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A Type Generic Definition for Debugging Lazy
Functional Programs by Value Observation

Maarten Faddegon and Olaf Chitil

University of Kent, UK

Abstract

Observing intermediate values helps to understand what is going on when your
program runs. Gill presented an observation method for lazy functional lan-
guages that preserves the program’s semantics. However, users need to define
for each type how its values are observed: a laborious task and strictness of the
program can easily be affected. Here we define how any value can be observed
based on the structure of its type by applying generic programming. Further-
more we present an extension to specify per observation point how much to
observe of a value.

Keywords: tracing, debugging, lazy evaluation, Haskell

1. Introduction

Consider the program

main = sel (gen 3)

where the function gen computes intermediate values that are used as inputs
for the function sel. We could first run gen and store all intermediate values
in memory, and then apply sel to the values. However, gen might construct
so many intermediate values that not all values can fit in memory at the same
time. A lazy evaluation strategy evaluates expressions to values as they are
needed: first gen runs as little as possible, then sel runs and gen is suspended
until sel requires a new input value.

A lazily evaluated program can be modularized into a generator part (gen
in the example above) that constructs a large number of possible answers and
a selector part (sel above) that selects the right answer. Well structured code
is easier to write because each module becomes simpler, and reduces future
programming costs because it provides modules that can be re-used [1].

Because the code of a program modularised into a generator and selector part
is simpler the programmer is less likely to make a mistake, however mistakes will
always still be made, requiring debugging. Consider the defective program in
Figure 1. The generator function mkTree constructs a sorted infinite binary tree
of rational numbers (the Stern-Brocot tree) and the selector function toFloat
uses the tree for finding the rational number that represents a floating point
number. For completeness our Tree type also has a Leaf constructor, even

Preprint submitted to TFP 13/14 special issue May 15, 2016



data Tree = Node Rational Tree Tree | Leaf
data Rational = Integer :% Integer
deriving Show

mkTree :: Integer -> Integer -> Integer -> Integer -> Tree
mkTree a b c d = Node (x :% y) (mkTree a b x y) (mkTree x y c d)
where x = a+c

y = b+d

toFloat :: Tree -> Float -> Rational
toFloat (Node x left right) y
| delta <= 0 = x
| delta > 0 = toFloat left y
| otherwise = toFloat right y
where delta = (fromRational x) - y

main = print (toFloat (mkTree 0 1 1 0) 0.75)

Figure 1: A defective program for finding a rational representation of a floating point number
using an sorted infinite tree of rational numbers.

though the tree we define is infinite and has no leafs. The rational 1
3 (represented

as 1 :% 3 in the program) is for example the simplest approximation of 0.3 when
the maximum deviation is 0.05. However, when we run our program it prints
the unexpected result 3 :% 10 instead. How do we find out if the defect is in the
definition of the generator function or in the definition of the selector function?

When we could inspect the intermediate values that are used as inputs for
the selector function we could see if these are right (the defect is in the selector)
or wrong (the defect is in the generator).

In a naive attempt to inspect the intermediate values we derive Show for the
Tree type and try to reveal the intermediate values with

main = print (mkTree 0 1 1 0)

however, print tries to show all values in the infinite tree constructed by mkTree
and hence this program never terminates.

Gill presented therefore a method that preserves the semantics for lazy eval-
uation and reveals only the intermediate values that are actually demanded by
the selector function. His approach is implemented in the library HOOD for
Haskell. Using Gill’s method on the toFloat function in our program we ob-
tain the values in Figure 2, where is used to represent a part of the tree that is
not used in this context of the evaluated fuction. From these recorded values we
can use the specification of the Stern-Brocot tree [cite??] to conclude that the
part of the tree evaluated in the context of toFloat is correct. Hence, the defect
is not in the generator function but must be in the selector function toFloat
and not in the generator function mkTree.

1.1. The Problem
We can derive a Show instance for the type of a value we want to print.

However, how HOOD observes intermediate values has to be stated for each type
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toFloat (Node (1 :% 1) (Node (1 :% 2) _ _) _) 0.75 = 1 :% 2

Figure 2: Recorded arguments and result values of toFloat.

in a specific definition. Because the HOOD library comes with many of these
definitions, observing values of common types works well. However when users
define their own data types they also need to define how these are observed.
There are two reasons why it is undesirable that users need to define instances
for their data types:

First of all writing these definitions is a laborious and boring task making
HOOD less accessible.

The second and maybe even more important problem is that the strictness
of the program can be changed when not enough care is given to the definition.
This is bad: non-termination can be introduced by tracing a program.

While considering how to give a generic definition to observe values, we
realised that HOOD lacks a mechanism to not observe values of a certain or
unknown type. Partial observation can be beneficial for two reasons: First of
all, when fully observing a function, the formatted output of an observation
may be cluttered by values that are not needed to understand the working
of the function. Secondly, fully observing a value with a parameterised type
requires the addition of class predicates to the type of the function in which
the observation is made. The change then may require further type changes or
additional instance declarations wherever the function is called. If such changes
are required beyond the boundaries of one module, they are too intrusive and
thus practically infeasible.

1.2. Contributions

With this in mind we have developed Hoed, an improved version of the
HOOD tracing library. Hoed can be installed with cabal install Hoed. Some
of the features described in this paper are also merged into HOOD version 0.3.
In this paper we make the following main contributions:

• We define how any value can be observed based on the structure of its
type and generalise HOOD with this definition (Section 4).

• We include an extension that allows us to define in a generic manner, per
observation point, how much of a value to observe. (Section 5).

Furthermore, we explain how value observation tracing works (Section 2)
and how value observation tracing is implemented in HOOD (Section 3).

2. Value Observation Tracing

To explain what is exactly recorded in the trace by an observe annotation
we define a small language and with a typed natural semantics we specify how
typed expressions from our language are lazily evaluated with generation of a
trace. We used a similar, but untyped, language and semantics in our previous
publication on constructing a computation tree for algorithmic debugging from
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a value observation trace [2], to make this paper self-explanatory we summarize
some parts of the language description from our previous paper. For the purpose
of explaining our method we use a language that has not as many different
expressions as Haskell, however value observation based tracing scales to full
Haskell because Haskell has only few different sorts of values.

2.1. Language

Figure 3 gives the language for which we define value observation tracing.
Our language contains two sorts of values: data constructors and functional
values. Integer values are just data constructors with arity 0.

When the programmer wants to record the value to which an expression e
evaluates in the trace, they use the observe expression to annotate e with a
label f . Evaluating an observe expression introduces obs expressions and obsλ
values, obs and obsλ should not be part of a program.

2.2. Types

The expressions from our language are typed with the types from Figure 4.
There is one base type Integer. The name of a type constructors is encoded
with the meta type M . Choice is encoded with the sum type. For example the
Haskell type for Boolean values

data Bool = True | False

e ::= v
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| x1 ⊕ x2 application of a primitive
| observe f e label expression
| obs p e observed expression

v ::= c x1 . . . xn data constructor
| vλ functional value

vλ ::= λx.e λ-abstraction
| obsλ p vλ observed functional value

Figure 3: Syntax of the core language.

T ::= T1 → T2 function type
| Integer base type
| T1 :+: T2 sum type, to encode choice
| T1 :∗: T2 product type, to encode structured data
| M c meta type

Figure 4: Syntax of the types in our language.
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is represented in our type syntax as

(M True) :+: (M False)

The product type is used to represent structured data. For example the Haskell
type for Rational values

data Rational = Integer :% Integer

is encoded as

(M :%) :∗: Integer :∗: Integer

2.3. A Trace of Events

A value is observed by adding events as defined in Figure 5 to the trace, thus
the trace is a sequence of events. Evaluating for example let x = 3 :% 4 in
fromRational (observe "x" x) gives the trace

1: Root “x”
2: Con (P 1) “:%” 2
3: Con (Pc 2 2) “4” 0
4: Con (Pc 2 1) “3” 0

Each event has a unique event number i that corresponds one-to-one to the
index of the event in the trace. Several observe annotations may add events
that occur interleaved in the trace; and as we see in the example above even the
events describing a single value may occur in a different order than we might
expect. To identify which events belong to which observation every event, except
the root events, contain a field p. This field both identifies which event is their
parent and what the role of the child event is. For example the parent field Pc 2 1
of event 4 above tells us that event 4 is the first argument to the constructor
recorded by event 2.

An i :Root f event records the label with which the programmer labeled an
expression. The first event in the example trace above records the label “x”.

An event i : Con p d a records that the value is a saturated application
of a constructor c where d = ss c is the representation of that constructor. A
constructor may be the parent of up to a children, each child event with a parent
field Pc i m such that 1 ≤ m ≤ a. Because lazy evaluation may not evaluation
some data constructor arguments the event i : Con p d a does not necessarily
have all m children.

We can also observe functional values: either directly, as argument to a
constructor or as argument or result of another functional value. Functional
values are recorded extensionally, that is, as a finite map from argument to
result value. An i :Lam p event has one or more i′ :MapsTo p′ events as children.
Each i′ :MapsTo p′ event corresponds to an application of the observed function.
A function application always has exactly one result value (which in turn may
have more children) and may have one argument value. The argument value is
optional, consider for example the program

let f = observe "f" (λ x . 7); x = 8 in f x

which evaluates to the following trace:
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trace T ::= t0, . . . , tn sequence growing right
event number i ∈ {0, . . . , n} refers to an event in the trace
trace event t ::= i :Root f root with function identifier f

| i :Con p d a value is data constructor
| i :Lam p value is an abstraction
| i :MapsTo p function application

parent p ::= P i parent is event i :Root f or i :Lam p′

| Pc i m argument m; parent is constructor
event i :Con p′ d a with m ≤ a

| Pa i argument
| Pr i result

string s ::= f user label
| d data constructor representation

Figure 5: Syntax of the trace and its events.

1: Root “f”
2: Lam (P 1)
3: MapsTo (P 2)
4: Con (Pr 3) “7” 0

2.4. Semantics

We give a set of evalutation rules in Figure 6 that define how a heap Γ1,
that is a finite list from variables to expressions, a trace T1 and an expression
e are evaluated to Γz, Tz and value v. Expression e and resulting value v have
the same type T . For this we use the following notation:

Γ1, T1 : e ⇓ Γz, Tz : v :: T

The initial heap and trace are empty. The resulting trace Tz is the sequence
of events that correspond to the values to which the observed expressions in e
evaluated in the context of evaluating e to v.

The rules Lam, Con, Let, Var, App, Case and Prim are similar to the rules
with the same names in Launchbury’s semantics for lazy evaluation [3]. We
added a trace as an additional global state that is passed and possibly changed
by the dependencies but not by the rules themselves. Like Launchbury we
require that all bound variables of an expression are distinct. The v̂ in the Var
rule indicates that all bound variables in v are renamed to fresh ones. For y1 to
yn in ObsCon and y in ObsApp we also pick fresh variables. In the Prim rule
⊕ is the total semantic function associated with the syntactic operator ⊕.

The last four rows define how the trace is constructed. For an application
of a constructor c x1 . . . xn the ObsCon rule adds a Con event and continues
observing the arguments x1, . . . , xn of the constructor using the pseudo function
obs.

For a functional value vλ the ObsLam rule adds an event i : Lam p to
the trace. For every application of the resulting observed functional value
obsλ (P j) vλ the ObsApp rule adds an event k :MapsTo (P j) to the trace and
continues observing the argument and result using the pseudo function obs.
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Γ, T : λx.e ⇓ Γ, T : λx.e :: T2 → T2 Lam

Γ, T : c x1 . . . xn ⇓ Γ, T : c x1 . . . xn :: T Con

Γ1[xi 7→ ei :: Ti]
n
i=1, T1 : e ⇓ Γ2, T2 : v :: T

Γ1, T1 : let {xi = ei :: Ti}ni=1 in e ⇓ Γ2, T2 : v :: T
Let

Γ1, T1 : e ⇓ Γ2, T2 : v :: T

Γ1[x 7→ e :: T ], T1 : x ⇓ Γ2[x 7→ v :: T ], T2 : v̂ :: T
Var

Γ1, T1 : e ⇓ Γ2, T2 : λx.e′ :: T1 → T2
Γ2, T2 : e′[y/x] ⇓
Γ3, T3 : v :: T2

Γ1, T1 : e y ⇓ Γ3, T3 : v :: T2
App

Γ1, T1 :e ⇓ Γ2, T2 :ck x1 . . . xmk

:: T1 + T2 + . . . Tn
Γ2, T2 :ek[xi/yi]

mk
i=1 ⇓ Γ3, T3 :v

:: T1 + T2 + . . . Tn

Γ1, T1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3, T3 :v :: T1 + T2 + . . . Tn

Case

Γ1, T1 : e1 ⇓ Γ2, T2 : v1 :: T1 Γ2, T2 : e2 ⇓ Γ3, T3 : v2 :: T2
Γ1, T1 : e1 ⊕ e2 ⇓ Γ3, T3 : v1⊕ v2 :: T3

Prim

Γ1, T1 l (i :Root f) : obs (P i) e ⇓ Γ2, T2 : v :: T i= |T1|
Γ1, T1 : observe f e ⇓ Γ2, T2 : v :: T

Observe

Γ1, T1 : e ⇓ Γ2, T2 : c x1 . . . xn :: T i= |T2|
Γ1, T1 : obs p e ⇓Γ2[y1 7→obs (Pc i 1) x1, . . . , yn 7→obs (Pc i n) xn],

T2l(i :Con p (ss c) (arity c)) : c y1 . . . yn :: T

ObsCon

Γ1, T1 : e :: T ⇓ Γ2, T2 : vλ :: T i= |T2|
Γ1, T1 : obs p e :: T ⇓ Γ2, T2l(i :Lam p) : obsλ (P i) vλ :: T

ObsLam

Γ1, T1 :e ⇓
Γ2, T2 :obsλ p vλ :: T1 → T2

Γ2[y 7→obs (Pa i) x :: T1],
T ′l(i :MapsTo p) :
obs (Pr i) (vλ y) ⇓
Γ3, T3 :v :: T2 i= |T2|

Γ1, T1 :e x :: T2 ⇓ Γ3, T3 :v :: T2
ObsApp

Figure 6: A typed natural semantics for lazy evaluation with generation of a trace.

So only when evaluation reaches a constructor application that is recorded
in the trace. When that constructor application is destructed by a case ex-
pression, nothing is recorded in the trace. In contrast, when evaluation reaches
a functional value that is recorded in the trace and whenever that functional
value is applied to an argument, the pair of argument and result are recorded
in the trace. We have this asymmetry, because our syntax uses a saturated con-
structor application as value, which contains a constructor and its arguments; in
contrast, a functional value can be applied to an arbitrary number of arguments
in a computation.
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IO actions such as getChar and putChar are similar to functions but either
the result or the argument is opaque: we record that it is there but we cannot
observe its value. For handling them see the original HOOD paper [4].

-- Combinators used to make observations
runO :: IO a -> IO ()
observe :: Observable a => String -> a -> a

-- The class and method users need to implement
class Observable a where
observer :: a -> Parent -> a

-- Helper functions to implement an observer method
send :: String -> ObserverM a -> Parent -> a
(<<) :: (Observable a) => ObserverM (a -> b) -> a -> ObserverM b

Figure 7: Essential parts of the HOOD API.

3. Implementing Value Observation Tracing in Haskell

HOOD implements value observation tracing in Haskell [4]. HOOD is un-
obtrusive: it is just a library and requires no changes to the run-time system.
Figure 7 shows the essential parts of the library’s API.

The two main combinators of the library are observe and runO. The function
observe takes a label as parameter and then behaves like the identity function;
as side effect a value is observed and associated with the label. The runO
function evaluates its argument expression and afterwards uses the trace of
events to print the observed values.

Consider adding the following underlined annotations to the example pro-
gram of Figure 1:

main = runO (print (toFloat’ (mkNode 0 1 1 0) 0.75))
where toFloat’ = observe "toFloat" toFloat

We run our program as usual. During the evaluation of the program the observe
annotation records, as defined in the semantics of Section 2, the event trace listed
in Figure 8. Finally the function runO formats the collected events and prints
the value representation of Figure 2. Note how for example event 7 records an
arity of 3 but only has two childs (event 7 and 12) from which we conclude that
the expression that describes the right-tree was not demanded in this context,
and hence a is printed. We describe exactly how a trace of events is translated
to a value representation in [2].

A user can define their own type and data constructors, like the Tree type
with the Node and Leaf data constructors in the example of Figure 1. Because
values of different types need to be observed in different ways, the HOOD library
implements the ObsCon rule with a method named observer. This method is
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1:Root “toFloat”
2:Lam (P 1)
3:MapsTo (P 2)
4:Lam Pr 3
5:MapsTo (P 4)
6:Con (Pr 4) “:%” 2
7:Con (Pa 3) “Node” 3
8:Con (Pc 7 1) “:%” 2
9:Con (Pc 8 1) “1” 0

10:Con (Pc 8 2) “1” 0
11:Con (Pr 5) “0.75” 0
12:Con (Pc 7 2) “Node” 3
13:Con (Pc 12 1) “:%” 2
14:Con (Pc 13 1) “1” 0
15:Con (Pc 13 2) “2” 0
16:Con (Pc 6 1) “1” 0
17:Con (Pc 6 2) “2” 0

Figure 8: Trace obtained by evaluating introductory example.

part of the class Observable. The programmer needs to define instances of the
class Observable for the types of all values they want to observe.

Let us consider for example evaluating an observed expression e of type Tree,
by the ObsCon rule, that is either

Γ1, T1 : e ⇓ Γ2, T2 : Node x1 x2 x3 :: Tree i= |T2|
Γ1, T1 : obs p e ⇓Γ2[y1 7→obs (Pc i 1) x1, y2 7→obs (Pc i 2) x2,

y3 7→obs (Pc i 3) x3],T2l(i :Con p “Node” 3) : Node y1 y2 y3 :: Tree

or

Γ1, T1 : e ⇓ Γ2, T2 : Leaf :: Tree i= |T2|
Γ1, T1 : obs p e ⇓ Γ2, T2l(i :Con p “Leaf” 0) : Leaf :: Tree

To implement this behaviour in Haskell the programmer writes an instance
of the observer method. To add an event to the trace the HOOD library
provides the function send. The send function takes the message to record,
the value “wrapped” in the ObserverM monad and the context. The ObserverM
state monad is used to number the constructor arguments of the observed value.
Later we take a closer look at numbering constructor arguments and the context,
for now it is enough to know that this is used to connect various parts of the
observation.

The goal of each observer instance is twofold.
First of all the observer records a message with a string representation of

the data constructor of the value, such as “Node” or “Leaf”. For base types,
such as Integer the message is the result of (show lit), for base types the
show function does not change the semantics because the value of has no internal
structure, but in general we need to be careful with show.

Secondly the observer should put further observers on the constructor
arguments of the value: for example the Tree observer adds an observer to
all three constructor arguments in our example above, resulting in the second
observation when v is evaluated.

To place observers on the constructor arguments of a value, the value is
decomposed by pattern matching, e.g. into the constructor Node and the argu-
ments v, l and r in the Tree observer above. From the decomposed parts a
transformed value with observers is inserted one level deeper.

The data constructor’s arguments may or may not be evaluated, in arbi-
trary order. To identify which message is associated with which argument port
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numbers are assigned to each of the arguments’ observers. For example when
observing the value Node x1 x2 x3 the observer of argument x1 is assigned port
number 1, x2 gets port number 2 and x3 port number 3.

To assign increasing port numbers to constructor arguments, a state monad
ObserveM and the function thunk are used. When thunk is evaluated the ap-
propriate observer instance is applied.

newtype ObserverM a = ObserverM { runMO :: Int -> Int -> (a,Int) }

instance Monad ObserverM where
return a = ObserverM (\ c i -> (a,i))
fn >>= k = ObserverM (\ c i ->

case runMO fn c i of
(r,i2) -> runMO (k r) c i2)

thunk :: (Observable a) => a -> ObserverM a
thunk a = ObserverM $ \ parent port ->

(observer a (Parent
{ observeParent = parent
, observePort = port
})

,port+1)

Using the monad can become rather involved for constructors with many
arguments. Therefore the helper function (<<) can be used when defining an
observer instance:

(<<) :: (Data a) => (Data b)
=> ObserverM (a -> b) -> a -> ObserverM b

fn << a = do fn’ <- fn
a’ <- thunk a
return (fn’ a’)

To write a correct observer implementation we need to have some under-
standing of how lazy evaluation works and have some basic understanding of
HOOD’s internals. We need to define the method observer such that only a
representation of the value’s data constructor is recorded now, and that other
observers will do the same for the data constructor arguments when these are
evaluated. The helper function (<<) can be used to count and number the con-
structor arguments of a value and to apply observer to each argument: To
observe the tree of our example the definition would be:

instance Observable Tree where
observer (Node x1 x2 x3)
= send "Node" (return Node << x1 << x2 << x3)
observer Leaf
= send "Leaf" (return Leaf)

4. Type Generic Value Observation Tracing

A programmer can easily change the lazy semantics of observe with the
definition of their observer instance. For example using show on the arguments
of the constructor can result in a non-terminating program:
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instance Observable Tree where
observer (Node x1 x2 x3)
= send (show x1 ++ ", left: " ++ show x2 ++ ", right: " show x3)

(return (Node x1 x2 x3))
observer Leaf
= send "Leaf" (return Leaf)

A second problem of hand written observer instances is that the repetitive
task of writing observers is a burden to the programmer. Furthermore the
observers are vulnerable to change, when debugging a program we are likely to
want to make small changes to our data structures which require us to adapt
our observers as well.

To make HOOD easier to use and less prone to misuse we extended HOOD
allowing the user to derive how a value is observed from its type. Data generic
programming techniques are a well researched area resulting in a multitude of
libraries and language extensions. A fairly complete overview is given in [5].

The Generic Deriving Mechanism (GDM) adds the derivable class Generic
with methods to convert to and from a type representation. A generic function
is defined on this type representation [6]. The Glasgow Haskell compiler1 (GHC)
and the Utrecht Haskell compiler2 (UHC) implement GDM.

With GDM we define how observer can be derived from a type represen-
tation. This representation is defined for instances of the Generic class. The
Generic class is derivable:

data Tree = Node Rational Tree Tree | Leaf
deriving (Generic)

To derive an observer instance users add an Observable instance declaration
for their type without a definition of the method. Either as a standalone decla-
ration (e.g. when the type was defined in a library):

instance Observable Tree

Or the instance is derived in the type declaration:

data Tree = Node Rational Tree Tree | Leaf Rational
deriving (Generic, Observable)

Advanced users still can choose to define their own Observable instances:
there is a trade-off between the risk to make a mistake and change the semantics,
and being able to observe values of a certain type in a special way.

4.1. Implementation
For the Generic Deriving framework we provide a default implementation of

observer:

class Observable a where
observer :: a -> Parent -> a
default observer :: (Generic a, GObservable (Rep a))

=> a -> Parent -> a
observer x c = ...

1http://www.haskell.org/ghc
2http://www.cs.uu.nl/wiki/UHC
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data Tree a = Node a (Tree a) (Tree a)︸ ︷︷ ︸
left

| Leaf a︸ ︷︷ ︸
right︸ ︷︷ ︸

sum︸ ︷︷ ︸
data type

Figure 9: Choice between data constructors of the Tree type encoded as the sum of Node
and Leaf.

A type generic function is implemented with the Generic Deriving Mecha-
nism (GDM) by converting the observed value to a product-sum representation,
manipulating this representation and converting back from the changed repre-
sentation. To convert a value into a type representation its type should be of
the Generic class, which is derivable [6].

The product-sum representation has its roots in type theory: representing
the choice between constructors (e.g. Node or Leaf for values of type Tree) as
the product of the choices and representing a variant type (e.g. Rational, Tree
and Tree for the Node constructor) as the sum of its variants.

4.1.1. Encoding Constructor Names
Constructor names can be attached as labels to a type. In GDM this meta-

information is encoded with the combination of type M1 and method conName.
The type is used in the representation while the method holds the actual con-
structor label:

data M1 c a = M1 a
class Constructor c where conName :: c -> String

Note that the M1 data constructor is used for many different types. The types
are distinguished by the c type variable. Types for this variable and corre-
sponding conName instances need to be generated. In GHC this is done when
we derive Generics for a type. We would for example for our Tree generate
the types NodeConstr and LeafConstr such that:

conName (m :: M1 NodeConstr a) 7→ "Node"
conName (m :: M1 LeafConstr a) 7→ "Leaf"

4.1.2. Encoding Product and Sum
Here we summarise the product-sum representation3 as used in GDM:

• To encode choice between data constructors of the same type GDM uses
the sum type. When there are more than two constructors, the sum type
can be nested.

data (a :+: b) = L1 a | R1 b

3 We simplified the actual representation of GDM, the full representation is presented by
Magalhães et al. in [6].
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• To encode structured data the product representation is used.

data (:*:) f g = f :*: g

Let us consider how a value of the Tree type would be encoded. A value
with constructor Node has three arguments, this is encoded with the product-
representation. Our Tree type can either be Node or Leaf (see Figure 9), the
choice between these data constructors is encoded with L1 for Node-values and
R1 for Leaf-values. For example assume we want to encode a simple tree with
two leafs and one node. The values x, y and z are stored in the tree. We do not
elaborate on how these are encoded but just label their representations as q, r
and s:

encode (Node x (Leaf y) (Leaf z))

7→ L1 (M1 (q :*: R1 (M1 r) :*: R1 (M1 s)))

shallowShow () = ε

observeChildren () = ()

Records are another special case of the tuple type where a set of field labels
index the tuple [7]. Currently HOOD does not trace field labels, but with our
approach it would be trivial to extend it to do so. The definitions below reflect
the current situation: OC: Explain

what LF : T
is

OC: Explain
what LF : T
isshallowShow x :: LF : T = ε

observeChildren x :: LF : T = observer x :: T

4.1.3. Base types
Base types such as Int and Float “have no internal structure as far as the

type system is concerned” [8] Therefore we can use show to produce the repre-
sentation without forcing further evalution:

shallowShow = show

And there are no further arguments to be observed:

observeChildren b = b

4.1.4. Implementing a Generic Observer with GDM
For each value that we want to observe with our generic observer we use

GDM’s from-function to construct a product-sum representation. Above we
introduced GDM’s fixed set of types in which it represents a Generic value.

We introduce a class GObservable with method gobserver and for each of
GDM’s representation-types we define an instance of GObservable: with the
sum representation we query the meta-information; using the meta information
we find the constructor names and record these; and with the product represen-
tation we observe the arguments of the value.

The observer applied to one of the arguments can either be another ad-
hoc instance of observer provided by the programmer, or again the default
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T ::= T1T2 type application
| λa.T type constructor
| . . .

Figure 10: Type constructors and applications.

observer. The returned type representation (with observed constructor argu-
ments) is decoded to the original type with GDM’s to-function. Figure ?? shows
a schematic overview of applying the generic observer to the type representa-
tion of a Node from our Tree.

class Observable a where
observer :: a -> Parent -> a
default observer :: (Generic a, GObservable (Rep a))

=> a -> Parent -> a
observer x c = to (gobserver (from x) c)

5. Type Constructors and Value Observation Tracing

In the first part of this paper we ignored type constructors (Figure 10),
however, type constructors are an essential part of writing polymorphic library
functions.

5.1. Introducing the Case Study

Consider the tree library of Figure 11 that contains the type constructor
Tree. A data type is obtained by applying the type constructor to another data
type. For example Tree Integer describes a tree with all its values of type
Integer.

Some function definitions are independent of the type of the values in the
Tree and we can define such a function polymorphically. Instead of an actual
type we use a type variable a. Our example library contains a polymorphic func-
tion depth with type Tree a -> Int -> [a] to return all nodes at a certain
depth in a complete tree.

Assume we use our library to find the list of possible outcomes of flipping a
coin n times. When we flip a coin once it can be heads or tails, we represent
that with the following data type:

data Coin = Heads | Tails

To represent the state after flipping a coin n times we use the type [Coin].
When the first time we flip a coin gives us heads and the second time gives us
tails we use

[Tails,Heads]

thus, the list is a sequence of coin flips from most recent outcome to first out-
come. The next state after flipping the coin a third time is created by added
the new outcome to the front of the list. Every state si has two possible next
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data Tree a = Node a (Tree a) (Tree a) | Leaf a

depth :: Tree a -> Int -> [a]
depth tree n = take ((n+1)*2) (drop (2^n-1) (breadthFirst tree))

breadthFirst :: Tree a -> [a]
breadthFirst tree = fold [tree]
where
fold [] = []
fold queue = map nodeVal queue
++ concatMap (fold . subTrees) queue

nodeVal :: Tree a -> a
nodeVal (Node x t1 t2) = x
nodeVal (Leaf x) = x

subTrees :: Tree a -> [Tree a]
subTrees (Node x t1 t2) = [t1,t2]
subTrees (Leaf x) = []

Figure 11: A library with a Tree type constructor, a defective definition of polymorphic
breadth-first ordering of the nodes in a tree and a polymorphic definition to get the nodes at
a given depth from a complete tree.

states: Heads : si and Tails : si. The states of up to three coin-flips can
be represented in a tree as follows:

[] [HEADS]

[TAILS]

[HEADS,HEADS]

[TAILS,HEADS]

[HEADS,TAILS]

[TAILS,TAILS]

[HEADS,HEADS,HEADS]
[TAILS,HEADS,HEADS]
[HEADS,TAILS,HEADS]
[TAILS,TAILS,HEADS]
[HEADS,HEADS,TAILS]
[TAILS,HEADS,TAILS]
[HEADS,TAILS,TAILS]
[TAILS,TAILS,TAILS]

n=0 n=1 n=2 n=3

The complete tree with all possible states can be defined with

mkTree c = Node c (mkTree (Head : c)) (mkTree (Tail : c))

One property of this tree is that given all states at a certain depth, Heads
occurs as often as Tails, expressed in the following QuickCheck property:

prop_depthSound n = length heads == length tails
where
(heads,tails) = partition (==Heads) outcomes
outcomes = concat (depth (mkTree []) n)

However prop depthSound 3 unexpectedly evaluates to False! To find out
why this property fails we want to inspect the argument and result value of the
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applications of breadFirst. This will reveal the structure of the tree visited
(helping us to decide if the definition of breadFirst is sound and it will reveal
which values stored in the nodes are evaluated in the context of this function
application helping us to decide if the definition of depth is sound.

To annotate the program the programmer transforms the program as follows:

1. Derive Observable for our Tree type in our library.

data Tree a = Node a (Tree a) (Tree a) | Leaf a
deriving (Generic,Observable)

2. Label the breadthFirst function definition for tracing.

breadthFirst = observe "breadthFirst" (\tree -> fold [tree])

3. Now the programmer must also change the type declaration of breadthFirst
because the derived instance of the observer method expects a in Tree
a to be Observable. Thus the type declaration becomes

breadthFirst :: Observable a => Tree a -> [a]

and hence the programmer also needs to change the type declaration of
the depth function

depth :: Observable => Tree a -> Int -> [a]

4. But now the changed type declaration is exposed to modules outside our
tree library! Thus the programmer also has to make changes in other
modules. They need to derive Observable for any concrete type a of
values with type Type a to which depth. In our example program that is

data Coin = Head | Tail
deriving (Generic, Observable)

Step three and four are unfortunate, although it is a task that can easily
be automated, we rather not force the programmer to make changes outside a
library module.

Furthermore, the now also traced coin-flip states do not provide much in-
formation to the programmer to understand their code, in fact they clutter the
output printed after evaluating the program (Figure 12). What if we used <?>
for values in the tree and for expressions unevaluated in this context? Compare
the value representation on the left in Figure 13 with the value representation
of Figure 12.

From the latter it is easier to infer that the defect must be in the definition of
breadthFirst: in the last line of the definition instead of exploring the subtrees
of the queued nodes and concatenating the result

concatMap (fold . subTrees) queue -- defective

the function should concatenate the subtrees of the queued nodes and then
explore such as in the definition

fold (concatMap subTrees queue) -- correct
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breadthFirst
(Node _
(Node _
(Node _
(Node _
(Node (Head : Head : Head : Head : [])
(Node (Head : Head : Head : Head : Head : [])
(Node (Head : Head : Head : Head : Head :
Head : [])
(Node (Head : Head : Head : Head : Head :
Head : Head : []) _ _)

(Node (Tail : Head : Head : Head : Head :
Head : Head : []) _ _))

(Node (Tail : Head : Head : Head : Head : Head :
[]) _ _))

(Node (Tail : Head : Head : Head : Head : []) _ _))
(Node (Tail : Head : Head : Head : []) _ _))

_)
_)

_)
= _ : _ : _ : _ : _ : _ : _ : (Head : Head : Head : Head :
[]) : (Tail : Head : Head : Head : []) : (Head : Head :
Head : Head : Head : []) : (Tail : Head : Head : Head :
Head : []) : (Head : Head : Head : Head : Head : Head :
[]) : (Tail : Head : Head : Head : Head : Head : []) :
(Head : Head : Head : Head : Head : Head : Head : []) :
(Tail : Head : Head : Head : Head : Head : Head : []) : _

Figure 12: Observing a defective breadth first implementation.

5.2. Type Generic Programming is Not Enough
Our definition should decide if a subvalue should be observed based on

whether the type of a value is an instance of the Observable class. Given
the type representations

Node a (Tree a) (Tree a)

Observable b => Node b (Tree b) (Tree b)

we need a function instanceOf such that instaceOf a Observable = False
and instaceOf b Observable = True. To our knowledge there is no type
generic programming framework for Haskell that allows this. Hence we resort
to meta-programming.

Type generic programming is type-safe after compiling the library with the
type generic definitions; meta-programming is type-safe after compiling the pro-
gram that uses the meta-language annotations.

5.3. Using Meta-Language Annotations
We define a template to generate Observable instances from a type (Fig-

ure 14 top). The user can apply a template to a type and “splice” the result

17



breadthFirst
(Node _
(Node _
(Node _
(Node _
(Node <?>
(Node <?>
(Node <?> _ _)
(Node <?> _ _))

(Node <?> _ _))
(Node <?> _ _))

_)
_)

_)
= _ : _ : _ : _ : _ : _ : _ :
<?> : <?> : <?> : <?> :
<?> : <?> : _

breadthFirst
(Node _
(Node _
(Node _
(Node <?> _ _)
(Node <?> _ _))

(Node _
(Node <?> _ _)
(Node <?> _ _)))

(Node _
(Node _
(Node <?> _ _)
(Node <?> _ _))

(Node _
(Node <?> _ _)
(Node <?> _ _))))

= _ : _ : _ : _ : _ : _ : _ :
<?> : <?> : <?> : <?> :
<?> : <?> : <?> : <?> : _

Figure 13: Observed tree data structure with unobserved elements of a defective implemen-
tation of breadth first search (on the left) and a sound implementation (on the right).

-- Our first implementation for the Template Haskell framework
-- provides a template to generate instances of Observable:
gobservableInstance :: Q Type -> Q [Dec]

-- Our second implementation for the Template Haskell framework
-- provides two templates. The first to specify which types
-- should be observed, and the second to observe a value:
observedTypes :: String -> [Q Type] -> Q [Dec]
observe :: String -> Q Exp

Figure 14: Annotations to generate code for value observation tracing.

into the code under observation:

$(gobservableInstance [t| forall a . Tree a |])

Because our template offers just a way of generating code, it is again possible
for advanced users to define their own Observable instances.

To partially observe a value we generate custom implementations of the
whole observe mechanism to allow the user to specify per observe-annotation
values of which types should and should not be observed with TH. In that
case we need to add two sorts of annotations to the code under observation
(Figure 14 bottom). First of all, for each observation point we make a list of
types whose values we want to be observed. Parametrised constructor arguments
are observed when we add an Observable class predicate for the type variable.
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We associate each list with the label of an observation point. Secondly we
add an observe call with the same label. The label doubles as identifier to find
the list of types to be observed and to annotate the formatted output of the
observation. Thus to generate Figure 12 the programmer uses the annotation

$(observedTypes "breadthFirst"
[ [t| forall a . Observable a => Tree a|],
[t| forall a . Observable a =>[a] |] ])

and for the output of Figure 13-left the annotation the programmer uses the
annotation

$(observedTypes "breadthFirst"
[ [t| forall a . Tree a|],
[t| forall a . [a] |] ])

instead. The observe and observedTypes annotations use the splice syntax
from TH but are otherwise not heavier than the annotations we used previously.

5.4. Implementing Observer Templates

We define a type generic function in Template Haskell (TH) by defining a
template that takes a type as argument to construct a type-specific function at
compile-time.

We describe a template that from a type constructs an instance of the
Observable class and thereby defines how values of that type are observed.
We again follow the by now well known pattern of first defining templates to
construct a shallow representation and afterwards define observation of child
values.

5.4.1. TH Syntax
From templates we construct code that is spliced into our program at compile

time. We define a template using either quasi-quote brackets (e.g. [|thunk|])
or directly using constructors from the TH library (e.g. VarE thunk). We can
use ordinary Haskell code to combine and manipulate the templates.

With the splice notation (e.g. $(gobservableInstance [t|MyData|])) we
construct and inject code into our program at compile time. Splicing code is
not restricted to the top-level but can also be done from within templates. For
a more comprehensive explanation we refer the interested reader to [9].

5.4.2. shallowShow
Our TH implementation of shallowShow operates on the type-representation

to obtain the constructor name. This is similar to our GDM definition. How-
ever unlike the GDM definition we do not return the String itself but rather
an expression-representation of the String. The expression-representation is
evaluated at compile time and spliced as a snippet of code into the Haskell
program.

shallowShow :: Con -> Q Exp
shallowShow (NormalC name _) = stringE (nameBase name)
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5.4.3. observeChildren
We define the observerChildren template in a way that is syntactically

close to the earlier type generic definition: we apply thunk to all constructor
arguments with a generic monadic map gmapM. 4

observeChildren :: Con -> [Q Exp] -> Q Exp
observeChildren = gmapM [| thunk |]

This function takes an expression and constructor as argument, and applies
the expression to the fields in the constructor.

gmapM :: Q Exp -> Con -> [Q Exp] -> Q Exp
gmapM f (NormalC name fields) vars
= let m [] = [| return $(conE name) |]

m (v:vs) = [| compositionM $f $(m vs) $v |]
in m (reverse vars)

5.4.4. observer
With shallowShow and observeChildren we now can implement observer.

We generate the code for a class instance of Observable with TH. Types often
have multiple data constructors. The gobserverClauses template generates an
implementation of observer for each constructor of the given type.

gobserver :: Q Type -> Q [Dec]
gobserver t = do cs <- gobserverClauses t

return [FunD (mkName "observer") cs]

The body of a clause is a familiar pattern by now and uses a template
named gobserverBody. However, our gobserverBody template requires a list
of variable bindings evars. This is needed, because with TH we do not operate
on a value representation, but generate actual Haskell code.

gobserverBody :: TyVarMap -> Con -> Q Exp -> [Q Exp] -> Q Body
gobserverBody tvm y c evars = normalB
[| send $(shallowShow y) $(observeChildren tvm y evars) $c |]

5.5. Implementing Partial Observe from Template

The function type constructor has kind * -> *. A function is observed by
collecting the argument-result pairs of its applications.

Up to now we assumed that all constructor arguments of an observed type
are observable. In Section ?? we already gave reasons for sometimes desiring
not to observe constructor arguments of a certain type or type variable. In this
section we first explain how to generate customised partial observe functions,
observer methods and Observable classes from template, then we discuss why
we cannot provide a similar implementation with GDM or SYB.

In the previous section we generated an observer method instance by ap-
plying a template to a type. Now we want to be able to specify per observe

4See http://github.com/MaartenFaddegon/Hoed for full implementation.
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annotation which constructor arguments of a value are observed. We define two
templates:

First of all the observedTypes template, which takes a list of types into
whose values an observation should descent. The template can be used more
than once to make several different observations. This is possible, because the
template generates a new “Observable”-like class, a set of “observer”-like
instances and a new “observe”-like function.

Secondly the observe template is used to insert the appropriate “observe”-
like function. The desired “observe”-like function is selected using the identifier
that is passed both to the observedTypes and observe template. This identifier
is also used to annotate the formatted output of the observation.

The templates we used before can be re-used here to implement the
observedTypes template but instead of unconditionally applying thunk to all
constructor arguments we need to choose between thunk to continue tracing
deeper, or nothunk to stop tracing.

We introduce the nothunk function to distinguish constructor arguments
that are evaluated but not traced and constructor arguments that are not eval-
uated.

observeChildren :: TyVarMap -> Con -> [Q Exp] -> Q Exp
observeChildren bs = gmapM (thunkObservable bs)

thunkObservable :: TyVarMap -> Type -> Q Exp
thunkObservable tvmap t
= if isObservable tvmap t then [| thunk |] else [| nothunk |]

if isObservable type then [| thunk |] else [| nothunk |]

To determine if a type is observable we identify two cases: if it is a type variable
we check if the user added an Observable class predicate to the type. Otherwise
we check if an instance of our custom class for the type exists. Both SYB and
GDM lack the ability to perform these tests, we can therefore only give a TH
implementation of this extension.

With GDM and SYB it is possible to derive functions that observe parts
of a value based on the type of its constructor argument. However there is no
mechanism to generate new class declarations with instances. Thus with these
frameworks we would need to provide type descriptions or a set of functions
to every observe application. Previous research has shown that this approach
gives problems with values of polymorphic types [10].

6. Related Work

Much work was done before on tracing lazy functional languages and generic
programming without which our work would not have been possible.

6.1. Tracing

Previous work on tracing Haskell provides a rich set of information but
has seen limited use because systems such as Freja[11], Hat[12] and Buddha
[13] require instrumentation of the whole program, including libraries, and are
implemented only for subsets of Haskell [14].
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With HOOD, Gill made tracing accessible to a larger set of users by present-
ing a portable library of tracing combinators. To deal with the Observable class
restriction, users are required to understand lazy evaluation and how HOOD’s
internals work.

The Haskell interpreter Hugs5 keeps a type-representation of all values dur-
ing runtime. Hence Hugs provides a variant of Hood called HugsHood which
allows observation of all values without class restriction through type reflection
[15]. Most other Haskell compilers do not provide run-time type information. It
would therefore be hard to implement the Hugs debugging primitives in these
compilers [10]. HugsHood also extends Hood with an interesting “breakpoint”
feature that shows the development of observations over time.

GHood extends HOOD with a graphical representation of the observation
showing development over time [16].

COOSy is an adaptation of HOOD for the functional logic language Curry.
COOSy’s observe function takes a type description, somewhat similar to the
list of types we specify in our Partial Observe from Template approach (see
Section 5). Partly this was done because Curry lacks a class system, but like
our extension it also enables the user to specify per observation up to which
type values are observed [10]. However unlike COOSy, we also allow to observe
into a polymorphic value, at the cost of needing to add a class predicate to the
type signature of the value under observation.

GHC and most other Haskell compilers come with the trace primitive which
allows users to print strings from otherwise pure functions. Compared to the
trace function HOOD has three benefits: the given implementation does not
change the strictness of things it is observing, produced trace output is more
readable because of post-processing, and inserting the library combinators in
Haskell code tends to be less invasive [4].

6.2. Generic Programming Frameworks

In this paper we discuss and compare the implementation of type generic
observations with Scrap Your Boilerplate, Generic Deriving Mechanism and
Template Haskell.

Previously Hinze et al. [5] did a much broader comparison of approaches to
generic programming, and Rodriguez et al. [17] defined a generic programming
benchmark to compare 9 generic programming libraries. Both were valuable
sources of information for writing this paper. Our comparison is more modest
in the sense that we only compare three approaches. Our contribution however
is that we add two criteria of comparison derived from a real world application
that previously were not, or not high on the agenda:

1. Define a generic function’s behaviour based on class membership of the
type of its argument.

2. Define a generic function over a functional value in terms of the applica-
tions of that functional value.

With the Scrap Your Boilerplate With Class approach and the Smash Your
Boilerplate variant we can reintroduce the Observable class in our second im-
plementation: using a dictionary we can explicitly define a default observer

5http://www.haskell.org/haskellwiki/Hugs
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instance of Data types [18, 19]. We can provide a specific instance for function
types, and advanced users can also again define their own instances.

The Uniplate and Strafunsky libraries are variations on SYB offering differ-
ent interfaces but neither allows mapping over more types compared to SYB
[20, 21].

The Generics for the Masses approach is captured completely in Haskell
98. Because the class for generics needs to be adapted for each new type this
approach is not suitable to implement a type generic observer method [22, 18].
Later work addressed this problem at the cost of introducing boilerplate code
that was not in the original approach [23].

The lifted spine view allows representation of data constructors as well as
type constructors. Unlike TH we cannot infer if a type is of a certain class, or
if a type variable has a class predicate [24].

PolyP is an extension of Haskell allowing the definition of type generic func-
tions over types of kind * and over higher kinded types as long as the types do
not contain function spaces [25].

DrIFT allows the programmer to add directives to the program which create
code from rules defined in a separate file [26]. DrIFTs directives are comparable
to splicing in TH, and its rules are comparable to the templates of TH. DrIFT is
not as powerful as TH: data types with higher kinded type variables (e.g. Tree
a) are not handled [5].

7. Conclusions and Future Work

In this paper we show how to overcome the restriction of hand-written
Observable instances for datatypes of values that we want to observe. Fur-
thermore we present a method to observe up to a certain data type or type
variable, which makes HOOD easier to use in libraries and testing frameworks.

We implemented our idea with generic programming techniques and with a
meta-language.

Specifying per observe which types are observed currently requires the
power of a meta-language. With our partial-observe extension we explored a
new domain of generic programming. We show that class membership testing,
ignored in most previous work, deserves a dedicated study to guarantee type
correctness to the writer of a generic library.

Typechecking our Observable templates gives no guarantee that correct
code is produced under all circumstances. An error will be caught when the
user of our library typechecks their code, but this is a much weaker guarantee
compared to using a type generic programming framework [5].

Tracing lazy functional programs has seen much research in the past. It
produced very informative systems with a high use barrier on the one hand
and lightweight systems that provide less information on the other hand. Our
contribution extends the out-of-the-box applicability of HOOD to a wider range
of types. We however do not address the wide gap between the information
provided by systems such as HAT compared to the information provided by
HOOD; this calls for research on closing this gap while maintaining HOOD’s
ease-of-use.
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