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ABSTRACT

High integration of intermittent renewable energy sources (RES), in particular wind power, has
created complexities in power system operations. On the other hand, large fleets of Electric Vehicles
(EVs) are expected to have great impact on electricity consumption, and uncoordinated charging
process will add load uncertainty and further complicate the grid scheduling. In this paper, we
propose a smart charging approach that uses the flexibility of EV owners to absorb the fluctuations in
the output of RES in a vehicle-to-grid (V2G) setup. We propose an optimal scheduling algorithm
for charge/discharge of aggregated EV fleets to maximize the integration of wind generation as well
as minimize the charging cost for EV owners. Challenges for people participation in V2G, such as
battery degradation and feeling insecure for unexpected events, are also addressed. We first formulate
a static model using mixed-integer quadratic programming (MIQP) with multi-objective optimization
assuming that every parameter of the model is known a day ahead of scheduling. Subsequently, we
formulate a dynamic (dis)charging schedule after EVs arrive into the system with updated information
about EV availabilities, wind generation forecast, and energy price in real-time, using rolling-horizon
optimization. Simulations using a group of 100 EVs in a micro-grid with wind as primary resource
demonstrate significant increase in wind utilization and reduction in charging cost compared to
uncontrolled charging scenario.

Keywords smart charge/discharge scheduling · electric vehicles · wind power integration · rolling horizon ·
vehicle-to-grid technology · smart grid · applied optimization · convex optimization

Nomenclature
T : Set of time/periods in scheduling with index t.
∆t : Length of decision intervals.
I : Set of all EVs with index i.
Ig2v : Set of vehicles participating in G2V only.
Iv2g : Set of vehicles participating in V2G.
B : Set of vehicles that arrive with charge level below SOCmin.
EV tall : Set of all vehicles plugged-in during time slot [t, t+ 1].
EV tv2g : Set of all vehicles in V2G plugged-in during time slot [t, t+ 1].
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tarri : Arrival time of EV i.
tdepi : Departure time of EV i.
T pi : Plug-in period of EV i.
prt : Electricity price in time slot [t, t+ 1] in ¢/kWh.
Dt : Total charging demand in time slot [t, t+ 1].
W t : Actual wind (renewable) production in time slot [t, t+ 1] in kWh.
W t
forecast : Wind forecast for time slot [t, t+ 1] in kWh.

P ci : Maximum energy EV i can take in ∆t period (kWh).
P di : Maximum energy EV i can discharge in ∆t period (kWh).
CPi : Maximum charging power (kW) of the charger that EV i is connected to.
ARi : Acceptance rate of EV i in kW.
ηci : Charging efficiency of EV i.
ηdi : Discharging efficiency of EV i.
SOCti : State of battery charge for EV i at time t.
SOCinit,i : Initial state of battery for EV i in kWh.
SOCcap,i : Battery capacity of EV i in kWh.
SOCmin,i : Minimum level of battery charge for EV i in kWh.
SOCdesired,i : Desired level of battery charge for EV i in kWh.
Tmin,i : Minimum number of periods to reach SOCmin,i.
Ψi : The battery degradation cost for EV i in ¢.
δ : Penalty for energy curtailment in ¢/kWh.
λ : Owners’ level of tolerance for battery degradation in [0, 1].
PmaxG : Maximum transmission power between microgrid and the external grid in ∆t period.
Cbat,i : Battery replacement cost in $.
Xt
c,i : Charging rate for EV i in time slot [t, t+ 1].

Xt
d,i : Discharging rate for EV i in time slot [t, t+ 1].

Y tc,i : Binary variable that takes a value of 0 if EV i is charging in time slot [t, t+ 1].
Y td,i : Binary variable that takes a value of 0 if EV i is discharging in time slot [t, t+ 1].
Zi : Binary auxiliary variable for EV i.
Ωt : Wind curtailment in time slot [t, t+ 1] in kWh.
Gt : Energy supplied from the external grid in time slot [t, t+ 1] in kWh.
J : Set of planning times in dynamic modeling with index j.
∆j : Planning intervals.
Aj : Set of all vehicles arrived in time slot [j − 1, j].
Ej : Set of all vehicles to be planned at planning time j.
Ejv2g : Set of all vehicles in V2G mode to be planned at planning time j.
Ejg2v : Set of all vehicles in G2V mode to be planned at planning time j.
τ jmax : The end of the planning (rolling) window when planned at time j.
LC
{j}
i : The charging rate in the period previous to the planning time j.

LD
{j}
i : The discharging rate in the period previous to the planning time j.

E[]: Expected value function.
Rv2g : Ratio of vehicles participating in V2G.
Dt
f : Charge demand for unknown future arrivals in time slot [t, t+ 1].

N̂ t
j : Estimated number of vehicles arrived after time j and plugged-in at time t.

ÊR : Estimated charge required during plug-in period.
P̂ T : Estimated plug-in period.
P ka,b : The transition probability from wind state a to b in k time steps.

1 Introduction

In recent years, more and more countries around the world are committing to reduce their carbon emissions and mitigate
global warming. An integral part of cutting greenhouse emission is to reduce the burning of fossil fuels. To this end,
RES are vital to replace or reduce the dependence on the existing gas and coal power plants. However, RES generation
often depends on the weather, e.g. the sun for solar, wind for wind farms, rainfall for hydro, etc. While the grid can
absorb a portion of RES generation, complete dependence on these intermittent sources requires massive grid-scale
energy storage to cope with the intermittent nature of renewable generation. In addition to intermittent behavior of
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renewable electricity generators, their high initial cost is being a drawback. Thus, in many countries it has been actively
promoted by the support of governments. Recent advances in technology are reducing their production cost and making
them more competitive with conventional utilities.

As another solution to cut emission, countries are attempting to electrify the transportation sector as it accounts for
large amount of Carbon emissions (20-25% share) [1]. Electric vehicles look more promising than ever to replace the
traditional internal combustion engine vehicles in the future since they could achieve zero emission if the electricity
used is generated from renewable sources. However, the increasing adoption of EVs may cause a potential problem
for the electric grid because of the unpredictable charging schedules of their owners. If unplanned, charging EVs
will endanger the power system reliability and operations. The authors in [2] examine the effects of EVs on power
transformers in a distribution network. The study concludes that high penetration of EV will decrease the lifespan of
the transformers significantly, as EV load increases the peak load and that can exceed the capacity of transformers.
It suggests that charging EVs during nighttime can decrease the transformers loss-of-life factor. The authors in [3]
compare the uncontrolled and controlled charging scenarios and conclude that the proposed controlled scenario can
reduce transformers’ overload by 25% with a large penetration (max of 75% in 2040) of EVs. The increase in EV
penetration leads to not only an increase in electricity demand but also the shape of the demand will change significantly
resulting in higher demand variability and impacting electricity infrastructure and making it difficult to accurately
predict the load. Peak demand determines the system capacity requirements; thus, increasing the peak demand will
affect the electricity infrastructure of power system [4]. Most importantly, uncoordinated charging of EVs adds a
stochastic element to the power system, which complicates the planning and operation of power systems (e.g., unit
commitment and economic dispatch).

In anticipating this problem, many have proposed the concept of vehicle-to-grid (V2G) to integrate these future EVs
into the grid successfully. V2G sees the EVs as a distributed generation/storage system as well as dynamic flexible load
which could be utilized to balance the supply and demand of electricity [5]. V2G technology can improve the power
system operations along several services, such as frequency/voltage regulation, spinning reserve, and peak shaving [6].
The work in [7] presents a game-theoretic approach in load management strategy for EV charging to reduce peak load
considering dynamic behavior of EV drivers as well as electricity price. However, intermittent generation of RES is not
considered in this work.

With the focus on maximizing RES integration, some researchers have attempted to find the optimal scheduling for
EV charging. In [8], the authors formulate the optimal charging schedule in charge-only mode and find that charging
EVs overnight can absorb the excess power generated by wind power; thus, increasing the RES utilization. In [9], the
authors present an optimization algorithm for charging schedule problem to minimize energy cost from the grid based
on a queuing model that does not require any information or prediction about the wind production, EV charging request,
and electricity price. The proposed approach leads to 78 % cost reduction compared to the "charge-upon-arrival" case.
The study in [10] formulates the EV charging schedule as a mixed integer programming (MIP) problem maximizing
the RES integration for the day-ahead problem assuming perfect generation forecast for the planning horizon. Most
articles in this domain have considered the bidirectional V2G in which the EVs are also capable of providing discharge.
In [11], the authors developed a MIP problem to maximize the utilization of renewable energy while satisfying EV
and household demand assuming known future trips as well as EV and household loads in day-ahead scheduling
framework. Likewise, the authors in [12] propose an energy management system to maximize the utilization of wind
energy assuming known wind and load. In this work, the storage capability of EVs in the context of a distributed feeder
with primary wind resource is examined. It is shown that wind utilization can reach 89% with a coordinating charging
and discharging strategy under the assumption of an EV for each household. In [13], the authors propose an intelligent
scheduling algorithm with the objective of maximizing owners’ profit under the assumption of known day-ahead arrival
and departure times. The work in [14] proposes to utilize the storage capability of a large fleet of EVs that can be used
as distributed storage units to help keep the grid frequency within a certain limit in the presence of intermittent RES
generation in a distributed grid framework.

The EV arrival and departure time are dynamic and time-varying since the driving behavior of EV owners is
uncertain as it depends on several factors, such as traffic conditions, and randomness in commuting behavior of drivers
[15]. In this work, we propose a real-time multi-objective optimization framework in which the EV characteristics
and behavior are only known upon vehicle arrivals, not a day ahead of scheduling. We developed a dynamic planning
horizon algorithm for the aggregator for EV charging and discharging. Our work is similar to [16], where the authors
have considered the dynamic behavior of EV owners in an optimal charge/discharge scheduling of EVs using rolling
horizon optimization method; however, the intermittent generation of RES is not considered in their work. To evaluate
our dynamic scheduling, we first model the optimal schedule for a day-ahead static scenario, where commuting schedule
of all EVs are assumed to be known day ahead of time. The results of the dynamic model is then compared to the static
model. Different EV characteristics and flexibility of owners for different wind and electricity price profiles are studied
to evaluate the performance of our model.
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Moreover, battery degradation has not been taken into consideration in any of the mentioned articles (except in [16]).
There are three main challenges in V2G that need to be addressed before applying it to the real-world:

1. Battery degradation: One major impediment to V2G is its toll on the battery life [17]. An average lithium ion
battery utilized by major automobile companies lasts between 2000-3000 charging cycles [18], cycling them
daily will significantly reduce their lifespan, hence the economic benefits might be completely countered by
the battery wear.

2. Efficiency: V2G might not be the most efficient method to store electricity as well. Round trip power losses of
all EV components are reported to be between (17-25%), which means V2G as an energy storage system can
only return 75-83% of its energy input [19]. Comparing to other ways of energy storage (e.g., pumped hydro
storage 85-95%), V2G as an energy storage system might lose more in transaction.

3. Feeling insecure for urgent needs: The owner of an EV may not be willing for a third party to directly
control their charging process because in case of emergency or unexpected travel need the battery might have
insufficient range to carry the vehicle to its destination [6].

In this study, we address all these challenges in V2G and people participation that discourage people to allow a third
party to control their charging process. Unlike some of the previous research articles, the proposed algorithm does not
attempt to start or stop charging EVs frequently, which leads to battery degradation. The approach here is based on
optimal scheduling of a large number of EVs depending on the availability of EVs and preferences, needs and flexibility
of their owners.

We study the EV scheduling for both static and dynamic models in two cases: 1) "Business-as-usual" (BAU) case:
immediate charge upon arrival at full speed until reaching full charge; 2) smart schedule that an aggregator can modify
the for charge/discharge rate in discrete time intervals. We also consider different ratio of EV owners that participate in
V2G to evaluate the benefits of V2G compared to G2V.

The remainder of this paper is structured as follows. In Section 2, we provide an overview of our system model and
the proposed approach. In Section 3, we formulate the optimal scheduling problem of static model, while the dynamic
modeling is provided in Section 4. Section 5 discusses the simulation results of our study. Finally, we conclude the
paper in Section 6.

2 Approach and System Model Overview
Smart energy metering and advanced controls have enabled real-time communication in smart grid [5]. We consider a
smart grid with real-time communication between its participants, and an aggregator who is responsible to offset the
fluctuation of RES (e.g., wind energy) with the optimal charging/discharging schedule of EVs. A schematic of the
relationship is shown in Figure 1. The aggregator, which can be a utility company or a third party, gets information
about available renewable energy, and market electricity price. EVs are connected to the smart chargers, and the
aggregator receives data related to the status of EVs, the charge requirements, and their owners’ preferences. The
aggregator is responsible for selling power output of the renewable sources as much as possible with a price less than
what conventional utilities offer. On the other hand, suppose that there is a set of EV owners who want to charge their
vehicles with renewable energy as much as possible for sustainability concerns. They may also have an economic
motivation to pay less for charging their vehicles. Since EVs are idle 90% of the time but they require a few hours to
recharge, the goal is to use the flexibility of EVs and their drivers to absorb the fluctuations in the output of RES, while
satisfying their requirements and concerns. The hypothesis is that the EVs charge their batteries with energy from RES
and discharge energy in low wind periods. Also, in case where there is insufficient wind to meet the demand during the
whole plug-in period, the EV charging process should be shifted to low electricity price periods whenever possible.

2.1 Electricity Generation and Consumption Model

We study a MicroGrid (MG) with wind power as primary resource and local parking lots as consumers. EV charging
in parking lots are the only demand for wind generation and there is no storage unit in the system, meaning that if
wind production is more than the total charging demand, excessive wind energy has to be curtailed. Since wind energy
has near zero marginal generation cost and because of the support policy from the government, we assume that wind
energy has no cost. The microgrid is connected to the external grid via transformer for back-up power, so that if
charging demand exceeds the available wind energy, the remaining energy is purchased from the grid with the real-time
electricity price. EV owners can participate in either unidirectional or bidirectional V2G. The former, also referred to
as grid-to-vehicle (G2V), is when the EV can only charge energy from the electrical grid. However, in bidirectional
V2G, the EVs can inject energy to the gird by providing discharge. In the context of this problem, V2G is referred to
bidirectional flow of energy between energy source and vehicle. In case of low wind generation, EVs in V2G mode
(set Iv2g) can provide energy by discharging their batteries to charge other EVs. We assume that the discharge energy
is only used for charging other EVs, it is not sold to the external grid. The EV discharge energy is sold with a price
slightly less than that of real-time wholesale market. By that, we make sure that EVs are making revenue from selling
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Figure 1: Smart grid communciations

their stored energy and also other EVs are paying less compared to the market price. The maximum charging power
for an EV in one hour interval is calculated as min(ARi, CP i), where ARi is the maximum power the EV can take,
and CPi is the maximum charging power of the outlet that EV i is connected to. Thus, the maximum energy EV i can
take in each ∆t decision period is defined by P ci = min(ARi, CPi)× (∆t/1hour). We assume that charging and
discharging powers are the same (P ci = P di ).

Local consumers in the MG are the EV owners parking their vehicles in residential places or in workplace parking
lots. For a total of N vehicles, we assume half of them parked at workplace and the other half are the vehicles charging
their EVs at home, and vehicles are plugged-in as soon as they arrive. We have excluded the consumption for households,
since in case of known or close to known household demand, that would not add value to our optimization problem.

2.2 Battery Degradation Model

Researchers in [17] have found that the maximum annual profit for an EV is very limited if considering the battery
degradation cost, and without considering this cost, the profit is exaggerated. Moreover, battery degradation contributes
as a great challenge in people participation, so we study the battery degradation cost in the charge/discharge process
to reduce the total cost for the owners. Finding exact degradation cost for any battery is out of scope for this paper.
Here, we consider two models for battery degradation used in literature. The first model considers a quadratic function,
which consists of two terms, one for charge/discharge rate and the other term captures the cost of degradation for
fluctuation in energy rate [16]. The second model is adopted from [17, 20], which modeled the battery wear cost as a
linear function of battery replacement cost and percent of battery used. The laboratory measurements in [17] predicted
a cost of 4.2 ¢/kWh for a battery pack with $5,000 replacement cost. Thus, in this model, we consider the same value
for degradation cost coefficient. Equations (1)-(2) define the degradation cost of EV i in the second model.

Ψi =
∑
t∈Tp

i

4.2× Cbat,i
5, 000

× (percent of battery used)t (1)

(percent of battery used)t =
Pc,iX

t
c,i − Pd,iXt

d,i

SOCcap, i
(2)

Our emphasis is on minimizing the cost of battery degradation caused by frequent recharge and discharges as well
as the energy processed by the EV, so we mainly use the first model (presented in equations (5)-(6)) for our reference,
but the second model is also used for validation of results. We penalize the battery degradation cost in the objective
function so that the optimal solution reduces the frequency of stop and start of the charge process.
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3 Static Scheduling Optimization

In this section, a scheduling algorithm is proposed for the aggregator that determines the day ahead EV (dis)charge
schedule. In the static model, the following assumptions are made:

• The EV owners are obligated to provide their arrival time, departure time, the desired level of charge, and
minimum level of charge, the night before of the scheduling day.

• The initial state of charge and the EV characteristics, such as battery capacity, acceptance rate, and battery
replacement cost are known.

• The wind production and electrical grid energy price for the next day is forecasted with perfect accuracy.

Given the above information, the aggregator determines the charging schedule for the next planning horizon (e.g., next
day). We consider the scheduling for discrete time intervals of equal size ∆t. This smart scheduling is determined to
maximize wind utilization, minimize the grid supply, and minimize the charging cost for EV owners. Comparison
between the smart charging case versus BAU case, where the vehicles are charged immediately upon their arrivals until
full charge, is provided. Although the assumptions made in this deterministic case are unrealistic, this model provides
the global optimal solution for the case where all model parameters are known. The results of the static model will be
used later in this paper to evaluate the performance of the dynamic model.

3.1 Modeling & Mathematical Formulation

We study the EV charging and discharging during the planning horizon that is evenly divided into time intervals of ∆t
minutes. The aggregator finds the optimal charge/discharge rate for all EVs in each period t. In this paper, the time
slot [t, t + 1] is referred to as period t (see Figure 2). It is assumed that grid electricity price, and charge/discharge
rate remain constant for the entire interval of ∆t minutes. Wind power availability in ∆t time interval is known and is
utilized to charge the EV fleet during that interval. Here, we use 15-minute interval, which divides a single day into 96
equal intervals.

Figure 2: Illustration of difference between time and period

The decision variables used in the model are described as follows. Xt
c,i and Xt

d,i are continuous variables between
0 and 1 that determine the charge and discharge rate of EV i in period t with a value of 1 meaning full-speed
charging/discharging, and 0 meaning remaining untouched. The state of charge for EV i at time t is captured by SOCti .
Gt and Ωt are grid supply and wind curtailment in period t, respectively. Finally, Zi, Y tc,i, and Y td,i are binary auxiliary
variables.

The objective function is to minimize a linear combination of the charging cost of energy purchased from the electric
grid, the battery degradation cost, and the wind curtailment penalty cost.

min
Xc,Xd

∑
t∈T

prtGt +
∑
i∈I

λΨi +
∑
t∈T

δΩt (3)

The variable Gt is the energy supplied from the external grid (conventional generators). It can be defined by inequality
(4) and non-negativity constraint (29).

Gt ≥
∑

i∈EV t
all

(Xt
c,iP

c
i )−

∑
i∈EV t

v2g

(Xt
d,iP

d
i )−W t, ∀t ∈ T (4)

It can be easily noted that Gt is the maximum of zero and the total net charging demand minus the wind energy in
any period t. Inherited in the first term of the objective function, the optimization problem attempts to minimize the
charging cost for EV owners that is purchased from the grid. Also, imposing charging cost for the grid energy causes
the demand to seek cheap wind energy and increases wind utilization.
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The next term is the total battery degradation cost multiplied by λ, which is a hyper-parameter that indicates the
level of tolerance of the owners for their battery degradation. Value of λ = 1 means no tolerance for the owner. Battery
degradation is calculated using a quadratic function as defined in (5)-(6) [16].

Ψi =
∑
t∈Tp

i

α(ηciP
c
i (Xt

c,i −Xt−1
c,i ))2 + β(ηciP

c
i X

t
i )

2, ∀i ∈ Ig2v (5)

Ψi =
∑
t∈Tp

i

α[ηciP
c
i (Xt

c,i −Xt−1
c,i )]2 + β[ηciP

c
i X

t
c,i]

2

+α[P di /η
d
i (Xt

d,i −Xt−1
d,i )]2 + β[(P di /η

d
i )Xt

d,i]
2, ∀i ∈ Iv2g

(6)

In the third term, a small penalty δ is considered for wind curtailment. The wind curtailment denoted by Ωt is the
maximum of zero and wind production minus the charging demand at each period. Ωt = max{0,W t − Dt} (see
constraint (7)).

Ωt ≥W t +
∑

i∈EV t
v2g

(Xt
d,iP

d
i )−

∑
i∈EV t

all

(Xt
c,iP

c
i ), ∀t ∈ T (7)

Note that the demand for wind energy in period t can be easily calculated by W t − Ωt. It is good to mention that in
each time interval t, at most one of Ωt and Gt can be positive. Since the EV charge load is the only demand for wind
energy, minimizing wind curtailment implies maximizing wind utilization. Similar to λ, δ is a hyper-parameter that
determines the weight for wind curtailment penalty. Considering a small value for δ, this term comes into play only
when there is enough wind production, and it ensures to reduce the wind curtailment by charging the vehicle to their
full battery capacity instead of the user specified desired level.

We assume a linear charging behavior for the batteries. Thus, the state of charge is initialized and updated in a set of
constraints (8)-(10).

SOC
tarr
i
i = SOCinit,i ∀i ∈ I (8)

SOCti = SOCt−1i + ηciP
c
i X

t−1
c,i ∀i ∈ Ig2v, ∀t ∈ T pi (9)

SOCti = SOCt−1i + ηciP
c
i X

t−1
c,i − P di X

t−1
d,i /η

d
i ∀i ∈ Iv2g, ∀t ∈ T pi (10)

Constraint (8) sets the initial state of battery charge upon arrival to the state of charge at arrival time (SOCt
arr
i
i ).

SOC at each time is updated in constraints (9)-(10) by adding the charging energy for the vehicle in the current period
to the charge level of the previous time. Constraint (11) limits the total grid supply by the transformer’s capacity.

Gt ≤ PGmax ∀t ∈ T (11)

The next two constraints (12)-(13) guarantee that if the vehicle cannot reach the desired level in its designated
charging period, the vehicle is charged with full speed the entire plug-in period. However, if the vehicle can reach the
desired level, constraint (14) makes sure that the final state of charge (SOC at departure time) is at least as much as the
desired level of battery charge requested by the user.

SOCinit,i + P ci η
c
i (t

dep
i − tarri ) ≥ SOCdesired,i −MZi ∀i ∈ I (12)
Xt
c,i ≥ Zi ∀i ∈ I, ∀t ∈ T pi (13)

SOC
tdepi
i ≥ SOCdesired,i −MZi ∀i ∈ I (14)

Constraint (15) limits the state of charge at any time to the battery capacity of an EV.

SOCti ≤ SOCcap,i ∀i ∈ I, ∀t ∈ {tarri , ..., tdepi } (15)

The next group of constraints sets a minimum level of charge for all vehicles. If the vehicles arrive with a charge
level less than the minimum level (set B), then it has to charge with full speed to get to the minimum level as soon as
possible (Eq. (17)). After reaching the minimum state of charge, the SOC should never drop below SOCmin (constraint
(18)).

SOCti ≥ SOCmin,i ∀i ∈ I \B, ∀t ∈ {tarri , ..., tdepi } (16)
Xt
c,i = 1 ∀i ∈ B, ∀t ∈ {tarri , ..., tarri + Tmin,i} (17)

SOCti ≥ SOCmin,i ∀i ∈ B, ∀t ∈ {tarri + Tmin,i, ..., t
dep
i } (18)

7
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Tmin,i denotes the minimum number of periods that the EV i has to charge with full speed to reach SOCmin,i, and
is calculated by equation (19).

Tmin,i =

⌈
SOCmin,i − SOCinit,i

ηciP
c
i

⌉
(19)

Constraints (20)-(21) set the charge/discharge rates to zero for the period prior to arrival.

X
tarr
i −1
c,i = 0 ∀i ∈ Ig2v (20)

X
tarr
i −1
c,i +X

tarr
i −1
d,i = 0 ∀i ∈ Iv2g (21)

Constraints (22)-(24) ensure that in any period during plug-in time, the vehicles in V2G mode can either charge,
discharge, or do nothing.

Xt
c,i ≤ 1− Y tc,i ∀i ∈ Iv2g, ∀t ∈ T pi (22)

Xt
d,i ≤ 1− Y td,i ∀i ∈ Iv2g, ∀t ∈ T

p
i (23)

Y tc,i + Y td,i = 1 ∀i ∈ Iv2g, ∀t ∈ T pi (24)

Finally, constraints (25)-(29) specify the binary and non-negativity constraints for the decision variables.

0 ≤ Xt
c,i ≤ 1 ∀i ∈ I, ∀t ∈ T pi (25)

0 ≤ Xt
d,i ≤ 1 ∀i ∈ Iv2g, ∀t ∈ T pi (26)

Y 1
c,i, Zi Binary ∀i ∈ I, ∀t ∈ T pi (27)

Y td,i Binary ∀i ∈ Iv2g, ∀t ∈ T pi (28)

Ωt, Gt ≥ 0 ∀t ∈ T (29)

Although, the assumptions made in this deterministic case were somewhat impractical, this model provides the
global optimal solution for the case where all model parameters are known. It also provides a baseline for the dynamic
model which we will describe in the next section. In the dynamic model case, we address some of the impracticalities
of the static model.

4 Dynamic Scheduling Optimization

In a more realistic scenario, the assumption for the obligation of providing perfect information a day ahead by the EV
owners is relaxed. In this dynamic model, EV owners input their needs and preferences (departure time, desired level of
battery, minimum required level of charge) upon arrival. The smart chargers, on the other hand, automatically detect the
necessary EV characteristics, such as battery capacity, acceptance rate, and state of charge. At any planning time j, the
aggregator batches all the vehicles that have arrived during the [j − 1, j] time slot. The aggregator also considers those
vehicles that have not departed from the previous periods and are still in charging. With updated information regarding
the number of EVs and their requirements, the renewable energy generated, and the price of electricity, the scheduling
algorithm (which is discussed in 4.1) optimizes the charging schedule for the current planning window (rolling window).
The planning window is defined by the period from time j till the time that all vehicles in set Ej departs. Ej is the
set of vehicles considered in planning at time j. This schedule is called dynamic because it can be updated as wind
production forecast, the electric price forecast, and EV availabilities are updated. Also, note that the charging schedule
of all vehicles gets updated frequently at each planning time until they depart, thus minimizing the effect of uncertainty
in wind generation and electricity price. We will consider the uncertainty of wind generation forecast in 5.2.3.

4.1 Algorithm

Considering 1-hour planning intervals ∆j, one day is divided equally into 24 planning times so that planning times are
at each exact hour of the day. For ease of notation, j + 1 denotes the next planning time, which is one hour after current
planning time j. However, to be consistent with the notation of our decision periods t, which increment by one every
∆t = 15 minutes, another variable is defined by φj = 4j. For instance, j = 0 =⇒ φj = 0 denotes planning at time
12:00 am, and j = 1 =⇒ φj = 4 denotes the next planning time at 1:00 am.

At any planning time j, we have a set of arrivals during time slot [j − 1, j], called Aj . For instance, A1 consists of
all the vehicles arriving between 12:00 am and 1:00 am. Vehicles in Aj are added to the set Ej , which accounts for the
vehicles that need to be planned at time j. The aggregator also batches those vehicles already arrived and planned in the
previous period j − 1 (vehicles in set Ej−1) if the vehicle remains plugged-in after time j. The vehicle is also added
to the set Ej . Based on owners’ input, the aggregator determines the planning window, which is from time j to the
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Figure 3: Illustration of planning (rolling) window in system with three arrivals

Algorithm 1 Rolling Horizon Algorithm

Initialize Ej = ∅, ∀j ∈ J + {0}, and set j = 1.
for j ∈ J do

Ej ← Aj

for i ∈ Ej−1 do
if tdepi > φj then

Add i to the Ej . Ej ← Ej + {i}
end if

end for
for i ∈ Ej do

Set LC{j}i , LD
{j}
i as the charge/discharge rate in the previous period.

Update the SOCinit,i as the SOC of EV i at time j.
end for
Update the uncertain parameters (W t and prt) with their recent forecast.
Set B = {i| i ∈ Ej , SOCmin,i > SOCinit,i}
Find the end of current planning window by τ jmax = max{tdepi | i ∈ Ej}
Calculate the expected charge demand of future arrivals from equation (30).
Run the optimization algorithm described in 4.2.
Charge and discharge the EVs according to optimal Xc, Xd values.

end for

time that last vehicle departs, denoted by τ jmax. It is defined by τ jmax = max{tdepi | i ∈ Ej}. As an example, consider
planning for EVs at j = 8 (8 am). In Figure 3, arrival and departure times for vehicles {1,2,3} are shown by down
arrows and up arrows, respectively. Set A8 = {1, 2, 3} is the set of EVs arriving in period j = [7 am, 8 am]. Assuming
that there are no arrivals before 7 am, the set E8 is equal to A8. The charging (plug-in) period for EVs are depicted as
blue lines. The end of planning window, τ8max, is defined by τ8max = max{tdepi | i ∈ E8}. The last departure is when
vehicle 2 departs at 2 pm (tdep2 = 56). Thus, the planning window is from φ8 = 32 to τ8max = 56.

If the arrivals after j were known to us, the problem and optimal solution would be more accurate resulting in a
global optimal solution. Since they are unknown, we need to estimate the average charge demand of future arrivals for
the current planning window. To estimate the amount of charge, we need to calculate the average number of EVs in
each ∆t period, the average charge required, and the average plug-in period by analyzing the historical data.

E[Dt
f ] =

ÊR · N̂ t
j

P̂ T
(30)

ÊR is the estimated charge required by an EV, and it can be calculated by ÊR = ˆSOCdes − ˆSOCinit. After finding
the set of vehicles to plan at time j, their state of charge, the charge/discharge rate for the period prior to j, and the
estimated future charge demand, the aggregator runs the optimization algorithm that solves the MIQP problem (which
is described in 4.2) to find the optimal charging procedure for each EV. The aggregator can repeat this process for the
next planning time j + 1. This repetitive algorithm will run for the planning horizon J , which can be from a few hours
to a couple of years. The steps of the rolling horizon approach are provided in Algorithm 1.
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4.2 Modeling & Mathematical Formulation

At each planning time j, the algorithm needs to solve a MIP or MIQP problem (depending on the battery degradation
model) similar to the static case. The optimization problem at planning time j considers the following objective function:

min

τj
max−1∑
t=φj

prtGt +
∑
i∈Ej

λΨi +

τj
max−1∑
t=φj

δΩt (31)

The objective function (31) is similar to the static case (3), except for the fact that it minimizes the cost for the
planning window, which is {φj , ..., τ jmax − 1} instead of the entire planning horizon T . Here, τ jmax is the end of
planning window and is defined by τ jmax = max{tdepi | i ∈ Ej}. Also, note that the total plug-in period (T pi )
is no longer from arrival time to departure time, it is from planning time j till departure. Thus, T pi is updated by
{φj , ..., t

dep
i − 1}.

Ψi =

tdepi −1∑
t=φj

α(ηciP
c
i (Xt

c,i −Xt−1
c,i ))2 + β(ηciP

c
i X

t
i )

2, ∀i ∈ Ejg2v (32)

Ψi =

tdepi −1∑
t=φj

α[ηciP
c
i (Xt

c,i −Xt−1
c,i )]2 + β[ηciP

c
i X

t
c,i]

2 + α[P di /η
d
i (Xt

d,i −Xt−1
d,i )]2

+β[(P di /η
d
i )Xt

d,i]
2, ∀i ∈ Ejv2g

(33)

Gt ≥
∑

i∈EV t
all

(P ci X
t
c,i) + E[Dt

f ]−
∑

i∈EV t
v2g

(P di X
t
d,i)−W t

forecast, ∀t ∈ {φj , ..., τ jmax − 1} (34)

Ωt ≥W t
forecast +

∑
i∈EV t

v2g

(P di X
t
d,i)−

∑
i∈EV t

all

(P ci X
t
c,i)− E[Dt

f ], ∀t ∈ {φj , ..., τ jmax − 1} (35)

The problem is subject to a set of constraints, most of which are similar to the static case with a few modifications.
Since planning occurs at time j, only vehicles in the set Ej from time φj to τ jmax are included in the problem.
Constraints (36)-(37) restore the charging and discharging rates for the last period prior to the planning time j.

X
φj−1
c,i = LC

{j}
i , ∀i ∈ Ej (36)

X
φj−1
d,i = LD

{j}
i , ∀i ∈ Ejv2g (37)
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The rest of the constraints in dynamic model are as follows:

SOC
φj

i = SOCinit,i, ∀i ∈ Ej (38)

SOCti = SOCt−1i + ηciP
c
i X

t−1
c,i , ∀i ∈ Ejg2v, ∀t ∈ {φj + 1, ..., tdepi } (39)

SOCti = SOCt−1i + ηciP
c
i X

t−1
c,i − P di X

t−1
d,i /η

d
i , ∀i ∈ Ejv2g, ∀t ∈ {φj + 1, ..., tdepi } (40)

SOCinit,i + P ci η
c
i (t

dep
i − φj) ≥ SOCdesired,i −MZi, ∀i ∈ Ej (41)

Xt
c,i ≥ Zi, ∀i ∈ Ej , ∀t ∈ T pi (42)

SOC
tdepi
i ≥ SOCdesired,i −MZi, ∀i ∈ Ej (43)

Xt
c,i ≤ 1− Y tc,i, ∀i ∈ Ejv2g, ∀t ∈ T

p
i (44)

Xt
d,i ≤ 1− Y td,i, ∀i ∈ Ejv2g, ∀t ∈ T

p
i (45)

Y tc,i + Y td,i = 1, ∀i ∈ Ejv2g, ∀t ∈ T
p
i (46)

SOCti ≥ SOCmin,i, ∀i ∈ Ej \B, ∀t ∈ T pi (47)
Xt
c,i = 1, ∀i ∈ B, ∀t ∈ {tarri , ..., tarri + Tmin,i} (48)

SOCti ≥ SOCmin,i, ∀i ∈ B, ∀t ∈ {tarri + Tmin,i + 1, ..., tdepi } (49)

SOCti ≤ SOCcap,i, ∀i ∈ Ej , ∀t ∈ {φj , ..., tdepi } (50)

0 ≤ Xt
c,i ≤ 1, ∀i ∈ Ej , ∀t ∈ T pi (51)

0 ≤ Xt
d,i ≤ 1, ∀i ∈ Ejv2g, ∀t ∈ T

p
i (52)

Y 1
c,i, Zi Binary, ∀i ∈ Ej , ∀t ∈ T pi (53)

Y td,i Binary, ∀i ∈ Ejv2g, ∀t ∈ T
p
i (54)

Ωt, Gt ≥ 0, ∀t ∈ {φj , ..., τ jmax − 1} (55)

5 Simulation

We perform comprehensive simulations to examine the performance of the proposed controlled charge/discharge
scheduling algorithm.

5.1 Simulation Settings

In our simulation, a day is evenly divided into 96 time intervals of ∆t = 15 minutes. For instance, t = 0 denotes
midnight and the start of scheduling period and t = 96 is midnight of the next day. Thus, the decision periods are
T = {0, 1, . . . , 95}. If a vehicle, for instance, arrives at time 6:00 am and departs at 12:15 pm, then tarr = 24 and
tdep = 49. The algorithm’s goal is to decide the battery charge/discharge rate of EV i during interval t (Xt

c,i, Xt
d,i).

Generation & Consumption data: The variations for electricity price and wind power generation are captured in ten
different scenarios at various months of the year. Hourly wind power production is simulated using Grid Lab System
Advisor Model (SAM) in northern California for a single wind turbine based on specifications of Endurance X33 turbine
with 230 kW power capacity in ten consecutive days for all ten scenarios [21]. Hourly electricity price is collected using
historical Locational Marginal price (LMP) data for day-ahead market at node "PLAINFLD_6_N001" from California
Independent System Operator (CAISO) for the same days [22]. The ten scenarios include five months in Spring and
Summer seasons, and five months in Fall and Winter seasons. Thus, we consider a total of 100 days, each day has
random arrival and departure behavior as well as different wind and electricity price profiles. Here, we propose that the
discharged energy of an EV is sold with a price of 90% of the real-time electricity price. Since the revenue made by the
EV owners in discharge mode is equal to the charge cost of discharge energy for the EVs in charge mode, we did not
include that in our mathematical model.
EV-related data: The owners behaviors are also simulated for ten scenarios. Considering a total of 100 EV trips per
day, the battery and charging characteristics of EVs are based on the specifications of 10 different EVs available in
the market in 2018 [23]. The EV battery info is summarized in table 1. EV arrival times are captured using data from
the National Household Travel Survey (NHTS) [24]. It is assumed that fifty of the EV charging occur at workplace
and the other fifty are vehicles parking at home. Thus, we used travel time data related to trips with home or work
purposes from NHTS. Figure 4a shows the probability of trip to home for each hour of the day. In Figure 4b, the x-axis
represents hour of the day, and the probability of trip to workplace is on the y-axis. In each scenario of the simulation,
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Figure 4: Distribution of arrival times at a) home b) workplace

(a) Distribution of arrivals at home (b) Distribution of arrivals at workplace

the optimal schedule algorithm is run for 10 days. The EV plug-in period is modeled as discrete uniform distribution
between 4 and 12 hours with a resolution of 15 minutes. The desired level of battery at departure is modeled using
uniform distribution in the range of 0.75 to 0.95 of battery capacity. We assume charging and discharging efficiency
of 90%. The initial state of charge is also assumed to follow a uniform distribution between 0 and 0.65 of the battery
capacity, while the minimum required state of charge (SOCmin) for all vehicles is assumed to be 5 kWh that in case
of emergency seems sufficient to reach a distance of approximately 25 miles. For battery degradation cost, as in [16],
values of 0.05 and 0.1 ¢ are used for α and β, respectively.

Table 1: EV characteristics

Vehicle
Acceptance

Rate
AR

Battery
Size

SOCcap

Charger
Capacity
CP

Battery
Cost
Cbat($)

BMW i3 2017 7.4 32 7.7 4,640
Ford Focus EV 6.6 23 7.7 3,500

Ford Focus EV 2017 6.6 33.5 7.7 4,850
Nissan Leaf S 2016 6.6 24 7.7 3,500
Nissan Leaf 2017 6.6 30 7.7 4,350
VW e-Golf 2017 7.2 35.8 7.7 5200

Chevy Bolt 7.2 60 7.7 8,700
Tesla Model S 70 Single 9.6 70 11.5 10,150
Tesla Model X 75 Dual 17.2 75 15.4 10,900
Tesla Model S 90 Dual 19.2 90 15.4 13,000

5.2 Results and Performance Analysis

To evaluate the performance of the proposed approach, the results of the dynamic charging algorithm are compared
with the static and BAU charging scenario. All models are run for the ten scenarios mentioned in Subsection 5.1. The
simulation is coded in Python 3.7 using Gurobi optimizer and the results for optimal solutions are shown in Figure 5.
Comparing the results, the proposed charging algorithm causes significant improvement in all the objective measures
including energy supplied from the grid, wind utilization, and total cost for EV owners. The total cost consists of
charging cost, degradation cost, and revenue made from selling discharging energy.

The results demonstrates that the dynamic model achieves a similar performance compared to the static scheduling
model. It is worthwhile to mention that the performance of the static case for some objective metrics is worse than the
dynamic case for a few scenarios due to the fact that we consider a multi-objective optimization. However, the total
objective value for the static case is always better than the dynamic case.

To validate our degradation model, Figure 6 shows that considering the linear degradation model described in 2.2
leads to very similar results compared to the quadratic model.
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Figure 5: Performance evaluation for all three charging cases, a) total grid supply, b) wind utilization, and c) total cost

(a) Total grid supply (kWh) (b) Wind utilization (%)

(c) Total cost (¢)

Figure 6: Comparison of the models with quadratic vs linear degradation function.

(a) Total cost (b) Wind utilization

5.2.1 Discussion of Objective Function Hyper-Parameters

Since we consider a weighted multi-objective optimization problem, we need to evaluate our objective for different
values of hyper-parameters. The values of δ and λ are parameters that determine the importance of the corresponding
term in the objective function. We will analyze the value of these two hyper-parameters for our objective measures.
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Figure 7: Performance evaluation under different values of δ

(a) Wind utilization. (b) Total cost relative to the δ = 0 case.

Figure 8: Performance evaluation under different values of λ

(a) Wind utilization (b) Degradation cost (c) Total cost

Performance evaluation under different values of δ: Giving a constant weight for wind curtailment does not capture the
dynamic of our model well. Thus, we consider the penalty relative to the electricity price such that wind curtailment
penalty and grid supply have same ratio through all periods. Here, δ is considered as multiplier of prt in the third term
of objective function. A small value of δ gives little weight to wind curtailment minimization, while making sure that
grid supply is as low as possible. If a large value is given to δ, wind curtailment is penalized more causing to increase
wind utilization in the cost of higher discharged energy and higher degradation cost, which as a result, leads to higher
total charging cost. Figure 7 shows the wind utilization percentage (a) and total cost (b) for multiple values of δ (λ
value is fixed and equal to 1). If wind utilization is of top priority, then a high value should be used for δ, and vice versa.
Experimentally, a value of 0.25 seems to have the best performance among all options.
Performance evaluation under different values of λ: The value of λ indicates the tolerance of EV owners for their
battery degradation. λ = 0 means high tolerance, while value of 1 means battery degradation cost is as important as
charging cost for the owner. Figure 8 plots the battery degradation cost, total cost, and wind utilization percentage for
multiple values of λ. As seen in these plots, a low value leads to higher wind utilization in cost of more degradation and
total cost.

5.2.2 V2G Benefits
To assess the benefits of V2G in this MG, we compare the scenarios in which the percentage of vehicles participating in
V2G versus G2V varies. Different values of Rv2g is considered to evaluate to the benefits of V2G to both the owner and
the grid. The performance evaluation under different value of Rv2g is shown in Figure 9. In order to maintain clarity,
the plots are shown for four months instead of all ten scenarios. In case where all vehicles participate in V2G, the grid
benefits from increasing the wind utilization and reducing the total energy curtailment. From the owners perspective,
the degradation cost increases as more vehicles discharge their energy; however, the total cost decreases mainly due to
the fact that the energy purchased from discharged energy reduces the need for expensive supply from the external grid.
In V2G case, the EVs store energy from wind source and in low wind periods, they inject energy back to the system
to charge other EVs. The breakdown of total cost for the EV owners from the July scenario is provided in Figure 10.
The charge cost consists of the cost of energy purchased from the grid and the discharge energy. The revenue and the
discharged energy cost cancel each other out; however, since the total supply from the grid decreases, the total cost
decreases as well.
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Figure 9: Performance evaluation under different values of RV 2G a) wind utilization, b) total cost, c) degradation cost, d) energy
discharged

(a) Wind utilization (%) (b) Total cost (¢)

(c) Total degradation cost (¢) (d) Total energy discharged (kWh)

5.2.3 Wind Forecast Uncertainty
In reality, the wind forecast for the following couple of hours is not perfect. Thus, we consider a model that with
updated wind forecast, the forecast is only accurate for the current ∆j planning interval. We believe that in the dynamic
model, since the scheduling of EVs are updated every one hour, the effect of intermittent wind generation is significantly
reduced and the model can accommodate the uncertainty of wind production to a higher degree. To prove that, we
consider a model with perfect wind forecast for the next one hour, beyond that, we use a discrete time Markov Decision
Process (MDP) model to estimate the wind generation [25]. In a simple case, we discretize the state space for wind
scenario and consider a MDP with 20 discrete states and estimate the transition probability based on historical (training)
data. The forecast for the next k hours is estimated by

W t+k
forecast =

∑
w∈Sw

P kW t,w × w, k = {1, 2, 3, ...} (56)

where, the state space is denoted by Sw and consists of 20 wind scenario representatives. P kW t,w is the transition
probability from current state of wind generation to state w in k transition steps. The first 15 days of each month are
used as training to calculate the transition probability matrix, and the problem is optimized for the next 10 days with
MDP wind forecast. The results are shown in Figure 11, where it is observed that the dynamic model with imperfect
wind forecast performs similar to the perfect forecast scenario. Also, note that we only considered a very simple MDP
process that might not be an accurate forecast. A better forecast for wind generation is likely to improve the quality of
solutions. Same procedure can also be applied to electricity price to predict real-time price, which is omitted from this
paper due to page limit restrictions.

6 Conclusion

In this paper, an optimization algorithm for EV charge/discharge scheduling is proposed to support wind energy
integration using a rolling horizon optimization method. The problem is formulated as a MIQP and the results show
significant improvement in our proposed approach compared to the BAU case in terms of total charging cost, wind
utilization, and demand from conventional generators. The main contribution here is to design the scheduling algorithm
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Figure 10: Charge cost and revenue from discharge for different value of RV 2G (July scenario)

Figure 11: Comparison of dynamic model with perfect forecast vs MDP wind forecast.

(a) Total grid supply (kWh) (b) Wind utilization (%) (c) Total cost (¢)

that aggregators can exploit the presence of advanced communication technology in smart grid, flexibility of EV drivers,
and the V2G technology to support high integration of intermittent wind energy into the power system. Unlike some of
the previous research, the proposed algorithm does not attempt to start or stop charging EVs frequently, which leads to
battery degradation. The approach here is based on optimal scheduling of a large number of EVs depending on the
availability of EVs and preferences, needs and flexibility of their owners. To mitigate the barriers in people participation
in V2G, the battery degradation, minimum required level of charge, and/or financial incentives for the EV drivers
are considered. Furthermore, in this work, multi-objective optimization is considered to maximize wind utilization,
minimize the demand from conventional generators, and minimizing charging cost while satisfying the driver needs and
preferences. A simulation of the proposed algorithms for different scenarios of EV characteristics, arrivals, departures,
and charging requirements are performed to check the quality of solutions and schedules. The results show that the
proposed model leads to significant improvement in all metrics and benefits both the owner and the grid. Moreover,
the results indicate that frequent updates of available wind power (and electricity price) in the deterministic problem
significantly reduce the effects of forecast uncertainty. Future research is needed to consider a large-scale grid with
multiple generators and consumers with the presence of battery storage and demand side management for residential
load to evaluate the users flexibility in power system. A financial incentive framework should also be developed to
encourage more people to participate in V2G.
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