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Abstract 

 

Manufacturing is a major source of energy consumption and, therefore, a significant 

contributor to emissions and greenhouse gases. This paper is concerned with 

evaluating different scheduling policies in a job shop system where energy-efficient 

scheduling is incorporated with multiple other scheduling criteria. In the production 

systems being investigated, the electrical energy is offered on a time-of-use (TOU) 

pricing regime.  The objective of minimizing TOU energy costs conflicts sharply with 

most other traditional objectives in production scheduling.  The aim is to identify 

best performing scheduling rules for different scenarios based on different shop 

congestion levels, and devise new rules to enable an improved integration of energy 

cost with other scheduling criteria. 

A ranking approach based on data envelopment analysis (DEA) and Ordered 

Weighting Average (OWA) concepts is presented. The proposed methodology 

exploits the preference voting system embedded under the cross-efficiency (CE) 

matrix to derive a collective importance scale for the aggregation process. The 

approach is applied to 28 dispatching rules (DRs) for scheduling jobs that arrive 

continuously at random points in time during the production horizon. 

Computational results highlight the effect of energy costs on the overall ranking of 

the DRs, and unveil the superiority of certain rules under multi-objective 

performance criteria. 
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1. Introduction 

 

The manufacturing sector is a major source of energy consumption, accounting 

for about 54% of the world’s total delivered energy. Consequently, as the main 

contributor to emissions and greenhouse gases, energy-efficiency in manufacturing 

becomes vital to enhance sustainability and reduce environmental impact. 

Approaches for better energy-efficiency in manufacturing naturally tend to focus on 

the use of more energy-efficient equipment and alternatives to fossil fuels, such as 

solar and wind energy (Arabi et al. 2016). Although to a lesser extent, energy-efficient 

scheduling can also contribute significantly to reducing emissions and achieving 

more sustainable operations (Biel & Glock, 2016; Liang et al. 2019b). 

This study considers energy-efficient scheduling within a typical job shop that 

operates in a setting where the electrical energy it uses is offered on a time-of-use 

(TOU) cost schedule (Dong et al. 2017). The price of the electrical supply has different 

rates, depending on the time of day. Energy suppliers use this pricing strategy to 

smooth the demand. In so doing, the energy provider is better able to conduct its 

operations in a more environmentally friendly manner, and may reduce, for 

instance, the need to resort to less desirable sources of energy, such as coal, to meet 

peak demand. Consequently, in attempting to schedule operations based on energy 

cost minimization objectives, the job shop managers contribute indirectly to 

reductions in harmful emissions. 

The job shop under consideration processes job orders that continuously arrive over 

the production cycle. This dynamic nature of the job arrivals, where the processing 

requirements on the shop’s machines are known only after the job order arrives, 

lends to the application of dispatching rules (DRs), which are simple to apply in such 

cases. In using DRs, jobs that are available and waiting to be processed on a machine 

are prioritized according to some rule, and the top priority job is loaded next on the 

machine. Hence, DRs are very convenient for managing a job shop that has 

continuous job arrivals, because the need to reconstruct a new schedule with each 

new job arrival is avoided.  

Furthermore, the job shop operates under multiple scheduling objectives, one of 

which is minimizing total electricity costs. If minimizing the electricity costs was the 

only objective, the scheduling problem would become less complex, and an optimal 

schedule would see operations restricted to the off-peak (lowest price) period. This is 

not a reasonable solution, because the consequential costs related to longer 

completion times, more work-in-process, delay in delivery to customers, etc., would 

by far offset any savings from the energy bill. Therefore, production scheduling 

under TOU electricity costs maybe regarded as an inherently multi-criteria decision 

problem. Much of the published research deals with this problem by viewing it as a 

single objective problem to minimize total energy costs, subject to additional 

constraints to guarantee minimum levels of throughput. In an attempt to integrate 

https://www.sciencedirect.com/topics/engineering/energy-engineering
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adequately energy-efficiency into the job shop, we adopt seven additional scheduling 

objectives alongside minimizing total cost.  

The quality of the job scheduling methodology directly affects overall performance 

in terms of the multiple performance criteria, such as percentage of jobs completed 

on time, average job flowtimes, total energy consumed, etc. Reactive scheduling 

approaches are ideal for dynamic, non-predictive environments characterized by 

external uncertainties, such as arrival of new job orders. In a reactive approach, the 

schedule is modified in real-time with minimal disruption to existing operations, and 

without having to readjust any pre-planned schedules. The DRs are a quick, 

convenient and easily implemented form of reactive scheduling, and there exists a 

large variety of DRs that maybe used. However, performance of DRs is very much 

problem dependent, and there rarely exists a unique DR that dominates all others for 

a particular criterion. Moreover, a DR that performs favorably for one criterion may 

easily function poorly elsewhere. Thus, for multiple criteria, the dispatching problem 

is one of identifying the DR that best satisfies the performance criteria collectively. 

One way to achieve such an objective is ranking the DRs through a methodology that 

allows a simultaneous evaluation of the performance measures. Data envelopment 

analysis (DEA) is a good tool for this purpose. By treating the different performance 

values resulting from the application of a particular DR as system outputs, DEA may 

be used to identify the efficient DRs for the job shop system under consideration. 

DEA is an optimization approach proven for its strength in evaluating performance 

of decision making units (DMUs) that employ multiple inputs to produce multiple 

outputs (Sow et al., 2016; Oukil & Al-Zidi, 2018; Soltani et al., 2021). Moreover, DEA 

has the potential to categorize DMUs as efficient or inefficient without a need for a 

priori preference settings on inputs and outputs (Oukil & Govindaluri, 2020; Al-

Mezeini et al., 2020; Oukil et al., 2021).   

 

Viewing a DR as a DMU, the earliest studies that investigated the problem of 

selecting DRs using DEA are due to Chang et al. (1996) and Braglia & Petroni (1999).  

However, as pointed in El-Bouri & Amin (2015), these studies used a standard DEA 

model with undesirable outputs, which may invalidate the results produced. El-

Bouri & Amin (2015) proposed an approach that applies ordered weighting average 

(OWA) aggregation prior to a DEA model with only outputs to rank the DRs.  

However, the latter approach does not consider explicitly the desirability aspect of 

the outputs or the possible occurrence of more than one efficient DR. Recently, Oukil 

& El-Bouri (2021) addressed these issues through a DEA cross-efficiency (CE) 

approach (Sexton et al. 1986) that is grounded on an extension of the Maximum 

Resonated Appreciative (MRA) model (Oral et al., 2015).   

Regardless of the approach, it is noticeable that none of the existing DEA-based 

studies has discussed the sustainability of the DR ranking process in production 

environments where minimizing energy consumption continues to be one of the key 



 

4 

 

challenges of decision makers (DMs).  Accordingly, we develop an approach that 

integrates energy as a major performance criterion for the evaluation of a DR. 

Building on the CE framework of Oukil & El-Bouri (2021), the proposed procedure 

exploits the preference voting system embedded under the CE matrix (Angiz et al. 

2013) to enhance the robustness of the ranking patterns. Instead of resorting to the 

OWA operator (Yager, 1988) for computing the aggregate scores, a collective 

importance scale is applied over the aggregation process to strengthen the 

robustness of the ranking model besides diluting potential discrepancies that may 

result from situations where different CE scores produce same number of votes.  

Here, we introduce the concept of “aggregate vote” as a substitute to aggregate 

score.   

 

The proposed ranking methodology is evaluated on a 10-machine job shop 

production system that processes continuously arriving job orders. Operations are 

managed by the use of a DR, which prioritizes the queued jobs at each machine. The 

objective is to implement the DR which best enables a set of different performance 

objectives to be met to the greatest extent possible. Eight performance objectives are 

identified as pertinent in production scheduling. A total of 28 DRs are selected for 

the computational analysis. These DRs include well-known rules that are frequently 

employed in job shop applications, together with a set of special rules proposed here 

explicitly for minimizing the electricity costs under a TOU pricing plan.   

 

The methodology proposed in this paper is intended to provide managers with a 

decision support tool for selecting best energy-efficient DRs to apply in job shop 

environments characterized by continuous arrival of job orders, along with multiple, 

conflicting objectives. The rankings suggested by this methodology allow decision 

makers to select the DRs that are the most effective in aggregately satisfying the 

given set of multiple criteria. 

 

The remaining sections of this paper unfold as follows. Section 2 reviews the 

literature pertaining to energy-efficient scheduling. The contextual settings of the job 

shop production systems under consideration are explained in Section 3.  The 

proposed ranking methodology is presented in Section 4 and computationally 

evaluated in Section 5. We conclude with a summary of the results besides possible 

research venues in section 6. 

 

2. Literature review 

 

Energy-efficient scheduling relates to the different methods and strategies for 

manipulating production schedules with the aim of reduced energy consumption. 

This includes startup and shutdown of machines to minimize idle machine running 

times (Fernandez et al., 2013; Shrouf et al., 2014; Zhang et al., 2017), varying machine 

speeds (Luo et al., 2013; Jiang et al., 2018), scheduling on machines that have different 
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energy consumption rates (Tigane et al., 2019), and taking advantage of variable 

energy pricing. 

Gahm et al. (2016) suggested a framework for energy-efficient scheduling (EES), 

which categorizes research on this topic in three dimensions: “energetic coverage”, 

“energy supply” and “energy demand”. The first concerns reduction of actual 

demand, the second refers to the characteristics of the power supply provided to the 

user, and the third relates to the manner the energy is applied during the production. 

Provision of energy according to TOU pricing falls under the second dimension, 

specifically, within a classification covering price-driven demand responses.  The 

review that follows is limited to those EES approaches that are associated with TOU 

pricing for energy. 

TOU pricing strategies are basically of two types: hourly pricing, and prices fixed for 

time-of-day segments, usually referred to as peak, low and mid-peak demand 

periods. The time-of-day pricing aims to smooth demand by encouraging a shift 

away from the peak periods, which usually occur during the weekday working 

hours. While TOU pricing is meant to encourage postponement of activities to 

favorably priced periods, such postponement is usually not helpful in industries 

whose scheduling goals are to complete batch production in minimal cycle time, and 

to meet delivery deadlines. Nevertheless, EES seeks solutions that enable an 

organization to achieve its time-based goals, while utilizing TOU pricing to gain 

reductions in energy costs. 

A method for dealing with such dual or multiple objectives is to combine them into a 

single (composite) objective function, and assign costs or penalties for deviations 

from each of the function’s components. For example, Mitra et al. (2012) suggested an 

objective function that sums inventory holding costs with the hourly-priced energy 

costs arising from transitions between machine startup and shutdown states. Moon 

& Park (2014) employed an objective function that includes both energy costs and 

penalty weights to control the length of the makespan in a flowshop. Yusta et al. 

(2010) formulated a cost function that combines machining costs and the hourly costs 

for electricity based on the spot market. Kurniawan et al. (2017) investigated a similar 

case for a system of unrelated parallel machines.   

A more commonly used approach is to simply consider a single objective for 

minimizing total energy cost (TEC), while constraining the scheduling problem to 

meet a specified amount of production level within a defined time horizon. 

Examples of this approach include Shrouf et al. (2014), who investigated minimizing 

TEC in a single machine shop, with different machine operating modes (processing, 

idle or off); Ashok (2006) implemented an integer programming model to minimize 

total monthly energy costs under a constraint to achieve a target level of production. 

Babu & Ashok (2008) investigated similar objectives in a chemical production plant 

that is modeled as a jobshop production system. Wang & Li (2013) considered 
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minimization of total electricity costs while maintaining a required level of average 

cumulative production, with decisions of when to power down and power up the 

machines during the production horizon. Castro et al. (2011) considered a 

multiproduct continuous production plant, and formulated an energy cost 

relationship that is minimized as a single objective, subject to hard constraints on 

demand fulfillment and resource availability.  

Other researchers used a combined approach, employing composite objective 

functions, along with constraints to limit the makespan or to ensure desired 

production levels. For example, Fernandez et al. (2013) proposed an objective 

function that incorporated inventory holding costs with electricity costs, subject to 

constraints for maintaining desired levels of throughput. They modeled an 

automotive assembly unit, where in-process buffers are managed to avoid starving 

machines during off-peak periods. Sun et al. (2014) considered the identical problem, 

but included production loss penalty costs in the objective function.  

A substantial number of research studies have also considered the EES problem with 

TOU pricing from a purely multi-criteria perspective. The criteria are typically the 

dual objectives of makespan and energy cost minimization. Often, these bi-criteria 

problems are handled by finding Pareto optimal schedules. A Pareto optimal 

schedule is one for which no other schedule exists with lower values for the objective 

functions, such as simultaneously a lower energy cost and shorter makespan. 

Construction of a ‘frontier’ of such Pareto optimal solutions enables decision makers 

to gauge the trade-off in improving performance in one of the two criteria at the 

expense of the other (Ding et al., 2015; Cheng et al., 2018; He et al., 2014; Zhou et al., 

2020).  

Non-Pareto approaches for multi-criteria optimization are also prevalent. Luo et al. 

(2013) employed ant colony optimization for a hybrid flowshop under TOU 

electricity prices, and variable speed machines. Zhang et al. (2014) proposed an 

integer programming formulation for minimizing electricity costs and carbon 

emissions as two separate objectives in a flowshop system, without compromising 

production throughput. The assumption for this is that high carbon emission sources 

are frequently resorted to, in some regions, in order to meet peak electricity 

demands. Castro et al. (2013) considered four different objectives separately in a 

flowshop model of a steel plant, including minimizing the makespan and energy 

costs. They noted that weighted sums of the different criteria may be implemented to 

achieve a compromise between the gains achieved from lowered energy costs, versus 

the increased makespan. Masmoudi et al. (2017) proposed a genetic algorithm for a 

single-item capacitated lot-sizing problem in a flowshop. 

Another tactic for managing the conflicting objectives of minimizing makespan, 

while minimizing energy costs, is to break the scheduling problem into two stages. 

In the first stage, a schedule that minimizes the makespan is generated, and that 
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schedule is then re-arranged in the second stage so that the energy cost is minimized, 

subject to the makespan obtained from the first stage not being increased. In Tan et al. 

(2013), for example, the maximum completion times are determined from a 

mathematical programming solution, and then a minimum energy schedule is 

obtained from another model that preserves the completion times from the first 

stage.    

Considering specifically job shop scheduling under TOU pricing with multiple 

objectives, the published literature is sparser than that available for flowshops and 

parallel machine systems (Jiang et al., 2018). EES in jobshops with multiple objectives 

has been investigated in Pach et al. (2014) and Liang et al. (2019a). With the exception 

of Pach et al. (2014), who considered three criteria in their objective function, the 

other studies considered only two. To the best of our knowledge there are no 

publications dealing with more than three criteria, with total energy cost being one 

of the criteria, in a job-shop that experiences dynamic job arrivals and is scheduled 

reactively by the application of DRs. Such cases for jobshops and flowshops have 

indeed been investigated previously (Chang et al., 1996; Braglia & Petroni, 1999; 

Amin & El-Bouri, 2018), but not with the TOU energy criterion. The present study 

aims to address this gap by investigating energy costs as one among several other 

scheduling criteria, and how the presence of this energy criterion affects the 

performance of traditional DRs in a multi-objective scenario. 

 

3. Problem description 

 

The proposed DEA methodology is applied to a 10-machine job shop production 

system that processes job orders which arrive at random points in time throughout 

the production cycle. Every job requires processing operations once on each of the 

ten machines, but not necessarily in the same order. The processing time 

requirements on each of the machines, and the order in which the machines need to 

be visited, become known only after the job’s arrival. In addition, every job has a 

completion time deadline which, if exceeded, incurs a penalty proportional to the 

length of the delay. Operations are scheduled by applying a DR, which prioritizes 

the queued jobs at each machine. The objective is to implement the DR which best 

enables a set of different performance objectives to be met to the greatest extent 

possible. Eight performance objectives, deemed pertinent in production scheduling, 

are considered. 

 

Let 

s = index for job number. 

q = index for machine number. 

t = index for the TOU period. 

P = total number of jobs processed. 
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as = arrival time of job s at the jobshop. 

 vs = power requirements factor for job s. 

ct = cost of electricity per unit time during TOU period t. 

 hst = duration of processing operations for job s during TOU period t. 

     Ds   = due date for job s. 

     Cs   = completion time of job s’s final operation. 

     Qq = number of jobs in queue at machine q. 

 

Using the above notation, the eight performance measures are described as 

shown in Table 1.  

 

 
 

3.1. Dispatching rules 

 

A total of 28 DRs are selected for the computational analysis. These DRs include 

well-known rules that are frequently employed in jobshop applications, together 

with a set of special rules proposed here explicitly for minimizing the electricity costs 

under a TOU pricing plan.  Among the 28 selected DRs are the following: Shortest 

Processing Time (SPT), First-in First-out (FIFO), Earliest Due Date (EDD), Modified 

Due Date (MDD), Critical Ratio (CR), Least Work Remaining (LWKR), Apparent 

Tardiness Cost (ATC), Cost Over Time (COVERT), work-in-next-queue (WINQ), 

processing time plus work-in-next-queue (PT+WINQ), processing time plus work-in-

next-queue plus slack time (PT+WINQ+SL), processing time plus work-in-next-

queue plus critical ratio (PT+WINQ+CR). Full details for these DRs are found in 

Amin & El-Bouri (2018). In addition, the enhanced critical ratio (ECR) method 
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(Chiang & Fu, 2007), ratio of slack time to remaining operations (Slack/NO; Baker, 

1974), and twice the processing time plus least work remaining (2PT+LWKR; Sels et 

al., 2012) rules are considered. Finally, a collection of nine DRs developed specifically 

for the electricity cost objective are proposed. These DRs are presented in Table 2, 

and the ones that begin with the prefix F work by first fitting as many jobs as 

possible, sorted according to power requirement factor (PRF) ratings, in the 

remaining time of the current TOU period. These jobs are then prioritized according 

to a select rule, as indicated in Table 2. 
 

 
 

The TOU electricity pricing plan adopted in our computational analysis is taken 

from a North American city, and it is similar to mainstream practices. It divides the 

24-hour day into 4 periods. Two of these periods are mid-peak, occurring from 

7:00 a.m. to 11:00 a.m., and again from 5:00 p.m. to 7:00 p.m. The peak period itself 

runs from 11:00 a.m. to 5:00 p.m., and the off-peak is from 7:00 p.m. to 7:00 a.m. the 

following day. The peak tariff is taken as twice the off-peak one, and the mid-peak 

tariff is 50% higher than the off-peak pricing. It is further assumed that production 

occurs only during the weekdays, and the shop runs three shifts continuously 

24 hours daily, starting 7 a.m. Monday and ending Saturday 7 a.m. Furthermore, any 

work in progress on the machines at the end of the week is interrupted, and resumed 

at the start of the following work week. 

 

3.2. Test data 
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The performance of the 28 DRs is evaluated by means of simulations run on a 10-

machine jobshop, using random test problems. A test problem is composed of 10,000 

jobs that arrive at randomly generated points in time. The job arrivals are assumed to 

follow a Poisson distributed process with a mean inter-arrival rate λ.  A job’s route 

through the shop is assigned at random from one of 50 predefined routes. The 

predefined routes are also created at random, and they differ from one test instance 

to the other within the same set of test problems. An arrived job will have a PRF 

assigned randomly, from the distribution U[0.8,1.2]. This represents the job’s energy 

demand relative to the other jobs, and it is constant on all machines visited. The 

processing times required for a job’s operations on each of the machines are drawn 

randomly from the uniform distribution U[1,99]. In addition, every arriving job is 

assigned a due date that is established by adding to its arrival time a value equal to 

the sum of its processing times on the machines, multiplied by a factor, Z, 

representing the tightness of the due-date. 

Nine sets of 10 test problem instances in each set are generated. The problems in 

each set represent a combination of a selected arrival rate and a due-date tightness 

factor. Three arrival rates and three due-date tightness levels are considered. The 

three levels of arrival rate are λ=0.0195, λ=0.0185 and λ=0.0175, selected such as to 

approximate machine utilization levels of 0.95 (high), 0.90 (medium) and 0.85 (low), 

respectively. Likewise, values of Z=2, 4 and 6 are used to generate test problems that 

exhibit tight, moderate, and loose due-dates, respectively. A test problem generated 

with λ=0.0195 and Z=2, for example, represents conditions found in a fairly 

congested shop, compounded by pressing due-dates. 

Every problem instance in each of the nine test sets described above is simulated 

on the 10-machine jobshop 28 times, with a different DR applied in each replication. 

The simulations are done by employing a specially coded C program. The averaged 

values across the ten instances in each set, for each of the eight performance 

measures listed in Table 1, are recorded for every DR. 

 

4. Methodological framework 

 

DEA is a non-parametric approach for evaluating DMUs’ performance relative to an 

efficiency frontier. Conventional DEA models include CCR (Charnes, Cooper & 

Rhodes, 1978), and BCC (Banker, Charnes & Cooper, 1984). For more on these 

models’ development, see, e.g., Cooper et al. (2002) and Emrouznejad (2014). A recent 

review on DEA can be found in Emrouznejad & Yang (2018). 

Each DR is regarded as a DMU that produces different outputs (performance 

criteria) for the same set of inputs (jobs processed over the job shop).  Therefore, 

ranking DRs can be addressed as a performance analysis problem where each DR is 

willing to maximize its efficiency through augmenting its output production. The 

DEA-based methodology that we propose deploys as illustrated in Figure 1.  
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4.1. Data pre-processing 

While evaluating a DMU, the fundamental principle of standard DEA entails 

consuming less input to produce more output. Thus, each output complies implicitly 

with the preference dictum “more is better” (Cook et al., 2014). The performance 

criteria adopted for the evaluation of a DR (refer Table 1) do not necessarily adhere to 

the latter dictum.  Indeed, maxC , F , T , TE+ , ,TU ,G maxWIP  and maxL  need to be 

reduced rather than augmented, in spite of being defined as outputs.  This category 

of outputs is known as undesirable outputs, which requires a DEA model that 

handles properly such a feature. 
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Consider a set of N DRs, where each rule r is defined with mD desirable outputs zD 

and mU undesirable outputs zU, with the corresponding observed values D
jrz  and U

irz , 

for Dmj ,,1 = and Umi ,,1 = .  In order to incorporate desirable and undesirable 

outputs under the same DEA model, we apply the following linear monotone 

decreasing transformation (Seiford & Zhu, 2002): 

 

++−= i
U
ir

U
ir zz


  (1) 

 

Equation (1) satisfies the translation invariance property, which preserves both 

linearity and convexity (Pastor & Aparicio, 2015). The multiplication of U
irz  by ‘‘-1” 

enables shifting U
irz  from its current status as undesirable output to its natural context 

where it fulfils the dictum “the more the better”.  The translation scalar ,i  where 

),( max U
ir

r
i z=  is added to prevent negative values of .U

irz


 For a BCC model with a 

single constant input, such affine displacement of outputs does not alter the efficient 

frontier and, also, the classification of DMUs as inefficient or efficient is invariant to 

translation (Ali & Seiford, 1990). The infinitesimal scalar 0  circumvents the 

occurrence of zero outputs and, hence, potential infeasibility of the DEA linear 

programing model.  

 

4.2. Adapted self-efficiency model 

Practically, all the DRs are applied simultaneously to the same job shop 

production systems, as described in Section 3. Consequently, we can assume that the 

input employed by each DR r is the same, regardless of which DR is applied. Thus, 

the input rw1  can be assigned a constant value, e.g., .11 =rw  Under a DEA 

framework, output expansion becomes the only concern of each DR r willing to 

maximize its efficiency  ; a stance that fits naturally the DEA output-orientation, 

whose BCC envelopment form, adapted to the data pre-processing context, writes as 

follows: 
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The efficiency *
rre  of DR r represents the maximal radial expansion of outputs that is 

required to reach the efficiency frontier for a specified level of input 11 =rw . DR r is 

efficient if ,1* =rre  otherwise it is inefficient ).1( * rre  Constraints (2) to (4) indicate that 

reference points for DR r are linear combinations of the efficient peers. By 

considering a single constant input, 11 =kw  ),,,1( Nk =  constraint (4) becomes 

redundant as it is dominated by the convexity constraint (5).  Indeed, being an 

output-oriented BCC model with a single constant input, E-BCC coincides with the 

corresponding CCR model (Lovell and Pastor, 1999). Moreover, E-BCC turns into an 

output-oriented BCC model without inputs, as proven by Lovell & Pastor (1999) and 

Toloo & Tavana, (2017).   

Model (E-BCC)’s strength resides in its ability to incorporate desirable and 

undesirable outputs within a unified formulation.  Its multiplier form is as follows: 
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The multipliers jr  and 
ir
  represent, respectively, the weights selected by DR r 

to quantity the influence of outputs D
jkz  and U

ikz


 on its most advantageous self-

evaluation (Oral et al., 2014).  The multiplier r  is associated to the convexity 

constraint.  

Although model (M-BCC) enables DRs to be categorized as efficient )1( * =rre  and 

inefficient )1( * rre , it may fail to achieve full ranking if several efficient DRs occur. 

We resort to DEA cross-efficiency (CE, henceforth) to cope with this situation 

(Abolghasem et al. 2019; Navas et al. 2020;). 

 

4.3. Adapted cross-efficiency model 

Under a CE paradigm, each DR r is permitted to evaluate its peer DRs with its 

best own weight profile ).μ (μ *
r

*
r


 Yet, one may find different optimal solutions 

).( *
rμ μ*

r


for the same objective ,*

rre  resulting in more than one CE score for the same 

CE evaluation and, hence, multiple ranking patterns (Hassan & Oukil, 2021).  To 

palliate such a dearth, a number of alternative secondary goal models have been 
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developed in the DEA literature, including the MRA model (Oral et al., 2015).  For a 

recent review of the alternative secondary goal models, see, e.g., Oukil (2020)  

The prominence of the MRA model emanates from its potential to enable peer-

evaluation of each DR with a separate set of customized weights instead of the sole 

and unique set of common weights )μ (μ
*

r

*

r


. Such a desirable property allows 

boosting discrimination at an early stage of the ranking process through eliminating 

common weights, which are often a potential source of tight ranks (Oral et al. 2015).   

 

The adapted form of the MRA model that combines desirable and undesirable 

outputs under the same output oriented formulation writes as follows.    
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rpe is the CE score of DR p, as assigned by the assessing DR r, using the weight 

profile )( *
p

*
p μ μ


 that sustains self-efficiency at its former level ,*
rre  for 

.  ,1 rp ,…,Kp=  Model (A-MRA) is solved (K-1) times for each assessing DR r to 

calculate the CE scores *
rpe  for all DRs p for ,…,Kp=1  and .rp    The resulting CE 

matrix E  for Kr ,...,1= , is: 
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Column *
pe  in matrix E holds the CE scores of DR p as assigned by all assessing 

DRs r ).,,1( Kr =  Thus, *
pe  symbolizes the collective evaluation of DR p for 

.,,1 Kp =  

Usually, the ranking of the DRs requires the computation of ultimate efficiency score 

p  through some sort of aggregation technique (Oukil, 2018).  The majority of CE 

aggregation approaches rely on the arithmetic average of column 
*
pe , i.e., 
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,/
1

* Ke
K

k kpp  =
= for each ,1,…,Kp= which assigns equal aggregation weights K/1=

to each efficiency score ,*
kpe  regardless of its relative importance.  In real-life, the CE 

scores may not be equally important with respect to either a preference scale or a 

priority rule suitably set for the decision making context.  To allow the relative 

importance to be explicitly considered in CE aggregation, the OWA operator assigns 

dissimilar weights to the efficiency scores *
kpe  once sorted by dint of their 

magnitudes.  This approach attaches more importance to scores with larger 

magnitudes (see, e.g., Wang & Chin, 2011; Oukil & Govindaluri, 2017; Amin & Oukil, 

2019).  Yet, the importance scale that is prompted for the DRs over each column of 

CE scores *
pe  is not stable, which affects necessarily the consistency of pertaining 

aggregates and, obviously, the rank patterns (Oukil, 2020).  Rather than setting a 

priori the preference, it can be tacitly impelled from an agreement among the DMUs.  

Accordingly, we develop an aggregation procedure that exploits the preference 

voting system embedded under the CE matrix to set a more robust importance scale.   

 

4.4. Preference voting  

Practically, peer-evaluation scores can be perceived as measures of mutual 

appreciation of the DRs to each other (Oral et al., 2014).  Thus, the CEmatrix can be 

implicitly viewed as a voting framework where each DR holds a dual status of 

candidate and constituent, and deemed free to vote without outer influence (Oukil & 

Amin, 2015).  The strength of such an approach resides in the collective consensus 

among DRs (Oukil, 2019) that the associated preference-voting matrix  aptly 

reflects. 
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Each DR p is associated with a preference voting vector )( 21 pKpp  ...   =p , where

pf  is the number of votes in support of ranking DR p at the fth position, with 

 =
=

K

f pfK
1
  voters.  Thus, matrix  encompasses the importance of each DR from a 

cooperative stance, entailing all DRs.  As such, the importance scale that   reflects is 

much more consensual. 

With the importance scale determined via ,  the ranking of the DRs can still not 

be performed without a priori ranking scores.  Instead of relying on the ultimate 

efficiency scores ,p as is the conventional practice, we introduce the ultimate 
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ranking vote p  as a substitute.  Accordingly, the information aggregation is 

restricted to the votes without recalling again the corresponding CE scores (see, e.g., 

Oukil, 2019). 

Intuitively, the average voting score would appear as a valid metric; an option 

that is inevitably discarded because the total number of votes in each row p is the 

same i.e., ,
1 =

=
K

f pfK   leading to equal averages.  However, knowing that the 

importance of the votes pf  over each row p is already established through the rank 

orders, the OWA operator might be an appropriate aggregation device. 

4.5. Ordered weighted averaging 

An OWA operator with a weigh vector K]1,0[γ  is a function 
=

=
K

p;g
1

)  (


 γp  

where p  is the value of the  th factor of the argument )( 21 pKpp  ...   =p as 

determined by the preference-voting matrix , and   is the associated OWA 

weight, with .1
1

=

=
K


  

The OWA weight vector γ  can be generated in a way that echoes the subjectivity 

level of the DM.  Although there are several approaches for generating these weights 

(see, e.g., Emrouznejad & Marra, 2014), the minimax disparity models are the most 

frequently used approaches (Saeidi et al., 2015). In our study, the following model, 

due to Wang & Parkan (2005), is used.   
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Model (WP) aims at minimizing the deviation d  between successive aggregation 

weights   and 1+ , K,...,1= , as formulated by the set of constraints (13).  The 

parameter   on the right hand side of constraint (11), represents the level of 

optimism of the DM, also known as orness value (Yager, 1995). The extreme values 

of   are 0= and 1= , which correspond to purely pessimistic and purely 

optimistic DMs, respectively. A neutral attitude is quantified with .5.0=  Thus, 

orness values 15.0   reflect DMs that are just optimistic.  Optimism being a 
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subjective stance, the variability of   offers an opportunity to incorporate a broader 

range of DM’s subjectivity levels over the ranking process in a regulated manner. 

Moreover, the robustness of resulting ranking patterns can be objectively evaluated.   

Wang & Parkan (2005) showed that, if an optimistic DM desires to prevent the 

occurrence of a zero in the vector γ  of OWA weight, α should satisfy 

)1(3

12
5.0

−

−


K

K
α       (14) 

As such, none of the factors in the argument )( 21 pKpp  ...   =p  is excluded from 

the aggregation process.   

 

4.6. Ultimate ranking vote 

Considering the number K of DRs to be ranked, it is necessary to specify the DM’s 

subjectivity level ,  as described in Section 4.5, before solving model (WP) and 

generate a vector ) ,, ... ,( 11 KK  −=γ  of OWA weights. Given a vector of votes 

)( 21 pKpp  ...   =p  related to DR p, using vector γ  as an aggregation device 

enables the relative importance of the votes to be realistically weighted from a 

collective standpoint. Thus, the ultimate ranking vote p  associated to DR p can be 

calculated as:  

.
1

=

=
K

pp


            (15) 

High values of p  imply necessarily that a high number of DRs voted for DR p to be 

in leading rank positions regardless of the magnitude of the CE score that was 

attached to each vote.  With an aggregation process centered on the votes, the proper 

score-based assessment context of each DR is ignored in the ultimate ranking for 

more fairness.   

Subsequently, sorting the elements of vector ),...,( 1 K=υ  from the highest to 

the lowest yields a possible ranking of the DRs that is likely to be sufficiently robust 

and fair.  

 

5. Results and discussion 

 

The evaluation of the new ranking procedure is carried out by treating the results 

from the 9 test sets described above in two separate scenarios. These scenarios are 

identified by the notation 10/A/Z/ε, where A is the congestion level (Low, Moderate, 
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High), Z is the due date tightness, Z{2, 4, 6}, and ε=1 if energy cost is included as a 

performance measure, ε=0 otherwise. Further, the DM’s subjectivity level is reflected 

with four different orness values α for each instance, hence, totalizing 72 

combinations 10/A/Z/ε/α. 

The results associated to each 10/A/Z/ε/α combination are produced via a C++ 

module that embeds the algorithm of the ranking procedure with all relating DEA 

and OWA linear programming models, beside required IBM-ILOG CPLEX libraries. 

The different steps of the ranking process are deployed for instances 10/Low/Z/ε/α 

prior to an ample discussion of the results produced over all 10/A/Z/ε/α instances.   
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5.1. Preliminary evaluation of the dispatching rules  

 

The first step of the evaluation process consists in solving model (M-BCC).  The 

efficiency scores *e  are presented in Table 3 for 10/Low/Z/ε instances.   

 

These results reveal the incapacity of model (M-BCC) to achieve full ranking of the 

DRs, as the proportion of strongly efficient DRs ranges between 8 and 20 out of 28 

DRs. 

 

 
 

The frequencies shown in Figure 2 for all 10/A/Z/ε instances stress much more such a 

deficiency, with a minimum of 8 efficient DRs for Z=4 under low congestion, and a 

maximum of 21 efficient DRs for Z=6 under high congestion.  Moreover, looking at 

the chart of ε=1, it appears that these frequencies almost double when the self-

efficiency DEA analysis involves energy costs.  As such, self-efficiency model (M-

BCC) fails to declare the best DR. 

As a remedy, we implement the new ranking procedure, which is based on CE 

evaluation of the DRs. 

 
5.2. Ranking dispatching rules 

 

Model (A-MRA) is solved 27 times for each DR r defined with in instance 

10/Low/Z/ε. The CE scores *
rpe  ) 8;2 ..., ,1( rpp =  corresponding to Z=2 are presented 

in Appendix C for ε=0 and ε=1.  The resulting preference-voting matrices   are 

reported in Appendix D.  For instance, row DR2 in Table D1 indicates that DR2 is 

ranked first by only two DRs and its worst rank is 25th, allotted by only one DR.   

It can be verified that the total vote in each row p is ,28=K  for ,82 ..., ,1=p  which 

excludes the average voting score as an option for ranking the DRs. Meanwhile, one 

can exploit the existing importance scale set over the rank order of  and apply 

OWA aggregation to derive an ultimate vote .p  

We solve model (WP) for K=28 to generate a vector ) , ... ,( 281 =γ  of OWA weights 

for a chosen optimism level α. The values of α are chosen within the range 
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],  ,5.0( max  where 0.679max =  is computed for K=28 using formula (14). As a 

practical way to further evaluate the robustness of the ranking methodology, we 

widen the application scope by using different values of α{0.55, 0.60, 0.65, 0.67}. We 

consider that a gap of 0.05 between the chosen values of α  may be enough to cover 

most of the range of optimistic values ]..6790  ,5.0(  Such a choice of α  guarantees that 

all the elements of the vector ) , ... ,( 281 =γ  are strictly positive and, hence, none of 

the voting scores will be excluded from the aggregation process.   

The OWA weights produced are displayed in Appendix E.  

The ultimate ranking votes ,p  computed by using formula (15), are exhibited in 

Tables 4 and 5.  
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Subsequently, the corresponding ranking patterns are given in Tables 6 and 7. 
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Tables 6 and 7 divulge that full ranking is accomplished for all DRs, without any 

tight rank.  In the event of tight ranks, priority is given to the DR whose self-

efficiency score is the best.  If both tight rank DRs are equally efficient, ranks are 

assigned arbitrarily.   

It is important to note that the variation of the optimistic value α does not affect the 

structure of the ranking patterns for any 10/A/Z/ε/ instance. Indeed, the ranking 

patterns are rather stable. As such, the proposed ranking procedure is not affected by 

the subjectivity of the DM, which advocates strongly in favour of its robustness.   

The highlighted rows in Table 6 show that the leading positions are occupied by 8 

out of 10 efficient DRs regardless of the values of Z and  in instances 10/Low/Z/0/. 

A comprehensive overview of the proportions of efficient DRs among leading DRs 

all over 10/A/Z/ε/ instances is shown in Figure 3. 
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Apparently, the outcomes of the ranking approach exhibit deep dissimilarities 

depending on whether energy costs are part of the evaluation process.  Indeed, the 

proportion of energy-efficient DRs that are found in leading positions varies between 

88.89% and 100%.  When energy costs are ignored, the ranking approach captures as 

low as 36.36% of the efficient DRs only.  This suggests that the potential of the 

ranking approach to preserve the benchmarking status of efficient DRs while trying 

to enhance discrimination is more pronounced with job shop instances for which 

energy costs matter.  

The top DRs yield for each 10/A/Z/ε/α instance are presented in Table 8. 
 

 
 

The results in Table 8 offer an indication that the top performing DRs are unaffected 

whether or not the total energy cost criterion is taken into consideration. This 

suggests a robustness in these DRs that extends to TEC minimization. On the other 

hand, the energy-oriented DRs conspicuously occupy ranks among the bottom half 

of the 28 DRs, even though they are by far the best performers when the total energy 

cost is considered on its own. Apart from these DRs that are customized for the TEC, 

the WINQ rule outperforms the other ‘traditional’ DRs in minimizing TEC, in the 

great majority of the test categories. This fact further supports the validity of the DR 

rankings produced by the DEA-based framework that has been proposed in this 

paper. It is not readily apparent why the WINQ rule outperforms the traditional 
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rules for TEC minimization. One possibility is that this rule, by its nature, tends to 

minimize machine starvation, resulting in less idle times. Considering that half of the 

working day is covered by the off-peak pricing, a better machine utilization during 

this period could offset the increased costs of higher utilizations during the peak 

period, which constitutes only 25% of the working day. 

Table 9 presents the best ranked energy-oriented DRs. 

 

 
 

The low rankings of the energy-oriented DRs is not a surprise, because these rules 

focus on only one of the eight performance objectives, in particular, the objective that 

conflicts the most with the others. Meanwhile, SLSS appears as the top-ranked DR in 

most of the cases where energy costs are considered (ε=1). Although this rule is one 

of the weakest among the energy-oriented DRs in minimizing TEC, it appears to 

provide the best trade-off in TEC against improved performance in the other seven 

performance objectives. The extent of this trade-off, compared to WINQ, diminishes 

with decreased shop congestion and slower job arrival rates. 

 
5.3. Effect of energy on ranking 

 

Does energy affect seriously the ranking of the DRs?  To answer this question, we 

compare the ranking patterns produced for each 10/A/Z/0 instance with their 

counterparts in 10/A/Z/1 instances.   

Over all the ranking patterns, there are 19.84% similar rank positions.  As exhibited 

in Figure 4, the maximum number of similarities occurs for 10 DRs in both low and 

high congestions for different due-date tightness levels, Z=4 and Z=6, respectively.  
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In the meantime, the lowest proportion of similar rank positions is detected within 

moderate congestion instances for a total of 10 DRs out of 84, and a single similarity 

noted for the due-date tightness level Z=4.   

 

 
 

 

Figure 5 shows that the gaps separating the rank positions of the same DR under 

10/A/Z/0 and 10/A/Z/1 instances vary, on average, between 3 and 6 places, with the 

deepest gaps revealed for moderate congestion.   

These results stress the fact that the DRs’ ranking patterns are dissimilar, depending 

on whether energy costs are involved over the evaluation process or ignored.   

In the light of the above discussion, energy appears to be a determinant factor in the 

ranking process and, hence, the selection of the best DR, whatever the characteristics 

of the job shop or the attitude of the DM.   

 
5.4. Statistical analysis of the ranking 

 

An important issue that also needs to be examined is the effect on the DRs’ 

ranking patterns of the application of another ranking approach. In order to 
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investigate this issue, one alternative is the ranking method presented in Oukil & El-

Bouri (2021) for ranking DRs in a flow shop environment. The latter method, which 

is referred as M2, ranks the DRs by using exclusively aggregate CE scores, as 

opposed to the ranking procedure proposed in this paper (let’s denote it M1), which 

adopts aggregate votes.  

As such, method M2 is run with the instances 10/A/Z/1 for different congestion 

levels A{Low, Moderate, High} and due date tightness Z{2, 4, 6}.  The ranking 

patterns produced with both methods M1 and M2 are presented in Table 10. 
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A first look at the pairs (M1,M2) of ranking patterns indicates that there is seemingly 

a difference between the outcomes of the two methods, though the leading DRs 

appear to be similar for some instances, such as 10/Medium/2/1, 10/Medium/4/1 and 

10/Medium/2/1,  or close to each other, with a shift of one or two positions, like the 

cases of low congestion instances 10/Low/Z/1 and instance 10/High/6/1.  With these 

only exceptions, no plausible conclusion could be stated regarding the overall 

difference between pairs of ranking patterns. Do the ranking patterns indicate that 

methods M1 and M2 are significantly different in terms of ranking the DRs? 

To substantiate the significance of such a difference, we need to conduct a Wilcoxon 

signed rank test for each pair of ranking patterns (M1,M2). Hence, the following 

hypotheses will be tested 

Ho: The two methods produce identical ranking patterns 

 

The results of the statistical tests are displayed in Table 11, where T+ and T- represent 

the sum of ranks associated to positive and negative differences, respectively.  

 

 
 

The large p-values shown in the last row of the table suggest that, at a significance 

level =0.05, there is not enough evidence to reject Ho.  Consequently, we can 

conclude that, statistically, there is not a significant difference between the ranking 

patterns produced by methods M1 and M2.   

 

 

6. Conclusion 

 

Energy-efficient scheduling with multiple objectives is a problem that has hardly 

ever been investigated in the literature, though extremely important for mitigating 

emissions and enhancing sustainable operations. 

In this paper, the energy-efficient scheduling problem is addressed in a dynamic job 

shop production environment through selection of the most energy-efficient 

dispatching rule (DR).  A new methodology for ranking DRs with multiple objectives 

has been presented, with energy costs as a major performance criterion. The new 

approach, based on data envelopment analysis (DEA) cross-efficiency (CE), exploits 

the preference voting system embedded under the CE matrix to derive a collective 

importance scale for the aggregation process, so that to enable more robust ranking 
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patterns and dilute potential discrepancies resulting from cases where same number 

of votes is produced with different CE scores. The concept of aggregate vote has been 

introduced as a substitute to aggregate score.   

The DEA-based framework was tested for a dynamic 10 machine jobshop production 

system, taking into account a TOU electricity pricing regime that consists of peak, 

mid-peak and off-peak prices. Jobs processed in the shop are assumed to have 

different power requirements, so that the total energy costs depend on the pricing 

period a job is worked on. In addition to minimizing the total energy costs, an 

additional seven scheduling objectives are applied, with the goal of minimizing 

performance measures in each. Scheduling of the jobs, which arrive at random points 

in time, is managed through the application of DRs. A total of 28 DRs were 

evaluated, including nine new rules formulated specifically for energy cost 

minimization. The proposed ranking methodology was implemented both with 

inclusion of the total energy cost objective, and without. The results showed that the 

presence of the energy costs as a criterion had a notable effect on the ranking 

patterns generated. Besides, the derived rankings suggested that the work-in-the-

next-queue (WINQ) DR is the most favorable in the majority of the cases tested, both 

with and without the consideration of energy costs. Of the nine new energy-oriented 

DRs that were considered, the SLSS rule ranked top in most of the test cases, 

reflecting its capacity for better tradeoff of TEC in favor of improved performance in 

the other performance objectives. 

The results from this research offer some possible directions for future investigations 

and study. Obviously, the total energy cost objective strongly conflicts with most, if 

not all, the other criteria. This is no better illustrated than the low rankings achieved 

by the energy-oriented DRs. Nevertheless, those overall rankings can help in 

identifying a number of candidate rules that can be explored further for 

hybridization with the energy-oriented rules of Table 2. Hybrid or composite DRs 

have a potential to boost performance for the energy criterion, with improved 

tradeoffs versus the other criteria. 

On the methodological side, robust DEA models can be considered as a further 

research direction (e.g., Toloo & Mensah, 2019; Tavana et al. 2021). 
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