
Systematic Mapping Study of Template-based

Code Generation

Eugene Syriani∗1, Lechanceux Luhunu†1 and Houari Sahraoui‡1

1University of Montreal, Canada

June 19, 2018

Abstract

Template-based code generation (TBCG) is a synthesis technique that
produces code from high-level specifications, called templates. TBCG is
a popular technique in model-driven engineering (MDE) given that they
both emphasize abstraction and automation. Given the diversity of tools
and approaches, it is necessary to classify existing TBCG techniques to
better guide developers in their choices. The goal of this article is to better
understand the characteristics of TBCG techniques and associated tools,
identify research trends, and assess the importance of the role of MDE in
this code synthesis approach. We conducted a systematic mapping study
of the literature to paint an interesting picture about the trends and uses
of TBCG. Our study shows that the community has been diversely using
TBCG over the past 15 years. TBCG has greatly benefited from MDE. It
has favored a template style that is output-based and high level modeling
languages as input. TBCG is mainly used to generate source code and
has been applied in a variety of domains. Furthermore, both MDE and
non-MDE tools are becoming effective development resources in industry.

1 Introduction

Code generation has been around since the 1950s, taking its origin in early
compilers [65]. Since then, software organizations have been relying on code
synthesis techniques in order to reduce development time and increase produc-
tivity [45]. Automatically generating code is a generic approach where the same
generator can be reused to produce many different artifacts according to the
varying inputs it receives. It also provides opportunities to detect errors in the

∗syriani@iro.umontreal.ca
†luhunukl@iro.umontreal.ca
‡sahraoui@iro.umontreal.ca

1

ar
X

iv
:1

70
3.

06
35

3v
1

 [
cs

.S
E

]
 1

8
M

ar
 2

01
7

input artifact early on before the generated code is compiled, when the output
is source code.

There are many techniques to generate code, such as programmatically, using
a meta-object protocol, or aspect-oriented programming. Since the mid-1990s,
template-based code generation (TBCG) emerged as an approach requiring less
effort for the programmers to develop code generators. Templates favor reuse
following the principle of write once, produce many. The concept was heavily
used in web designer software (such as Dreamweaver) to generate web pages
and Computer Aided Software Engineering (CASE) tools to generate source
code from UML diagrams. Many development environments started to include
a template mechanism in their framework such as Microsoft Text Template
Transformation Toolkit (T4)1 for .NET and Velocity2 for Apache.

Model-driven engineering (MDE) has advocated the use of model-to-text
transformations as a core component of its paradigm [48]. TBCG is a popular
technique in MDE given that they both emphasize abstraction and automation.
MDE tools, such as Acceleo3 and Xpand4, allow developers to generate code
from high-level models without worrying on how to parse and traverse input
models. We can find today TBCG applied in a plethora of computer science
and engineering research.

The software engineering research community has focused essentially on pri-
mary studies proposing new TBCG techniques, tools and applications. However,
to the best of our knowledge, there is no classification, characterization, or as-
sessment of these studies available yet. Therefore, in this paper, we conducted
a systematic mapping study of the literature in order to understand the trends,
identify the characteristics of TBCG, assess the popularity of existing tools,
and determine the influence that MDE has had on TBCG. We are interested in
various facets of TBCG, such as characterizing of the templates, of inputs and
outputs, along with the evolution of the amount of publications using TBCG
over the past 15 years.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the necessary background on TBCG and discuss related work. In Section 3,
we elaborate on the methodology we followed for this systematic mapping study.
We present the results of the paper selection phase in Section 4. The follow-
ing sections report the results. First in Section 5, we describe the trends and
evolution of TBCG over the past 15 years. Then in Section 6, we discuss the
characteristics of TBCG according to our classification scheme. We explain the
relationships between the different facets in Section 7. Next in Section 8, we
discuss how TBCG tools have been used in primary studies. In Section 9, we
discuss about the relation between MDE and TBCG. In Section 10, we answer
our research questions and discuss limitations of the study. Finally, we conclude
in Section 11.

1https://msdn.microsoft.com/en-us/library/bb126445.aspx
2http://velocity.apache.org/
3http://www.eclipse.org/acceleo/
4http://wiki.eclipse.org/Xpand

2

https://msdn.microsoft.com/en-us/library/bb126445.aspx
http://velocity.apache.org/
http://www.eclipse.org/acceleo/
http://wiki.eclipse.org/Xpand

2 Background and Related Work

In this section, we review the notion of code generation and introduce TBCG.
We also briefly outline MDE principles to better understand its relationship
with TBCG. Finally we discuss related work on systematic mapping studies in
general and secondary studies about code generation.

2.1 Code Generation

In this paper, we view code generation as in automatic programming [65] rather
than compilers. The underlying principle of automatic programming is that
a user defines what he expects from the program and the program should be
automatically generated by a software without any assistance by the user. This
generative approach is different from a compiler approach.

As Blazer [9] states, there are many advantages to code generation. The
effort of the user is reduced as he has fewer lines to write: specifications are
shorter than the program that implements them. Specifications are easier to
write and to understand for a user, given that they are closer to the application
and domain concepts. Writing specifications is less error-prone than writing the
program directly, since the expert is the one who writes the specification rather
than another programmer.

These advantages are in fact the pillar principles of MDE and domain-specific
modeling. Floch et al. [31] observed many similarities between MDE and com-
pilers research and principles. Thus, it is not surprising to see that many,
though not exclusively, code generation tools came out of the MDE commu-
nity. The advantages of code generation should be contrasted with some of its
limitations. For example, there are issues related to integration of generated
code with manually written code and to evolving specifications that require to
re-generate the code [72]. Sometimes, relying too much on code generators may
produce an overly general solution that may not necessarily be optimal for a
specific problem.

2.2 Code Generation in the Context of MDE

MDE is a software development approach that uses abstraction to bridge the
gap between the problem space and the software implementation [72]. To bridge
the gap between the application domain and the solution domain, MDE uses
models to describe complex systems at multiple levels of abstraction, as well
as automated support for transforming and analyzing models. This separation
allows the description of key intellectual assets in a way that is not coupled to
specific programming languages or target platforms.

Domain-specific modeling (DSM) [38] is a branch of MDE that allows models
to be manipulated at the level of abstraction of the application domain the model
is intended for, rather than at the level of computing. In DSM, domain experts
can create models that describe some computational need using abstractions
and notations that match their own domain of expertise. Thus, end-users who

3

do not possess the skills needed to write computer programs using traditional
languages (like Java or C++) can describe their solution in a more familiar
language.

In MDE parlance, models represent abstractions of a real system, capturing
some of its essential properties. A model conforms to a metamodel, which de-
fines the abstract syntax and static semantics of the modeling language. This
language can either be a domain-specific language (DSL) or a general purpose
language like UML. Developer manipulates models by means of model transfor-
mation. Transformations can have different purposes [55], such as translating,
simulating, or refining models. One particular kind of model transformation is
devoted to code generation with model-to-text transformations [22].

A common workflow in MDE is to produce a program without the need
of programming [48]. Modelers first describe the high-level level system in a
computation-independent model. This is then evolved into a domain-specific
platform-independent model. This model is in turn refined with platform-
specific concepts from the target framework of the final application. The platform-
specific model is then synthesized to the source code of the program using a
dedicated model-to-text transformation tool [66]. Model-to-text transforma-
tions are used to implement code, generate documentation, serialize models, or
visualize and explore models. We refer to [43] for a history of code generation
and an in-depth explanation of its role in MDE.

2.3 Code Generation Techniques

As briefly outlined in [43] and in [22], there are many techniques that can be
used to generate code. We briefly outline the main ones here.

Visitor based approaches consist of programmatically traversing the internal
representation of the input, while relying on an API dedicated to manip-
ulate the input and to write the output to a text stream. This is used
in [10].

Meta-programming is a language extension approach, such as reflection or
using a meta-object protocol. For example, in OpenJava [73], a Java meta-
program creates a Java file, compiles it on the fly, and loads the generated
program in its own run-time.

Aspect-oriented programming is a language composition approach that weaves
code fragments at specific locations in a program to add new concerns to
the existing code. This is used in [54].

In-line generation relies on a preprocessor that generates additional code to
the existing one, such as with the C++ standard template library or C
macro preprocessor instructions. An example is available in [7].

Code annotations are added in-line to existing code and is internally trans-
formed into more expanded code. Examples include JavaDoc and at-
tributes in C#. This approach is used in [21].

4

Template based is described below.

2.4 Template-based Code Generation

The literature agrees on a general definition of model-to-text code genera-
tion [22] and on templates. Jörges [43] identifies three components in TBCG:
the data, the template, and the output. However, there is another component
that is not mentioned which is the meta-information the generation logic of
the template relies on. Therefore, we conducted this study according to the
following notion of TBCG.

conforms to

uses

input

input generates

Template

<%context class%>
public class <%name%> { String id; }

Design-time input

Class

name:string

Runtime input

Person

Output

public class Person { String id; }

Template engine

Figure 1: Components of TBCG

Figure 1 summarizes the main concepts of TBCG. We consider TBCG as a
synthesis technique that uses templates in order to produce a textual artifact,
such as source code, called the output. A template is an abstract and general-
ized representation of the textual output it describes. It has a static part, text
fragments that appear in the output “as is”. It also has a dynamic part em-
bedded with splices of meta-code that encode the generation logic. Templates
are executed by the template engine to compute the dynamic part and replace
meta-codes by static text according to run-time input. The design-time input
defines the meta-information which the run-time input conforms to. The dy-
namic part of a template relies on the design-time input to query the run-time
input by filtering the information retrieved and performing iterative expansions
on it. Therefore, TBCG relies on a design-time input that is used to define the
template and a run-time input on which the template is applied to produce the
output. For example, a TBCG engine that takes as run-time input an XML doc-
ument relies on an XML schema as design-time input. Definition 1 summarizes
our definition of TBCG.

Definition 1. A synthesis technique is a TBCG if and only if it specifies a set of
templates, assumes a design-time input, requires run-time inputs, and produces
textual output.

5

For example, the work in [44] generates a C# API from Ecore models using
Xpand. According to Definition 1, the templates of this TBCG example are
Xpand templates, the design-time input is the metamodel of Ecore, the run-
time input is an Ecore model, and the output is a C# project file and C#
classes.

2.5 Literature Reviews on Code Generation

In evidence-based software engineering [47], a systematic literature review is
a secondary study that reviews primary studies with the aim of synthesizing
evidence related to a specific research question. Several forms of systematic
reviews exist depending on the depth of reviewing primary studies and on the
specificities of research questions. Unlike conventional systematic literature re-
views that attempt to answer a specific question, a systematic mapping studies
(SMS) aim at classifying and performing a thematic analysis on a topic [46].
SMS is a secondary study method that has been adapted from other disciplines
to software engineering in [11] and later evolved by Petersen et al. in [62].
A SMS is designed to provide a wide overview of a research area, establish if
research evidence exists on a specific topic, and provide an indication of the
quantity of the evidence specific to the domain.

Over the years, there have been many primary studies on code generation.
However, we could not find any secondary study on TBCG explicitly. Still, the
following are closely related secondary studies.

Mehmood et al. [58] performed a SMS regarding the use of aspect-oriented
modeling for code generation, which is not based on templates. They analyzed
65 papers mainly based on three main categories: the focus area, the type
of research, and the type of contribution. The authors concluded that this
synthesis technique is still immature. The study shows that no work has been
reported to use or evaluate any of the techniques proposed.

Gurunule et al. [40] presented a comparison of aspect orientation and MDE
techniques to investigate how they can each be used for code generation. The
authors found that further research in these areas can lead to significant ad-
vancements in the development of software systems. Unlike Mehmood et al. [58],
they did not follow a systematic and repeatable process.

Dominguez et al. [24] performed a systematic literature review of studies that
focus on code generation from state machine specifications. The study is based
on a set of 53 papers, which have been classified into two groups: pattern-based
and not pattern-based. The authors do not take template-based approaches
into consideration.

Batot et al. [6] performed a SMS on model transformations solving a concrete
problem that have been published in the literature. They analyzed 82 papers
based on a classification scheme that is general to any model transformation
approach, which includes model-to-text transformations. They conclude that
concrete model transformations have been pulling out from the research litera-
ture since 2009 and are being considered as development tasks. They also found
that 22% of their corpus solve concrete problems using refinement and code syn-

6

Process Steps

Outcomes

Definitionlof
ResearchlQuestion

ConductlSearch ScreeningloflPapers Keywordinglusing
Abstracts

DatalExtractionland
MappinglProcess

SystematiclMapClassification
Scheme

RelevantlPapersAlllPapersReviewlScope

Figure 2: The systematic mapping process we followed

thesis techniques. Finally, they found that research in model transformations is
heading for a more stable and grounded validation.

There are other studies that attempted to classify code generation tech-
niques. However, they did not follow a systematic and repeatable process. For
example, Czarnecki et al. [22] proposed a feature model providing a terminol-
ogy to characterize model transformation approaches. They distinguished two
categories for model-to-text approaches: those that are visitor-based and those
that are template-based; the latter being in line with Definition 1. The au-
thors found that many new approaches to model-to-model transformation have
been proposed recently, but relatively little experience is available to assess their
effectiveness in practical applications.

Rose et al. [66] extended the feature model of Czarnecki et al. to focus
on template-based model-to-text transformation tools. Their classification is
centered exclusively on tool-dependent features. Their goal is to help developers
when they are faced to choose between different tools. This study is close to
the work of Czarnecki in [22] but focuses only on a feature model for M2T. The
difference with our study is that it focuses on a feature diagram and deals with
tool-dependent features only.

3 Research Methods

In order to analyze the topic of TBCG, we conducted a SMS following the
process defined by Petersen et al. in [62] and summarized in Figure 2.

3.1 Objectives

The objective of this study is to obtain an overview of the current research in
the area of TBCG and to characterize the different approaches that have been
developed. We defined four research questions to set the scope of this study:

1. What are the trends in template-based code generation? We are
interested to know how this technique has evolved over the years.

2. What are the characteristics of template-based code generation
approaches? We want to identify major characteristics of this techniques
and their tendencies.

7

3. To what extent are template-based code generation tools being
used? We are interested in identifying popular tools and their uses.

4. What is the place of MDE in template-based code generation?
We seek to determine whether and how MDE has influenced TBCG.

3.2 Selection of Source

We delimited the scope of the search to be regular publications that mention
TBCG as at least one of the approaches used for code generation and published
between 2000–2015. Therefore, this includes publications where code generation
is not the main contribution. For example, Buchmann et al. [15] used TBCG
to obtain ATL code while their main focus was implementing a higher-order
transformation. Given that not all publications have the term “code generation”
in their title, we formulated a query that retrieves publications based on their
title, abstract, or full text (when available) mentioning “template” and “code
generation”, their variations, and synonyms. The used query was validated with
a sample of 100 pre-selected papers we knew should be included.

3.3 Screening Procedure

Screening is the most crucial phase in a SMS [62]. We followed a two-stage
screening procedure: automatic filtering, then title and abstract screening. In
order to avoid the exclusion of papers that should be part of the final corpus,
we followed a strict screening procedure. With four reviewers at our disposal,
each article is screened by at least two reviewers independently. When both
reviewers of a paper disagree upon the inclusion or exclusion of the paper, a
physical discussion is required. If the conflict is still unresolved, an additional
senior reviewer is involved in the discussion until a consensus is reached. To
determine a fair exclusion process, a senior reviewer reviews a sample of no less
than 20% of the excluded papers at the end of the screening phase, to make
sure that no potential paper is missed.

3.3.1 Inclusion criteria

A paper is included if it explicitly indicates the use of TBCG or if it proposes a
TBCG technique. We also include papers if the name of a TBCG tool appears
in the title, abstract, or content.

3.3.2 Exclusion criteria

Results from the search were first filtered automatically to discard records that
were outside the scope of this study: papers not in computer science, not in the
software engineering domain, with less than two pages of length (e.g., proceed-
ings preface), not peer-reviewed (e.g., white papers), not written in English, or
not published between the years 2000 and 2015. Then, papers were excluded
through manual inspection based on the following criteria:

8

• No code generation. There is no code generation technique used.

• Not template-based code generation. Code generation is mentioned,
but the considered technique is not template-based according to Defini-
tion 1.

• Not a paper. This exclusion criterion spans papers that were not caught
by the automatic filtering. For example, some papers had only the ab-
stract written in English and the content of the paper in another language.
Additionally, there were 24 papers where the full text was not accessible
online.

For the first two criteria, when the abstract did not give enough details
about the code generation approach, a quick look at the full text helped clear
any doubts on whether to exclude the paper or not. Reviewers were conservative
on that matter.

3.4 Classification Scheme

There are generally two ways to construct the classification scheme [62, 69].
One approach consists of extracting the classification scheme by analyzing the
included papers and determining the important classification properties form the
abstract, keywords or content. Alternatively, one can construct a scheme using
the general knowledge of the field. In our study, we used a hybrid approach in
which we combined our general knowledge with the information extracted from
the abstracts during the screening phase. The classification scheme is used to
classify all retained papers along different facets that are of interest in order to
answer our research questions. It helps analyzing the overall results and gives an
overview of the trends and characteristics of TBCG. The categories we classified
the corpus with are the following:

Template style: We characterize the style of the templates used in code
generation approach.

• Predefined: This template style is reserved for approaches where
the template used for code generation is defined internally to the tool.
However, a subset of the static part of the template is customizable
to vary slightly the generated output. This is, for example, the case
for common CASE tools where there is a predefined template to
synthesize a class diagram into a number of programming languages.
Nevertheless, the user can specify what language construct to use for
association ends with a many cardinality, such as Array or ArrayList

for Java templates.

• Output-based: This style covers templates that are syntactically
based on the actual target output. In contrast with the previous
style, output-based templates offer full control on how the code is
generated, both on the static and dynamic parts. The generation
logic is typically encoded in meta-code as in the example of Figure 1.

9

• Rule-based: In this style, templates focus on computing the dy-
namic part with the static part being implicit. The template lists
declarative production rules that are applied on-demand by the tem-
plate engine to obtain the final target output. For example, this is
used to render the concrete textual syntax from the abstract syntax
of a model using a grammar.

Design-time input type: We characterize the language of the design-time
input that is necessary to develop templates.

• General purpose: for generic languages reusable across different
domains that are not programming languages, such as UML.

• Domain specific: for languages targeted for a particular domain,
such as the metamodel of a DSL.

• Schema: for structured data definitions, such as XML schema defi-
nition or database schema.

• Programming language: for well-defined programming languages.

Run-time input type: We characterize the input given to the generator
during the execution of a TBCG. Generally, the run-time input is an
instance that conforms to the design-time input.

• General purpose: for instances of a generic languages, such as the
Ecore model of a particular class diagram.

• Domain specific: for instances of a domain-specific language, such
as a Simulink model.

• Structured data: for data that follows a well-defined structure,
such as XML.

• Source code: when the input is source code implemented in a given
programming language.

Output type: We characterize the artifacts output by the code generator. A
paper may be classified in more than one of the following categories.

• Source code: for executable code conforming to a specific program-
ming language.

• Structured data: for code that is not executable, such as HTML.

• Natural language: when plain text is generated.

Tool: We capture the tool or language used for TBCG. If a tool is not clearly
identified in a paper or the TBCG is programmed directly, we classify the
tool as unspecified. We consider a tool to be popular when it is used
in at 1% of the papers. Otherwise, we classify it in the other category.

MDE: We determine whether the part of the solution where TBCG is applied
in the paper follows MDE techniques and principles. A good indication is
if the design-time input is a metamodel.

10

Context: We determine where TBCG falls in the overall transformation pro-
cess of the approach. We already presented a typical workflow in Sec-
tion 2.2. Code generation is never the first step unless it is standalone.
Otherwise, it is either used as an intermediate step or it is the last step
of a transformation process.

Validation: We categorize how the TBCG approach or the generated output
is validated. The validation can be performed against a benchmark,
based on a user study, applied on a case study, defined formally, or
there is no validation.

Application scale: We characterize the scale of the artifact on which the
TBCG approach is applied. We distinguish between large scale applica-
tions, small scale, or no application when the code generation was not
applied on any example.

Application domain: We classify the general domain TBCG has been ap-
plied on. For example, this includes Software engineering, Embedded
systems, Compilers, Bio-medicine, etc.

Orientation: We distinguish industrial papers, where at least one author is
affiliated to industry, from academic papers otherwise.

Publication type: We distinguish papers published in conference proceed-
ings, as journal articles, or other formats such as workshop proceedings
or book collections.

Venue type: We classify papers based on the where they have been published.
We distinguish between general software engineering venues, venues
specific to MDE, and all other venue types.

4 Paper Selection

Table 1 summarizes the flow of information through the selection process of
this study. This section explains how we obtained the final corpus of papers to
classify and analyze.

4.1 Paper Collection

The paper collection step was done in two phases: querying and automatic
duplicates removal. There are several online databases that index software en-
gineering literature. For this study, we considered three main databases to
maximize coverage: Engineering Village5, Scopus6, and SpringerLink7.
The first two cover typical software engineering editors (IEEE Xplore, ACM

5https://www.engineeringvillage.com/
6https://www.scopus.com/
7http://link.springer.com/

11

https://www.engineeringvillage.com/
https://www.scopus.com/
http://link.springer.com/

Phase Number of papers

Collection
Engineering Village 4 043
Scopus 916
SpringerLink 2 368
Initial corpus 5 081

Screening
Excluded during screening 4 544
Included 537

Classification
Excluded during classification 97
Final corpus 440

Table 1: Evolution of paper corpus during the study process

Digital Library, Elsevier). However, from past experiences [6], they do
not include all of Springer publications. We used the search string from Sec-
tion 3.2 to retrieve all papers from these three databases. We obtained 7 527
candidate papers that satisfy the query and the options of the search stated
in Section 3.3.2. We then removed automatically all duplicates using EndNote
software. This resulted in 5 081 candidate papers for the screening phase.

4.2 Screening

Based on the exclusion criteria stated in Section 3.3.2, each candidate paper
was screened by at least two reviewers to decide on its inclusion. To make
the screening phase more efficient, we used a home-made tool [69]. After all the
reviewers completed screening the papers they were assigned, the tool calculates
an inter-rater agreement coefficient. In our case, the Cohens Kappa coefficient
was 0.813. This high value shows that the reviewers were in almost perfect
agreement.

Among the initial corpus of candidate papers, 4 547 were excluded, 510 were
included and 24 received conflicting ratings. During the screening, the senior
reviewer systematically verifies each set of 100 rejected papers for sanity check.
A total of 7 more papers were included back hence the rejected papers were
reduced to 4 540. Almost all cases of conflicts were about a disagreement on
whether the code generation technique of a paper was using templates or not.
These conflicts were resolved in physical meetings and 20 of them were finally
included for a total of 537 papers and 4 544 excluded.

Among the excluded papers, 52% were rejected because no code generation
was used. We were expecting such a high rate because terms such as “templates”
are used in many other fields, like biometrics. Also, many of these papers were
referring to the C++ standard template library [53], which is not about code
generation. We counted 34% papers excluded because they were not using

12

templates. Examples of such papers are cited in Section 2.3. Also, more than a
quarter of the papers were in the compilers or embedded system domains, where
code generation is programmed imperatively rather than declaratively specified
using a template mechanism. Finally, 5% of the papers were considered as not
a paper. In fact, this criterion was in place to catch papers that escaped the
automatic filtering from the databases.

4.3 Eligibility during Classification

Once the screening phase over, we thoroughly analyzed the full text of the
remaining 537 papers to classify them according to our classification scheme.
Doing so allowed us to confirm that the code generation approach was effectively
template-based according to Definition 1. We encountered papers that used
multiple TBCG tools: they either compared tools or adopted different tools
for different tasks. We classified each of these papers as a single publication,
but incremented the occurrence corresponding to the tools referred to in the
paper. This is the case of [27] where the authors use Velocity and XSLT for
code generation. Velocity generates Java and SQL code, while XSLT generates
the control code.

We excluded 97 additional papers. During screening, we detected situations
where the abstract suggested the implementation of TBCG, whereas the full text
proved otherwise. In most of the cases, the meaning of TBCG differed from the
description presented in Section 2.4. As shown in [70] the terms template-based
and generation are used in the context of networking and distributed systems.
We also encountered circumstances where the tool mentioned in the abstract
requires the explicit use of another component to be considered as TBCG, such
as Simulink TLC, as in [61].

The final corpus8 considered for this study contains 440 papers.

5 Evolution of TBCG

We start with a thorough analysis of the trends in TBCG in order to answer
the first research question.

5.1 General trend

Figure 3 reports the number of papers from the final corpus per year. The gen-
eral trend indicates that the number of publications with at least one template-
based code generation method started increasing in 2002 to reach a first local
maximum in 2005 and then remained relatively constant until 2012. This in-
crease coincides with the early stages of MDE and the first edition of the MOD-
ELS conference, previous called UML conference. This is a typical trend where
a research community gets carried away by the enthusiasm of a new potentially

8 The complete list of papers is available online at http://www-ens.iro.umontreal.ca/

~luhunukl/classification.html

13

http://www-ens.iro.umontreal.ca/~luhunukl/classification.html
http://www-ens.iro.umontreal.ca/~luhunukl/classification.html

Venue Venue & Publication type # Papers

Model Driven Engineering Languages and Systems (Models) MDE Conference 26
Software and Systems Modeling (Sosym) MDE Journal 23
European Conference on Modeling Foundations and Applications (Ecmfa) MDE Conference 17
Generative and Transformational Techniques in Software Engineering (Gttse) Soft. eng. Conference 11
Generative Programming: Concepts & Experience (Gpce) MDE Conference 8
International Conference on Computational Science and Applications (Iccsa) Other Conference 8
Software Language Engineering (Sle) MDE Conference 7
International Conference on Web Engineering (Icwe) Other Conference 6
Leveraging Applications of Formal Methods, Verification and Validation (Isola) Other Conference 5
Distributed Applications and Interoperable Systems (Dais) Other Conference 5
Evaluation of Novel Approaches to Software Engineering (Enase) Soft. eng. Conference 5

Table 2: Most popular venues

interesting domain, which leads to more publications. However, this does not
represent the most prolific period for TBCG. In fact, in 2013 we notice a sig-
nificant peak with twice the average numbers of publications observed in the
previous years. Figure 3 then shows a decreasing trend in the last two years.

0

10

20

30

40

50

60

2000 2002 2004 2006 2008 2010 2012 2014 2016

of papers

Figure 3: Evolution of papers in the corpus

To explain this unusual peak, we resorted to statistical methods. The analy-
sis shows that the coefficient of variability is very high (57%) which indicates an
outlier situation. After eliminating outliers using the modified Thompson Tau
test, the remaining years are 2005–2009 and 2014. When we only consider these
years, the average is 34 papers per year and a coefficient of variability at 11%.
Therefore, this sudden isolated peak in 2013 is the result of a special event or
popularity of TBCG.

To explain the decrease observed in 2015, we went back to the initial corpus
from the databases. We noticed that we were only able to collect 24% fewer pa-
pers in 2015 compared to the previous five years where the online database query
returned 327 publications on average, before title elimination. All data was col-
lected until February 2016, therefore this fewer number of publications may

14

have occurred because not all 2015 papers had been indexed by the databases
we queried at that time yet. Therefore, the decrease in the amount of papers
published after 2013 should not be interpreted as a decline in interest in TBCG,
but that some event happened around 2013 which boosted publications, and
then it went back to the steady rate of publication as previous years.

5.2 Publications and venues

We analyzed the papers based on the type of publication and the venue of their
publication. Only 23% and 21% of the papers were published respectively in
MDE and software engineering venues, while the majority (56%) were published
in other venues. Table 2 shows the most popular venues that have at least five
papers from the final corpus. These top venues account for just more than a
quarter of the total number of publications. Among them, MDE venues account
for 67% of the papers. Models9, Sosym, and Ecmfa10 are the three most
popular venues with a total of 66 publications between them. This is very
significant given that the average is only 1.7 paper per venue with a standard
deviation of 2.61. Also, 53% of venues had only one paper using TBCG, which
is the case for most of the other venues.

Papers published at MDE venues increased gradually to reach a peak in
2013, whereas software engineering venues experienced a later start with the
first set of papers being published in 2005. The number of papers published at
other venues gradually increased until 2007, then experience a brief drop, before
gradually increasing again until 2012. Therefore, although mainly influenced by
MDE venues, the unexpected peak in 2013 is the result of an accumulation of
the small variations among all venues. For example, there were typically 2-3
papers published at Models, but in 2013 there were 4.

As for the publication type, conference publications have been dominating at
65%. After 2013, this number dropped by 64%. following the general evolution
trend. Journal article account for 21% of all papers. Interestingly, we notice that
the evolution of journal articles remained constant with an average of 10.5 papers
per year since 2010. Therefore, the overall observed decrease after 2013 is due
to the statistical influence of conference papers, whereas journals papers using
TBCG have retained the same popularity for the past 5 years. Nevertheless,
because of the typical one to two years lag between the submission and the
publication of an article in a journal, further data from 2016-2017 would be
needed.

6 Characteristics of Template-Based Code Gen-
eration

We examine the characteristics of TBCG using the classification scheme pre-
sented in Section 3.4.

9We grouped the Uml conference with Models.
10We grouped the Ecmda-fa conference with Ecmfa.

15

6.1 Template style

70% 26%

4%

Output-based Predefined Rule-based

Figure 4: Distribution of template style facet

As the stacked bar chart in Figure 4 illustrates, the vast majority of the
publications follow the output-based style. This consists of papers like [23],
where Xpand is used to generate workflow code used to automate modeling
tools. There, it is the final output target text that drives the development of
the template. This high score is expected since output-based style is the original
template style for TBCG as depicted in Figure 5. This style has always been
the most popular style since 2000.

The predefined style is the second most popular. Most of these papers
generate code using a CASE tool, such as [35] that uses Rhapsody to generate
code to map UML2 semantics to Java code with respect to association ends.
Apart from CASE Tools, we also classified papers like [75] as predefined style
since the output code is already fixed as HTML and the programmer uses the
tags to change some values based on the model. There is no other action that
can be performed to further customize the final code. Each year, around 28%
of the papers were using the predefined style, except for a peak of 39% in 2005,
given the popularity of CASE tools then.

We found 19 publications that used rule-based style templates. This in-
cludes papers like [41] which generates Java code with Stratego from a DSL. A
possible explanation of such a low score is that this is the most difficult template
style to implement. It had a maximum of two papers per year throughout the
study period.

6.2 Input type

General purpose languages account for almost half of the design-time input
of the publications, as depicted in Figure 6a. UML diagrams, which are used
as metamodels for code generation, are the most used for 87% of these papers.
This is the case in [23] where a class diagram is provided an design-time input
to generate workflow. Other general purpose languages that were used are,
for example, the architecture analysis and design language (AADL) [14] and
feature diagrams [16]. The schema category comes second with 22% of the
papers. For example, a database schema is used as input at design-time in [51]
to generate Java for a system that demonstrates that template can improve
software development. Also, an XML schema is used in [37] as design-time input
to produce C programs in order to implement an approach that can efficiently
support all the configuration options of an application in embedded systems.

16

0

10

20

30

40

50

2000 2002 2004 2006 2008 2010 2012 2014

Output-based Predefined Rule-based

of papers

Figure 5: Template style evolution

DSLs are almost at par with schemata. They have been gaining popularity
and gradually reducing the gap with general purpose languages. For example
in [17], a custom language is given as the design input in order to generate C
and C++ to develop a TBCG approach dedicated to real-time systems. The
least popular design-time input type is programming language. This includes
papers like [30] where T4 is used to generate hardware description (VHDL) code
for configurable hardware. In this case, the input is another program on which
the template depends.

Over the years, the general purpose category has dominated the design-
time input facet, as depicted in Figure 7. 2003 and 2006 were the only excep-
tions where schema obtained slightly more publications. We also notice a shift
from schema to domain-specific design-time input types. Domain-specific input
started increasing in 2009 but never reached the same level as general purpose.
Programming language input maintained a constant level,with an average of 1%
per year. Interestingly, in 2011, there were more programming language used
than DSLs.

Run-time input shown in Figure 6b follows the same trend as design-time
input. This is expected since run-time input is an instance of design-time input.

6.3 Output type

Figure 8 shows the distribution of output type facet. An overwhelming majority
of the papers use TBCG to generate source code. This includes papers like
[20] where Java code is generated an adaptable access control tool for electronic
medical records. Java and C are the most targeted programming languages
with respectively 67% and 20% of the time. Writing a program manually often
requires proved abilities especially with system and hardware languages, such

17

47% 22% 21% 10%

General purpose Schema
Domain Specific Programming Language

(a) Distribution of design-time input type facet

45% 24% 21% 10%

General purpose Structured data

Domain specific Source code

(b) Distribution of runtime input type facet

Figure 6: Input types

as VHDL [13]. This is why 10% of these papers generate low level source codes.
Generation of structured data includes TBCG of mainly XML and HTML
files. For example [32] produces both HTML and XML as parts of the web
component to ease regression testing. Interestingly, we were able to find 12
papers that generate natural language text (in English). This is surprising
given the query string we used. For example in [71], the authors present an
automatic technique for identifying code fragments that implement high level
abstractions of actions and expressing them as a natural language description.
In addition, we found that around 5% of the papers generate combinations of
at least two output types. This includes papers such as [76] that generate both
C# and HTML from a domain specific model and [23] that produce Java as well
as natural language text for a system that provides workflow and automation
tools for modeling.

Structured data and natural language output remained constant over the
years, unlike source code which follows the general trend.

6.4 Application scale

As depicted in Figure 9, most papers applied TBCG on large scale examples.
This result indicates that TBCG is a technique that scales with larger amounts
of data. This includes papers like [67] that uses Acceleo to generate hundreds
of lines of source code to implement an approach that uses models to capture
the concepts of various aspect-oriented programming language constructs at a
metamodeling level. small scale obtains 26% of the papers. This is commonly
found in research papers that only need a small and simple example to illustrate
their solution. This is the case in [42] in which a small concocted example
shows the generation process with the Epsilon Generation Language (EGL)11.
No application was used in 5% of the publications. This includes papers like

11http://www.eclipse.org/epsilon/doc/egl/

18

http://www.eclipse.org/epsilon/doc/egl/

0

5

10

15

20

25

30

2000 2002 2004 2006 2008 2010 2012 2014

General purpose Schema

Domain Specific Programming Language

of papers

Figure 7: Design-time input evolution

81% 16%

3%

Source code Structured data Natural language

Figure 8: Distribution of output type facet

[26] where authors just mention that code synthesis is performed using a tool
named Mako-template. Even though the number of publications without an
actual application is very low, this demonstrates that some authors have still
not adopted good practice to show an example of the implementation. This
is important especially when the TBCG approach is performed with a newly
developed tool. While large scale applications follow the general trend of papers,
the other two categories remained constant over the years.

6.5 Validation

Figure 10 represents the distribution of the validation facet a pie chart. A large
majority of the papers did not validate their TBCG approach. This can be
explained in part by the considered papers where TBCG was not the main con-
tribution of the paper. Furthermore, half of the tools with no validation used
were unspecified or rarely used, as in [4]. However, some tools have reached a cer-
tain maturity and thus dedicate less attention to validation when the tool used
offers higher guarantees. This includes papers such as [13] that uses Simulink
TLC to generate VHDL code which can be later implemented on reconfigurable
Field-Programmable Gate Array devices. A fair portion of the paper relied on
benchmark to validate the TBCG used. It consists of papers like [18] that uses

19

68% 27% 5%

Large scale Small scale No application

Figure 9: Distribution of application scale facet.

User study

1%

No validation

72%

Benchmark

14%

Case study

12%

Formal

1%

Figure 10: Distribution of validation facet.

EGL to generate maven code. The authors assess their results using metrics like
the time, the gain and the SLOC to validate their work. Validation through a
case study obtained a similar score. For example in [52], the authors propose
a service-oriented framework with a set of ontology systems to support service
and device publishing, discovery and recovery for smart homes. In order to val-
idate their approach, they implement their concept in the particular case of the
MediaControl view only. User study and formal validation account for only
eight papers in total. This is not a surprise since both techniques require more
time and resources to setup, unlike the others. These validation techniques are
respectively used in [64] in which eight subjects divided into two groups based
on their knowledge and experience with the related technologies performed a
series of four tasks and [29] where the authors validate their results with the
help of mathematical formulas like Gaussian functions.

Moreover, the evolution of no validation class follows the general trend of
papers. We notice that formal validations were used only until 2003.

6.6 Context

The distribution of context facet is presented in Figure 11. TBCG was used
most of the time standalone, such as in [75]. The other two classes last and
intermediate obtain respectively 18% and 15% of the papers. As an example,
TBCG is an intermediate step in [71] where the generated algorithm is given as
one of the inputs of an extraction task. TBCG is the last step of a process in [33]

20

67% 18% 15%

Standalone Last Intermediate

Figure 11: Distribution of context facet.

that starts with the execution of the various tasks of an integration system and
ends with the generation of the final source code. Most papers only focus on
the code generation part but this may have been a part of a bigger project.

6.7 Orientation

A quarter (26%) of the papers in the corpus are (co-)authored by a researcher
from industry. The remaining 74% are written only by academics. This is a
typical distribution since industrials tend to not publish their work. This result
shows that TBCG is used in industry as in [44]. Industry oriented papers have
gradually increased since 2003 until they reached a peak in 2013.

6.8 Application domain

Figure 12: Distribution of application domain facet

The distribution of the application domain facet is shown as a tree map in
Figure 12. It highlights the fact that TBCG is used in many different areas.
Software engineering obtains more than half of the papers with 55% of the
publications. We have grouped in this category other related areas like ontolo-
gies, information systems or software product lines. This is expected given that
the goal of TBCG is to synthesize software applications. For example, the work
in [8] uses the Rational CASE tool to generate Java programs in order to im-
plement an approach that transforms UML state machine to behavioral code.

21

The next category is embedded systems which obtains 13% of papers. Em-
bedded systems often require low level hardware code difficult to write. Some
even consider code generation to VHDL as a compilation rather than automatic
programming. In this category, we found papers like [25] in which Velocity is
used to produce Verilog code to increase the speed of simulation. Web tech-
nology related application domains account for 8% of the papers. It consists of
papers like [68] where the authors worked to enhance the development dynamic
web sites. Networking obtains 4% of the papers, such as [18] where code is
generated for a telephony service network. Compiler obtains 1% of the papers,
such as [57] where a C code is generated and optimized for an Intel C compiler.
It is interesting to note that several papers were applied in domains such as
bio-medicine [63], artificial intelligence [33], and graphics [64]. We com-
bined application domains with a single paper into the other category. This
regroups domains such as agronomy, education, and finance. It is important to
mention that the domain discussed in this category corresponds to the domain
of application of TBCG employed, which differs from the publication venue.

7 Relations between Characteristics

To further characterize the trends observed in Section 6, we identified significant
and interesting relations between the different facets of the classification scheme.

7.1 Statistical correlations

A Shapiro-Wilk test of each category determined that the none of them are nor-
mally distributed. Therefore, we opted for the Spearman two-tailed test of non-
parametric correlations with a significance value of 0.05 to identify correlations
between the trends of each category. The only significantly strong correlations
we found statistically are between the two input types, and between MDE and
input type.

With no surprise, the correlation between run-time and design time in-
put is the strongest among all, with a correlation coefficient of 0.944 and a
p-value of less than 0.001. This concurs with the results found in Section 6.2.
An example is when the design-time input is UML, the run-time input is always
a UML diagram as in [63]. Such a strong relationship is also noticeable in [36]
with programming languages and source code, as well as in [33] when a schema
design is used for structured. As a result, all run-time input categories are cor-
related to the same categories as for design-time input. We will therefore treat
these two facets together as input type.

There is a strong correlation of coefficient of 0.738 and a p-value of less than
0.001 between input type and MDE. As expected, more than 90% of the
papers using general purpose and domain specific inputs are follow the MDE
approach.

22

7.2 Other interesting relations

We also found weak but statistically significant correlations between the remain-
ing facets. We discuss the result here.

7.2.1 Template style

143
69 69 25

63
12 23 17

13 3 3

242
54 10

98
15 2

17 2

Output-based

Predefined

Rule-based

G
en

er
al

p
u

rp
o
se

D
o

m
ai

n

sp
ec

if
ic

S
ch

em
a

P
ro

g
.

la
n
g

u
ag

e

S
o

u
rc

e

co
d

e

S
tr

u
ct

u
re

d

d
at

a

N
at

u
ra

l

la
n
g

u
ag

e

Design-time input type Output type

Figure 13: Relation between template style (vertical) and input/output types
(horizontal)

Figure 13 shows the relationship between template style, design-time input,
and output types. We found that for the predefined templates, there are twice as
many papers that use schema input than domain specific. However, for output-
based, domain specific inputs are used slightly more often. We also notice that
general purpose input is never used with rule-based templates. The output type
follows the same general distribution regardless of the template style.

We found no rule-based style approach that has validated the TBCG com-
ponent in their paper. User studies and formal validations were only performed
on approaches using output-based templates.

All rule-based style approaches have included a sample application. Mean-
while, the proportion of small scale was twice more important for predefined
templates (51%) then for output-based (27%).

We found that popular tools were used twice more often on output-based
templates (58%) than on predefined templates (23%). Rule-based templates

23

never employed a tool that satisfied our popularity threshold, but used other
tools such as Stratego.

We found that all papers using a rule-based style template do not follow an
MDE approach. On the contrary, 70% of the output-based style papers and
56% of the predefined ones follow an MDE approach.

We noted that regardless of the template style, TBCG is used in an inter-
mediate step or at the last step equally often.

Finally, we found that for each template style, the number of papers authored
by an industry researcher fluctuated between 22–30%.

7.2.2 Input type

Source

code

Structured

data

Natural

language

G
en

er
al

p
u

rp
o
se

D
o
m

ai
n

sp
ec

if
ic

S
ch

em
a

P
ro

g
.

la
n
g

u
ag

e

176

25

5

76

17

1

72

20

3

33

9

3

Figure 14: Relation between output (vertical) and design-time input (horizon-
tal) types showing the number of papers in each intersection

The bubble chart in Figure 14 illustrates the tendencies between input and
output types. It is clear that source code is the dominant generated artifact
regardless of the input type. Source code is more often generated from general
purpose and domain specific inputs than from schema and programming lan-
guages. Also, the largest portion of structured data is generated from a schema
input. Finally, the most generated natural language text is when source code is
provided as input.

Moving on to input type and application scale, we found that small scales are
used 40% of the time when the input is a programming language. The number
of papers with no sample application is very low (5%) regardless of the template

24

style. Finally, 74% of papers using large scale applications use a domain specific
input, which is slightly higher than those using a general purpose input with
71%.

Next, when we compared input type to validation, we found that no paper
using a DSL or a programming language used any formal method of validation.
22% of the papers using a DSL as input used a benchmark to validate their
approach, which is higher than the 19% of the papers using general purpose
languages. Also, we found that 77% of the papers using a general purpose
language as input did not validate their approach.

7.2.3 Output type

As we compared output type to orientation, we found that industrials generate
slightly more source code than academics: 89% vs. 80%. However, academics
generate more structured data and natural language than industrials: 18% vs.
6% and 3% vs. 1% respectively.

7.2.4 Application scale

We found that 65% of the papers without application are from the academy.
Between application scale and tools, we found that 74% of the papers that make
use of a popular tool used large scale application to illustrate their approach.
Also, 62% of the papers using unpopular tools12 use large scale applications.
Small scale is likely to be used in unpopular tools rather than popular tools.

7.2.5 Validation

We found that whenever the TBCG is validated, it is always accompanied by
application example, as depicted in Figure 15. However, when no validation is
provided, the paper is still accompanied by an example 67% of the time. Large
scale applications are used on all instances of user studies and formal validation.

Between validation and MDE, we noted that 53% of the papers using bench-
mark are non MDE. So are all papers with a formal method of validation. Papers
relying on a user study are equally distributed between MDE and non MDE ap-
proaches. Furthermore, 68% of the papers without validation are MDE-based
publications. We found no formal method for validation when using a popular
tool. 70% of the papers using unpopular tools do not validate their approach.
13% of the papers that use a popular tool conducted a case study. For unpopular
tools, a benchmark is used 18% of the time.

8 Template-based Code Generation Tools

Figure 16 shows that half of the papers used a popular TBCG tool, whereas
the other half used less popular tools (the other category), did not mention any

12Refers to the union of other and unspecified categories of the tool facet.

25

Large scale

Small scale

No application

N
o
 v

al
id

at
io

n

B
en

ch
m

ar
k

C
as

e
st

u
d

y

U
se

r
st

u
d

y

F
o
rm

al

195

101

22

53

10

1

41

10

195

101

22

3

Figure 15: Relation between validation (vertical) and application scale (hori-
zontal)

TBCG tool, or implemented the code generation directly for the purpose of the
paper. We also see that more than half of the popular tools do not follow MDE
approaches.

8.1 Popular tools

Figure 17 shows the distribution of popular tools used in at least 1% of the
papers, i.e., five papers. Xpand is the most popular with 17% of the papers
using a popular tool. Its popularity is probably due to its simple syntax and
ease of use [44]. It is an MDE tool that relies on a metamodel specified in Ecore
as design-time input. Xpand templates can be extended with a custom language
Xtend13 or Java, in order to handle more complex tasks. Acceleo is very similar
to Xpand, on top of also being an MDE tool [39]. They mainly differ in their
syntax and that Acceleo implements the M2T specifications standard from the
Object Management Group14. Acceleo templates can be extended with Java
code. Unlike Xpand, the call to the extended class is done directly within the
template. Furthermore, Xpand and Acceleo both have an OCL-like language
for the dynamic part. EGL also has a structure similar to the other MDE-based
tools. It is natively integrated with languages from the Epsilon family, thus

13http://www.eclipse.org/Xtext/documentation/
14http://www.omg.org/spec/MOFM2T/1.0/PDF

26

http://www.eclipse.org/Xtext/documentation/
http://www.omg.org/spec/MOFM2T/1.0/PDF

Unspecified

28%

Other

22%

Popular

MDE

16%

Popular non

MDE

34%

Figure 16: Tools categories

relies on the Epsilon Object Language unlike OCL for the above mentioned
tools. MOFScript is the least used popular MDE-based tool that only differs in
syntax from the others.

XSLT is the second most popular tool used. It is suitable for XML documents
only. Some use it for models represented in their XMI format, as it is the case
in [1]. XSLT follows the template and filtering strategy. It matches each tag of
the input document and applies the corresponding template.

JET [49] and Velocity [25] are used as often as each other on top of being
quite similar. The main difference is that JET uses an underlying programming
language (Java) for the dynamic part. In JET, templates are used to help
developers generate a Java class that implements the code generation

StringTemplate has its own template structure. Unlike the above-mentioned
tools, to use StringTemplate the developer must write a Java code where strings
to be output are defined using templates [2]. Also, StringTemplate does not
allow assignments. Note that all the tools mentioned above use an output-based
template style.

The most popular CASE tools for TBCG are Fujaba [19], Rational [12],
and Rhapsody [5]. One of the features they offer is to generate different target
languages from individual UML elements. All CASE tools (even counting the
other category) have been used in a total of 38 papers, which puts them at
par with Xpand. CASE tools are mostly popular for design activities; code
generation is only one of their many features. CASE tools have a predefined
template style.

Simulink TLC is the only rule-based tool among the most popular ones.
As a rule-based approach, it has a different structure compared to the above
mentioned tools. Its main difference is that the developer writes the directives
to be followed by Simulink in order to render the final C code from S-functions.

We notice that the most popular tools are evenly distributed between MDE-

27

Figure 17: Popular tools

based tools (Acceleo, Xpand) and non MDE-based tools (JET, XSLT). Surpris-
ingly, XSLT, which has been around the longest, is less popular than Xpand.
This is undoubtably explained by the advantages that MDE offers as discussed
in Section 2.2.

8.2 Unspecified and other tools

As depicted in Figure 16, 28% of the papers did not specify the tool that was
used, as in [34] where the authors introduce the concept of a meta-framework to
resolve issues involved in extending the life of applications. Furthermore, 22%
of the papers used less popular tools, present in less than five papers, such as
T4 and Cheetah used in [57], which is a python powered template mainly use
used for web developing. Cheetah templates are class definition. The generated
classes can either be used immediately or given into a python module. Some
CASE tools were also in this category, such as AndroMDA [60]. Other examples
of less popular tools are FreeMarker [59], Meta-Aspect-J [3], and Zerberus [29].
The fact that new or less popular tools are still abundantly used suggests that
research in TBCG is still active with new tools being developed or evolved.

8.3 Trends of tools used

Each one of these tools had a different evolution over the years. Unspecified
tools were prevailing before 2004 and then kept a constant rate of usage until a
drop since 2014. We notice a similar trend for CASE tools that were the most
popular in 2005 before decreasing until 2009. They only appear in at most three
papers per year after 2010. The use of the most popular tool, Xpand, gradually
increased since 2005 to reach the peak in 2013 before decreasing. Other cate-
gory maintained an increasing trend until 2014. Yet, a few other popular tools
appeared later on. For example, EGL started appearing in 2008 and had its

28

peak in 2013. Acceleo appeared a year later and was the most popular TBCG
tool in 2013–2014. Finally, MOFScript had no more than a paper per year since
2005. StringTemplate and T4 were used scarcely respectively since 2006 and
2009.

8.4 Characteristics of tools

We have also analyzed each popular tool with respect to the characteristics pre-
sented in Section 6. As mentioned earlier, most of the popular tools implement
output-based template technique except the CASE tools which are designed
following the predefined style.

Tools such as Acceleo, Xpand, EGL, MOFScript and 97% of the CASE tools
papers are only used based on an MDE approach, given that they were created
by this community. Nevertheless, there are tools that were never used with
MDE principles, like T4. Such tools can handle a program code or a schema as
metamodel but have no internal support for modeling languages. Moreover, the
programmer has to write his own stream reader to parse the input, but they
allow for a broader range of artifacts as inputs that do not have to be modeled
explicitly. Between MDE-based and non MDE-based tools, we have few that
provide internal support for both MDE-based and non MDE-based approaches.
In fact, tools like Velocity, XSLT and StringTemplate can handle both UML
metamodels and programmed metamodel.

A surprising result we found is that EGL is the only MDE tool that has
its papers mostly published in MDE venues like Sosym, Models, and Ecmfa.
All the other tools are mostly published in other venues like Icssa, whereas
software engineering venues, like Ase or Icse, and MDE venues account for
26–33% of the papers for each of the rest of the MDE tools.

CASE tools, MOFScript, Velocity, and Simulink TLC mostly generate pro-
gram code. The latter is always used in the domain of embedded systems.
Papers that use StringTemplate do not include any validation process, so is
Velocity in 93% of the papers using it. XSLT has been only used to generate
structured data as anticipated.

Other tools are the most used TBCG in the industry. This is because the
tool is often internal to the company [50]. Among the most popular tools, Xpand
is the most in the industry.

9 MDE and Template-based Code Generation

Overall, 64% of the publications followed MDE techniques and principles. For
example in paper [74], the authors propose a simulation environment with an
architecture that aims at integrating tools for modeling, simulation, analysis,
and collaboration. As expected, most of the publications using output-based and
predefined techniques are classified as MDE-based papers. The remaining 36%
of the publications did not use MDE. This includes all papers that use a rule-
based template style as reported in Section 7. For example, the authors in [16]

29

developed a system that handles the implementation of dependable applications
and offers a better certification process for the fault-tolerance mechanisms.

0

5

10

15

20

25

30

35

40

45

2000 2002 2004 2006 2008 2010 2012 2014

Using MDE Not using MDE

of papers

Figure 18: Evolution of the MDE facet

As Figure 18 shows, the evolution of the MDE category shows that MDE-
based approach started overpassing non MDE-based techniques in 2005, with
the exception of 2006. It increased to reach a peak in 2013 and then started
decreasing as the general trend of the corpus. Overall, MDE-based technique
for TBCG has been dominating other techniques in the past 10 years.

We also analyzed the classification of only MDE papers with respect to
the characteristics presented in Section 3. We only focus here on facets with
different results compared to the general trend of papers. We found that only
half of the total number of papers using unspecified and other tools are MDE-
based papers. We only found one paper that uses a programming language as
design-time input with MDE [28]. This analysis also shows that the year 2005
clearly marked the shift from schema to domain-specific design-time inputs, as
witnessed in Section 6.2. Thus after general purpose, which obtains 69% of
the publications, domain specific accounts a better score of 26%, while schema
obtains only 4%. With respect to the run-time category, the use of domain-
specific models increased to reach a peak in 2013. As expected, no program
code is used for MDE papers, because MDE typically does not consider them
as models, unless a metamodel of the programming language is used. We notice
that when we focus only on MDE publications, case studies are more used to
validate the TBCG than benchmarks are.

Interestingly, MDE venues are only the second most popular after other
venues for MDE approaches. Finally, MDE journal papers maintained a lin-
ear increase over the years, while MDE conference papers had a heterogeneous
evolution similar to the general trend of papers.

30

10 Discussion

10.1 RQ1: What are the trends in TBCG?

Following a deep investigation of the statistical results from the classification,
we noticed that TBCG has received sufficient attention from the research com-
munity. Even though the number of papers has been decreasing for the past
two years, the community has maintained a production rate in-line with the
last ten years average, especially with a constant rate of appearance in journal
articles. This brings us to the same conclusion as Batot et al. [6], that TBCG
has reached a certain maturity from a research point of view in 2013. The lack
of retention of papers appearing in non MDE may indicate that TBCG is now
applied in development projects rather than being a critical research problem
to solve. As it is common in other domains, the production of TBCG papers
has also been influenced by major events in 2005 and 2013. MDE has attracted
more attention to the code synthesis technique. Also, conference papers as well
as non MDE and software engineering venues had a significant impact on the
evolution of TBCG. Finally, TBCG seems to have reached a steady publica-
tion rate since 2005. Hence, we can expect contributions from the research
community to continue in that trend.

10.2 RQ2: What are the characteristics of TBCG ap-
proaches?

Our classification scheme constitutes the main source to answer this question.
The results clearly indicate the preferences the research community has regard-
ing TBCG. Output-based template styles have always been the most popular
from the beginning. Nevertheless, there have been some attempts to propose
other template styles like the rule-based style or the predefined style but they
did not catch on. Because of its simplicity to use, the predefined style is proba-
bly still popular in practice, but it is less mentioned in research papers. TBCG
has been used to synthesize a variety of application code or documents. As ex-
pected, the study shows that high-level language inputs have prevailed over any
other type. Specifically for MDE approaches to TBCG, the input to transform is
moving from general purpose to domain-specific models. Also, the study shows
that TBCG is mostly used as a standalone process, unlike what was predicted
in MDE [48]. This indicates that it is yet to be integrated in the development
process. It is more like a distinct task that is used only when needed. Academic
researchers have contributed most, as expected with a literature review, but
we found that industry is actively and continuously using TBCG as well. The
study also shows that the community is moving from large scale applications to
smaller sized examples in research papers. This concurs with the level of matu-
rity of this synthesis approach as discussed in Section 10.1. The study confirms
that the community uses TBCG to generate mainly source code. This trend is
set to continue since the automation of computerized tasks is continuing to gain
ground in all fields. Finally, TBCG has been implemented in many domains.

31

Software engineering and embedded systems are the most popular, but it is also
used unexpectedly in unrelated domains like bio-medicine and finance.

10.3 RQ3: To what extent are TBCG tools being used?

In this study, we discovered a total 70 different tools for TBCG. Many stud-
ies implemented code generation with a custom-made tool that was never or
seldom reused. This indicates that the development of new tools is still very
active. MDE tools are the most popular. Since the research community has
favored output-based template style (c.f. Section 10.2), this has particularly
influenced the tools implementation. This template style allows for more fine-
grained customization of the synthesis logic which seems to be what users have
favored. This particular aspect is also influencing the expansion of TBCG into
industry. Well-known tools like Acceleo, Xpand and Velocity are moving from
being simple research material to effective development resources in industry.
Finally, the study shows that there is has been a shift from CASE tools to
output-based tools since 2005.

10.4 RQ4: What is the place of MDE in TBCG?

All this analysis clearly conclude that the advent of MDE has gathered high
attention to TBCG. In fact, MDE has lead to increase the average number of
publications by a factor of four. As TBCG became a commonplace in general,
the research in this area is now mostly conducted by the MDE community. Also,
MDE has brought very popular tools that have encountered a great success
and they are also contributing to the expansion of TBCG across industry. It is
important to mention that the MDE community publishes in specific venues like
Models, Sosym, or Ecmfa unlike other research communities. This resulted
in three MDE venues at top of the ranking (c.f. Table 2).

10.5 Threats to validity

The results presented in this systematic mapping study have depended on many
factors that could potentially limit the study.

10.5.1 Construction validity

Threats to construction validity deals with the problems related to the design
of the research method and especially to identifying relevant primary studies.

In a strict sense, our findings are valid only for our sample that we collected
from 2000–2015. This leads to determine whether the primary studies used in
our SMS are good representation of the whole population. From Figure 3, we
can observe that our sample can be attributed as a representative sample of
the whole population. In particular, the average number of identified primary
studies per year is 27.8 with standard deviation 15.75. Since it is difficult to be
exhaustive on TBCG, we selected three of the major online databases. These

32

databases are complementary and we are confident that they index a maximum
of relevant publications. We chose to obtain the best possible coverage at the
cost of duplications.

Another potential limitation is the search query. It is difficult to encode
a query that is restrictive enough to discard unrelated publications but at the
same time retrieves all the relevant ones. In order to obtain a satisfactory
balance, we included synonyms and captured possible declinations. Our search
query could suggest a restriction of the type of output. However, the size of
the final corpus we classified is about ten times larger than other SMS related
to code generation (see Section 2.5). We are therefore confident that the final
corpus is a representative subset of all relevant publications on TBCG.

Finally, given that we obtained a sufficiently large final corpus for typical
SMS, we did not perform snowballing which may have resulted in collecting
additional papers omitted by the search engines.

10.5.2 Internal validity

A potential limitation is related to data extraction. It is difficult to extract data
from relevant publications especially when the quality of the paper is low, when
code generation is not the primary contribution of the paper, or when critical
information for the classification is not directly available in the paper. For
example in [56], the authors only mention the name of the tool used to generate
the code. In order to mitigate this threat, we had to resort to searching for
additional information about the tool: reading other publications that use the
tool, traversing the website of the tool, installing the tool, or discussing with
the tools experts, as reported in Section 4.3.

Another possible threat is the screening of papers based on inclusion and
exclusion criteria that we defined before the study was conducted. During this
process, we examined only the title, the abstract. Therefore, there is a proba-
bility that we excluded relevant publications such as [18], that do not include
any TBCG terms. In order to mitigate this threat, whenever we were unsure
whether a publication should be excluded or not we conservatively opted to
include it. However, during classification when reading the whole content of the
paper, we may still have excluded it.

10.5.3 External validity

External threats to validity cope with problems that might arise during conclu-
sion generalization. The results we obtained are based on TBCG only. Even
though our classification scheme includes facets like validation, orientation, ap-
plication domain, that are not related to the area, we followed a topic based
classification. The core characteristics of our study are strictly related to this
particular code synthesis technique. We have defined characteristics like tem-
plate style and the two levels of inputs that we believe are exclusive to TBCG.
Therefore, the results cannot be generalized to other code generation techniques
mentioned in Section 2.3.

33

10.5.4 Conclusion validity

Threats to conclusion validity (or reliability) deal with problems that might
arise when deriving conclusions and whether the SMS can be repeated. Our
study is based on a large number of primary studies. This helps us mitigate the
potential threats related to the conclusions of our study. A missing paper or a
wrongly classified paper would have a very low impact on the statistics compared
to a smaller number of primary studies. In addition, as a senior reviewer did
a sanity check on the rejected papers, we are confident that we did not miss
a significant number of papers. Hence, the chances for wrong conclusions are
small. Replication of this study can be achieved as we provided all the details
of our research method in Section 3. Also, our study follows the methodology
described in [62].

11 Conclusion

This paper reports the results of a SMS we conducted on the topic of TBCG,
which has been missing in the literature. The objectives of this study are to
better understand the characteristics of TBCG techniques and associated tools,
identify research trends, and assess the importance of the role that MDE plays.
We have systematically scanned the published, peer-reviewed literature and
studied an extensive set of 440 papers published during the period 2000–2015.
The analysis of this corpus is organized into facets of a novel classification
scheme, which is of great value to modeling and software engineering researchers
who are interested in painting an overview of the literature on TBCG.

Our study shows that the community has been diversely using TBCG over
the past 15 years and that research and development is still very active. TBCG
has greatly benefited from MDE in 2005 and 2013 which mark the two peaks of
the evolution of this area, tripling the average number of publications. In ad-
dition, TBCG has favored a template style that is output-based and high level
modeling languages as input. TBCG is mainly used to generate source code and
has been applied in a variety of domains. The community has been favoring the
use of custom tools for code generation over popular ones. Furthermore, both
MDE and non-MDE tools are becoming effective development resources in in-
dustry. Finally, we found that there is a lack of a formal verification method
for TBCG approaches, the existing ones being targeted to compilers. Neverthe-
less, this can be a good starting point in the process of formalizing verification
methods that suit TBCG.

As future work, we would like to revise the query to include not only “code”
as the main output, but all the other possible artifacts such as documents. We
would also like to pursue the study for a couple of years past 2015 to justify the
observation of the 2013 event. Finally we would like to analyze and compare the
tools (thus extending the work in [66]) to help users decide when to use which
tool.

34

References

[1] Adamko, A.: Modeling data-oriented web applications using uml. In: EU-
ROCON 2005 - The International Conference on Computer as a Tool, vol. 1,
pp. 752–755. IEEE (2005)

[2] Anjorin, A., Saller, K., Rose, S., Schürr, A.: A framework for bidirec-
tional model-to-platform transformations. In: 5th International Conference
on Software Language Engineering, SLE 2012, Revised Selected Papers,
LNCS, vol. 7745, pp. 124–143. Springer Berlin Heidelberg (2013)

[3] Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages
with round-trip engineering. In: Model Driven Engineering Languages and
Systems, LNCS, vol. 4199, pp. 692–706. Springer Berlin Heidelberg (2006)

[4] Axelsen, H.B.: Clean translation of an imperative reversible program-
ming language. In: Compiler Construction, LNCS, vol. 6601, pp. 144–163.
Springer Berlin Heidelberg (2011)

[5] Basu, A.S., Lajolo, M., Prevostini, M.: A methodology for bridging the
gap between uml and codesign. In: UML for SOC Design, pp. 119–146.
Springer US (2005)

[6] Batot, E., Sahraoui, H., Syriani, E., Molins, P., Sboui, W.: Systematic
mapping study of model transformations for concrete problems. In: Inter-
national Conference on Model-Driven Engineering and Software Develop-
ment, pp. 176–183 (2016)

[7] Beckmann, O., Houghton, A., Mellor, M., Kelly, P.H.: Runtime code gener-
ation in C++ as a foundation for domain-specific optimisation. In: Domain-
Specific Program Generation, LNCS, vol. 3016, pp. 291–306. Springer
Berlin Heidelberg (2004)

[8] Behrens, T., Richards, S.: Statelator-behavioral code generation as an in-
stance of a model transformation. In: International Conference on Ad-
vanced Information Systems Engineering, LNCS, vol. 1789, pp. 401–416.
Springer Berlin Heidelberg (2000)

[9] Blazer, R.: A 15 Year Perspective on Automatic Programming. Transac-
tions on Software Engineering 11(11), 1257–1268 (1985)

[10] Bonta, E., Bernardo, M.: Padl2java: A java code generator for process
algebraic architectural descriptions. In: European Conference on Software
Architecture, pp. 161–170. IEEE (2009)

[11] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.:
Lessons from applying the systematic literature review process within the
software engineering domain. Journal of systems and software 80(4), 571–
583 (2007)

35

[12] Brown, A.W., Conallen, J., Tropeano, D.: Introduction: Models, modeling,
and model-driven architecture (MDA). In: International Conference on
Model-Driven Software Development, pp. 1–16. Springer Berlin Heidelberg
(2005)

[13] Brox, M., Sánchez-Solano, S., del Toro, E., Brox, P., Moreno-Velo, F.J.:
CAD tools for hardware implementation of embedded fuzzy systems on FP-
GAs. IEEE Transactions on Industrial Informatics 9(3), 1635–1644 (2013)

[14] Brun, M., Delatour, J., Trinquet, Y.: Code generation from AADL to a
real-time operating system: An experimentation feedback on the use of
model transformation. In: Engineering of Complex Computer Systems,
pp. 257–262. IEEE (2008)

[15] Buchmann, T., Schwägerl, F.: Using meta-code generation to realize
higher-order model transformations. In: International Joint conference on
Software Technologies, pp. 536–541 (2013)

[16] Buckl, C., Knoll, A., Schrott, G.: Development of dependable real-time sys-
tems with Zerberus. In: 11th IEEE Pacific Rim International Symposium
on Dependable Computing, pp. 404–408 (2005)

[17] Buckl, C., Regensburger, M., Knoll, A., Schrott, G.: Models for automatic
generation of safety-critical real-time systems. In: Availability, Reliability
and Security, pp. 580–587. IEEE (2007)

[18] Buezas, N., Guerra, E., de Lara, J., Mart́ın, J., Monforte, M., Mori, F.,
Ogallar, E., Pérez, O., Cuadrado, J.S.: Umbra designer: Graphical mod-
elling for telephony services. In: European Conference on Modelling Foun-
dations and Applications, LNCS, vol. 7949, pp. 179–191. Springer Berlin
Heidelberg (2013)

[19] Burmester, S., Giese, H., Schäfer, W.: Model-driven architecture for hard
real-time systems: From platform independent models to code. In: Euro-
pean Conference on Model Driven Architecture-Foundations and Applica-
tions, LNCS, vol. 3748, pp. 25–40. Springer Berlin Heidelberg (2005)

[20] Chen, K., Chang, Y.C., Wang, D.W.: Aspect-oriented design and imple-
mentation of adaptable access control for electronic medical records. Inter-
national Journal of Medical Informatics 79(3), 181–203 (2010)

[21] Córdoba, I., de Lara, J.: A modelling language for the effective design of
Java annotations. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC ’15, pp. 2087–2092. ACM (2015)

[22] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45(3), 621–645 (2006)

36

[23] Dahman, W., Grabowski, J.: Uml-based specification and generation of
executable web services. In: System Analysis and Modeling, LNCS, vol.
6598, pp. 91–107. Springer Berlin Heidelberg (2010)

[24] Domı́guez, E., Pérez, B., Rubio, A.L., Zapata, M.A.: A systematic review
of code generation proposals from state machine specifications. Information
and Software Technology 54(10), 1045–1066 (2012)

[25] Durand, S.H., Bonato, V.: A tool to support Bluespec SystemVerilog cod-
ing based on UML diagrams. In: Annual Conference on IEEE Industrial
Electronics Society, pp. 4670–4675. IEEE (2012)

[26] Ecker, W., Velten, M., Zafari, L., Goyal, A.: The metamodeling approach
to system level synthesis. In: Design, Automation & Test in Europe Con-
ference & Exhibition, pp. 1–2. IEEE (2014)

[27] Fang, M., Ying, J., Wu, M.: A template engineering based framework for
automated software development. In: 10th International Conference on
Computer Supported Cooperative Work in Design, pp. 1–6. IEEE (2006)

[28] Fertalj, K., Kalpic, D., Mornar, V.: Source code generator based on a
proprietary specification language. In: Hawaii International Conference on
System Sciences, vol. 9. IEEE (2002)

[29] Fischer, B., Schumann, J.: Autobayes: A system for generating data anal-
ysis programs from statistical models. Journal of Functional Programming
13(03), 483–508 (2003)

[30] Fischer, T., Kollner, C., Hardle, M., Muller-Glaser, K.D.: Product line
development for modular FPGA-based embedded systems. In: Symposium
on Rapid System Prototyping, pp. 9–15. IEEE (2014)

[31] Floch, A., Yuki, T., Guy, C., Derrien, S., Combemale, B., Rajopadhye,
S., France, R.B.: Model-Driven Engineering and Optimizing Compilers: A
Bridge Too Far? In: Model Driven Engineering Languages and Systems,
LNCS, vol. 6981, pp. 608–622. Springer Berlin Heidelberg (2011)

[32] Fraternali, P., Tisi, M.: A higher order generative framework for weaving
traceability links into a code generator for web application testing. In:
International Conference on Web Engineering, LNCS, vol. 5648, pp. 340–
354. Springer Berlin Heidelberg (2009)

[33] Fu, J., Bastani, F.B., Yen, I.L.: Automated AI planning and code pattern
based code synthesis. In: International Conference on Tools with Artificial
Intelligence, pp. 540–546. IEEE (2006)

[34] Furusawa, T.: Attempting to increase longevity of applications based on
new SaaS/cloud technology. Fujitsu Scientific and Technical Journal 46,
223–228 (2010)

37

[35] Gessenharter, D.: Mapping the UML2 semantics of associations to a java
code generation model. In: International Conference on Model Driven En-
gineering Languages and Systems, LNCS, vol. 5301, pp. 813–827. Springer
Berlin Heidelberg (2008)

[36] Ghodrat, M.A., Givargis, T., Nicolau, A.: Control flow optimization in
loops using interval analysis. In: International conference on Compilers, ar-
chitectures and synthesis for embedded systems, pp. 157–166. ACM (2008)

[37] Gopinath, V.S., Sprinkle, J., Lysecky, R.: Modeling of data adaptable
reconfigurable embedded systems. In: International Conference and Work-
shops on Engineering of Computer Based Systems, pp. 276–283. IEEE
(2011)

[38] Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.:
Handbook of Dynamic System Modeling, book section Domain-Specific
Modeling, pp. 7–20. 7. CRC Press (2007)

[39] Guduvan, A.R., Waeselynck, H., Wiels, V., Durrieu, G., Fusero, Y.,
Schieber, M.: A meta-model for tests of avionics embedded systems. In:
nternational Conference on Model-Driven Engineering and Software Devel-
opment, pp. 5–13 (2013)

[40] Gurunule, D., Nashipudimath, M.: A review: Analysis of aspect orientation
and model driven engineering for code generation. Procedia Computer
Science 45, 852–861 (2015)

[41] Hemel, Z., Kats, L.C., Groenewegen, D.M., Visser, E.: Code generation by
model transformation: a case study in transformation modularity. Software
& Systems Modeling 9(3), 375–402 (2010)

[42] Hoisl, B., Sobernig, S., Strembeck, M.: Higher-order rewriting of model-
to-text templates for integrating domain-specific modeling languages. In:
International Conference on Model-Driven Engineering and Software De-
velopment, pp. 49–61 (2013)

[43] Jörges, S.: Construction and Evolution of Code Generators, vol. 7747,
chap. 2 The State of the Art in Code Generation, pp. 11–38. Springer
Berlin Heidelberg (2013)

[44] Jugel, U., Preußner, A.: A case study on API generation. In: System
Analysis and Modeling: About Models, LNCS, vol. 6598, pp. 156–172.
Springer Berlin Heidelberg (2011)

[45] Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code
Generation. John Wiley & Sons (2008)

[46] Kitchenham, B.A., Budgen, D., Brereton, O.P.: Using mapping studies as
the basis for further research - a participant-observer case study. Informa-
tion and Software Technology 53(6), 638–651 (2011)

38

[47] Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-Based Software En-
gineering. In: International Conference on Software Engineering, pp. 273–
281. IEEE Computer Society, Washington, DC, USA (2004)

[48] Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained. The Model Driven
Architecture: Practice And Promise. Addison-Wesley (2003)

[49] Kövi, A., Varró, D.: An eclipse-based framework for ais service configura-
tions. In: 4th International Service Availability Symposium, ISAS, LNCS,
vol. 4526, pp. 110–126. Springer Berlin Heidelberg (2007)

[50] Kulkarni, V., Barat, S., Ramteerthkar, U.: Early experience with agile
methodology in a model-driven approach. In: Model Driven Engineering
Languages and Systems, pp. 578–590 (2011)

[51] Li, J., Xiao, H., Yi, D.: Designing universal template for database applica-
tion system based on abstract factory. In: 2012 International Conference
on Computer Science and Information Processing, CSIP, pp. 1167–1170
(2012)

[52] Li, W., Lee, Y.H., Tsai, W.T., Xu, J., Son, Y.S., Park, J.H., Moon, K.D.:
Service-oriented smart home applications: composition, code generation,
deployment, and execution. Service Oriented Computing and Applications
6(1), 65–79 (2012)

[53] Liu, Q.: C++ techniques for high performance financial modelling. WIT
Transactions on Modelling and Simulation 43, 1–8 (2006)

[54] Lohmann, D., Blaschke, G., Spinczyk, O.: Generic advice: On the combi-
nation of aop with generative programming in AspectC++. In: Interna-
tional Conference on Generative Programming and Component Engineer-
ing, LNCS, vol. 3286, pp. 55–74. Springer Berlin Heidelberg (2004)

[55] Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M., Syr-
iani, E., Wimmer, M.: Model Transformation Intents and Their Properties.
Software & Systems Modeling 15(3), 685–705 (2014)

[56] Ma, M., Meissner, M., Hedrich, L.: A case study: Automatic topology
synthesis for analog circuit from an asdex specification. In: Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit
Design, pp. 9–12. IEEE (2012)

[57] Manley, R., Gregg, D.: A program generator for intel aes-ni instructions.
In: Progress in Cryptology - INDOCRYPT 2010: 11th International Con-
ference on Cryptology, LNCS, vol. 6498, pp. 311–327. Springer Berlin Hei-
delberg (2010)

[58] Mehmood, A., Jawawi, D.N.: Aspect-oriented model-driven code genera-
tion: A systematic mapping study. Information and Software Technology
55(2), 395–411 (2013)

39

[59] Muñoz, J., Pelechano, V.: Applying software factories to pervasive systems:
A platform specific framework. In: International Conference on Enterprise
Information Systems, vol. 3, pp. 337–342 (2006)

[60] Muller, P.A., Studer, P., Fondement, F., Bézivin, J.: Platform indepen-
dent web application modeling and development with Netsilon. Software
& Systems Modeling 4(4), 424–442 (2005)

[61] O’Halloran, C.: Automated verification of code automatically generated
from simulink R©. Automated Software Engineering 20(2), 237–264 (2013)

[62] Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping
Studies in Software Engineering. In: Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
EASE’08, vol. 17, pp. 68–77. British Computer Society (2008)

[63] Phillips, J., Chilukuri, R., Fragoso, G., Warzel, D., Covitz, P.A.: The ca-
CORE software development kit: Streamlining construction of interopera-
ble biomedical information services. BMC medical informatics and decision
making 6(2), 1–16 (2006)

[64] Possatto, M.A., Lucrédio, D.: Automatically propagating changes from
reference implementations to code generation templates. Information and
Software Technology 67, 65–78 (2015)

[65] Rich, C., Waters, R.C.: Automatic programming: myths and prospects.
Computer 21(8), 40–51 (1988)

[66] Rose, L.M., Matragkas, N., Kolovos, D.S., Paige, R.F.: A Feature Model
for Model-to-Text Transformation Languages. In: ICSE Workshop on
Modeling in Software Engineering, pp. 57–63. IEEE Press (2012)

[67] Roychoudhury, S., Gray, J., Jouault, F.: A model-driven framework for
aspect weaver construction. In: Transactions on Aspect-Oriented Software
Development VIII, LNCS, vol. 6580, pp. 1–45. Springer Berlin Heidelberg
(2011)

[68] Schattkowsky, T., Lohmann, M.: Rapid development of modular dynamic
web sites using uml. In: International Conference on the Unified Modeling
Language, LNCS, vol. 2460, pp. 336–350. Springer Berlin Heidelberg (2002)

[69] Seriai, A., Benomar, O., Cerat, B., Sahraoui, H.: Validation of software
visualization tools: A systematic mapping study. In: IEEE Working Con-
ference on Software Visualization, VISSOFT, pp. 60–69 (2014)

[70] Singh, A., Schaeffer, J., Green, M.: A template-based approach to the gen-
eration of distributed applications using a network of workstations. IEEE
Transactions on Parallel and Distributed Systems 2(1), 52–67 (1991)

40

[71] Sridhara, G., Pollock, L., Vijay-Shanker, K.: Automatically detecting and
describing high level actions within methods. In: International Conference
on Software Engineering, pp. 101–110. ACM (2011)

[72] Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development
– Technology, Engineering, Management. John Wiley & Sons (2006)

[73] Tatsubori, M., Chiba, S., Killijian, M.O., Itano, K.: OpenJava: A Class-
Based Macro System for Java. In: Reflection and Software Engineering,
LNCS, vol. 1826, pp. 117–133. Springer (2000)

[74] Touraille, L., Traoré, M.K., Hill, D.R.: A model-driven software environ-
ment for modeling, simulation and analysis of complex systems. In: Sym-
posium on Theory of Modeling & Simulation: DEVS Integrative M&S
Symposium, pp. 229–237. Society for Computer Simulation International
(2011)

[75] Valderas, P., Pelechano, V., Pastor, O.: Towards an end-user development
approach for web engineering methods. In: International Conference on Ad-
vanced Information Systems Engineering, vol. 4001, pp. 528–543. Springer
Berlin Heidelberg (2006)

[76] Vokáč, M., Glattetre, J.M.: Using a domain-specific language and cus-
tom tools to model a multi-tier service-oriented applicationexperiences and
challenges. In: International Conference on Model Driven Engineering Lan-
guages and Systems, vol. 3713, pp. 492–506. Springer (2005)

41

	1 Introduction
	2 Background and Related Work
	2.1 Code Generation
	2.2 Code Generation in the Context of MDE
	2.3 Code Generation Techniques
	2.4 Template-based Code Generation
	2.5 Literature Reviews on Code Generation

	3 Research Methods
	3.1 Objectives
	3.2 Selection of Source
	3.3 Screening Procedure
	3.4 Classification Scheme

	4 Paper Selection
	4.1 Paper Collection
	4.2 Screening
	4.3 Eligibility during Classification

	5 Evolution of TBCG
	5.1 General trend
	5.2 Publications and venues

	6 Characteristics of Template-Based Code Generation
	6.1 Template style
	6.2 Input type
	6.3 Output type
	6.4 Application scale
	6.5 Validation
	6.6 Context
	6.7 Orientation
	6.8 Application domain

	7 Relations between Characteristics
	7.1 Statistical correlations
	7.2 Other interesting relations

	8 Template-based Code Generation Tools
	8.1 Popular tools
	8.2 Unspecified and other tools
	8.3 Trends of tools used
	8.4 Characteristics of tools

	9 MDE and Template-based Code Generation
	10 Discussion
	10.1 RQ1: What are the trends in TBCG?
	10.2 RQ2: What are the characteristics of TBCG approaches?
	10.3 RQ3: To what extent are TBCG tools being used?
	10.4 RQ4: What is the place of MDE in TBCG?
	10.5 Threats to validity

	11 Conclusion

