Input: Current population P, offsprings generated by crossover and mutation C,

perservation percentage δ

Output: New population Pnew
1 Initialization: Pnew = ∅, Pall = P ∪ C;

2 Sort Pall according to the non-decreasing order of the fitness;

3 for D ∈ D do

4 abstract from Pall the best δ ∗ |P| individuals of that tribe and put them into Pnew;

%Parameter δ should satisfy δ ∗ |D| < 1, i.e., the total preservation number should be

less than the population size.

5 end

6 Complete Pnew by filling the best |P| − |Pnew| chromosomes abstracted from Pall;

It should be noted that this generational scheme can not only be applied to canonical single

objective EAs, but also to multi-objective EAs, such as NSGA-II [27] by sorting in step 2 using335

the non-dominated soring technique proposed therein.

12

4.3. The complete procedure

Basically, the MDF is implemented by replacing several key operators existed in the EA frame-

work. For this reason, it can be easily applied to many EAs such as the canonical genetic algorithm,

multi-objective genetic algorithms NSGA-II [27] and many others. Figure 3 shows a general in-340

tegration of the MDF with EAs. The procedure starts with the creation of an initial population

of hyperchromosomes. Then, a selection procedure, e.g., tournament selection or roulette wheel

selection, is used to choose the individuals to form a mating pool. The parents in the mating

pool generate offsprings via hyper genetic operators. Finally, a new population is obtained by the

generational scheme. These steps repeat until a termination condition is met.345

In this research, the MDF is incorporated to a simplified version of the GA presented in [38], as

well as to the NSGA-II. Both are implemented with the common framework described in Algorithm

2.

Algorithm 2: Evolutionary algorithm with multi-decoding framework

Input: population size Psize, crossover probability pc, mutation probability pm, candidate

decoding set D, tribe preservation percentage δ

Output: Non-dominated solutions

1 Initialization: Create an initial population P with Psize hyperchromosomes;

2 while Not terminate do

3 Selection: Create a mating pool M with Psize parents using the selection procedure;

4 Reproduction: set the offspring set C← ∅, counter i← 1;

5 while i < Psize do

6 Pick two parents M(i), M(i+ 1) from the mating pool;

7 if rand < pc then

8 Perform hypercrossover C ← ⊗H(M(i),M(i+ 1)) ;

9 else

10 C ← {M(i),M(i+ 1)} ;

11 end

12 for child ∈ C do

13 if rand < pm then

14 Perform hypermutation child← �H(child)

15 end

16 Update C← C ∪ child;

17 end

18 Increment i← i+ 2;

19 end

20 Decode and evaluate the solutions in C;

21 Perform the generational scheme P← Generational scheme(P,C, δ);

22 end

13

���������������������
����������������

�����

	���������
��

���������

�����������������������
�����������������

�������������������������
�������������������

��

��

Figure 3: EA with the proposed multi-decoding framework

5. Numerical results

To validate the usefulness of the proposed decoding algorithms and the MDF, we apply them350

with EAs for solving the HFS scheduling problem defined in section 2 using a priori and a posteriori

approach, respectively. In the first case, the user preference is given as a weight vector [w, 1−w]T ,

and a single-objective GA is implemented to optimize a weighted-sum of the total tardiness and

total setup time. In the second case, the problem is solved by approximating the Pareto optimal

set with the NSGA-II [27]. In the first case, we compare the performance of the GA with and355

without using the proposed MDF (Experiment A); in the second case, besides the comparison

between different versions of EAs (Experiment B), the proposed NSGA-II is compared with two

state-of-art multi-objective algorithms of different search mechanisms (Experiment C).

5.1. Test Instances

The test instances are generated as follows. An instance is featured by three factors, number360

of jobs n, number of stages m and maximum machine setup time Smax. The number of parallel

machines in each stage is randomly sampled from [2,3,4]. For a given job, not all of these parallel

machines are eligible. The probability of eligibility is set as 80%, under the condition that at least

one machine is eligible for a job. The job processing times are random integers sampled from

[1, 100]. The sequence-dependent setup times are integers sampled from [1, Smax]. The setup365

time for the first job on a machine is set as zero. The job due date is generated using the same

method and parameters given in [38]. We have created 3 instance groups with Smax = 25, 100

and 200, respectively, to simulate short, medium and long setup scenarios. Each group contains 9

instance sets with different combinations of number of jobs n = {20, 50, 100} and number of stages

m = {5, 10, 20}. Each set has 10 randomly generated instances. In total 3*3*3*10 = 270 instances370

14

Table 2: Algorithm parameters

Algorithm Parameter Value

GA Population size Psize 150

Crossover rate pc 1

Mutation rate pm 0.01

NSGA2 Population size Psize 150

Crossover rate pc 1

Mutation rate pm 0.01

MOSA Epoch duration 100

Number of temperatures N 150

Initial temperature T0 1

Final temperature Tf 0

Cooling function Hyperbolic cooling rate [47]

Perturb operator Swap

RIPG Destruction size k 5

Local search radius n neigh 5

Unchanged iterations to restart 50

are created. An instance is denoted with its parameters as below, e.g., SSD25 N20M5 P1 indicates

the first instance with Smax = 25, n = 20 and m = 5.

5.2. Performance comparison: a priori approach

The settings of Experiment A are as follows. The GA we implemented is a version simplified

from [38] with the following building blocks: Roulette wheel selection, order-based crossover (OBX)375

[45], and insert mutation. Initial population is created as following: we preserve equal number of

chromosomes for each tribe; the job permutations for each tribe are randomly created except two

of them are given by the earliest-due-date rule and the minimal slackness rule as in [38]. Based on

some preliminary tests, the parameters of the GA are set, as shown in Table 2.

By coupling with different decoding algorithms, we have obtained several GA versions: GA PS,

GA DS2, GA DS3, GA DS4, GA DS5. The GA coupled with the MDF is denoted as GA mix. The

candidate decoding algorithm set D = {PS,DS2, DS3, . . . , DS5}. The preservation percentage δ

is set as 5%. The objective is to minimize f = w
∑
Tj + (1 − w)TST . These GAs are compared

on the instances of group SSD100. The CPU time allocated for these algorithms are identical

and increase with problem size, as shown in Table 4. They are calculated following the formula

10000 + 0.5τmn2[ms], where τ is set as 5 in this case. The comparison is implemented as a full

factorial design with factors and levels indicated in Table 3. Each test runs for 5 replications.

These result in a total 6 × 6 × 3 × 3 × 10 × 5 = 16200 runs. To easily compare the performance

of algorithms across different instances, two indexes are often used. The relative deviation index

(RDI) [38] is calculated as

RDI =
Algsol −Minsol
Maxsol −Minsol

∗ 100, (18)

and the Relative percentage increase (RPI) index [37] is given by

RPI =
Algsol −Minsol

Minsol
∗ 100, (19)

15

Table 3: Design of experiments

Experiment Factor Levels

A Algorithm GA PS, GA DS2, GA DS3, GA DS4, GA DS5, GA mix

Weight value w 0, 0.2, 0.4, 0.6, 0.8, 1

Number of stages m 5, 10, 20

Number of jobs n 20, 50, 100

Instance 1,2,. . . ,10

B Algorithm NSGA2 PS, NSGA2 DS2, NSGA2 DS3, NSGA2 DS4, NSGA2 DS5, NSGA2 mix

Number of stages m 5, 10, 20

Number of jobs n 20, 50, 100

Instance 1,2,. . . ,10

C Algorithm MOSA, RIPG, NSGA2 mix

Number of stages m 5, 10, 20

Number of jobs n 20, 50, 100

Max setup time S max 25, 100, 200

Instance 1,2,. . . ,10

Table 4: CPU time allocated for algorithms on different test instances [Seconds]

N20M5 N20M10 N20M20 N50M5 N50M10 N50M20 N100M5 N100M10 N100M20

Experiment A 15 20 30 41.25 72.5 135 135 260 510

Experiment B 60 70 90 112.5 175 300 300 550 1050

where Algsol is the objective value of the current algorithm on the given instance, Maxsol and380

Minsol are the worst and the best objective value obtained by any of the algorithms in the com-

parison, respectively. RDI ranges in [0,100] and is suitable for measuring the performance ranking

among the competitors, whilst RPI is good for revealing the difference in objective values. We

would choose to use the proper index according to the context in the later analysis. All optimiza-

tion algorithms are coded in Matlab 2016a on a PC with Intel XEON E5-2699 v4 CPU (22 cores,385

2.2 GHZ) and 256 GB of RAM. Decoding algorithms are implemented in C++ and called in the

Matlab environment.

Table 5: Tukey test result of Experiment A

Group Algorithm ranking and RDI values

w = 0 GA DS5 GA mix GA DS4 GA DS3 GA DS2 GA PS

10.41 (A) 11.44 (A) 22.47 (B) 44.91 (C) 57.49(D) 85.74 (E)

w = 0.2 GA mix GA DS2 GA DS3 GA DS5 GA DS4 GA PS

33.49 (A) 35.10 (A) 35.95 (A) 44.76 (B) 45.38 (B) 69.85 (C)

w = 0.4 GA DS2 GA mix GA DS3 GA PS GA DS4 GA DS5

23.20 (A) 24.52 (A) 35.60 (B) 36.46 (B) 73.46 (C) 80.33 (D)

w = 0.6 GA PS GA DS2 GA mix GA DS3 GA DS4 GA DS5

18.20 (A) 18.77 (A) 19.74 (A) 32.29 (B) 76.26 (C) 85.04 (D)

w = 0.8 GA PS GA mix GA DS2 GA DS3 GA DS4 GA DS5

13.25 (A) 19.17 (B) 20.18 (B) 33.028 (C) 77.96 (D) 86.86 (E)

w = 1 GA PS GA mix GA DS2 GA DS3 GA DS4 GA DS5

12.08 (A) 16.84 (B) 21.61 (C) 35.46 (D) 77.81 (E) 88.82 (F)

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w value

10

20

30

40

50

60

70

80

90

R
D

I

ga_mix

ga_PS

ga_DS2

ga_DS3

ga_DS4

ga_DS5

Figure 4: Comparison of GAs under various scenarios of user preference

The comparison results are summarized in Figure 4. As seen, the ranking of algorithms varies

with the w value. Indeed, GAs integrated with different decoding algorithms favor different user

preferences. When w is large, which means the total tardiness is more important for the user, the390

conventional GA PS is the best. Yet, when w is smaller, the advantage of GA PS vanishes, and

the GAs using decoding algorithms favoring setup objective (like DS4 and DS5) outperform the

others. In summary, when using single decoding algorithm, the GA cannot cover all situations in

terms of user preference.

On the other hand, the performance of GA coupled with the MDF does not vary too much395

with the user preference. Actually, its performance approaches to the best GA version in that

specific w level. To provide statistical evidence, an ANOVA analysis is performed using factors

of n, m, w, algorithm, as well as their second-order interactions. According to the ANOVA table

(Figure C.13), algorithm and algorithm*w are the most influential factors, both with p-value less

than 0.001. This consolidates the finding in [18] that the algorithm ranking is affected by user400

preference. Then, the Tukey test, which is a multiple comparison method, is adopted to compare

the levels of the second-order interaction algorithm*w. In Table 5 is reported the mean RDI value

for each algorithm and the results of the Tukey test. Algorithms with different letters in the

parenthesis are statistically different in terms of the performance (p-value < 5%). Details of the

ANOVA and Tukey test can be found in Appendix C. As shown, the performance of GA mix is405

not statistically worse than the corresponding best GA version except when w = 0.8 and 1. This

shows that using the MDF one can generate a solution almost as good as the best single decoding

GA version aligning to the user preference.

Figure 5 shows the varying tribe size when GA mix is running. Each point represents the

mean value from 90 (instances)*5(replications) = 450 runs. The tribe size is represented by the410

percentage of chromosomes in the population. It shows how a tribe adapts to the environment. As

seen in (a), when w = 0, the “fittest” tribe is DS5, its size grows quickly whereas the other tribes

keep shrinking as the GA proceeds. When w = 1, the fittest tribe is PS, yet its size decreases in

17

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

0

10

20

30

40

50

60

70

80

T
ri
b

e
 s

iz
e

 [
%

]

PS

DS2

DS3

DS4

DS5

(a) w = 0

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

5

10

15

20

25

30

35

40

45

50

55

T
ri
b

e
 s

iz
e

 [
%

]

PS

DS2

DS3

DS4

DS5

(b) w = 1

Figure 5: Tribe size variation during the running of GA mix

the initial phase then returns to an increasing trend. This is the case where the most promising

tribe requires certain “warm up” period. This shows the necessity of the preservation strategy.415

However, due to such “warm up”, the PS tribe is not able to dominate the population. Thus, a

considerable amount of the search budget is actually shared by the second most promising tribe

DS2 and others, leading to a result a bit worse than using only PS in the GA. This explains the

performance gap between GA mix and GA PS when w = 1 (Figure 4). As a conclusion, the MDF

shows the ability to select the suitable decoding algorithm according to user preference during the420

GA procedure.

5.3. Performance comparison: a posteriori approach

5.3.1. Experiment setup

We conduct two comparison experiments, B and C. In Experiment B, the performance of the

MDF is shown by comparing different NSGA-II versions; in Experiment C, the NSGA-II coupled425

with the MDF is compared to two benchmark algorithms on different groups of instances.

The settings of Experiment B are as follows. We implement the NSGA-II as in Deb et al.

[27]. To adopt it for the HFS problem, tournament selection, order-based crossover and insert

mutation are used. The algorithm parameters are given in Table 2. Six different versions of

NSGA-II are created using different decoding algorithms: NSGA2 PS, NSGA2 DS2, NSGA2 DS3,430

NSGA2 DS4, NSGA2 DS5 and NSGA2 mix. For NSGA2 mix, the candidate decoding algorithm

set D = {PS,DS2, DS3, . . . , DS5}, and the preservation percentage δ is set as 5%. Initial popula-

tion is built as described in Experiment A. Given that NSGA-II is more complex than the canonical

GA, and searching for a Pareto front is more difficult than a single optimal solution, the allocated

CPU time is extended to 50000 + 0.5τmn2[ms], with τ = 10, whose values are reported in Table435

4. The comparison is made on the instance group SSD100, and is implemented as a full factorial

design with factors and levels given in Table 3. Each test runs for 5 replications.

In Experiment C, besides NSGA2 mix, we implement the Multi-objective Simulated Annealing

(MOSA) proposed in Smith et al. [48], and the Restarted Iterated Pareto Greedy (RIPG) given in

18

Ciavotta et al. [49] as two benchmarks. Simulated annealing is a single-point local search method,440

it once shattered the world of combinatorial optimization by its convergence property to optimality

in single objective optimization. Smith et al. [48] extended the method to multi-objective problems

by introducing the dominance-based energy function to guide the move acceptance, and a Pareto

archive to store efficient solutions. The authors showed the MOSA “consistently generates archives

closer to the true front than NSGA-II.” The RIPG in [49] is basically an iterated local search445

which explores different regions of the current non-dominated front using a destruction-construction

strategy. In the destruction phase, a block of jobs are removed from the string, then they are re-

inserted into the string in the construction phase using the well-known NEH approach. The RIPG

is shown quite efficient for searching permutation solution space, and outperforms several multi-

objective algorithms on the flowshop scheduling problem. To apply the MOSA and RIPG on our450

HFS scheduling problem, the solution is encoded as a job permutation, and Ruiz’s modified PS

[37] is adopted as the decoding method for solution evaluation. The algorithm parameters are

given in Table 2, which are set based on the proposals of the original papers and some preliminary

tests. The algorithms are compared on the instance groups of SSD25, SSD100 and SSD200. The

experiment is implemented as a full factorial design with factors and levels indicated in Table455

3. Each algorithm runs for 5 replications on the same instance. To mitigate the influence of

different algorithm implementations/mechanisms, all algorithms in Experiment C are budgeted

with the same number of objective function evaluations (decodings). The budget increases with

the problem size. More specifically, the budget is 30000, 40000 and 50000 when number of jobs

equals 20, 50 and 100, respectively.460

5.3.2. Performance indicators

The NSGA-II, as well as other multi-objective algorithms, outputs a set of non-dominated solu-

tions. When evaluating the quality of a non-dominated set, different aspects should be considered:

convergence, spread and distribution. Various performance metrics have been proposed to this

aim [50]. To evaluate the quality of a non-dominated set, we use the hyper volume (HV) [25] and465

the Modified Inverted generational distance (IGD+) [51]. The HV measures the volume of the

area dominated by the front to a given nadir point. The larger the HV, the better the front. The

IGD+ measures the distance of the front to the true Pareto front. Front with smaller IGD+ is

considered better. In our case, since the true Pareto front for an instance is unknown, we gather

the non-dominated solutions obtained by all competing algorithms in all replications and use them470

as the reference front.

An important property for the quality metric is Pareto-compliant. A quality metric is Pareto-

compliant if and only if the ranking it establishes over approximated fronts does not contradict

Pareto optimality. In the literature, HV is the only metric known as Pareto-compliant. IGD+ is

weakly Pareto-compliant, it is a modification of the most applied Inverted generational distance475

(IGD) which is, however, not Pareto-compliant. Both HV and IGD+ consider the three criteria

(convergence, spread and distribution) simultaneously.

5.3.3. Comparison results

19

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 20

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 50

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 100

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 5

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 10

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 20

Figure 6: NSGA-II performance comparison with HV

The results of Experiment B are as follows. In Figure 6 are reported the boxplot of RDI

values calculated using HV. The comparison is made on instance groups with different number of480

jobs n = {20, 50, 100} and number of stages m = {5, 10, 20}. Each box contains 3 (stages/jobs)*10

(instances)*5 (replications) = 150 data. As shown, NSGA-II coupled with the proposed DS versions

tends to result in higher median of HV than that with the PS. When using the MDF, the front

output by the NSGA-II covers more area than those using only one decoding algorithm and obtains

higher HV. Such advantage is more obvious when the instance is large (n = 100 and m = 20).485

The comparison based on IGD+ is reported in Figure 7. The advantage of NSGA2 mix is clearly

observed in the groups of n = 100 and m = 20. When n = 50 and m = 5, the performance

of NSGA2 mix is still considered competitive. To provide statistical evidence, we perform the

ANOVA analysis on both responses of RDI HV and RDI IGD+. For both responses, algorithm

is the most influential factor, and the interaction terms algorithm*n and algorithm*m are also490

significant. This means that the performance of different algorithms are not statistically equal,

and, their rankings depend on the instance features of number of jobs and stages. We perform

Tukey test to obtain the ranking of algorithms under different n and m, for both RDI HV and

RDI IGD+. The results of Tukey test on RDI HV and RDI IGD+ are reported in Table 6 and

Table 7, respectively. Algorithms with different letters in the parenthesis are statistically different495

(p-value < 5%). Details of the statistical analysis are given in Appendix C. Results show that the

NSGA2 mix statistically outperforms the other algorithms in most of the cases.

In Figure 8 are depicted the approximated Pareto fronts output by different NSGA-II versions

for both a small and a large instances. We have some observations:

1. With the MDF, the NSGA-II outputs a front spreading in a larger range of the objective500

space. We found that such front is actually composed by individuals of different tribes with

20

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 20

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 50

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

n = 100

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 5

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 10

nsga2_PS

nsga2_DS2

nsga2_DS3

nsga2_DS4

nsga2_DS5

nsga2_mix

0

20

40

60

80

100

R
D

I

m = 20

Figure 7: NSGA-II performance comparison with IGD+

Table 6: Tukey test result of Experiment B (HV)

Group Algorithm ranking and RDI values

n = 20 NSGA2 mix NSGA2 DS3 NSGA2 DS2 NSGA2 DS5 NSGA2 DS4 NSGA2 PS

82.78 (A) 64.07 (B) 60.28 (B) 33.39 (C) 31.81 (C) 23.21 (D)

n = 50 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

73.51 (A) 62.08 (B) 58.65 (BC) 53.96 (C) 44.4 (D) 28.56 (E)

n = 100 NSGA2 mix NSGA2 DS3 NSGA2 DS2 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

89.72 (A) 64.38 (B) 59.59 (BC) 53.36 (CD) 51.41 (D) 22.21 (E)

m = 5 NSGA2 mix NSGA2 DS3 NSGA2 DS5 NSGA2 DS2 NSGA2 DS4 NSGA2 PS

68.16 (A) 58.27 (B) 47.69 (C) 44.85 (C) 42.17 (C) 34.15 (D)

m = 10 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

84.91(A) 65.51(B) 63.13 (B) 54.68 (C) 47.79 (C) 23.5 (D)

m = 20 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

92.92 (A) 71.58 (B) 65.69 (C) 42.27 (D) 33.72 (E) 16.32 (F)

21

Table 7: Tukey test result of Experiment B (IGD+)

Group Algorithm ranking and RDI values

n = 20 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 PS NSGA2 DS4 NSGA2 DS5

17.22 (A) 24.37 (A) 24.37 (A) 56.02 (B) 71.86 (C) 75.01 (C)

n = 50 NSGA2 DS2 NSGA2 mix NSGA2 DS3 NSGA2 DS4 NSGA2 PS NSGA2 DS5

29.98 (A) 35.42 (A) 35.47 (A) 51.88 (B) 61.56 (C) 67.63 (C)

n = 100 NSGA2 mix NSGA2 DS3 NSGA2 DS2 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

11.18 (A) 27.98 (B) 31.46 (B) 45.9 (C) 52.73 (C) 72.17 (D)

m = 5 NSGA2 DS3 NSGA2 mix NSGA2 DS2 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

32.94 (A) 34.87 (A) 44.8 (B) 56.29 (C) 56.37 (C) 57.04 (C)

m = 10 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 DS4 NSGA2 DS5 NSGA2 PS

20.26 (A) 23.84 (AB) 28.37 (B) 48.9 (C) 61.01 (D) 63.46 (D)

m = 20 NSGA2 mix NSGA2 DS2 NSGA2 DS3 NSGA2 DS4 NSGA2 PS NSGA2 DS5

8.69 (A) 17.17 (B) 26.51 (C) 64.44 (D) 69.25 (D) 78 (E)

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
Total tardiness

1500

2000

2500

3000

3500

To
ta

l s
et

up
 ti

m
e

nsga2_mix
nsga2_PS
nsga2_DS2
nsga2_DS3
nsga2_DS4
nsga2_DS5

(a) Small case (SSD100 N20M5 P3)

1.6 1.8 2 2.2 2.4 2.6 2.8 3
Total tardiness 105

5.5

6

6.5

7

7.5

8

8.5

To
ta

l s
et

up
 ti

m
e

104

nsga2_mix
nsga2_PS
nsga2_DS2
nsga2_DS3
nsga2_DS4
nsga2_DS5

(b) Large case (SSD100 N100M20 P3)

Figure 8: Comparison of fronts obtained by different NSGA-II versions

22

obvious clustering features in the objective space, this will be discussed in the next section

with details. Indeed, by employing several decoding algorithms, the MDF extends the search

dimension of the NSGA-II in the objective space. As a result, the user is provided with more

options to align the schedule with the company’s actual needs.505

2. Although wide spreading, the front by NSGA2 mix does not dominate any other front given

by single-decoding versions, and in some specific region it is worse than them. For example in

the small case (Figure 8 (a)), if the user can accept only solutions with a total tardiness less

than 4100, then the solutions given by NSGA2 PS is better than that by NSGA2 mix. This

shows that the front given by PS is actually “deeper” than the front of MDF. Indeed, coupled510

with the MDF, the NSGA-II is able to explore different portions of the objective space. Yet,

given a fixed computational budget, the trade-off between exploration and exploitation, or

saying, “width” and “depth”, always exits. This explains the phenomenon. It is however

reasonable to believe that as the computational budget increases, such gap would be decreased

to an acceptable range.515

3. In the large case (Figure 8 (b)), the front given by NSGA2 mix seems fail to cover the upper

left region where the front of NSGA2 PS locates. The cause will be discussed in the next

subsection.

The result of Experiment C is summarized in Table 8. Each row contains the comparison result

between NSGA2 mix and the two benchmark algorithms on 10 instances with the same parameters.520

The value in each cell is the mean value of 50 data (10 instances*5 replications). To provide

statistical evidence, besides the mean value, we report in the parenthesis the standard deviation σ,

as well as the p-value of the Mann-Whitney U test comparing the incumbent algorithm to the one

with the best mean. A p-value less than 0.05 indicates that the algorithm is statistical different

from the best. Note that the HV and IGD+ values are calculated after normalizing the fronts525

using their Ideal and Nadir points. As shown, the proposed NSGA2 mix outperforms statistically

the two benchmark algorithms in most of the instances, in terms of both HV and IGD+. There

are some cases where the RIPG performs the best, like in SSD100 N100M5, SSD200 N50M5 and

SSD200 N100M5. We notice that all these cases correspond to a short shop environment with

number of stages m = 5. Such advantage of RIPG may come from its decoding algorithm, PS,530

which is shown efficient when m is small [38]. Although identical evaluation budget is given, the

algorithms have different CPU times. This is mainly due to the adopted decoding algorithms

are different. Indeed, the DSs have higher time complexity than PS. More specifically, the time

complexity of DSs is O(mn(n + h)), while for PS is O(mnh) [38]. This makes the CPU time of

NSGA2 mix higher. In Figure 9 we plot the fronts obtained by different algorithms in medium-535

length shop. As we can see, given the same evaluation budget, the fronts obtained by different

search mechanisms are not similar. As a single-point search algorithm, MOSA tends to focus its

search on a relative small area and sometimes leads to much “deeper” fronts than the others,

like in SSD200 N50M10 P4. Whilst for NSGA2 mix, by taking advantage of different decoding

algorithms, the obtained front is generally more wide-spreading than RIPG and MOSA. In the540

cases where the machine setup times are short, clear advantage can be seen in the front given

23

T
a
b

le
8
:

P
er

fo
rm

a
n

ce
co

m
p

a
ri

so
n

b
et

w
ee

n
N

S
G

A
2

m
ix

a
n

d
tw

o
b

en
ch

m
a
rk

a
lg

o
ri

th
m

s

In
st

an
ce

gr
ou

p
n

m
H

V
(σ

;p
)

IG
D

+
(σ

;p
)

C
P

U
T

im
e

[s
ec

]

N
S
G

A
2

m
ix

R
IP

G
M

O
S
A

N
S
G

A
2

m
ix

R
IP

G
M

O
S
A

N
S
G

A
2

m
ix

R
IP

G
M

O
S
A

S
S
D

25
20

5
0
.7
1
3
(0

.0
5
5
;
-)

0.
56

4
(0

.0
56

;
6.

2e
-1

6)
0
.4

51
(0

.0
7
6;

4
.5

e-
1
8)

0
.0
5
1
5
(0

.0
2
3
;
-)

0
.1

4
7

(0
.0

4
2
;

3
e-

1
6
)

0
.2

3
2

(0
.0

65
;

5
.4

e-
18

)
4
0
.2

2
0
.2

28
.6

S
S
D

25
20

10
0
.6
6
9
(0

.0
5
2
;
-)

0.
49

8
(0

.0
5;

9.
2e

-1
8)

0
.4

14
(0

.0
5
8;

3
.5

e-
1
8)

0
.0
4
5
4
(0

.0
1
9
;
-)

0
.1

78
(0

.0
4
3
;

4
e-

1
8
)

0
.2

4
3

(0
.0

6
1
;

3
.5

e-
1
8
)

5
9
.8

3
4
.6

4
1
.4

S
S
D

25
20

20
0
.6
0
1
(0

.0
3
2
;
-)

0.
41

3
(0

.0
46

;
3.

5e
-1

8)
0.

3
3
2

(0
.0

51
;

3
.5

e-
18

)
0
.0
2
7
2
(0

.0
1
;
-)

0
.2

41
(0

.0
4
2
;

3
.5

e-
1
8
)

0
.3

0
6

(0
.0

5
2
;

3.
5
e-

1
8
)

9
7
.5

5
8
.4

6
5
.7

S
S
D

25
50

5
0
.6
2
5
(0

.0
7
2
;
-)

0.
48

3
(0

.1
2;

1.
5e

-0
9)

0
.4

92
(0

.0
8
7;

6
.6

e-
1
2)

0
.1
1
6
(0

.0
4
9
;
-)

0
.1

87
(0

.0
7
7
;

1
.7

e-
0
6
)

0
.1

6
7

(0
.0

5
5
;

4.
2
e-

0
6
)

9
4
.1

4
9
.5

5
7
.9

S
S
D

25
50

10
0
.6
1
7
(0

.0
4
8
;
-)

0.
41

1
(0

.0
51

;
4.

5e
-1

8)
0.

4
1
1

(0
.0

6;
8
.7

e-
1
8)

0
.0
7
5
1
(0

.0
2
4
;
-)

0
.1

97
(0

.0
6
;

6
.4

e-
1
8
)

0
.1

8
3

(0
.0

5
6
;

3.
6
e-

1
7
)

1
8
1
.0

10
3
.0

1
1
6.

0

S
S
D

25
50

20
0
.5
4
(0

.0
4
1
;
-)

0.
33

1
(0

.0
41

;
3.

5e
-1

8)
0.

3
0
1

(0
.0

48
;

3
.5

e-
18

)
0
.0
3
8
7
(0

.0
1
8
;
-)

0
.2

36
(0

.0
8
2
;

3
.5

e-
1
8
)

0
.2

5
5

(0
.0

7
3
;

3.
5
e-

1
8
)

3
5
8
.0

21
6
.0

2
3
0.

0

S
S
D

25
10

0
5

0
.5
9
4
(0

.0
5
2
;
-)

0.
53

1
(0

.0
85

;
1.

6e
-0

5)
0.

4
0
6

(0
.0

75
;

1
.3

e-
16

)
0
.1
1
9
(0

.0
3
6
;
0
.0
8
8
)

0
.1
1
1
(0

.0
4
8
;
-)

0
.1

7
8

(0
.0

5
4
;

1
.6

e-
0
8
)

2
8
7
.0

1
5
2
.0

1
6
4
.0

S
S
D

25
10

0
10

0
.5
7
3
(0

.0
6
5
;
-)

0.
38

9
(0

.0
79

;
5.

4e
-1

7)
0.

3
02

(0
.0

4
4;

3
.5

e-
1
8
)

0
.0
8
1
4
(0

.0
2
8
;
-)

0
.1

2
6

(0
.0

5
6
;

7
.8

e-
0
6
)

0
.1

7
7

(0
.0

3
6
;

6
.4

e-
1
7
)

5
5
9
.0

3
1
9
.0

3
3
4
.0

S
S
D

25
10

0
20

0
.5
4
(0

.0
4
5
;
-)

0.
31

4
(0

.0
45

;
3.

5e
-1

8)
0.

2
46

(0
.0

4
1;

3
.5

e-
1
8
)

0
.0
4
1
4
(0

.0
1
5
;
-)

0
.1

8
6

(0
.0

4
3
;

3
.5

e-
1
8
)

0
.2

3
3

(0
.0

4
5
;

3
.5

e-
1
8
)

1
1
3
0
.0

6
8
5
.0

6
7
3
.0

S
S
D

10
0

20
5

0
.7
0
8
(0

.0
7
4
;
-)

0.
57

2
(0

.0
99

;
7.

4e
-1

1)
0.

3
84

(0
.1

1
;

1.
3
e-

1
7
)

0
.0
8
7
7
(0

.0
4
5
;
-)

0
.1

6
6

(0
.0

6
5
;

1
.4

e-
0
9
)

0
.3

1
5

(0
.0

9
7
;

5
.4

e-
1
7
)

3
2
.8

16
.7

2
2
.1

S
S
D

10
0

20
10

0
.7
2
7
(0

.0
6
2
;
-)

0.
52

2
(0

.0
72

;
2.

8e
-1

7)
0.

3
53

(0
.0

8
;

3.
5
e-

1
8
)

0
.0
6
6
8
(0

.0
3
1
;
-)

0
.1

9
4

(0
.0

6
;

3
.8

e-
1
7
)

0
.3

2
6

(0
.0

7
7
;

3
.8

e-
1
8
)

5
1
.8

30
.0

3
6
.2

S
S
D

10
0

20
20

0
.7
3
1
(0

.0
3
2
;
-)

0.
43

4
(0

.0
32

;
3.

5e
-1

8)
0.

3
33

(0
.0

5
;

3.
5
e-

1
8
)

0
.0
4
5
2
(0

.0
1
4
;
-)

0
.2

3
(0

.0
4
3
;

3
.5

e-
1
8
)

0
.3

1
2

(0
.0

5
8
;

3
.5

e-
1
8
)

1
2
3
.0

7
8
.4

8
6
.9

S
S
D

10
0

50
5

0.
52

7
(0

.1
3;

0.
32

)
0
.5
5
1
(0

.1
6
;
-)

0.
4
5
3

(0
.1

5
;

0
.0

0
2
6)

0
.2

3
(0

.1
1;

0
.0

04
5
)

0
.1
7
4
(0

.0
7
8
;
-)

0
.2

49
(0

.1
1
;

0
.0

0
0
3
)

1
2
6
.0

6
6
.5

7
9
.7

S
S
D

10
0

50
10

0
.6
3
8
(0

.0
7
1
;
-)

0.
40

9
(0

.0
57

;
1.

2e
-1

7)
0
.3

45
(0

.0
68

;
4
.5

e-
1
8
)

0
.1
0
7
(0

.0
5
5
;
-)

0
.2

07
(0

.0
7
2;

1.
1
e-

1
1
)

0
.2

62
(0

.1
;

2
.5

e-
1
4
)

2
1
6
.0

1
2
3
.0

1
3
1
.0

S
S
D

10
0

50
20

0
.6
4
2
(0

.0
4
1
;
-)

0.
34

2
(0

.0
46

;
3.

5e
-1

8)
0
.3

25
(0

.0
64

;
3
.5

e-
1
8
)

0
.0
7
7
3
(0

.0
2
5
;
-)

0
.2

26
(0

.0
5
4;

3.
5
e-

1
8
)

0
.2

38
(0

.0
5
5
;

3
.5

e-
1
8
)

3
9
4.

0
2
4
0
.0

2
5
2
.0

S
S
D

10
0

10
0

5
0.

46
3

(0
.0

8;
0.

00
05

8)
0
.5
5
8
(0

.1
5
;
-)

0.
3
78

(0
.1

5;
1
.2

e-
0
8)

0
.2

6
5

(0
.1

1;
3
.1

e-
1
1)

0
.1
1
5
(0

.0
6
4
;
-)

0
.2

3
8

(0
.0

9
9
;

1
.7

e-
10

)
3
2
0
.0

1
68

.0
1
8
7
.0

S
S
D

10
0

10
0

10
0
.5
8
7
(0

.0
6
2
;
-)

0.
4

(0
.1

1;
3.

9e
-1

3)
0.

2
5
4

(0
.0

9
;

4
.8

e-
1
7
)

0
.1
0
9
(0

.0
5
6
;
-)

0.
1
67

(0
.0

8
5
;

0
.0

0
0
88

)
0.

2
8
5

(0
.0

9
5;

4
e-

1
6
)

5
7
6.

0
3
31

.0
3
4
4
.0

S
S
D

10
0

10
0

20
0
.6

(0
.0
3
1
;
-)

0.
27

9
(0

.0
33

;
3.

5e
-1

8)
0
.1

9
(0

.0
54

;
3
.5

e-
1
8
)

0
.0
8
0
6
(0

.0
2
1
;
-)

0.
2
07

(0
.0

4
1
;

3
.5

e-
1
8
)

0
.2

7
7

(0
.0

7
5
;

3
.5

e-
18

)
1
1
1
0
.0

6
56

.0
6
7
2
.0

S
S
D

20
0

20
5

0
.6
6
2
(0

.1
1
;
-)

0.
64

2
(0

.1
;

0.
18

)
0.

3
7

(0
.1

6;
1.

1
e-

1
3
)

0
.1
5
7
(0

.0
8
;
0
.3
8
)

0
.1
5
(0

.0
7
;
-)

0
.3

8
7

(0
.1

7
;

9
.5

e-
1
3
)

3
3
.3

1
6.

2
2
1
.2

S
S
D

20
0

20
10

0
.7
4
8
(0

.0
8
2
;
-)

0.
57

9
(0

.1
;

2.
5e

-1
2)

0.
3
74

(0
.1

;
3
.5

e-
1
8)

0
.0
9
3
5
(0

.0
4
8
;
-)

0
.1

7
1

(0
.0

7
4
;

2
.6

e-
0
8
)

0
.3

3
4

(0
.1

;
7.

2
e-

1
8
)

5
0
.7

2
9
.2

3
4
.7

S
S
D

20
0

20
20

0
.7
0
2
(0

.0
6
8
;
-)

0.
46

3
(0

.0
69

;
1.

2e
-1

7)
0
.3

2
9

(0
.0

7
4
;

3.
5
e-

1
8
)

0
.0
8
(0

.0
3
1
;
-)

0
.2

2
2

(0
.0

5
8
;

1
.4

e-
1
7
)

0
.3

3
4

(0
.0

6
;

3
.5

e-
1
8
)

9
2
.3

5
8.

8
6
7
.2

S
S
D

20
0

50
5

0.
48

1
(0

.1
5;

1.
2e

-0
5)

0
.6
3
4
(0

.1
7
;
-)

0
.4

8
4

(0
.1

8
;

0
.0

0
0
1
)

0
.3

4
2

(0
.1

7;
6
.2

e-
0
7
)

0
.1
8
3
(0

.1
5
;
-)

0
.3

(0
.1

9
;

0
.0

00
1
4
)

9
9
.2

5
0
.0

5
9
.3

S
S
D

20
0

50
10

0
.5
7
4
(0

.0
7
8
;
-)

0.
53

5
(0

.0
89

;
0.

01
7)

0.
3
9
9

(0
.1

5
;

1
.2

e-
0
8
)

0
.1
6
8
(0

.0
5
8
;
-)

0
.1

87
(0

.0
6
4
;

0
.1

1
)

0
.2

9
5

(0
.1

1
;

6.
3
e-

0
9
)

18
4
.0

1
0
1
.0

1
1
3
.0

S
S
D

20
0

50
20

0
.6
2
4
(0

.0
5
4
;
-)

0.
41

(0
.0

44
;

3.
5e

-1
8)

0
.3

52
(0

.0
5
9;

3
.5

e-
1
8)

0
.1
3
8
(0

.0
3
;
-)

0
.2

34
(0

.0
3
7
;

1
.7

e-
1
6
)

0
.2

7
5

(0
.0

52
;

3
.5

e-
1
8
)

3
5
3
.0

2
2
6
.0

2
3
7
.0

S
S
D

20
0

10
0

5
0.

33
5

(0
.0

83
;

6.
4e

-1
8)

0
.7
2
3
(0

.1
;
-)

0
.4

1
8

(0
.1

7;
1
.6

e-
1
4
)

0
.4

3
1

(0
.0

9
8;

4
.5

e-
1
8)

0
.0
8
1
8
(0

.0
5
7
;
-)

0
.2

8
9

(0
.1

7
;

2
e-

1
3
)

2
9
6.

0
1
5
1
.0

1
7
0
.0

S
S
D

20
0

10
0

10
0
.5
3
8
(0

.0
7
3
;
-)

0.
45

3
(0

.0
53

;
2.

3e
-0

9)
0.

2
82

(0
.0

8
4;

6
.4

e-
1
8
)

0
.2

(0
.0

5
1
;

1
.3

e-
05

)
0
.1
4
9
(0

.0
6
;
-)

0
.2

7
6

(0
.0

8
3
;

6
.3

e-
1
2
)

6
4
9
.0

3
7
6
.0

3
72

.0

S
S
D

20
0

10
0

20
0
.5
8
4
(0

.0
4
6
;
-)

0.
35

8
(0

.0
41

;
3.

5e
-1

8)
0
.2

48
(0

.0
57

;
3
.5

e-
1
8
)

0
.1
4
3
(0

.0
3
5
;
-)

0
.2

1
6

(0
.0

8
2
;

2
.1

e-
0
6
)

0
.2

9
4

(0
.0

7
3
;

3
.8

e-
1
7
)

1
2
4
0
.0

7
4
9
.0

7
55

.0

A
ve

ra
ge

0
.6
0
5
(0

.1
2
;
-)

0.
47

4
(0

.1
4;

9e
-1

40
)

0.
3
57

(0
.1

2
;

8
.9

e-
3
1
6
)

0
.1
2
7
(0

.1
1
;
-)

0
.1

8
1

(0
.0

7
8
;

1
e-

9
5)

0
.2

6
9

(0
.1

1
;

5
.4

e-
2
3
3
)

3
2
4
.0

1
8
9
.0

1
9
8
.0

24

4000 5000 6000 7000 8000 9000 10000 11000
1000

1500

2000

2500
SSD25_N20M10_P3

nsga2_mix
RIPG
MOSA

2 2.5 3 3.5 4 4.5 5
104

3500

4000

4500

5000

5500

6000
SSD25_N50M10_P3

nsga2_mix
RIPG
MOSA

5 6 7 8 9 10 11 12
104

0.8

0.9

1

1.1

1.2

1.3 104 SSD25_N100M10_P3

nsga2_mix
RIPG
MOSA

0.7 0.8 0.9 1 1.1 1.2 1.3
104

3000

4000

5000

6000

7000
SSD100_N20M10_P7

nsga2_mix
RIPG
MOSA

3 3.5 4 4.5 5 5.5 6 6.5
104

1.2

1.4

1.6

1.8

2 104 SSD100_N50M10_P7

nsga2_mix
RIPG
MOSA

1.3 1.4 1.5 1.6 1.7 1.8 1.9
105

3

3.2

3.4

3.6

3.8

4 104 SSD100_N100M10_P7

nsga2_mix
RIPG
MOSA

1 1.2 1.4 1.6 1.8 2
104

0.8

0.9

1

1.1

1.2

1.3

1.4 104 SSD200_N20M10_P4

nsga2_mix
RIPG
MOSA

5.5 6 6.5 7 7.5 8 8.5 9
104

2.5

2.6

2.7

2.8

2.9

3

3.1 104 SSD200_N50M10_P4

nsga2_mix
RIPG
MOSA

2 2.2 2.4 2.6 2.8 3 3.2

Total tardiness
105

6

6.5

7

7.5

To
ta

l s
et

up
 ti

m
es

104 SSD200_N100M10_P4

nsga2_mix
RIPG
MOSA

Figure 9: Comparison of fronts obtained by NSGA2 mix and two benchmark algorithms

by NSGA2 mix; yet when long setup times are incurred, for example in SSD200 N100M10 P4,

NSGA2 mix focuses more on reducing the total setup time whilst losses the coverage of the upper

left region. This looks quite similar to the problem aforementioned in Figure 8 (b).

5.3.4. Issue and discussion545

We investigate how the tribe members are distributed in the front given by NSGA2 mix. As

shown in Figure 10, the distribution of the tribes in the NSGA2 mix front is consistent with the

previous analysis on the tribe fitness both in small case (a) and large case(b). From PS to DS5, the

fitness bias from the total tardiness to the total setup time objective. However, we also notice that

the PS tribe is missing from the final front of the large case (b). Actually, this is not occasional550

but it occurs in almost all media (n = 50) and large instances (n = 100) in the instance group of

SSD100. This also explains the fact that in the large case (Figure 8 (b)) the NSGA2 mix fails to

cover the upper left region. This issue we call the loss of potentially promising tribes.

For better understanding this phenomenon, we plot the tribe size, averaged tribe objective

values during the evolution procedure in Figure 11. We summarize the experiment data for the555

large instances (n = 100) of group SSD100 in Figure 11 (b)(d)(f). Each point is the mean value

from 30 (instances) * 5 (replications) = 150 runs. As shown in (b), the averaged tribe size of

PS decreases dramatically just after the GA starts (the initial percentage is about 20%) and

maintains at the preservation percentage (5%). From (d) and (f) it is observed that the tribe PS

has a low total tardiness value but the highest total setup time makes it less competitive. Indeed,560

it is observed from previous experiment (Figure 4) that the PS is the fittest tribe for the total

tardiness objective, and ideally, the PS individuals should be able to built up some part of the final

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized total tardiness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 to
ta

l s
et

up
 ti

m
e

PS
DS2
DS3
DS4
DS5

(a) Small case (SSD100 N20M5 P3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized total tardiness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 to
ta

l s
et

up
 ti

m
e

DS2
DS3
DS4
DS5

(b) Large case (SSD100 N100M20 P3)

Figure 10: Tribe distribution in the non-dominated front output by NSGA2 mix

front. Yet, the dramatic decrease of the tribe size in the initial phase heavily prevents the future

allocation of computing resource to search the space represented by the tribe PS. This suppresses

the development of tribe PS.565

Obviously, it requires a better tribe size management strategy to avoid suppressing the poten-

tially promising tribe. For example, the preservation percentage δ could follow a certain pattern

like the cooling temperature curve in simulated annealing, instead of a simple constant. This prob-

lem, in its nature, relates to the topic of how to efficiently allocate the computing budget to search

the different regions of the objective space and how to improves the budget allocation through570

learning during the optimization procedure.

Another issue is observed in the comparison between Figure 11(e) and (f). As seen, the overall

reduction of the total setup time by the GA procedure is quite obvious in the small instances; whilst

in the large instances, such reduction is almost negligible. More specifically, the RPI reduction of

the total setup time of the tribe DS5 is about 22, 8 and 4 for the small, medium (n = 50) and575

large instances, respectively. This implies that the more jobs there are, the more difficult for the

algorithm to reduce the total setup time. This is caused by the job-permutation encoding scheme.

Indeed, the setup time incurred by a given job sequence is different in the stages. Keeping the

same job sequence or priority for each stage limits the possibility to minimize the overall setup

time in the system, and the difficulty of reducing the total setup time increases with the number of580

jobs. To solve this, one may adopt the operation-based encoding scheme, which, however, increases

dramatically the cardinality of the search space. For this reason, the shift-representation approach

proposed in Urlings et al. [52] is a possible solution. This approach first adopts the indirect solution

representation, like job-permutation, for an efficient initial search, then at a specific time, switches

to full representation for a more thorough search.585

6. Conclusion

In this research, we consider a HFS scheduling problem with sequence-dependent setup times

(SDST) to minimize the total tardiness and total setup time. We have extended the schedule

construction algorithm proposed in Yu et al. [38] to HFS with SDST, obtaining several versions

26

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

5

10

15

20

25

30

35

40

45

T
ri
b

e
 s

iz
e

 [
%

]

PS

DS2

DS3

DS4

DS5

(a) Tribe size, n = 20

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

5

10

15

20

25

30

35

40

T
ri
b

e
 s

iz
e

 [
%

]

PS

DS2

DS3

DS4

DS5

(b) Tribe size, n = 100

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

20

30

40

50

60

70

80

90

100

110

120

R
P

I
T

a
rd

in
e

s
s

PS

DS2

DS3

DS4

DS5

(c) Total tardiness, n = 20

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

20

30

40

50

60

70

80

R
P

I
T

a
rd

in
e

s
s

PS

DS2

DS3

DS4

DS5

(d) Total tardiness, n = 100

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

10

20

30

40

50

60

70

80

90

100

R
P

I
S

e
tu

p

PS

DS2

DS3

DS4

DS5

(e) Total setup time, n = 20

0 10 20 30 40 50 60 70 80 90 100

GA procedure [%]

0

10

20

30

40

50

60

R
P

I
S

e
tu

p

PS

DS2

DS3

DS4

DS5

(f) Total setup time, n = 100

Figure 11: Tribe size, total tardiness and total setup time variation during the running of NSGA2 mix

27

which favor the objective functions to different extent. Compared to the conventional decoding590

algorithm, these are shown performing better when the user pursue more on reducing the machine

setup time in the system. Then, we propose a Multi-Decoding Framework (MDF) for taking

advantage of different decoding algorithms. After hybridizing with the MDF, EAs function as

high-level hyper-heuristics that search in the joint space of low-level heuristic and encoded solution.

The usefulness of the MDF has been shown by integrating it to both a genetic algorithm and a595

multi-objective evolutionary algorithm, NSGA-II, to solve the HFS problem with a priori and a

posteriori approach, respectively. For a priori approach, the genetic algorithm using the proposed

MDF is able to adjust the adopted decoding algorithm during the evolution, and provides efficient

solution aligned to user preference. For a posteriori approach, compared to the NSGA-II versions

with single decoding algorithm, the NSGA-II using the proposed MDF is shown to generate a non-600

dominated front with better quality in terms of both hyper volume and distance to the reference

front. This provides more alternatives for the posterior decision-making procedure. Finally, the

NSGA-II coupled with the proposed MDF is shown superior than two benchmark algorithms on

most of the test instances.

To the best of our knowledge, this is the first report to apply EAs with multiple decoding algo-605

rithms to the multi-objective scheduling problem in HFS with SDST. The necessity of employing

multiple decoding algorithms rises from the fact that they map the design space to different regions

of the multi-dimensional objective space and favor different user preferences. The proposed multi-

decoding framework is simple and useful, yet some drawbacks are observed from the numerical

experiments when solving the problem in a posteriori approach: first, the use of MDF extends610

the search space, yet, the front given by the framework may be worse than some single-decoding

method in some specific region of the objective space. This is due to the trade-off between the

search “width” and “depth” given limited computing resources. One idea to tackle this is to in-

corporate the user preference information into the framework, which allows it to narrow down the

search space and focus on the specific region interests the user. Secondly, the key problem of MDF615

is how to allocate the computing budget to search the subspace represented by different heuris-

tics (decoding algorithms). It is observed that EAs, when employed as hyper-heuristics, tend to

allocate more computing budget to the subspace where improvement is more readily at the initial

search phase. Whilst for the subspace which contains high-quality solutions but requires more

efforts to find, due to the little allocated budget, the search becomes quite difficult after losing620

the competition against others at the initial search phase. As a consequence, it would lose the

opportunity to discover the non-dominated solutions in that subspace. To tackle this problem, it

requires a mechanism which allocates the search budget in a more balanced way in terms of ex-

ploitation and exploration. We will look for the answer from the reinforcement learning literature

as a future work.625

Acknowledgements

The authors thank the referee and AE for their comments and suggestions that have im-

proved the quality of the paper. The authors also thank Dr. Michele Ciavotta for his help on

28

the benchmark algorithm. This work was supported, in part, by the project HPM-CLUSTER

(CTN01 00163 216758) of MIUR Italy.630

Appendix A. Calculation of machine selection metrics

Denote j∗ as the job to assign at system clock t, i as the index of stage, l as the index for

the machine in stage i, the machine selection metrics of the candidate machine l are calculated as

below:

� Buffer Total Processing Time (BTPT): Let Bl be the upstream machine buffer of machine l.635

BTPT is the summation of processing times of all jobs waiting in Bl at time t, i.e., BTPT

=
∑
j∈Bl

pilj .

� Processing time (PT): The processing time of job j∗, i.e., PT = pilj∗ .

� Machine Time to Idle (MTTI): The duration before the machine returns to idle. Let al be

the expected release time of the current processing job, MTTI = al − t.640

� Machine Total Setup Times (MTST): Let Bl be the upstream buffer of machine l, job (0) be

the current processing job. Let B′l ← Bl ∪ {j∗} be the updated buffer after j∗ is assigned.

Sort the jobs in B′l by job priorities and we get {(1), (2), . . . , (|B′l|)}. Then, MTST =∑|B′l|−1
j=0 Sil(j)(j+1). If machine l is idle at time t, job (0) refers to the latest processed job.

� Machine Differential Setup Times (MDST): The difference of total setup time on machine l645

after assigning job j∗ to its buffer. Let Bl and B′l be the current buffer content and that

after assigning job j∗, MDST =
∑|B′l|−1
j=0 Sil(j)(j+1) −

∑|Bl|−1
j=0 Sil(j)(j+1). If machine l is idle

at time t, the second term of the formula is 0.

Appendix B. Empirical comparison of decoding algorithms

In this section, the details of the empirical comparison between decoding algorithms are given.650

For each instance in the group SSD100, 20000 random job sequences are created. These job se-

quences are decoded by the six decoding algorithms, i.e., PS, DS, DS2, DS3, DS4, DS5, respectively.

Then, the obtained performance metrics, i.e., total tardiness and total setup time, are converted to

the RPI values using Equation 19. For each decoding algorithm, the RPI values on all 90 instances

are collected, we have in total 90*20000 = 1800000 values for each objective function. Based on655

these values, an empirical cumulative distribution function (CDF) can be plotted. This CDF shows

the general performance of the decoding algorithm on the tested instances.

The empirical CDFs of the decoding algorithms are plotted in Figure B.12. As shown, different

decoding algorithms have different performance. For total tardiness, DS2 seems to be the best one,

because its CDF increases the fastest. This means the solutions decoded by DS2 tends to have660

smaller RPI values than others. In this way, the performance of decoding algorithms in terms of

total tardiness can be ranked as DS2, DS, PS, DS3, DS4, DS5; whilst for total setup time the rank-

ing is DS5, DS4, DS3, DS2, PS, DS. It should be noted that the aim of this empirical comparison

is to provide general information on the decoding algorithms’ performance. The ranking given by

29

0 20 40 60 80 100 120 140 160 180

RPI

0

0.5

1

C
ul

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Total tardiness

PS
DS
DS2
DS3
DS4
DS5

0 20 40 60 80 100 120 140 160 180

RPI

0

0.5

1
C

ul
m

ul
at

iv
e

P
ro

ba
bi

lit
y

Total setup time

PS
DS
DS2
DS3
DS4
DS5

Figure B.12: Empirical cumulative distribution function of the RPI values of decoding algorithms

this empirical comparison is not exact, because the sample size (20000) is still much smaller than665

the cardinality of the corresponding permutation space.

Appendix C. Details of statistical tests

In this section, we provide the details of statistical analysis on the results of Experiment A,

B and C. For Experiment A, the ANOVA is performed by adopting a reduced model using w,

algorithm, n, m and all their second-order interactions as factors. Higher order interactions are670

not included, this is to prevent overfitting, and to preserve the model generality to some extent.

Note that we averaged the responses from replications, and used responses from different instances

as source of variability. The ANOVA table is reported in Figure C.13(a). As shown, the model fits

the data well with a high R-sq(adj) value of 88%. Although model assumptions (equal variance,

normality) are slightly violated due to the enormous amount of data, the results of the F-test are675

still considered robust. As shown, all factors are significant, algorithm and w*algorithm appear to

be the most influential factors due to their large F-Value. This means that the algorithm rankings

are mainly affected by the user preference whilst less influenced by the problem size n and the

shop length m.

To analyze the algorithm rankings under different user preference, a pairwise comparison has

to be made. Many pairwise comparison methods are available, including T-Bonferroni, Scheffé,

and Tukey test. Here, we choose the Tukey test for its ability to control the overall error rate [53].

The details of Tukey test is as follows. For the second-order interaction w*algorithm, there are in

total 6 ∗ 6 = 36 levels. For any two levels, say i-th and l-th, the following relationship holds:

Prob{ |D̂il −Dil|√
MSE/ns

≤ qα(a, dfE)} ≥ 1− α,

where D̂il and Dil are the difference between the sample means and true means of level i and l,

respectively. MSE is the mean of squared error term from the ANOVA table, and ns is the number

of samples of the level, qα(a, dfE) is the 1 − α quantile of the studentized range distribution, a is

30

the number of levels, dfE is the degree of freedom of errors. It can be shown that two levels are

significantly different if the absolute value of their sample differences exceeds

Tα = qα(a, dfE)

√
MSE
ns

.

See Montgomery [53] for more details of Tukey test. In the case of Experiment A, MSE = 88, ns =680

90, a = 36, dfE = 3156, q0.05(36, 3156) = 5.42, so T0.05 = 5.36. As a result, any levels in Table 5

with difference greater than 5.36 is statistically different. For example, when w = 0, GA mix is not

statistically different from GA DS5 because their difference |11.44− 10.41| ≤ 5.36. We mark these

two with the same letter A; whilst GA mix is statistically better than the remaining algorithms,

which are marked with letters different than A.685

For Experiment B, the ANOVA model uses algorithm, n, m and their second-order interactions

as factors. The ANOVA tables of RDI HV and RDI IGD+ are reported in Figure C.13(b) and

(c), respectively. As shown, for both indicators, the terms algorithm*n and algorithm*m are

significant, showing that the algorithm rankings are different under distinct problem size and shop

length. To investigate this, four Tukey tests are performed (two for each indicator). With the690

aforementioned approach, we obtain the significant gap as T0.05 = 9.025 for the levels of factor

algorithm*n and algorithm*m in terms of RDI HV, and T0.05 = 11.9 for RDI IGD+. These lead

to the results summarized in Table 6 and Table 7.

In Experiment C, the proposed NSGA2 mix shows advantage in most of the instance groups by a

better mean. To confirm such advantage with statistical evidence, we implement a simple approach,695

i.e., in each group we compare the algorithm to the one with the best sample mean using hypothesis

test. For each instance group in Table 8, an algorithm produces 10(instances) * 5(replications) =

50 results. To compared two data groups, t-test is the common method. However, it requires the

group data are normally distributed. This is not necessary true in our case, because the result

variability from different instances may be greater than that from replications. To overcome this,700

we choose the Mann-Whitney U test. This test has greater efficiency than t-test on non-normal

distributions and, in most of the cases, it is nearly as efficient as the t-test on normal distributions.

Let us consider the HV indicator, and let Algorithm B be the one with the better mean. The test for

an Algorithm, say A, works with the null hypothesis H0 : {Algorithm A has equal HV with B},

and alternative hypothesis H1 : {Algorithm A has worse HV than B}. Let A1, A2, . . . , Am and705

B1, B2, . . . , Bn be the results by the two algorithm, and define Dij = 1(Bj<Ai), where 1(S) is the

indicator function equal to 1 if statement S is true, otherwise 0. The Mann-whitney U statistic

is given by

U =

m∑
i=1

n∑
j=1

Dij .

When n and m are large enough, the following large-sample test statistic

Z =
U −mn/2√

mn(n+m+ 1)/12

approximately follows the standard normal distribution N (0, 1). See Gibbons and Chakraborti

31

(c) Experiment B (RDI_IGD+)

Source DF Adj SS Adj MS F-Value P-Value
 algorithm 5 175007 35001.4 200.31 0.000
 n 2 4278 2138.9 12.24 0.000
 m 2 3326 1663.1 9.52 0.000
 algorithm*n 10 30903 3090.3 17.69 0.000
 algorithm*m 10 33777 3377.7 19.33 0.000
 n*m 4 1526 381.5 2.18 0.070
Error 506 88416 174.7
Total 539 337233

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

13.2187 73.78% 72.07% 70.14%

(b) Experiment B (RDI_HV)

Source DF Adj SS Adj MS F-Value P-Value
 algorithm 5 95603 19120.6 190.32 0.000
 n 2 5147 2573.6 25.62 0.000
 m 2 5138 2569.1 25.57 0.000
 algorithm*n 10 10472 1047.2 10.42 0.000
 algorithm*m 10 16760 1676.0 16.68 0.000
 n*m 4 1227 306.7 3.05 0.017
Error 506 50835 100.5
Total 539 185183

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

10.0232 72.55% 70.76% 68.74%

 (a) Experiment A

Source DF Adj SS Adj MS F-Value P-Value
 w 5 14801 2960 33.77 0.000
 algorithm 5 881727 176345 2011.67 0.000
 n 2 2293 1147 13.08 0.000
 m 2 22462 11231 128.12 0.000
 w*algorithm 25 1263959 50558 576.75 0.000
 w*n 10 2527 253 2.88 0.001
 w*m 10 15218 1522 17.36 0.000
 algorithm*n 10 5068 507 5.78 0.000
 algorithm*m 10 33744 3374 38.49 0.000
 n*m 4 919 230 2.62 0.033
Error 3156 276659 88
Total 3239 2519376

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

9.36275 89.02% 88.73% 88.43%

(c) Experiment B (RDI_IGD+)

Source DF Adj SS Adj MS F-Value P-Value
 algorithm 5 175007 35001.4 200.31 0.000
 n 2 4278 2138.9 12.24 0.000
 m 2 3326 1663.1 9.52 0.000
 algorithm*n 10 30903 3090.3 17.69 0.000
 algorithm*m 10 33777 3377.7 19.33 0.000
 n*m 4 1526 381.5 2.18 0.070
Error 506 88416 174.7
Total 539 337233

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

13.2187 73.78% 72.07% 70.14%

(b) Experiment B (RDI_HV)

Source DF Adj SS Adj MS F-Value P-Value
 algorithm 5 95603 19120.6 190.32 0.000
 n 2 5147 2573.6 25.62 0.000
 m 2 5138 2569.1 25.57 0.000
 algorithm*n 10 10472 1047.2 10.42 0.000
 algorithm*m 10 16760 1676.0 16.68 0.000
 n*m 4 1227 306.7 3.05 0.017
Error 506 50835 100.5
Total 539 185183

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

10.0232 72.55% 70.76% 68.74%

 (a) Experiment A

Source DF Adj SS Adj MS F-Value P-Value
 w 5 14801 2960 33.77 0.000
 algorithm 5 881727 176345 2011.67 0.000
 n 2 2293 1147 13.08 0.000
 m 2 22462 11231 128.12 0.000
 w*algorithm 25 1263959 50558 576.75 0.000
 w*n 10 2527 253 2.88 0.001
 w*m 10 15218 1522 17.36 0.000
 algorithm*n 10 5068 507 5.78 0.000
 algorithm*m 10 33744 3374 38.49 0.000
 n*m 4 919 230 2.62 0.033
Error 3156 276659 88
Total 3239 2519376

 Model Summary
S R-sq R-sq(adj) R-sq(pred)

9.36275 89.02% 88.73% 88.43%

Figure C.13: ANOVA tables

[54] for details. Let Φ(x) be the CDF of the standard normal distribution, then the p-value of the710

test is obtained by p = 1− Φ(Z). A p-value less than 0.05 leads to the rejection of H0.

References

[1] R. Ruiz, J. A. Vázquez-Rodŕıguez, The hybrid flow shop scheduling problem, European journal

of operational research 205 (1) (2010) 1–18.

[2] J. N. Gupta, Two-stage, hybrid flowshop scheduling problem, Journal of the operational715

Research Society 39 (4) (1988) 359–364.

[3] F. Dugardin, F. Yalaoui, L. Amodeo, New multi-objective method to solve reentrant hybrid

flow shop scheduling problem, European Journal of Operational Research 203 (1) (2010) 22–

31.

[4] S. Wang, M. Liu, Two-stage hybrid flow shop scheduling with preventive maintenance using720

multi-objective tabu search method, International Journal of Production Research 52 (5)

(2014) 1495–1508.

[5] N. Karimi, M. Zandieh, H. Karamooz, Bi-objective group scheduling in hybrid flexible flow-

shop: a multi-phase approach, Expert Systems with Applications 37 (6) (2010) 4024–4032.

[6] C. Lu, L. Gao, X. Li, S. Xiao, A hybrid multi-objective grey wolf optimizer for dynamic725

scheduling in a real-world welding industry, Engineering Applications of Artificial Intelligence

57 (2017) 61–79.

[7] H. Luo, B. Du, G. Q. Huang, H. Chen, X. Li, Hybrid flow shop scheduling considering machine

electricity consumption cost, International Journal of Production Economics 146 (2) (2013)

423–439.730

[8] Z. Zeng, M. Hong, Y. Man, J. Li, Y. Zhang, H. Liu, Multi-object optimization of flexible flow

shop scheduling with batch process?consideration total electricity consumption and material

wastage, Journal of cleaner production 183 (2018) 925–939.

[9] M. Pinedo, Scheduling, Vol. 29, Springer, 2012.

32

[10] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs,735

European Journal of Operational Research 246 (2) (2015) 345–378.

[11] S. C. Trovinger, R. E. Bohn, Setup time reduction for electronics assembly: Combining simple

(smed) and it-based methods, Production and operations management 14 (2) (2005) 205–217.

[12] E. K. Burke, G. Kendall, et al., Search methodologies, Springer, 2005.

[13] M. K. Marichelvam, T. Prabaharan, X. S. Yang, A discrete firefly algorithm for the multi-740

objective hybrid flowshop scheduling problems, IEEE transactions on evolutionary computa-

tion 18 (2) (2013) 301–305.

[14] S. Mousavi, M. Zandieh, M. Yazdani, A simulated annealing/local search to minimize the

makespan and total tardiness on a hybrid flowshop, The International Journal of Advanced

Manufacturing Technology 64 (1-4) (2013) 369–388.745

[15] F. Pargar, M. Zandieh, Bi-criteria sdst hybrid flow shop scheduling with learning effect of

setup times: water flow-like algorithm approach, International Journal of Production Research

50 (10) (2012) 2609–2623.

[16] Q.-K. Pan, R. Ruiz, P. Alfaro-Fernández, Iterated search methods for earliness and tardiness

minimization in hybrid flowshops with due windows, Computers & Operations Research 80750

(2017) 50–60.

[17] O. Shahvari, R. Logendran, Hybrid flow shop batching and scheduling with a bi-criteria ob-

jective, International Journal of Production Economics 179 (2016) 239–258.

[18] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, F. Werner, A comparison of scheduling

algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and755

dual criteria, Computers & Operations Research 36 (2) (2009) 358–378.

[19] Y. H. YV, L. S. Lasdon, D. DA WISMER, On a bicriterion formation of the problems of

integrated system identification and system optimization, IEEE Transactions on Systems,

Man and Cybernetics (3) (1971) 296–297.

[20] J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in:760

Proceedings of the First International Conference on Genetic Algorithms and Their Applica-

tions, 1985, Lawrence Erlbaum Associates. Inc., Publishers, 1985.

[21] D. E. Goldberg, Messy genetic algorithms: Motivation analysis, and first results, Complex

systems 4 (1989) 415–444.

[22] C. M. Fonseca, P. J. Fleming, et al., Genetic algorithms for multiobjective optimization:765

Formulationdiscussion and generalization., in: Icga, Vol. 93, 1993, pp. 416–423.

[23] J. rey Horn, N. Nafpliotis, D. E. Goldberg, A niched pareto genetic algorithm for multiobjec-

tive optimization, in: Proceedings of the first IEEE conference on evolutionary computation,

IEEE world congress on computational intelligence, Vol. 1, Citeseer, 1994, pp. 82–87.

33

[24] N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic al-770

gorithms, Evolutionary computation 2 (3) (1994) 221–248.

[25] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and

the strength pareto approach, IEEE transactions on Evolutionary Computation 3 (4) (1999)

257–271.

[26] J. D. Knowles, D. W. Corne, Approximating the nondominated front using the pareto archived775

evolution strategy, Evolutionary computation 8 (2) (2000) 149–172.

[27] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii, IEEE transactions on evolutionary computation 6 (2) (2002) 182–197.

[28] E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the strength pareto evolutionary algo-

rithm, TIK-report 103 (2001).780

[29] M. Ebrahimi, S. F. Ghomi, B. Karimi, Hybrid flow shop scheduling with sequence dependent

family setup time and uncertain due dates, Applied Mathematical Modelling 38 (9-10) (2014)

2490–2504.

[30] S. H. Abyaneh, M. Zandieh, Bi-objective hybrid flow shop scheduling with sequence-dependent

setup times and limited buffers, The International Journal of Advanced Manufacturing Tech-785

nology 58 (1-4) (2012) 309–325.

[31] J. Behnamian, S. F. Ghomi, M. Zandieh, A multi-phase covering pareto-optimal front method

to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic, Ex-

pert Systems with Applications 36 (8) (2009) 11057–11069.

[32] H. Asefi, F. Jolai, M. Rabiee, M. T. Araghi, A hybrid nsga-ii and vns for solving a bi-790

objective no-wait flexible flowshop scheduling problem, The International Journal of Advanced

Manufacturing Technology 75 (5-8) (2014) 1017–1033.

[33] M. Zandieh, S. M. Sajadi, R. Behnoud, Integrated production scheduling and maintenance

planning in a hybrid flow shop system: a multi-objective approach, International Journal of

System Assurance Engineering and Management 8 (2) (2017) 1630–1642.795

[34] J.-q. Li, H.-y. Sang, Y.-y. Han, C.-g. Wang, K.-z. Gao, Efficient multi-objective optimization

algorithm for hybrid flow shop scheduling problems with setup energy consumptions, Journal

of Cleaner Production 181 (2018) 584–598.

[35] S. Schulz, J. S. Neufeld, U. Buscher, A multi-objective iterated local search algorithm for

comprehensive energy-aware hybrid flow shop scheduling, Journal of Cleaner Production 224800

(2019) 421–434.

[36] V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, Efficiency of the solution represen-

tations for the hybrid flow shop scheduling problem with makespan objective, Computers &

Operations Research 109 (2019) 77–88.

34

[37] R. Ruiz, C. Maroto, A genetic algorithm for hybrid flowshops with sequence dependent setup805

times and machine eligibility, European Journal of Operational Research 169 (3) (2006) 781–

800.

[38] C. Yu, Q. Semeraro, A. Matta, A genetic algorithm for the hybrid flow shop scheduling with

unrelated machines and machine eligibility, Computers & Operations Research 100 (2018)

211–229.810

[39] M. Gendreau, J.-Y. Potvin, et al., Handbook of metaheuristics, Vol. 2, Springer.

[40] H.-L. F. P. Ross, D. Corne, A promising hybrid ga/heuristic approach for open-shop scheduling

problems, in: Proc. 11th European Conference on Artificial Intelligence, 1994, pp. 590–594.

[41] J. V. Rodŕıguez, S. Petrovic, A. Salhi, A combined meta-heuristic with hyper-heuristic ap-

proach to the scheduling of the hybrid flow shop with sequence dependent setup times and815

uniform machines, in: Proceedings of the 3rd Multidisciplinary International Conference on

Scheduling: Theory and Applications. MISTA: Paris, France, 2007, pp. 506–513.

[42] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-heuristic for

educational timetabling problems, European Journal of Operational Research 176 (1) (2007)

177–192.820

[43] K. A. Dowsland, E. Soubeiga, E. Burke, A simulated annealing based hyperheuristic for

determining shipper sizes for storage and transportation, European Journal of Operational

Research 179 (3) (2007) 759–774.

[44] R. Qu, E. K. Burke, Hybridizations within a graph-based hyper-heuristic framework for uni-

versity timetabling problems, Journal of the Operational Research Society 60 (9) (2009) 1273–825

1285.

[45] V. Yaurima, L. Burtseva, A. Tchernykh, Hybrid flowshop with unrelated machines, sequence-

dependent setup time, availability constraints and limited buffers, Computers & Industrial

Engineering 56 (4) (2009) 1452–1463.

[46] J.-P. Li, M. E. Balazs, G. T. Parks, P. J. Clarkson, A species conserving genetic algorithm for830

multimodal function optimization, Evolutionary computation 10 (3) (2002) 207–234.

[47] B. Naderi, M. Zandieh, A. K. G. Balagh, V. Roshanaei, An improved simulated annealing

for hybrid flowshops with sequence-dependent setup and transportation times to minimize

total completion time and total tardiness, Expert systems with Applications 36 (6) (2009)

9625–9633.835

[48] K. I. Smith, R. M. Everson, J. E. Fieldsend, C. Murphy, R. Misra, Dominance-based multiob-

jective simulated annealing, IEEE Transactions on Evolutionary Computation 12 (3) (2008)

323–342.

35

[49] M. Ciavotta, G. Minella, R. Ruiz, Multi-objective sequence dependent setup times permuta-

tion flowshop: A new algorithm and a comprehensive study, European Journal of Operational840

Research 227 (2) (2013) 301–313.

[50] T. Okabe, Y. Jin, B. Sendhoff, A critical survey of performance indices for multi-objective

optimisation, in: The 2003 Congress on Evolutionary Computation, 2003. CEC’03., Vol. 2,

IEEE, 2003, pp. 878–885.

[51] H. Ishibuchi, H. Masuda, Y. Tanigaki, Y. Nojima, Modified distance calculation in genera-845

tional distance and inverted generational distance, in: International Conference on Evolution-

ary Multi-Criterion Optimization, Springer, 2015, pp. 110–125.

[52] T. Urlings, R. Ruiz, T. Stützle, Shifting representation search for hybrid flexible flowline

problems, European Journal of Operational Research 207 (2) (2010) 1086–1095.

[53] D. C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.850

[54] J. D. Gibbons, S. Chakraborti, Nonparametric Statistical Inference: Revised and Expanded,

CRC press, 2014.

36

	00Frontespizio DMEC - Open Acces - Author’s Accepted Manuscript_V00
	0Multi-objective scheduling in hybrid flow shop Evolutionary algorithms using multi-decoding framework
	Introduction
	Problem description
	The problem
	Mathematical model

	Literature review
	Proposed algorithm
	Decoding algorithms
	The proposed multi-decoding framework
	Hyperchromosome
	Crossover and mutation
	Generational scheme

	The complete procedure

	Numerical results
	Test Instances
	Performance comparison: a priori approach
	Performance comparison: a posteriori approach
	Experiment setup
	Performance indicators
	Comparison results
	Issue and discussion

	Conclusion
	Calculation of machine selection metrics
	Empirical comparison of decoding algorithms
	Details of statistical tests

