
Linguistic Style Checking

with Program Checking Tools

Fabrizio Perin Lukas Renggli Jorge Ressia

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract

Written text is an important component in the process of knowledge acquisition
and communication. Poorly written text fails to deliver clear ideas to the reader no
matter how revolutionary and ground-breaking these ideas are. Providing text with
good writing style is essential to transfer ideas smoothly. While we have sophisti-
cated tools to check for stylistic problems in program code, we do not apply the same
techniques for written text. In this paper we present TextLint, a rule-based tool to
check for common style errors in natural language. TextLint provides a structural
model of written text and an extensible rule-based checking mechanism.

1 Introduction

In a typical programming language the parser and compiler validate the syn-
tax of the program. IDEs often provide program checkers [1] that help us to
detect problematic code. The goal of program checkers is to provide hints
to developers on how to improve coding style and quality. Today’s program
checkers [2] reliably detect issues like possible bugs, portability issues, viola-
tions of coding conventions, duplicated, dead, or suboptimal code. While a
program checker can assist the review process of source code, its suggestions
are not necessarily applicable to all given contexts and might need further
review of a senior developer.

Most of today’s text editors are equipped with spelling and grammar checkers.
These checkers are capable of detecting a variety of errors in various languages
as well as pointing out invalid grammatical constructs. Despite their sophis-
tication, these tools do not consider common writing conventions and do not
provide stylistic suggestions to improve the readability of text. As of today this
task is still delegated to editors and reviewers who fulfill it by proof reading.

Preprint submitted to Elsevier 5 March 2012

“To produce a text of good quality the main ideas have to be explained clearly,
needless words omitted and statements should be concise, brief and bold
instead of timid, vague or undecided.” [William Strunk]

..

.. ..Programming
Languages

..Natural
Languages

..
S
y
n
ta

x
..Parser

Compiler
..

Spell Checker

Grammar
Checker

..

S
ty

le ..Program
Checker

..TextLint

Fig. 1. TextLint as the analogy in natural languages to program checking of source
code.

In this paper we take ideas from the domain of program checking and apply
them to natural languages (Figure 1). We present TextLint, an automatic style
checker following the architecture of SmallLint [3], a popular program checker
in Smalltalk. TextLint 1 implements various stylistic rules that we collected
over the years, and that are described in The Elements of Style [4] and On
Writing Well [5]. Similar to a program checker, TextLint can reliably point
out possible problems and suggest one to rewrite certain parts of a document
to improve its quality. However, as with a program checker, TextLint does not
replace a manual reviewing processes, it only helps the writer to improve it.

“It is an old observation that the best writers sometimes disregard the rules
of rhetoric. When they do so, however, the reader will usually find in the
sentence some corresponding merit, attained at the cost of the violation.
Unless he is certain of doing as well, he will probably do best to follow the
rules.” [William Strunk]

The implementation of TextLint uses Pharo Smalltalk [6] and various open-
source libraries: For parsing natural languages we use PetitParser [7], a flexible
parsing framework that makes it easy to define parsers and to dynamically
reuse, compose, transform and extend grammars. To classify words into types
and to detect synonyms we use an open-source dictionary and thesaurus. For
the user interface we use Glamour [8], an engine for scripting browsers. For

1 An online version of TextLint can be tested at http://textlint.lukas-renggli.ch/.

2

http://textlint.lukas-renggli.ch/

the web interface we use Seaside [9], a framework for developing dynamic web
applications. TextLint has been integrated with Emacs and TextMate 2 .

The contributions of this paper are:

(1) we apply ideas from program checking to the domain of natural language;
(2) we implement an object-oriented model to represent natural text in Smalltalk;
(3) we demonstrate a pattern matcher for the detection of style issues in

natural language; and
(4) we demonstrate two graphical user interfaces that present and explain

the problems detected by the tool.

..Text. Parsing. Model. Validation. Failures.

Rules

.

Styles

.

UIs

.

Dictionary

.

Thesaurus

Fig. 2. Data Flow through TextLint.

The remainder of this paper follows the architecture of TextLint as depicted in
Figure 2: Section 2 introduces the natural text model of TextLint and Section 3
details how text documents are parsed and the model is composed. Section 4
presents the rules which model stylistic checks and explains how natural lan-
guage features are integrated in TextLint. Section 5 describes how stylistic
rules are defined in TextLint. The implementation of the user interfaces is
demonstrated in Section 6. Section 7 validates the accuracy of TextLint rules.
We summarize related work in Section 8 and conclude and present future work
in Section 9.

2 Modeling Text Documents

To perform analyses of written text it is necessary to have a model represent-
ing it. TextLint provides the abstractions for modeling written text from a
structural point of view. The abstractions provided by our model are:

• A Document models a text document composed of paragraphs.

2 Follow the installation instructions at https://github.com/DamienCassou/textlint.

3

https://github.com/DamienCassou/textlint

• A Paragraph models a sequence of sentences up to a break point. Paragraphs
are responsible for answering the sentences and words that compose them.

• A Sentence is a set of syntactic elements or phrases ending with a sentence
terminator.

• A Phrase models a sequence of syntactic elements that potentially crosses
the boundaries of a sentence or paragraph.

• Syntactic Elements model the different tokens of a sentence, they are:
· A Word models vocables or numbers in the text. A word is a sequence of
alphanumeric characters.

· Punctuation models periods, commas, parentheses and other punctuation
marks that are used in written text to separate paragraphs, sentences and
their elements.

· Whitespace models blank areas between words and punctuations. Our
model considers spaces, tabs and carriage returns as whitespace.

· A Markup models LATEX or HTML commands depending on the file type
of the input.

All document elements answer the message text which returns a plain string
representation of the modeled text entity ignoring markup tokens. Further-
more all elements know their source interval in the document. The relationships
among the elements in the model are depicted in Figure 3.

..

Element

..
text()
interval()

.

Document

.

Paragraph

.

Sentence

.

Phrase

.

1

.

*

.

1

.

*

.

1

.

*

.

SyntacticElement

..

text()
interval()

.

Word

.

Punctuation

.

Whitespace

.

Markup

.

Classification

.

Synonym

.

1

.

*

.

1

.

*

.

*

.

*

Fig. 3. The TextLint model and the relationships between its classes.

4

Each word in our model is classified using 264 028 words from Wiktionary 3 ,
an open-source dictionary of the English language. We use Wiktionary to cat-
egorize all words into parts of speech (noun, pronoun, adjective, verb, adverb,
preposition, conjunction and interjection) and other useful categories (abbre-
viation, acronym, article, number, prefix, suffix, etc.).

Depending on its position in a sentence the same word can belong to multiple
categories. For example, the word ‘welcome’ is categorized by our system as
an adjective, an interjection, a noun and a verb. Reducing the number of
possible classifications is difficult and requires the grammatical structure of
the sentence to be analyzed. The TextLint style rules do not solely depend
on these classifications and thus the false-positives do not reduce the quality
of our rules. Additionally, 91.9% of the words are classified to exactly one
category, 7.5% to exactly two categories, and less than 1% to three or more
categories.

Furthermore, for each word in our model we detect possible synonyms using
the public domain thesaurus available in the Project Gutenberg [10]. Our
English thesaurus contains 25 953 words with 1 816 509 synonyms in total.

3 From Strings to Objects

To build the high-level document model from a flat input string we use Pe-
titParser [7]. PetitParser is a framework targeted at parsing formal languages
(e.g., programming languages), but we employ it here to parse natural lan-
guage input. This is technically difficult because there is no formal grammar
for natural languages and the parser has to gracefully accept any input, even
when the input does not follow basic rules of writing.

While PetitParser grammars are typically implemented without a separate
scanner, in this case we perform the parsing in two separate steps. First, we
split the input into markup, word, whitespace and punctuation tokens. Each
of these syntactic elements knows its source position in the input file, so that
we can map it back to the original text at a later time. Scanning of the markup
is implemented using the strategy design pattern [11] to detect the language
specific tokens in LATEXand HTML.

From this input stream of token objects we can build a high-level model of the
text. First we define predicates for tokens that terminate a document, para-
graph or sentence. Then we define the grammar to build document, paragraph
and sentence objects as shown below:

3 http://en.wiktionary.org/

5

http://en.wiktionary.org/

TextPhraser>>document
ˆ (paragraph starLazy: documentTerminator) , (documentTerminator optional)

TextPhraser>>paragraph
ˆ (sentence starLazy: paragraphTerminator / documentTerminator) ,

(paragraphTerminator optional)

TextPhraser>>sentence
ˆ (#any asParser starLazy: sentenceTerminator / paragraphTerminator /
documentTerminator) , (sentenceTerminator optional)

The grammar defined by our model looks more complicated than expected.
This is because we need to parse and build a model for any input and scan over
paragraphs and sentences even if they are not properly terminated. In future
work we plan to use the same parsing infrastructure to build a link grammar
model which provides an even better model for natural language [12].

4 Modeling Rules

A rule reifies an explicit regulation or principle that is accepted as a feature of
a writing style. Rules are applied to documents and they analyze properties
at different levels of the model. Rules report failures to comply with a certain
style feature at the document level, sentence level, phrase level or word level.

Regular expressions [13] are an alternative mechanism to match specific pat-
terns in text. However, we found regular expressions unsuitable in our context
because they are external to the domain of natural languages and are neither
reusable nor composable. Furthermore, most text documents contain noise not
related to the contents, such as LATEX or HTML markup that cannot be easily
handled with regular expressions while keeping the source location of matches.

We support two types of rules:

• Imperative rules are implemented by calling the document model API. If
an imperative rule detects a rule violation it manually instantiates a failure
object that knows the failing rule and the context in the model.

• Declarative rules check for specific patterns in the document model. Patterns
can be specified in two ways using an internal or external domain-specific
language on top of PetitParser. In both cases the searching and reporting
of violations happens automatically on the complete document model.

Rules are required to return additional meta-information such as its name and
a rationale giving a description of the rule and how to fix the text.

6

4.1 Imperative Rules

The entry point of an imperative rule is the method runOn: aDocument. For ex-
ample, the ‘avoid long sentence’ rule returns a failure object for each sentence
that has more than 40 words, and it is implemented like this:

LongSentenceRule>>runOn: aDocument
ˆ aDocument sentences

inject: OrderedCollection new
into: [:results :sentence |

sentence words size > 40
ifTrue: [results add: (RuleFailure on: self in: sentence)].

results]

Each imperative rule is implemented as subclass of the TextLintRule class. De-
pending on the level of granularity that a rule requires there are other methods
which can be overridden to specify the rule behavior.

TextLintRule>>runOnParagraph: aParagraph
TextLintRule>>runOnSentence: aSentence
TextLintRule>>runOnWord: aWord

If a rule should only be applied to a paragraph scope then it is simpler to use
the method runOnParagraph: aParagraph as an entry point.

4.2 Declarative Rules

Most TextLint rules are implemented declaratively. Declarative rules are sub-
classes of PatternRule and they override the method matchingPattern to return
the pattern to be looked for. The class PatternRule provides a series of basic
patterns that can be used to compose more complicated patterns:

• word matches any single word.
• word: matches a specific word given as argument.
• wordIn: matches any of the words given in the collection argument.
• wordSatisfying: matches any word that also satisfies the condition given in
the block argument.

Similar rules exist for separators such as whitespace and markup tokens, and
for punctuation. The returned matcher objects can be composed to more com-
plicated matcher objects using the standard composition operators of Petit-
Parser, such as ‘,’ for sequence and ‘/’ for choice.

7

For example, the rule ‘avoid somehow’ is implemented using the following
pattern:

SomehowRule>>matchingPattern
ˆ (self word: 'somehow')

The word ‘that’ should never be preceded by a comma. In German this is
mandatory but not in English.

NoCommaBeforeThatRule>>matchingPattern
ˆ (self word) , (self separator star) , (self punctuation: ',') , (self separator star) , (
self word: 'that')

This rule detects sequences of words followed by zero or more separators, then
a comma, zero or more separators, and the word ‘that’. The requirement to
define separators makes a rule definition more complicated, but it gives us the
full flexibility to reason about all parts of the input document. An example
where separators matter is the following rule, which triggers when one or more
accidental separators occurs in front of a punctuation mark:

NoSeparatorsBetweenWordAndPunctuationMarkRule>>matchingPattern
ˆ (self word) , (self separator plus) , (self punctuationIn: #(',' '.' ':' ';' '?' '!’))

The more complicated rule ‘avoid passive voice’ is implemented like this:

PassiveVoiceRule>>matchingPattern
ˆ (self wordIn: self verbWords) , (self separator star) , ((self wordSatisfying: [:word

| word text endsWith: 'ed']) / (self wordIn: self irregularWords))

This rule detects word sequences that start with a verb like ‘am’, ‘are’, ‘were’,
. . . ; followed by zero or more separators; followed by a word ending in ‘-ed’ or
one of the irregular passive words like ‘awoken’, ‘born’, ‘spoken’, . . .

Some stylistic rules validate a certain semantic structure rather than a syn-
tactic one. For example, the concatenation of two or more adjectives makes
text more difficult to read. This form of clutter is frequent in written text
and often misused by authors to add artificial importance to certain noun. A
better solution is to use a single adjective encompassing the meaning of both
adjectives.

Using our internal matching language we can define the described rule as
follows:

{adjective} {adjective}

8

The resulting matcher is very similar to the ones we have defined above. Albeit
less powerful than the previous rule definitions, the simple query language
allows users without a background in programming languages to define new
rules to detect stylistic issues concisely:

• A word matches any case-insensitive occurrence of that word.
• A punctuation character matches any occurrence of that punctuation char-
acter.

• A whitespace matches a possibly empty sequence of whitespace or markup
characters.

• A word enclosed in curly braces matches any word of the specified type: ab-
breviation, adjective, adverb, article, conjunction, contraction, interjection,
name, noun, number, participle, particle, preposition, pronoun, or verb.

For example, to find lists of nouns or adjectives that are not separated by a
comma we can use the following query string. Each line describes an alternative
pattern:

{adjective} {adjective} and {adjective}
{adjective} {adjective} or {adjective}
{noun} {noun} and {noun}
{noun} {noun} or {noun}

TextLint’s natural language facilities are not limited to classifying words.
TextLint also provides the synonyms of a given word. The thesaurus is useful
for detecting adverbs that are implied by the following word, as described by
William Zinsser [5]. For example, ‘effortlessly easy’ is an overstatement, since
if something is easy it is by definition effortless. The same logic applies to
phrases like ‘extremely loud’, ‘slightly spartan’ and ‘slightly small’. We can
detect such word combinations with the rule:

AdverbSynonymRule>>matchingPattern
| firstWord |
ˆ (self wordSatisfying: [:word | firstWord := word. word classifiesAs: #adverb]) ,
(self separator star) ,
(self wordSatisfying: [:word | firstWord synonyms includes: word])

5 Modeling Style

TextLint supports the definition of various writing styles. A writing style is a
set of rules that we want to follow to fulfill our literary objective. We model
the style as a composite of rules. Each distinctive style is defined as set of
specific rules. Users can build their own styles or compose existing ones.

9

The following example demonstrates a composition of writing styles used to
check this paper:

WritingStyle class>>computerSciencePaperStyle
<style>

ˆ self correctSyntacticStyle + self unclutteredStyle + self boldStyle

The computer science style is a composition of three other styles. The oper-
ators ‘+’ and ‘−’ are used to add and remove styles. The method annotation
<style> allows users to extend the system with new styles.

The ‘correct syntactic style’ checks for the usage of common grammatical
errors like ‘allow to’, ‘require to’, ‘continuous word repetition’ and ‘regarded
as being’. ‘Uncluttered style’ validates that unnecessary words do not take
part in sentence qualifiers. Finally, the bold style validates that no weakening
expressions or words are used in the sentences. Some examples are ‘the fact
that’, ‘one of the most’, ‘avoid stuff’, ‘avoid thing’ and ‘avoid somehow’.

Primitive writing styles are built as a composition of rules. The following
example shows the ‘correct syntactic style’ definition:

WritingStyle class>>correctSyntacticStyle
<style>

ˆ WritingStyle
named: 'Correct Syntactic Style'
from: AllowToRule new + RequireToRule new + HelpToRule new

+ RegardedAsBeingRule new + WordRepetitionRule new

6 Scripting the User Interface

We developed two GUIs to present issues detected by TextLint. The first inter-
face was developed using Glamour [14] to provide a fat-client implementation
with an integrated editor, and the second was built with Seaside [9] to provide
an online version of TextLint.

6.1 Glamour

The main user interface of TextLint has been developed using Glamour [14],
an engine for scripting browsers. Figure 4 shows how the TextLint browser is

10

modeled in Glamour. The arrows in Figure 4 represent the data flow among
the panels. The upper part of the browser is composed of four panes: the ‘files
pane’ shows the list of the files contained in the folder chosen and in all its
subfolders, the ‘issues pane’ contains a tree of failures of TextLint rules, the
‘rationale pane’ contains an explanatory text about the selected rule, and the
‘export pane’ contains a button that allows the user to export the computed
list of issues in plain text. In the bottom part of the browser there is one
pane, called ‘text pane’, that displays the contents of the selected file. The
highlighting of issues in the ‘text pane’ assists the user in working through the
issues.

..

Files

.

Issues

.

Rationale

.

Export

.

Highlighted Text

Fig. 4. The implementation of the TextLint window with Glamour. The figure
schematically depicts the panes and the data flow between them.

The workflow to use the application is divided into two main steps: First the
user is asked to select a directory of files to check. Then a browser is presented
allowing the user to select files and to fix the detected issues. Selected rule
violations are highlighted in the text and can be directly fixed from within the
tool. The tool can be downloaded from scg.unibe.ch/research/textlint.

Figure 5 shows a running instance of the TextLint browser: The user has
selected a file from the files pane triggering TextLint analysis and displaying
the problems. In the ‘issues pane’ the issues are grouped by rule type. The user
then selects an issue from the tree which displays the rationale for this error
and highlights the problem in the ‘text pane’. The displayed text is editable,
so modifying it and accepting changes saves the file and reruns the rules. In
the ‘text pane’ the elements are highlighted in three different colors: in black
is the text that has been analyzed, in red are the issues found, and in grey are
the ignored parts such as LATEX and HTML markup.

11

http://scg.unibe.ch/research/textlint

Fig. 5. Screenshot of the TextLint browser open on a scientific paper.

6.2 Seaside

The web application of TextLint at textlint.lukas-renggli.ch provides a quick
and easy way for authors to check their text style, and play with the pattern
matching infrastructure of TextLint. The web interface is implemented using
Seaside [9], a framework to develop dynamic web applications.

The web application presents the user with a large empty text pane. The user
needs to paste the text representation of the document to be analyzed and
click the button. After the text has been analyzed two vertically placed panes
are displayed as depicted in Figure 6. The upper pane holds a list with the
detected issues with their respective rationale. The lower pane displays the
analyzed text with the detected issues highlighted. The rationales of issues
can also be seen by hovering the mouse over the highlighted text.

7 Validation

In this section we present two empirical studies on the use TextLint.

12

http://textlint.lukas-renggli.ch

Fig. 6. The Seaside web interface for TextLint.

.. t.
t1

.
t2

.
t3

.
t4

.

Issues

.

Words

Fig. 7. Evolution of a paper from beginning to publication.

7.1 History of a Paper

Figure 7 depicts the number of stylistic issues detected by TextLint and the
number of words in the text. The dashed vertical lines mark interesting mo-
ments in the life-time of the document from the beginning to publication.

Up to point t1 we can see the early life of the paper. A significant amount

13

of text was added and the number of TextLint issues steadily increased over
time.

This growth decreased between point t1 and t2. We can observe that even
though some new text is being added the TextLint issues do not increase as
much as in the previous part. In this period the authors proof-read and rewrote
portions of the paper to accommodate the ideas and to make the story of the
paper more cohesive.

Points t2 and t3 mark the moments when a native English speaker with ex-
perience in paper writing for over 30 years proof-read the document. We can
observe in both cases that the number of errors was systematically reduced
after each of the interventions. The issues detected did not disappear imme-
diately because the expert author often introduced annotations to highlight
issues that were later fixed by the co-authors.

The peak at t3 marks the time before the paper submission. With the ap-
proaching deadline the authors added many new issues. The time period be-
tween t3 and t4 depicts the correction of most issues and the final preparations
of the paper for submission. Later the paper was accepted for publication.

Point t4 marks a slight increase in text size due to the introduction of pas-
sages addressing the reviewers comments. Afterwards, there is an abrupt size
reduction due to the elimination of comments and unnecessary text for the
camera-ready version.

By comparing the constant growth in size with the heterogeneous change in
the number of errors detected by TextLint we can conclude that the quality of
the introduced text is more relevant than the amount of text. We can observe
that when text is added to the document sometimes the number of errors
decreases and sometimes it increases. The number of errors depends much
more on the stylistic quality of the text introduced than the amount of text
introduced.

7.2 Effectiveness of TextLint

To validate the effectiveness of our rules we compared the average number of
issues over the complete history of several papers with the number of issues
when the final version was submitted for publication. We ran this analysis on
20 papers of our research group that got accepted at international conferences
in recent years. As the size of the individual papers significantly varies we
normalized all data by dividing by the respective file size.

14

..
Avoid ‘currently’

.
-74%

.

Avoid ‘certainly’

.

-25%

.

Avoid ‘would’

.

-24%

.

Avoid ‘factor’

.

-20%

.

Avoid long paragraph

.

-20%

.

Avoid ‘thus’

.

-13%

.

Avoid ‘however’

.

-10%

.

Avoid ‘case’

.

-7%

.

Avoid ‘can not’

.

-5%

.

Avoid ‘could’

.

-5%

.

Avoid passive voice

.

-4%

.

Avoid ‘insightful’

.

-3%

.

Avoid ‘stuff’

.

-3%

.

Avoid joined sentences

.

-1%

.

Avoid ‘as to whether’

.

0%

.

Avoid ‘different than’

.

0%

.

Avoid ‘doubt but’

.

0%

.

Avoid ‘each and every one’

.

0%

.

Avoid ‘enormity’

.

0%

.

Avoid ‘help but’

.

0%

.

Avoid ‘in regards to’

.

0%

.

Avoid ‘irregardless’

.

0%

.

Avoid ‘regarded as’

.

0%

.

Avoid ‘the fact is’

.

0%

.

Avoid ‘the truth is’

.

0%

.

Avoid ‘true fact’

.

0%

.

Avoid comma

.

0%

.

Avoid qualifier

.

2%

.

Avoid ‘funny’

.

5%

.

Avoid ‘one of the most’

.

5%

.

Avoid ‘importantly’

.

9%

.

Avoid long sentence

.

10%

.

Avoid ‘an’

.

10%

.

Avoid continuous punctuation

.

15%

.

Avoid ‘interesting’

.

17%

.

Avoid ‘required to’

.

17%

.

Avoid ‘a’

.

23%

.

Avoid ‘in order to’

.

23%

.

Avoid continuous word repetition

.

24%

.

Avoid ‘in terms of’

.

24%

.

Avoid ‘somehow’

.

25%

.

Avoid ‘help to’

.

27%

.

Avoid ‘the fact that’

.

32%

.

Avoid whitespace

.

45%

.

Avoid ‘allow to’

.

46%

.

Avoid ‘a lot’

.

55%

.

Avoid ‘thing’

.

70%

.

Avoid contraction

.

73%

Fig. 8. Effectiveness of various TextLint rules.

Figure 8 lists the TextLint rules from the least to the most effective ones. This
list is not complete since new rules are being added to the tool on regular basis.
We see that a few rules do not perform well. For example, the rule Avoid long
paragraph has 20% more occurrences for the finally published version of the
paper than during the writing of the paper. This can have various reasons:
either the rule is not well-defined, the copy editors do not consider the rule as
relevant, or the paper was in a perfect shape from the beginning.

On the other hand many rules in our case-study perform well: For example,
over 73% of the violations of the rule Avoid contraction disappear from the
final version of the papers. If TextLint had been used from the beginning of
the paper writing, the quality of the text would have been better from the
beginning.

15

Some authors do not always follow all rules, which is the case in the Avoid
currently rule. Most authors of the papers that we analyzed did not consider
this rule as an important style violation.

8 Related Work

A wide variety of (commercial) libraries for natural language processing exists.
Most of these libraries do not provide the necessary reusable abstractions to
analyze stylistic concerns in text.

Natural Language processing (NLP) is a field of computer science and linguis-
tics concerned with the interactions between computers and human (natural)
languages. NLP is concerned with the natural language generation and under-
standing. Natural language generation is the process that converts information
from a computational representation to readable human language. Natural lan-
guage understanding works by converting samples of natural language into a
representation understandable by computer systems. Bates [15] summarizes
the NLP problems and state-of-art solutions in detail.

Bird et al. present the Natural Language Toolkit (NLTK) [16,17] implemented
in Python. This tool follows the nomenclature of NLP. It reifies a corpus of
text as a large number of sentences. NLTK model is oriented towards pars-
ing, it provides abstractions for tokens, parse trees, tokenization, words and
sentences. A sentence is an ordered sequence of token. As other approaches,
NLTK does not provide abstractions for other components of written text, nor
does it provide a notion of style or an automatic validation mechanism.

Oda developed NaturalSmalltalk [18], a toolkit for analyzing source code and
natural languages. NaturalSmalltalk understands Smalltalk code as a series of
English words. From a modeling point of view, NaturalSmalltalk only reifies
words as a structural unit. There is no other abstraction of written text besides
words. It does not deal with style and it was mainly designed to be applied
to Smalltalk. When loaded, NaturalSmalltalk creates the corpus by analyzing
the Smalltalk image, processing all source code and interpreting it as English
language text.

Slator and Temperley propose link grammars [12]. A link grammar consists of
a set of words each of which has linking requirements. The link requirement
specifies conditions that if satisfied allow a word to be connected to other
words. The underlying model reifies verbs, nouns, adjectives, etc. and defines
different linking restrictions for each word using huge dictionaries. The link
grammar model was not conceived for validating style but as a way of checking
the grammatical structure of sentences.

16

Klein and Manning [19] presented a novel generative model for natural lan-
guage which uses a different model for representing the data. Syntactic struc-
tures (PCFG) and lexical dependencies structure are kept separated to accom-
plish conceptual simplicity and a good level of performance. This approach
follows the intuition that several models of written text are required to detect
various stylistic problems.

LanguageTool [20] is an Open Source style and grammar checker for English,
French, German, Polish, Dutch, Romanian, and other languages. Rules are
defined with xml files. Complex rules are defined in Java. One key drawback
of this tool is that there is no style abstraction, thus different writing styles
cannot be modeled. A big set of rules is present for each language, however
some rules are only syntactic checks. For example, a rule checks for the phrase
‘can be build’ which should be fixed by using the word ‘built’. There are also
rules checking for ‘some king’ instead of ‘kind’, and ‘I has’ instead of have.

9 Conclusion and Future Work

We have presented TextLint, an automatic style validation tool for written
text. TextLint reifies the different elements of written text as an extensible
object-oriented model. A specific style is modeled as a set of rules that validate
written text. Our contributions are:

(1) We provide a model which reifies structurally written text.
(2) We have presented a novel rule-based system for checking written text

following the principles of program checkers such as Lint. By modeling
style and stylistic rules as first class objects we have accomplished an
extensible text validation system.

(3) We have successfully applied PetitParser in natural language parsing.
(4) We have demonstrated a matching mechanism to specify and detect spe-

cific phrases in written text.
(5) We have presented a light-weight approach for natural language analysis.
(6) We have proposed two user interfaces for conveniently browsing and fixing

style issues in text.

As future work we imagine the following improvements:

• We would like to improve the collection of rules and styles for different
domains, i.e., business, criticism, humor, etc.

• We plan to add TextLint-specific annotations that cause certain rules to be
ignored in the marked context.

• Other languages than English have different rules for written style. We plan
to start introducing support for other languages.

17

• We plan on exploring the introduction of different points of view over the
same written text. We imaging employing link grammars to provide an even
higher-level view onto the same text. This would allow us to implement rules
that exploit semantic information. Words in specific parts of a document will
have a reduced set of potential classifications thus enhancing the accuracy
of TextLint rules.

• We intend to further simplify the definition of rules. Helvetia [21] is a lan-
guage workbench for defining embedded languages and can provide the nec-
essary infrastructure to define patterns even more naturally.

• We aim to better integrate TextLint into commonly used text editors. Cur-
rently plugins for Emacs and TextMate exist; supporting other editors will
extend the reach of TextLint and ease the analysis of different file types.

Acknowledgments. We thank Oscar Nierstrasz for his feedback on early drafts of
this paper. We gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Bringing Models Closer to Code” (SNF Project
No. 200020-121594, Oct. 2008 – Sept. 2010) and of the Hasler Foundation for the
project “Enabling the evolution of J2EE applications through reverse engineering
and quality assurance” (Project no. 2234, Oct. 2007 – Sept. 2010). We also gratefully
acknowledge the financial support of the Swiss National Science Foundation for the
project “Synchronizing Models and Code” (SNF Project No. 200020-131827, Oct.
2010 – Sept. 2012).

References

[1] S. Johnson, Lint, a C program checker, in: UNIX programmer’s manual, AT&T
Bell Laboratories, 1978, pp. 78–1273.

[2] D. Hovemeyer, W. Pugh, Finding bugs is easy, ACM SIGPLAN Notices 39 (12)
(2004) 92–106.

[3] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory
and Practice of Object Systems (TAPOS) 3 (4) (1997) 253–263.

[4] W. S. Jr., E. White, The Elements of Style, 4th Edition, Allyn and Bacon, 2000.

[5] W. Zinsser, On Writing Well: The Classic Guide to Writing Nonfiction,
anniversary. Edition, B&T, 2006.

[6] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by
Example, Square Bracket Associates, 2009.
URL http://pharobyexample.org

18

http://pharobyexample.org

[7] L. Renggli, S. Ducasse, T. Gı̂rba, O. Nierstrasz, Practical dynamic grammars for
dynamic languages, in: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain, 2010.
URL http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf

[8] P. Bunge, Scripting browsers with Glamour, Master’s thesis, University of Bern
(Apr. 2009).
URL http://scg.unibe.ch/archive/masters/Bung09a.pdf

[9] S. Ducasse,
L. Renggli, C. D. Shaffer, R. Zaccone, M. Davies, Dynamic Web Development
with Seaside, Square Bracket Associates, 2010, http://book.seaside.st/book.
URL http://book.seaside.st/book

[10] G. Ward, Moby Thesaurus List: Words and phrase lists – English, Project
Gutenberg, 2002.
URL http://www.gutenberg.org/ebooks/3202

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley Professional, Reading,
Mass., 1995.

[12] D. T. Daniel D. K. Sleator, Parsing English with a link grammar, in: 3rd
International Workshop on Parsing Technologies, 1991.

[13] R. I. Bull, A. Trevors, A. J. Maltopn, M. W. Godfrey, Semantic grep: Regular
expressions + relational abstraction, in: Proceedings Ninth Working Conference
on Reverse Engineering (WCRE’02), IEEE Computer Society, 2002, pp. 267–
276.

[14] P. Bunge, T. Gı̂rba, L. Renggli, J. Ressia, D. Röthlisberger, Scripting browsers
with Glamour, European Smalltalk User Group 2009 Technology Innovation
Awards, glamour was awarded the 3rd prize (Aug. 2009).
URL http://scg.unibe.ch/archive/reports/Bung09bGlamour.pdf

[15] M. Bates, Models of natural language understanding, Voice communication
between humans and machines – National Academy of Sciences (1994) 238–
253.

[16] S. Bird, Nltk-lite: Efficient scripting for natural language processing, in: In Proc.
of the 4th International Conference on Natural Language Processing (ICON,
Publishers, 2005, pp. 11–18.

[17] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit, O’Reilly, Beijing, 2009.
URL http://www.nltk.org/book

[18] T. Oda, NaturalSmalltalk (Dec. 2006).
URL http://map.squeak.org/package/624ed871-4e89-4343-8652-af38a873d0b4/

[19] D. Klein, C. D. Manning, Fast exact inference with a factored model for natural
language parsing, in: In Advances in Neural Information Processing Systems 15
(NIPS, MIT Press, 2003, pp. 3–10.

19

http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://book.seaside.st/book
http://www.gutenberg.org/ebooks/3202
http://scg.unibe.ch/archive/reports/Bung09bGlamour.pdf
http://www.nltk.org/book
http://map.squeak.org/package/624ed871-4e89-4343-8652-af38a873d0b4/

[20] D. Naber, A rule-based style and grammar checker, Master’s thesis, University
of Bielefeld (2003).
URL http://danielnaber.de/languagetool/download/style and grammar checker.
pdf

[21] L. Renggli, T. Gı̂rba, O. Nierstrasz, Embedding languages without breaking
tools, in: T. D’Hondt (Ed.), ECOOP’10: Proceedings of the 24th European
Conference on Object-Oriented Programming, Vol. 6183 of LNCS, Springer-
Verlag, Maribor, Slovenia, 2010, pp. 380–404.
URL http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

20

http://danielnaber.de/languagetool/download/style_and_grammar_checker.pdf
http://danielnaber.de/languagetool/download/style_and_grammar_checker.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

	Introduction
	Modeling Text Documents
	From Strings to Objects
	Modeling Rules
	Imperative Rules
	Declarative Rules

	Modeling Style
	Scripting the User Interface
	Glamour
	Seaside

	Validation
	History of a Paper
	Effectiveness of TextLint

	Related Work
	Conclusion and Future Work
	References

