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Abstract

This paper studies a mobile edge computing-enabled wireless blockchain net-

work, in which a set of Internet of Things (IoT) devices can act as miners

to participate in mining. In this blockchain network, we jointly optimize

the mining decision and resource allocation to maximize the total profit of

all miners. When using evolutionary algorithms to solve this problem, each

individual usually represents the mining decisions and resource allocations

of all miners, which results in the redundant search space due to the fact

that not all miners participate in mining. In this paper, we propose a new

differential evolution (DE) algorithm, called DEMiDRA. In DEMiDRA, each

individual represents the resource allocation of a participating miner and the

resource allocations of all participating miners constitute the whole popula-

tion. Then, DE is adopted to optimize the resource allocation. As for the

optimization of the mining decision, we need to select miners to participate in

mining and update the number of participating miners. Since the population
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size is equal to the number of participating miners, we transform the update

of the number of participating miners into the adjustment of the population

size and design an adaptive strategy. Besides, a tabu strategy is developed to

prevent unpromising miners from participating in mining. The effectiveness

of DEMiDRA is verified by comparing it with three other algorithms on a

set of instances.

Keywords: blockchain, mobile edge computing, differential evolution,

encoding, mining decision, resource allocation

1. Introduction

With the popularity of digital cryptocurrencies represented by Bitcoin

(Böhme et al., 2015), blockchain networks have received widespread attention

in past years. They are decentralized peer-to-peer networks that do not

require the participation of third parties and can guarantee tamper-proof

ledger, and transparent and secure transactions (Yuan and Wang, 2018). Due

to these advantages, blockchain networks have been applied in various fields,

such as Internet of Things (IoT) (Zhang et al., 2019), smart manufacturing

(Leng et al., 2020), supply chain (Azzi et al., 2019), and smart grid (Wang

et al., 2019c).

Blockchain networks record data as blocks and form a linked list structure.

In order to add a new block to the current blockchain network, blockchain

users (i.e., miners) need to address the Proof-of-Work (PoW) puzzle (also

known as mining) to obtain a hash value to link previous and current blocks.

After the PoW puzzle is solved, the results will be broadcast to other miners

in the blockchain network for verification. If most miners reach consensus,
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the new block is successfully added (Xiong et al., 2018). The mining process

involves an exhaustive query of an anti-collision hash function, which is gen-

erally resource-intensive and requires high computing capabilities of miners.

However, usually limited resources can be provided to miners. This gives rise

to the question of how to manage resources.

Recently, several researches have devoted to resource management in

blockchain networks. They mainly focus on two key issues: mining decision

and resource allocation. The former is to decide whether a miner participates

in mining or not and the latter is to determine how many resources are allo-

cated to each participating miner. Houy (2016) studied the mining decision

in a two-miner Bitcoin network. Kiayias et al. (2016) adopted the stochas-

tic game for the mining decision in a multi-miner Bitcoin network. Due to

the randomness of the mining process, miners are usually willing to join in

mining pools to obtain stable profits. To this end, Liu et al. (2018b) con-

sidered the dynamics of mining pool selection in a blockchain network, and

then modeled the mining pool selection problem as an evolutionary game and

provided a theoretical analysis of evolutionary stability. Since some miners

in the mining pool may exhibit malicious behaviors, resulting in wasted com-

puting resources, Tang et al. (2019) designed a game-theoretic framework to

motivate miners to participate honestly in mining. Although the success of

these methods has been reported, all of them are studied on wired blockchain

networks. With the rise of IoT devices (IoTDs), wireless blockchain networks

running on IoTDs have attracted much attention (Ali et al., 2019). However,

due to limited computing capabilities, IoTDs cannot support mining on local

devices (Jiang et al., 2019).
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Mobile edge computing (MEC) is a promising technology that can en-

hance computing capabilities of IoTDs by offloading tasks to the MEC server

(Wang et al., 2019b). Several works have been conducted on MEC-enabled

wireless blockchain networks. For instance, Liu et al. (2018a) designed a

MEC-enabled wireless blockchain network and proposed an alternating di-

rection method of multipliers for resource management. However, Liu et al.

(2018a) ignored the profit of the MEC service provider (MSP). When its

profit is too low, the MSP may no longer provide computing services for

miners, and the wireless blockchain networks may not be able to work. Lu-

ong et al. (2018) adopted a deep learning approach for resource management

in MEC-enabled wireless blockchain networks. Jiao et al. (2019) studied

on two bidding schemes for resource management in MEC-enabled wireless

blockchain networks: the constant-demand scheme and the multi-demand

scheme. In the former, an auction mechanism is designed to achieve the

optimal social welfare. In the latter, an approximate algorithm is proposed

to simultaneously take the truthfulness, individual rationality, and compu-

tational efficiency into account. In addition, Xiong et al. (2019) modeled

the resource management problem as a two-stage Stackelberg game and then

obtained the Stackelberg equilibrium under two different price schemes. How-

ever, these papers (Luong et al., 2018; Jiao et al., 2019; Xiong et al., 2019) do

not consider the transmission delay between the miners and the MEC server.

If too many miners offload tasks to the MEC server at the same time, they

may face severe interference, resulting in a high transmission delay (Huang

et al., 2019).

Different from existing works, in this paper, we consider both the profit of
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the MSP and the transmission delay in a MEC-enabled wireless blockchain

network. In order to maximize the total profit of all miners, we jointly opti-

mize the mining decision and resource allocation. When using evolutionary

algorithms (EAs) to solve this problem, each individual usually represents

the mining decisions and resource allocations of all miners. Since not all

miners participate in mining, encoding resource allocations of all miners into

individuals will generate the redundant search space, thus causing poor per-

formance. To avoid this issue, a new differential evolution (DE) algorithm

is proposed, called DEMiDRA. The main contributions of this paper are

summarized as follows:

• We devise a new encoding scheme, in which the resource allocation of

each participating miner is encoded as an individual and the whole pop-

ulation represents the resource allocations of all participating miners.

As a result, the population size is equal to the number of participat-

ing miners. In this way, only the resource allocations of participating

miners are considered, thereby eliminating the redundant search space.

• Because the population size is equal to the number of participating

miners, the update of the number of participating miners is essentially

equivalent to the adjustment of the population size. To this end, we de-

sign an adaptive strategy to adjust the population size. Besides, a tabu

strategy is proposed to prevent unpromising miners from participating

in mining.

• Extensive experiments are carried out on a set of instances to inves-

tigate the performance of DEMiDRA. Its effectiveness is verified by
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comparing it with the other three algorithms.

The rest of this paper is organized as follows. Section 2 presents the

system model and problem formulation. Section 3 describes the details of

DEMiDRA. The experimental studies are shown in Section 4. Finally, Sec-

tion 5 concludes this paper.

2. System Model and Problem Formulation

Nomenclature

f Computing resources allocated to all participating miners

m Mining decisions of all miners

p Transmission power allocated to all participating miners

N Set of miners

N ′ Set of participating miners

Di Block size of the task of the ith miner

Em
i Mining energy consumption of the task of the ith participating miner

Et
i Transmission energy consumption of the task of the ith participating

miner

Fminer Profit of all miners

FMSP Profit of the MSP

Fminer
i Profit of the ith participating miner
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Figure 1: A MEC-enabled wireless blockchain network.

n Number of miners

n′ Number of participating miners

Pm
i Probability that the ith participating miner obtains the reward

P o
i Orphaning probability of the ith participating miner

Ri Transmission rate of the ith participating miner

Tmi Mining time of the task of the ith participating miner

T ti Transmission time of the task of the ith participating miner

Xi Computing intensity (in CPU Cycles/bit) of the task of the ith miner

As shown in Fig. 1, a MEC-enabled wireless blockchain network is con-

sidered, in which a set of n IoTDs, denoted as N = {1, 2, . . . , n}, can act

as miners to participate in mining and each of them has a mining task to
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execute (Liu et al., 2018a). For the sake of simplicity, we define the mining

task of the ith miner as a 2-tuple: {Di, Xi}, where Di and Xi represent the

block size of the task of the ith miner and the computing intensity (in CPU

Cycles/bit) of the task of the ith miner, respectively. Due to the limited

computing capabilities of IOTDs, if a miner decides to participate in mining,

it needs to purchase computing resources from the MSP and then offload

its mining task to the MEC server. In the studied blockchain network, the

mining task is considered to be completed only after three steps (i.e., offload-

ing, mining, and propagation steps) are successfully completed, and then the

miner can obtain a reward. If a miner decides not to participate in mining

or fails to complete its mining task, it cannot obtain any reward (Liu et al.,

2018a).

In this paper, m = {m1, . . . ,mn} is defined as the mining decisions of all

miners, where mi = 1 or mi = 0 (i ∈ N ) indicates that the ith miner decides

to or decides not to participate in mining, respectively. Herein, N ′ is used to

represent the set of participating miners. Thus, the number of participating

miners is equal to n′ =
∑

i∈N mi.

In addition, we need to allocate resources (including the transmission

power of IoTDs and the computing resources of the MEC server) to the

participating miners. In this paper, p = {p1, . . . , pn′} and f = {f1, . . . , fn′}

are defined as the transmission power and computing resources allocated to

all participating miners, respectively, where pi and fi (i ∈ N ′) represent the

transmission power and computing resources (CPU Cycles/s) allocated to

the ith participating miner, respectively.
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2.1. Offloading Step

In this step, participating miners simultaneously transmit tasks to the

MEC server. The transmission rate of the ith participating miner is expressed

as (Chen, 2015; Huang et al., 2019)

Ri = Blog2

(
1 +

piHi

σ2 +
∑

j∈N ′\imjpjHj

)
, ∀i ∈ N ′ (1)

where B denotes the bandwidth, Hi denotes the channel state information of

the ith participating miner, and
∑

j∈N ′\imjpjHj represents the interference

received by the ith participating miner from other participating miners, and

σ2 represents the background noise power.

Then, the transmission time and energy consumption of the task of the

ith participating miner can be respectively given as

T ti =
Di

Ri

, ∀i ∈ N ′ (2)

and

Et
i = piT

t
i , ∀i ∈ N ′. (3)

2.2. Mining Step

In this step, the MEC server executes the mining tasks transmitted by

participating miners. The mining time and energy consumption of the task

of the ith participating miner are respectively expressed as

Tmi =
DiXi

fi
, ∀i ∈ N ′ (4)

and

Em
i = k1f

3
i T

m
i , ∀i ∈ N ′ (5)
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where k1 is the effective capacitance coefficient.

In blockchain networks, a miner who executes a mining task faster has a

greater probability of obtaining a reward (Xiong et al., 2019). Therefore, it

is assumed that the probability that a miner obtains the reward is inversely

proportional to its mining time, which is expressed as

Pm
i =

k2
Tmi

, ∀i ∈ N ′ (6)

where k2 is the scale factor.

2.3. Propagation Step

After completing the mining step, if the result propagates slowly, the

miner still cannot obtain a reward. The reason is that under this condition,

the consensus may not be reached and the block may be discarded, which

is called orphaning (Liu et al., 2018a). In blockchain networks, the block is

generated following a Poisson process with a constant mean rate of λ, and

its propagation time T oi is linearly related to the block size Di(Xiong et al.,

2019). The orphaning probability of the ith participating miner is given as

P o
i = 1− e−λ(T o

i +T
s
i )

= 1− e−λ(zDi+T
t
i ), ∀i ∈ N ′

(7)

where z denotes a given delay factor and T si is the time when the ith par-

ticipating miner starts mining its block. In this paper, the mining task of

the ith participating miner will be executed once it is received by the MEC

server; thus, T si = T ti .
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2.4. Profit Model

The reward obtained by a miner consists of two parts: a fixed reward and

a variable reward. In addition, a miner needs to consume certain communi-

cation and computing costs. Thus, the profit of the ith participating miner

is specified by

Fminer
i = (w + αDi)P

m
i (1− P o

i )− c1Et
i − c2fi, ∀i ∈ N ′ (8)

where w represents the fixed reward, αDi represents the variable reward, α

denotes the variable reward factor, and c1 and c2 denote the prices of the

transmission energy and computing resources, respectively. Thus, the profit

of all miners is

Fminer =
∑
i∈N ′

Fminer
i . (9)

In addition, the MSP obtains the revenue by selling computing resources

to the miners, but it needs to pay for its cost of energy consumption, which

includes the mining energy consumption and the no-load energy consump-

tion. Therefore, the profit of the MSP can be expressed as

FMSP =
∑
i∈N ′

(c2fi − c3Em
i )− c3E0 (10)

where c3 denotes the price of energy consumed by the MSP and E0 represents

the no-load energy consumption of the MSP.

2.5. Problem Formulation

In the studied blockchain network, we jointly optimize the mining decision

(i.e., m) and resource allocation (i.e., p and f), with the aim of maximizing
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the total profit of all miners. The problem is formulated as:

max
m,p,f

Fminer =
∑
i∈N ′

Fminer
i

s.t. C1 : mi ∈ {0, 1}, ∀i ∈ N

C2 : pmin ≤ pi ≤ pmax, ∀i ∈ N ′

C3 : fmin ≤ fi ≤ fmax, ∀i ∈ N ′

C4 :
∑
i∈N ′

fi ≤ f total (11)

C5 : FMSP ≥ 0

C6 : T ti + Tmi + T oi ≤ Tmaxi , ∀i ∈ N ′

where C1 indicates that each miner can decide whether to participate in

mining or not; C2 specifies the minimum and maximum transmission power

allocated to each participating miner; C3 states the minimum and maximum

computing resources allocated to each participating miner; C4 indicates that

the total computing resources allocated to participating miners cannot ex-

ceed the total capacity of the MEC server; C5 ensures that the profit of

the MSP should not be less than 0; and C6 states that the total time of

offloading, mining, and propagation steps cannot exceed the maximum time

constraint. Note that, in the studied blockchain network, we assume that

IoTDs are homogeneous and each of them has the same range of the trans-

mit power (i.e., [pmin, pmax]) and the same range of the computing resources

(i.e., [fmin, fmax]).
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m1,2 ... m1,nm1,1 p1,2 ... p1,np1,1 f1,2 ... f1,nf1,1

. 
.
 
.

m2,2 ... m2,nm2,1 p2,2 ... p2,np2,1 f2,2 ... f2,nf2,1

mNP,2 ... mNP,nmNP,1 pNP,2 ... pNP,npNP,1 fNP,2 ... fNP,nfNP,1

An individual: 
mining decisions and 
resource allocations 

of all miners
A population:

NP mining decisions and 
resource allocations of 

all miners

Mining decision, transmission power, 
and computing resources of the first 

miner in the first individual

Figure 2: The commonly used encoding scheme, where NP denotes the population size of

EAs.

3. Proposed Approach

3.1. Motivation

It can be observed that (11) is a mixed-variable nonlinear optimization

problem since m is a binary vector, and p and f are two continuous vectors.

As a result, (11) is difficult to solve by traditional optimization methods

(Liu et al., 2020). In this paper, we use EAs to solve (11) as they have

great potential in dealing with complex optimization problems (Yi et al.,

2020; Luo et al., 2020; Xiang et al., 2019). The encoding scheme in Fig.

2 is commonly used in EAs (Jiang et al., 2019; Guo et al., 2018), where

an individual represents the mining decisions and resource allocations of all

miners. It is worth noting that if a miner decides not to participate in

mining (i.e., mi = 0), this miner does not need to transmit its mining task

to the MEC server or purchase computing resources to execute its mining

task. In this case, the resource allocation for this non-participating miner is

not required. Therefore, the commonly used encoding scheme generates the
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pn' fn'

p2 f2

p1 f1

An individual: 

resource allocation of 
a participating miner

A population:  

resource allocations of 
all participating miners

Transmission power and 

computing resources of the 

first participating miner 

. 
. 

.

Figure 3: The proposed encoding scheme.

redundant search space, which may cause performance degradation.

In this paper, eliminating the redundant search space is essential to im-

prove the performance of the algorithm. In addition, we can observe that

the search region of the resource allocation of each participating miner is the

same (i.e., [pmin, pmax] × [fmin, fmax]). Motivated by (Wang et al., 2018b;

Huang et al., 2020), a novel encoding scheme is proposed as shown in Fig.

3. To be specific, each individual represents the resource allocation of a

participating miner and the resource allocations of all participating miners

constitute the whole population. As a result, the population size is equal

to the number of participating miners. It is noteworthy that although the

mining decisions are not encoded into individuals directly, they are implicitly

considered in the proposed encoding scheme since we focus on the resource

allocations of participating miners.

Compared with the commonly used encoding scheme, the proposed en-

coding scheme has the following advantages:

• With respect to the commonly used encoding scheme, the resource
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allocations of all miners are considered even if some miners do not

participate in mining. However, in the proposed encoding scheme, only

the resource allocations of participating miners are considered; thus, the

redundant search space can be eliminated.

• Regarding the commonly used encoding scheme, each individual con-

tains both binary and continuous variables. In contrast, in the pro-

posed encoding scheme, each individual contains only continuous vari-

ables and no binary variables. Therefore, we only need to adopt the

evolutionary operators designed for continuous variables.

• For the commonly used encoding scheme, the length of each individual

in the population is 3n, which will give rise to a huge search space

when the value of n is big (e.g., n > 100). But for the proposed

encoding scheme, the length of each individual is very short (i.e., two),

regardless of the value of n. Thus, the optimal solution is searched in

a two-dimensional search space.

• In the commonly used encoding scheme, an important parameter (i.e.,

the population size) needs to be set in advance. However, the popula-

tion size is equal to the number of participating miners in the proposed

encoding scheme. Therefore, this parameter does not need to be preset.

Based on the proposed encoding scheme, a new DE algorithm is devised

for jointly optimizing the mining decision and resource allocation, called

DEMiDRA.
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Algorithm 1 General Framework of DEMiDRA

1: Input: The number of participating miners: nmin, the maximum number

of fitness evaluations (FEs): MaxFEs

2: Randomly choose nmin miners as the participating miners and initialize

the mining decisions: m;

3: Initialize the resource allocations of all participating miners: p and f ,

which form an initial population P ;

4: Evaluate the objective function value and degree of constraint violation

of P based on (11);

5: FEs = 1; // FEs denotes the number of FEs

6: Initialize the selection probability vector r = [r1, r2, r3] to represent the

selection probabilities of the insertion, deletion, and replacement opera-

tors;

7: Initialize T list = ∅ to record unpromising miners;

8: while FEs < MaxFEs do

9: Implement the mutation and crossover operators to generate an off-

spring population Q;

10: for i=1:|Q| do

11: Update m and P according to Algorithm 2;

12: Update r and T list according to Algorithm 3;

13: end for

14: end while

15: Output: m and P
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3.2. General Framework

The general framework of DEMiDRA is presented in Algorithm 1. In

the initialization, we first randomly choose nmin miners1 as the participat-

ing miners. Besides, the resource allocations of all participating miners are

randomly generated in the search space, which form an initial population P .

Then, the objective function value and degree of constraint violation of P

are evaluated based on (11). Subsequently, we initialize a probability vector

r = [r1, r2, r3], where r1, r2, and r3 represent the selection probabilities of

the insertion, deletion, and replacement operators, respectively. Moreover,

a tabu list T list is initialized as an empty set, with the aim of recording

unpromising miners. In the evolution, an offspring population Q with the

same size as P (i.e., |P| = |Q|) is generated via the “DE/rand/1” mutation

operator and the binomial crossover operator (Wang et al., 2019a, 2018a).

2 Then, by making use of each individual in Q, m and P are updated via

Algorithm 2. In addition, r and T list are updated in Algorithm 3. The

evolution is repeated until the stopping criterion is met (i.e., the maximum

number of fitness evaluations (FEs) MaxFEs is reached). The updates of

m, P , r, and T list are introduced in the following.

1The reason why nmin miners are chosen to participate in mining in the initialization

is that C4 cannot be satisfied when the number of participating miners is less than nmin,

where nmin = b 4c
2
3E0k1 mini∈N (DiXi)

c22
c. A detailed proof is given in the Appendix.

2Note that, there are various mutation operators of DE. The reason why the

“DE/rand/1” mutation operator is selected is that it is the most commonly used one

(Wang et al., 2018b; Huang et al., 2020).
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Algorithm 2 Updates of m and P
1: Input: Parent population: P , offspring population: Q, probability vec-

tor: r, and tabu list: T list

2: Generate a random number rand between [0,1];

3: if 0 ≤ rand ≤ r1 and |P| < n then

4: Implement the insertion operator based on P and the ith individual in

Q to obtain m′ and P ′;

5: else if r1 < rand ≤ (r1 + r2) and |P| > nmin then

6: Implement the deletion operator based on P to obtain m′ and P ′;

7: else

8: Implement the replacement operator based on P and the ith individual

in Q to obtain m′ and P ′;

9: end if

10: Evaluate the objective function value and degree of constraint violation

of P ′ based on (11);

11: FEs = FEs+ 1;

12: if P ′ is better than P based on the feasibility rule (Deb, 2000) then

13: m←m′ and P ← P ′;

14: end if

15: Output:

16: Output: m, P , and P ′
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3.3. Updates of m and P

In order to optimize the mining decision, we need to select miners to

participate in mining and update the number of participating miners. To

this end, the following two aspects are crucial toward the optimization of the

mining decision:

• As stated in Section 3.1, each individual in P represents the resource

allocation of a participating miner; therefore, |P| is equal to the num-

ber of participating miners. Since the optimal number of participating

miners is unknown, |P| should be able to increase, decrease, or keep

unchanged for updating the number of participating miners. More-

over, |P| should not change dramatically; otherwise, the search may be

unstable.

• It is necessary to prevent unpromising miners from participating in

mining to enhance the efficiency.

Considering the first aspect, we design three operators, namely, inser-

tion, deletion, and replacement operators, to generate three new populations.

Their population sizes are |P + 1|, |P − 1|, and |P|, respectively. By using

one of them to update P , |P| can steadily increase, decrease, or keep un-

changed. In addition, only one individual in P is different from each new

population, which suggests that at most one individual in P is updated in

each generation. Therefore, P can be updated in a stable way. Note, how-

ever, that if all the three operators are implemented in each update, three

FEs are required for evaluating the three new populations. As a result, the

overall evolutionary process requires a large number of FEs. To this end,
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an operator is adaptively selected in each update based on r. Regarding the

second aspect, a tabu strategy is designed, in which unpromising miners are

added to T list.

The update process of m and P is presented in Algorithm 2. First, the

roulette wheel selection is adopted to select an operator from the insertion,

deletion, and replacement operators based on r to update m and P . The

updated m and P are denoted as m′ and P ′, respectively. Note that if |P| is

equal to n or nmin, the insertion or deletion operator cannot be implemented,

respectively. Based on P and the ith (i = 1, . . . , |Q|) individual in Q, the

insertion, deletion, and replacement operators are described as follows:

• Insertion operator: A miner, who does not participate in mining and is

not in T list, is randomly selected to participate in mining. Then, the

ith individual in Q is used to represent the resource allocation of this

miner and added into P .

• Deletion operator: A participating miner is randomly selected to give

up mining and its resource allocation is removed from P .

• Replacement operator: The ith individual in Q is used to randomly

replace the resource allocation of a participating miner (i.e., a random

individual in P). Since m is not changed, m′ is the same with m.

Then, the objective function value and degree of constraint violation of P ′

are evaluated based on (11). If P ′ is better than P based on the commonly

used feasibility rule (Deb, 2000), m and P are replaced with m′ and P ′,

respectively. Note that, in the updating of P , the used selection operator is

different from the conventional selection operator of DE (Zhou et al., 2019;
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Figure 4: Trends of rew(ri) and pen(ri).

Chu et al., 2019) since a better population is selected rather than a better

individual.

3.4. Updates of r and T list

3.4.1. Update of r

In this paper, r is updated by collecting information on which operator is

used and the performance of P ′. To be specific, if an operator is implemented

and P ′ is better than P , the selection probability of this operator will be

increased by rew(ri), where rew(ri) is a reward function. In contrast, if an

operator is implemented and P ′ is worse than P , the selection probability

of this operator will be decreased by pen(ri), where pen(ri) is a penalty

function. rew(ri) and pen(ri) are designed as

rew(ri) = ξ(1− ri)e−4ri , i = 1, 2, 3 (12)

and

pen(ri) = ξrie
−4(1−ri), i = 1, 2, 3. (13)

The reasons for designing the reward and penalty functions in (12) and

(13) are as follows. As shown in Fig. 4, the value of rew(ri) changes from ξ
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to 0 when the value of ri changes from 0 to 1. In this way, a large reward is

given when the value of ri is small and a small reward is given when the value

of ri is big. It is reasonable since when the value of ri is big, it means that the

corresponding operator already has a high probability to be selected. In this

case, a small reward can avoid a dramatic increase in the value of rew(ri).

In contrast, a large penalty is given when the value of ri is big, and a small

penalty is given when the value of ri is small. As a result, as ri increases,

the values of rew(ri) and pen(ri) have the opposite trends.

It is worth noting that in the initialization, the number of participating

miners is small. Therefore, big selection probabilities are set for the inser-

tion and replacement operators while a smaller selection probability for the

deletion operator. Specifically, r is initialized as r = [0.45, 0.10, 0.45]. More-

over, after each update of r, the normalization is performed to ensure that

r1 + r2 + r3 = 1. The normalization of r is: ri = ri/(r1 + r2 + r3), i = 1, 2, 3.

3.4.2. Update of T list

If the performance of the population cannot be improved after a miner

participates in mining or if the performance of the population can be im-

proved after a miner gives up participating in mining, both miners are con-

sidered to be unpromising miners. The reason is that if these miners are

immediately selected to participate in mining again, the performance of the

population is unlikely to be improved. As a result, we record these miners

in T list and prevent them from participating in mining.

Specifically, T list is updated in the following two cases:

• If the insertion operator is implemented and P ′ is not better than P ,

the miner who intends to participate in mining is added into T list.
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Algorithm 3 Updates of r and T list

1: Input: Parent population: P , new population: P ′, probability vector:

r, and tabu list: T list

2: if the insertion operator is implemented then

3: if P ′ is better than P then

4: r1 = r1 + rew(r1);

5: else

6: r1 = r1 − pen(r1);

7: Add the miner who intends to participate in mining into T list;

8: end if

9: else if the deletion operator is implemented then

10: if P ′ is better than P then

11: r2 = r2 + rew(r2);

12: Add the miner who gives up participating in mining into T list;

13: else

14: r2 = r2 − pen(r2);

15: end if

16: else if the replacement operator is implemented then

17: if P ′ is better than P then

18: r3 = r3 + rew(r3);

19: else

20: r3 = r3 − pen(r3);

21: end if

22: end if

23: Normalize r;

24: Output: r and T list
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• If the deletion operator is implemented and P ′ is better than P , the

miner who gives up participating in mining is added into T list.

In this paper, the length of T list is limited (e.g., 0.05n). When T list is

full, in order to add a new unpromising miner, the earliest added miner will be

removed. After removed from T list, this miner can be selected to participate

in mining again. The updates of r and T list are given in Algorithm 3.

3.5. Discussion

The major characteristics of DEMiDRA are discussed below.

• Although DEMiDRA shares some similarity to the methods in (Wang

et al., 2018b; Huang et al., 2020) in terms of the encoding scheme,

there are still several differences. To be specific, DEMiDRA uses a

variable-size population, while the method in (Wang et al., 2018b) uses

a fixed-size population. In addition, DEMiDRA is used to solve the

mixed-variable optimization problem while the method in (Huang et al.,

2020) is proposed for the variable-length optimization problem. Fur-

ther, DEMiDRA is different from the method in (Huang et al., 2020)

by designing an adaptive strategy to adjust the population size.

• DEMiDRA treats the whole population as a solution and changes

the miner decision and resource allocation of one miner at most in

each update. Therefore, DEMiDRA is similar to local search meth-

ods. Note, however, that local search methods typically randomly

changes the miner decision and resource allocation of one miner. How-

ever, DEMiDRA adopts the crossover and mutation operators of DE
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to changes the miner decision and resource allocation. In this case,

DEMiDRA can use the information of other miners.

4. Experimental Studies

4.1. Algorithms for Comparison

The following algorithms were under our consideration for performance

comparison.

• DE (Das and Suganthan, 2011): DE is originally designed for continuous-

variable optimization problems and needs to be modified when dealing

with mixed-variable optimization problems. To satisfy integer restric-

tions in the mining decision, the rounding operator is adopted after

the crossover operator, which can transform a continuous value to its

closest integer.

• ACOMV (Liao et al., 2014): ACOMV already has categorical and

continuous-variable optimization mechanisms, which can deal with the

mining decision and resource allocation, respectively.

• BOToP (Liu et al., 2020): BOToP first solves a transformed constrained

biobjective optimization problem, the purpose of which is to approach

the optimal solution of the mixed-variable optimization problem, and

then DE is used to solve the original mixed-variable optimization prob-

lem to obtain the final optimal solution.

Note that these three competitors adopt the commonly used encoding

scheme.
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Table 1: Parameter Settings of the Studied Blockchain Network

Parameter Value Parameter Value Parameter Value

X 1.8e+ 5 Cycles/bit z 1.00e− 4 c3 3 Token/J

σ2 -174dBm/Hz B 10 MHz Di [1, 2] Kbit

c2 10 Token/GCycles Ti,max 4s f total 800 GCycles/s

α 0.005 Token/bit c1 20 Token/J w 2

fi [0.1, 2] GCycles/s E0 70 J pi [0.01, 1] W

λ 1/600 k1 1e-27 k2 1

4.2. Parameter Settings

The parameter settings of the three competitors and DEMiDRA are pre-

sented as follows:

• Population size: The population sizes of DE, ACOMV, and BOToP

were set to 100, 60, and 30, respectively, which are consistent with

the original studies (Das and Suganthan, 2011; Liao et al., 2014; Liu

et al., 2020). In addition, there is no need to set the population size

for DEMiDRA since its population size is equal to the number of par-

ticipating miners.

• Specific parameters: For DE, the scaling factor F and the crossover con-

trol parameter CR were set to 0.9 and 0.5, respectively. For ACOMV,

the influence of the best-quality solution was set to 0.05099 and the

search width was set to 0.6795. For BOToP, F and CR were selected

from two parameter pools: {0.6, 0.8, 1.0} and {0.1, 0.2, 1.0}, respec-

tively. For DEMiDRA, F and CR were set to 0.9 and 0.5, respectively.

Besides, ξ in (12) and (13) was set to 0.005.

• Stopping criterion: Each algorithm terminated when 10,000 FEs was
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Table 2: Results (in Token) of DEMiDRA and the Three Competitors.

n
DE

Mean±Std Dev

ACOMV

Mean±Std Dev

BOToP

Mean±Std Dev

DEMiDRA

Mean±Std Dev

50
1.42e+3±3.41e+1 ↑ 1.87e+3±1.33e+1 ↑ 1.61e+3±7.18e+1 ↑

2.27e+3±2.27e+2
[59.86%] [21.39%] [40.99%]

100
2.27e+3±4.78e+1 ↑ 2.86e+3±1.97e+1 ↑ 2.50e+3±8.14e+1 ↑

4.74e+3±3.60e+2
[108.81%] [65.73%] [89.60%]

150
2.91e+3±5.69e+1 ↑ 3.81e+3±1.27e+2 ↑ 3.12e+3±1.14e+2 ↑

7.50e+3±1.25e+1
[157.73%] [96.85%] [140.38%]

200
3.59e+3±8.47e+1 ↑ 5.11e+3±2.57e+2 ↑ 3.78e+3±1.70e+2 ↑

1.00e+4±1.86e+1
[178.55%] [95.88%] [164.55%]

250
4.24e+3±8.73e+1 ↑ 6.23e+3±2.67e+2 ↑ 4.35e+3±1.27e+2 ↑

1.25e+4±2.56e+2
[194.81%] [100.64%] [187.36%]

300
4.54e+3±7.93e+2 ↑ 6.81e+3±2.55e+2 ↑ 4.60e+3±1.57e+2 ↑

1.48e+4±4.18e+1
[225.99%] [117.33%] [221.74%]

350
5.04e+3±1.28e+2 ↑ 7.68e+3±3.38e+2 ↑ 5.23e+3±1.44e+2 ↑

1.72e+4±5.82e+1
[241.27%] [123.96%] [ 228.87%]

400
5.30e+3±1.19e+2 ↑ 8.12e+3±3.09e+2 ↑ 5.67e+3±2.50e+2 ↑

1.95e+4±1.03e+2
[267.92%] [140.15%] [243.92%]

450
5.82e+3±1.35e+2 ↑ 9.08e+3±4.64e+2 ↑ 6.09e+3±2.37e+2 ↑

1.99e+4±2.02e+2
[241.92%] [119.16%] [226.77%]

500
5.92e+3±1.98e+2 ↑ 9.38e+3±4.80e+2 ↑ 6.60e+3±2.96e+2 ↑

1.99e+4±1.69e+2
[236.15%] [112.15%] [201.52%]

↑ / ↓ / ≈ 10/0/0 10/0/0 10/0/0
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reached (i.e., MaxFE = 10, 000). Note that, in BOToP, the first half

of MaxFEs was allocated to the first phase and the rest was allocated

to the second phase.

The parameter settings of the studied blockchain network are given as

follows. All miners were randomly distributed in a 1,000m ×1,000m square

area and the MEC server was located in the center of this area. Ten instances

with different numbers of miners (i.e., n = 50, 100, . . . , 500) were considered

to test the performance of DEMiDRA. The other parameter settings are

summarized in Table 1.

All the experiments are implemented in MATLAB and are tested on a

personal computer running with an Intel Core i5-7500 CPU @3.40 GHz and

8 GB of RAM.

4.3. Comparison With Three Competitors

The results of DEMiDRA and the three competitors are given in Table 2,

where “Mean” and “Std Dev” indicate the average and standard deviation

of the total profits of all miners over 30 independent runs, respectively, and

percentages in the square brackets indicate the performance improvement

of DEMiDRA against the three competitors. In addition, the Wilcoxon’s

rank-sum test at a 0.05 significance level was executed to test the statistical

significance between DEMiDRA and each competitor. At the bottom of

Table 2, “↑”, “↓”, and “≈” indicate that DEMiDRA performs better than,

worse than, and similar to each competitor, respectively.

From Table 2, we can observe that DEMiDRA provides a better average

total profit than the three competitors on each instance. It is worth noting
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Figure 5: Evolution of the average total profits of all miners provided by DEMiDRA and

the three competitors.
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that, when n ≥ 200, the average total profits obtained by DEMiDRA are an

order of magnitude higher than those derived from the three competitors. In

terms of the performance improvement, DEMiDRA has an advantage over

the three competitors on each instance. Specifically, compared with DE,

DEMiDRA provides more than 100% performance improvement on all in-

stances except n = 50. When n ≥ 300, the performance improvement of

DEMiDRA is over 200%. Against ACOMV, when n ≥ 250, DEMiDRA

achieves more than 100% performance improvement. In addition, when

150 ≤ n ≤ 250 and n ≥ 300, the performance improvement of DEMiDRA is

more than 100% and 200% against BOToP, respectively. Besides, DEMiDRA

is statistically better than the three competitors on each instance according

to the Wilcoxon’s rank-sum test at a 0.05 significance level. Fig. 5 depicts the

evolution of the average total profits of all miners provided by DE, ACOMV,

BOToP, and DEMiDRA3. As shown in Fig. 5, DEMiDRA achieves the best

performance among all algorithms.

For the above observations, we would like to give the following comments.

DE, ACOMV, and BOToP face the challenges caused by both mixed variables

and the large search space. However, since the individuals in DEMiDRA

contain only continuous variables and the length of each individual is two,

DEMiDRA does not suffer from the above-mentioned challenges. More im-

portantly, although DE, ACOMV, and BOToP can generate different indi-

viduals, some of them may have the same performance since there may exist

a lot of redundant variables. However, this phenomenon does not occur in

3Note that, when an algorithm cannot produce any feasible solution, the average total

profit of all miners was set to 0.
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DEMiDRA due to the fact that DEMiDRA does not contain any redundant

variable.

4.4. Effect of the Adaptive Population Update Strategy

To study the effect of the adaptive population update strategy, a variant

of DEMiDRA was designed, called DEMiDRA-WoA, which did not employ

the adaptive population update strategy. In DEMiDRA-WoA, the selection

probability of each of the insertion, deletion, and replacement operators was

1/3 and kept unchanged in the evolution. The results of DEMiDRA and

DEMiDRA-WoA are presented in Table 3. Clearly, in terms of the aver-

age total profit of all miners, DEMiDRA is better than DEMiDRA-WoA

on all instances. Moreover, DEMiDRA performs significantly better than

DEMiDRA-WoA on nine out of ten instances according to the Wilcoxon’s

rank-sum test at a 0.05 significance level. The comparison reveals that the

adaptive population update strategy is able to improve the performance of

DEMiDRA.

4.5. Effect of the Tabu Strategy

To study the effect of the tabu strategy, another variant of DEMiDRA was

designed, called DEMiDRA-WoT, in which the tabu strategy was removed.

The results of DEMiDRA-WoT and DEMiDRA are presented in Table 3. As

shown in Table 3, on each instance, DEMiDRA provides a better average

total profit of all miners and is statistically better than DEMiDRA-WoT

according to the Wilcoxon’s rank-sum test at a 0.05 significance level, which

can verify the effectiveness of the tabu strategy.
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Table 3: Results (in Token) of DEMiDRA and Its Two Variants.

n
DEMiDRA-WoA DEMiDRA-WoT DEMiDRA

Mean±Std Dev Mean±Std Dev Mean±Std Dev

50
2.18e+3±2.49e+2 ≈ 2.14e+3±1.71e+2 ↑

2.27e+3±2.27e+2
[4.13%] [6.07%]

100
4.52e+3±2.08e+2 ↑ 4.50e+3±2.16e+1 ↑

4.74e+3±3.60e+2
[4.87%] [5.33%]

150
7.40e+3±1.96e+1 ↑ 7.39e+3±2.20e+1 ↑

7.50e+3±1.25e+1
[1.35%] [1.49%]

200
9.89e+3±2.43e+1 ↑ 9.85e+3±3.31e+1 ↑

1.00e+4±1.86e+1
[1.11%] [1.52%]

250
1.23e+4±4.82e+1 ↑ 1.23e+4±3.38e+1 ↑

1.25e+4±2.56e+2
[1.63%] [1.63%]

300
1.46e+4±6.92e+1 ↑ 1.46e+4±5.07e+1 ↑

1.48e+4±4.18e+1
[1.37%] [1.37%]

350
1.69e+4±1.24e+2 ↑ 1.70e+4±7.84e+1 ↑

1.72e+4±5.82e+1
[1.78%] [1.18%]

400
1.92e+4±1.04e+2 ↑ 1.93e+4±8.05e+1 ↑

1.95e+4±1.03e+2
[1.56%] [1.04%]

450
1.94e+4±2.21e+2 ↑ 1.95e+4±1.67e+2 ↑

1.99e+4±2.02e+2
[2.58%] [2.05%]

500
1.95e+4±1.56e+2 ↑ 1.96e+4±1.60e+2 ↑

1.99e+4±1.69e+2
[2.05%] [1.53%]

↑ / ↓ / ≈ 9/0/1 10/0/0
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5. Conclusion

In this paper, a new DE algorithm (called DEMiDRA) was proposed

to jointly optimize the mining decision and resource allocation for a MEC-

enabled wireless blockchain network. The main characteristics of DEMiDRA

can be summarized as follows:

• First, a new encoding scheme was proposed, in which each individ-

ual represents the resource allocation of a participating miner and the

whole population represents the resource allocations of all participating

miners. As a result, the redundant search space can be removed and

the dimension of the search space is reduced to two.

• Afterward, an adaptive population update strategy was proposed to

optimize the number of participating miners and a tabu strategy was

designed to prevent unpromising miners from being selected. By using

these two strategies, the mining decision can be optimized.

• DE was utilized to optimize the resource allocations of participating

miners.

DEMiDRA was applied to a set of instances with different scales and

compared with DE, ACOMV, and BOToP. The results demonstrated the

effectiveness of DEMiDRA. It is worth noting that this paper assumes that

IoTDs are homogeneous in the studied blockchain network. In the future, we

will study the heterogeneous blockchain network.
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Appendix A. Appendix

To ensure that C5 in (11) is satisfied, at least nmin = b4c
2
3E0k1 mini∈N (DiXi)

c22
c

miners are required to participate in mining.

Proof: From (10) and C5 in (11), we have∑
i∈N ′

(
c2fi − c3k1f 2

i DiXi

)
≥ c3E0. (A.1)

Then, let gi(fi) = c2fi − c3k1f 2
i DiXi. By substituting gi(fi) to (A.1), we

have ∑
i∈N ′

gi(fi) ≥ c3E0. (A.2)

The first-order and second-order derivatives of gi(fi) are g′i(fi) = c2 −

2c3k1DiXifi and g′′i (fi) = −2c3k1DiXi, respectively. When g′i(fi) = 0, we

have

f ∗i =
c2

2c3k1DiXi

. (A.3)

Due to g′′i (fi) < 0, gi(fi) ≤ gi(f
∗
i ) =

c22
4c3k1DiXi

. Thus, we have

∑
i∈N ′

gi(fi) ≤
∑
i∈N ′

c22
4c3k1DiXi

≤ n′c22
4c3k1 mini∈N (DiXi)

. (A.4)

According to (A.2) and (A.4), c3E0 ≤ n′c22
4c3k1 mini∈N (DiXi)

. Re-arranging this

inequality, we can obtain

n′ ≥ 4c23E0k1 mini∈N (DiXi)

c22
≥ b4c

2
3E0k1 mini∈N (DiXi)

c22
c (A.5)

where b·c denotes the rounding down operator.
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