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ABSTRACT 

Alzheimer’s disease (AD) is the most frequent form of dementia in western countries. The rise in life 

expectancy will likely increase its prevalence, since ageing is the greatest known risk factor. Although 

an early and accurate identification is critical, low diagnostic accuracy is currently reached. Hence, the 

aim of the present study was to analyse the spontaneous magnetoencephalographic (MEG) activity 

from 148 channels in 20 AD patients and 21 healthy controls to extract discriminating spectral 

features. Relative power (RP) was calculated in conventional frequency bands and several ratios were 

defined to emphasise the differences in its distribution. Both RP values and spectral ratios were 

transformed with a principal component analysis to summarise information with minimal loss of 

variability. AD patients showed a significant increase of RP(δ) and RP(θ), along with a decrease of 

RP(β) and RP(γ). The most significant differences were reached by spectral ratios using the β band. 

Specifically, we obtained 75.0% sensitivity, 90.5% specificity and 82.9% accuracy (linear discriminant 

analysis with a leave-one-out cross-validation procedure), together with a p-value lower than 0.001 

(one-way analysis of variance with age as a covariate) using the 

[RP(α)+RP(β1)+RP(β2)+RP(γ)]/[RP(δ)+RP(θ)] ratio. The spectral ratios also showed a higher 

correlation with the severity of dementia than individual relative power measures. Our results suggest 

that the spectral ratios could be useful descriptors to help in the AD diagnosis, since they effectively 

summarise the slowing of the AD patients’ MEG rhythms in individual indexes and correlate 

significantly with the severity of dementia. 

 

Key Words:  Alzheimer’s disease; Magnetoencephalogram; Fourier transform; Spectral ratios; 

Principal component analysis 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is a primary degenerative dementia of unknown aetiology. AD gradually 

destroys brain cells and leads to progressive decline in mental function, representing the most 

prevalent form of dementia in western countries [1]. Although several risk factors have been identified, 

the most important is ageing. This issue is especially significant in western countries due to the 

increase in life expectancy and, therefore, also in the prevalence of the disease [2]. 

 Structural changes in AD are related to the accumulation of amyloid plaques between nerve 

cells in the brain and with the appearance of neurofibrillary tangles inside nerve cells [3]. Both are 

considered as two AD hallmarks. However, it is not yet known whether plaques of tangles cause AD or 

are a by-product of some other process. They both are formed by clusters of proteins accumulated in 

greater quantities in two specific brain regions: the hippocampus and the cerebral cortex. The 

appearance of these two abnormal microscopic structures produces a neuronal damage or death, 

which is followed by a chemical imbalance. Both structural and chemical changes cause a progressive 

cell death and an overall shrinkage of brain tissue, which culminates in the progressive clinical 

symptoms of AD [3]. 

 Clinical diagnosis of AD involves several kinds of evaluations: medical history study, mental 

status, memory, reasoning, vision-motor coordination, language skills evaluation, physical 

examination, brain scanning, laboratory tests, and psychiatric evaluation. Nevertheless, physicians 

only make a diagnosis of AD with sensitivity of around 81% and specificity of 70% [4]. A definite 

diagnosis of AD can be only made by examining brain tissue after death. Despite the relatively low 

diagnostic accuracy, an early and accurate identification of AD should be attempted. Early detection is 

critical to optimise treatment, since current drugs are more effective if they are taken in the initial 

stages of the disease [5]. Furthermore, early identification will be even more critical when the new 

generation of drugs reach the clinic [6]. Finally, it is also noteworthy that an early diagnosis is 

important in the case of nonpharmacologic interventions, since it allows to develop a support system 

and review financial strategies [7]. 

In order to improve quality diagnosis, electrical brain activity has been widely analysed using 

electroencephalogram (EEG) recordings. Recently, special attention has also been given to 

magnetoencephalogram (MEG), which is a measure of the magnetic activity emitted by the brain. Both 

recordings are generated by synchronous oscillations of pyramidal neurons. However, EEG is 
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sensitive to all primary currents, whereas MEG is insensitive to current flows oriented perpendicularly 

to the scalp. EEG and MEG detect slightly different features of the electromagnetic brain activity. 

Hence, they can be viewed as complementary techniques [8,9]. It should be pointed out that the 

cerebral magnetic fields are extremely weak. Hence, MEG recordings, at present, can be most 

conveniently detected by large arrays of superconducting quantum interference devices (SQUIDs). In 

order to maintain the SQUID sensors at the required low temperature, they are immersed in a cryogen 

housed in a thermally insulated container. Eventually, the MEG system is placed into a magnetically 

shielded room to attenuate the external noise. In this way, the technical requirements of MEG both 

increase the cost and reduce the flexibility of using this method in real-life clinical environments [9]. On 

the other hand, EEG power measurements are strongly influenced by a wide variety of non specified 

factors. Skull and other extracerebral tissues, technical and methodological issues (e.g. distance 

between sensors, electrode location, reference point or even conducting substance between skin and 

electrode) can affect the signal. An important advantage of MEG over EEG arises from the practical 

insensitivity of magnetic fields to tissue conductivities differences. In this sense, scalp EEG can be 

viewed as the result of a spatial filtering of the electrical cortical recordings by the volume conductor 

[10]. The effect of this process is to filter out high frequency components between the cortex and the 

scalp and, therefore, modify the spectral content of the cortical electric field [10]. This fact makes MEG 

recordings to be less distorted than EEG signals on the scalp [9]. In addition, 

magnetoencephalography obtains a reference-free recording as well as higher spatial resolution than 

conventional electroencephalography [8]. 

Some abnormalities in moderate and severe AD patients’ EEG and MEG background activity 

have been observed [11–13]. AD patients show a decrease of coherence values at the α and β bands 

in EEG [14,15], together with a slowing of spontaneous electrical brain activity. An increase of the δ 

(0.5-4 Hz) and θ (4-8 Hz) power, along with a decrease of the α (8-13 Hz) and β (13-30 Hz) power 

have been widely reported in EEG studies [16–19]. Results are in accordance with those obtained 

defining several power ratios to study EEG recordings [20−24]. Increase in slow activity has also been 

observed in the EEG spectral profile, where a spectrum shifted to the left [25] and the lack of a 

dominant activity in the 6.5-12 Hz frequency band [26] have been described. Similarly, several EEG 

studies considered some proper frequencies like mean frequency [19,20,25], individual alpha peak 

and transition frequency [27]. They found a decrease in characteristic frequencies associated to AD 

patients’ EEG compared with control subjects. It should be noticed that the EEG has been broadly 
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investigated using spectral measures. However, only a few studies have analysed the MEG spectral 

patterns in AD. In this way, coherence analyses partially support the findings of previous EEG studies. 

Thus, a decrease of coherence values of the α band has been reported in AD patients’ MEG 

recordings [28]. Nevertheless, a general decrease of coherence in all frequency bands has been also 

observed when analysing MEG signals [29]. Additionally, spontaneous MEG activity shows increased 

slow rhythms and reduced fast activity in AD patients in comparison with healthy subjects [29−31]. 

This fact has also been observed using some spectral parameters like mean frequency [32,33] and 

individual alpha peak [30,33,34]. 

The aim of the present work was to explore the ability of several spectral ratios to discriminate 

between AD patients and elderly controls using MEG background recordings. The results were 

compared with those obtained with relative power in conventional frequency bands. Both relative 

power and spectral ratios were transformed using principal component analysis in order to summarise 

the large amount of information. While a few MEG studies have analysed the slowing of MEG rhythms 

using relative power measures, we propose to apply several ratio measures, as previous EEG studies 

have indicated. In this way, it should be possible to obtain an individual index which summarises all 

the spectral content simultaneously. 

2. MATERIALS AND METHODS 

2.1. Selection of patients and controls 

Forty-one subjects participated in the study. Informed consent was obtained from all control subjects 

and all caregivers of the demented patients. The study was approved by the local ethics committee. 

All MEG recordings were performed in the “Centro de Magnetoencefalografía Dr. Pérez-Modrego" of 

the Complutense University of Madrid (Spain). 

 Twenty AD patients (7 men and 13 women, age = 73.1 ± 8.7 (56 – 83) years, mean ± standard 

deviation SD (range)) were included in the study. All of them were recruited from the “Asociación de 

Familiares de Enfermos de Alzheimer” (AFAL). The diagnosis was made on the basis of exhaustive 

medical, physical, neurological, psychiatric and neuropsychological examinations. All patients fulfilled 

criteria for probable AD according to the clinical guidelines of the National Institute of Communicative 

Disorders and Stroke - AD and Related Disorders Association (NINCDS-ADRDA) [35]. In addition, 
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brain scans were performed to exclude other causes of dementia. Mini-Mental State Examination 

(MMSE) [36] and Functional Assessment Staging (FAST) [37] were used to assess the severity of the 

disease. The mean MMSE and FAST scores for the patients were 17.85 ± 3.91 and 4.00 ± 0.32 (Mean 

± SD), respectively. AD patients were free from any other significant medical, neurological and 

psychiatric diseases. They were not taking any medication that could affect the recordings. 

 Twenty-one volunteers (9 men and 12 women, age = 70.3 ± 7.1 (56 – 84) years, mean ± SD 

(range)) accepted to participate in the study as control group. They were cognitively normal elderly 

controls with no history of neurological or psychiatric disorders. Their mean MMSE and FAST scores 

were 29.10 ± 1.00 and 1.71 ± 0.46, respectively. No significant differences were detected in the mean 

age of both groups (p > 0.05, Student’s t-test). 

2.2. MEG recording 

MEG signals were recorded using a 148-channel whole-head magnetometer (MAGNES 2500 WH, 4D 

Neuroimaging) confined in a magnetically shielded room in the “Centro de Magnetoencefalografía Dr. 

Pérez Modrego” (Spain). Recordings were obtained with subjects in a relaxed state, awake and with 

eyes closed in order to obtain as many artefact-free MEG data as possible. Vigilance was 

continuously monitored in order to avoid drowsiness. Five minutes of spontaneous MEG activity were 

acquired at a sampling rate of 678.17 Hz. A 0.1-200 Hz hardware bandpass filter and a 50 Hz notch 

filter were also used. Subsequently, each signal recording was downsampled by a factor of four to 

reduce the data length. 

Only artefact-free time segments of 1696 samples (10 s) were accepted to be used for further 

analysis. Off-line artefact rejection was performed by an experienced technician who was blind to the 

patients’ diagnosis. In this way, an average number of 26 ± 6 artefact-free epochs (Mean ± SD) for 

each subject and each channel were selected for subsequent calculations. It is noteworthy that AD 

patients usually exhibited a higher degree of restlessness and agitation than healthy subjects. 

Therefore, a higher number of epochs had to be excluded in the AD patients’ group than in the 

controls’ one. Finally, prior to spectral analysis, each artefact-free segment of 1696 samples was 

digitally bandpass-filtered with cut-off frequencies at 0.4 and 70 Hz. The selected frequency range 

enables to keep the relevant spectral content and to minimise the presence of electrooculographic and 

electromyographic artefacts. 
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2.3. Spectral analysis and ratio definition 

MEG segments were analysed using the Fourier transform (FT) in order to characterise their spectral 

properties. Power spectral density (PSD) was estimated from the FT of the autocorrelation function. 

PSD was averaged for each channel and subject to compute the mean PSD per channel and subject. 

Then, relative power (RP) was calculated in the classical frequency bands: δ (1-4 Hz), θ (4-8 Hz), α (8-

13 Hz), β1 (13-19 Hz), β2 (19-30 Hz) and γ (30-64 Hz). 

Previous EEG studies have exploited the local differences in the relative power distribution 

defining a number of ratios [20−24]. Briefly, a balance between the power at high and at low 

frequencies was computed to summarise the slowing of the AD patients’ EEG spectrum in a single 

index. To emphasise the local differences of the MEG power spectrum, we combined the relative 

power of conventional frequency bands, as it is shown in Equations (1), (2), (3) and (4). It should be 

noticed that RP(δ), RP(θ), RP(α), RP(β1), RP(β2) and RP(γ) denote the relative power of each 

frequency band. 
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Typically, the EEG slowing is more important with the severity of the disease [20,21]. 

Therefore, the performance of each spectral ratio will be established both by the frequency bands 

employed in their definition and by the severity of the demented patients. r1 is a widely used ratio in 

previous EEG studies [20−22], which employs α and θ bands. Thus, r1 is able to detect changes in 

early stages of the disease, when a slightly slowing in the EEG spectrum appears [20,21]. r2 was used 

by Soininen et al. [20] and Bennys et al. [23] to obtain an index that summarised the EEG slowing 

globally. It should be noticed that in the aforementioned EEG studies the γ band did not appear. 

Therefore, its contribution was lost. To take into account the γ band, we extended the definition of r2 to 

the whole power spectrum. Finally, some EEG works used the RP(α)/RP(δ) ratio to detect changes in 

advanced stages of AD [20,22]. In this study, we replaced α band by β band, as it is shown in r3 and 
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r4. This result is supported by a previous work, where the most significant changes in spontaneous 

MEG activity between AD patients and controls were observed in RP(β2) [31]. Additionally, we did not 

only define a ratio to summarise the information of the whole β band (r3), but also a more specific 

measure which quantifies the contribution of the β2 band (r4). 

In order to summarise information and detect correlation among the previous variables, 

principal component analysis (PCA) can be used. Briefly, PCA transforms a set of correlated 

parameters into a set of uncorrelated variables which are sorted by reducing variability. These new 

uncorrelated variables, derived from linear combinations of the original parameters, are called 

components. The coefficients of a linear combination are the components of an eigenvector of the 

correlation or covariance matrix. Thus, the first principal component is the combination of variables 

that explains the greatest amount of variability and so on. Finally, it is necessary to select an 

appropriate number of principal components. For this purpose, several methods have been proposed, 

like the broken stick model, Velicer’s partial correlation procedure, cross-validation, bootstrapping 

techniques, Bartlett’s test for equality of eigenvalues, Kaiser’s criterion, Cattell’s scree test and 

cumulative percentage of explained variance, among others [38]. However, it should be noticed that 

some authors point out that there is no ideal solution to the problem of dimensionality in a PCA [39] or 

that selection rules offer little advantage over simple schemes in most circumstances [38]. In this 

sense, previous EEG and MEG studies only retained the first principal component (PC1), since the 

explained variance for the calculated parameters was higher than 72% [32,33,40,41]. In the present 

work, we applied a similar PCA scheme to summarise the variability of each parameter. But, in 

addition, the mean values for all channels were also computed to obtain a single measure per 

parameter and subject. Given the fact that the mean values showed a strong correlation with PC1, we 

only selected the average measures for further analyses. In this way, a straightforward interpretation 

of the results is achieved, at the same time that more than 72% of variability is retained as it is shown 

in the results section. 

2.4. Statistical analysis 

Initially, a descriptive analysis was performed to explore the distribution of the parameters. Both the 

Kolmogorov-Smirnov and the Shapiro-Wilk tests were used to verify normality of distributions, whereas 

homoscedasticity was assessed with Levene’s test. After the exploratory analysis, the values did not 

meet parametric test assumptions, since we observed asymmetry in the relative power and spectral 
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ratio values. Therefore, a logarithmic transformation was applied to minimised problems with 

skewness and kurtosis [42], obtaining normally distributed variables. Then, a one-way analysis of 

variance (ANOVA) with age as a covariate was used to evaluate statistical significance (α = 0.05). In 

addition, we used the Pearson correlation coefficient to study the relation between the parameters and 

both the MMSE and FAST scores. 

Finally, the performance of the parameters to discriminate between groups was also evaluated 

by means of a linear discriminant analysis (LDA) with a leave-one-out cross-validation procedure. 

Classification results were summarised in terms of sensitivity (i.e. percentage of patients with a correct 

AD diagnosis), specificity (i.e. proportion of healthy subjects properly recognised) and accuracy (i.e. 

total fraction of subjects well classified). 

3. RESULTS 

We calculated the PSD of the 10 s segments in the 148 channels. Results were averaged for each 

channel and subject. Fig. 1 depicts the averaged normalised PSD (PSDn) for controls and AD 

patients. Mean relative power was then estimated for each classical frequency band. Finally, relative 

power values and spectral ratios were log-transformed and both a PCA and a grand-average over all 

channels were computed. Table 1 shows the percentage of variance explained by PC1, together with 

the coefficient of determination between PC1 and the mean of the parameters over all sensors. As it 

can be seen, the explained variance by the first principal components varied from 72.22% for the 

relative power value in the α band, to 88.01% in the β2 band. Moreover, all spectral ratios were able to 

retain more than 83% of variance with just PC1. These findings are in agreement with those obtained 

in previous MEG studies, which only analysed PC1 due to the redundancy of the data [32,33,41]. 

Further inspection of Table 1 suggests that there exists also a strong correlation between each PC1 

and the corresponding mean for all channels (p < 0.00001 in all comparisons). In this way, to simplify 

the method, at the same time that a great amount of variability is retained, we analysed the mean over 

all log-transformed 148 parameters, instead of PC1. 

 

Insert Figure 1 about here 

 

Insert Table 1 about here 
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Table 2 summarises the correlations between each mean parameter and the age, the MMSE 

and FAST scores. It is noteworthy that in every case the obtained values were similar to those 

observed using Spearman correlation coefficient. Given the fact that the age is significantly correlated 

with several measures, its effect was eliminated from the statistical analysis by introducing the factor 

as a covariate. It should also be noticed that no significant relation with gender was found. Regarding 

to the MMSE and FAST scores, the most significant correlations were achieved by r2, r3 and r4. 

According to their definitions, they were used to summarise the slowing of the power spectrum globally 

(r2) and to detect changes in advances stages of AD (r3 and r4). In this sense, an enhanced activity in 

lower frequency bands has been previously observed along with the severity of AD [12,43,44], which 

is in agreement with the high correlation in the relative power of δ band. 

 

Insert Table 2 about here 

 

Fig. 2 depicts the notched boxplots with the relative power averaged for each group and for all 

channels. This kind of graph provides an excellent visual summary of many important aspects of a 

data distribution. The ordered values of the data are divided into four ‘equal’ parts, using a box with 

three horizontal lines. The sample median is displayed as a line approximately in the middle of the 

box, whereas the 25th and 75th percentiles of the sample are the lower and upper parts of the box, 

respectively. The notches included in the boxplot show a confidence interval of the median. They 

provide graphical information about the differences in the distributions by observing if the notches of 

the boxplots do not overlap. Finally, the ‘whiskers’ are two lines displayed from each end of the box to 

the farthest observation outside the box. They can be extended to a maximum of 1.5 times the 

interquartile range, whereas any values beyond these whiskers are defined as data outliers and 

marked by the symbol ‘+’. δ and θ bands in AD patients show higher values than in control subjects (p 

< 0.01), while elderly controls have higher values with β1, β2 and γ bands (p < 0.05). α band in control 

subjects shows higher relative power in comparison with AD patients. However, differences are not 

significant (p > 0.05). 

Previous relative power values were combined in order to obtain the spectral ratios. As it can 

be noticed in Fig. 3, spectral ratios are higher in controls’ MEGs than in AD patients’ MEGs (p < 0.01). 

This result supports the increase in slow activities (i.e. δ and θ bands) and the decrease in fast 
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rhythms (i.e. β and γ bands) observed for AD patients in Figs. 1 and 2. Moreover, differences are 

accentuated, given that the p-values are lower than those obtained using separate frequency bands. 

 

Insert Figs. 2 and 3 about here 

 

Sensitivity, specificity, accuracy and p-values for power values and spectral ratios are 

summarised in Table 3. In general, p-values for spectral ratios were lower than for relative power 

values, whereas accuracy was higher for spectral ratios than for individual power measures. Special 

attention should be paid to relative power value in β1 and β2 bands, which showed classification 

parameters similar to spectral ratios. It should be noticed that the best results were obtained with 

spectral measures that used the β band. Thus, in both β1 and β2 bands the accuracy reached the 

80.5% (70.0%, sensitivity; 90.5%, specificity). With regard to spectral ratios, the accuracy was 82.9% 

(75.0%, sensitivity; 90.5%, specificity) and 80.5% (75.0%, sensitivity; 85.7%, specificity) with r2 and r3, 

respectively. 

 

Insert Table 3 about here 

 

4. DISCUSSION 

In the present study, we explored the ability of several spectral ratios to discriminate between 

spontaneous MEG oscillations from 20 AD patients and 21 control subjects. We calculated the relative 

power in classical frequency bands. PCA was then applied to both individual power values and 

spectral ratios in order to reduce the dimensionality of the problem. Due to the high correlation 

between PC1 and the corresponding mean over all channels, in the sake of simplicity, we only 

consider the latter for further analyses. Significant differences for each average parameter were 

obtained using an ANOVA analysis with age as a covariate. Results revealed an increase in relative 

power estimations of AD patients at δ and θ bands. Controls showed higher relative power at β and γ 

bands. To emphasise differences in relative power distribution, we combined its values using several 

ratios. By retaining only the average measures over all channels, more significant differences were 

obtained with spectral ratios than using separate frequency bands. 
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 Further inspection of relative power values revealed that the most significant differences (p < 

0.001) were achieved in β and δ bands. Significant differences were also obtained in θ (p < 0.01) and γ 

bands (p < 0.05). Our results suggested that relative power in low frequency bands were increased in 

AD. These findings are in agreement with previous studies analysing spontaneous MEG oscillations, 

where an increase in slow rhythms (i.e. δ and θ bands) and a decrease in fast oscillations (i.e. α and β 

band) were reported [29−32]. In a similar way, EEG studies confirmed the slowing of brain rhythms 

[17−20,24−26]. A possible hypothesis to explain the EEG slowing in AD is the cholinergic deficit, which 

involves a loss of neurotransmitter acetylcholine [11]. Osipova et al. [45] studied the changes induced 

in spontaneous MEG activity by the administration of scopolamine. This medicament is a muscarinic 

receptor antagonist that blocks the stimulation of post-synaptic receptors and yields similar EEG 

alterations to those observed in AD. They found that the cholinergic system modulated spontaneous 

cortical activity at the θ and α bands and functional coupling in the θ band. Consequently, the 

cholinergic deficit could also be partly responsible of MEG slowing in AD, although due to the 

heterogeneity of the disease may not be sufficient to explain distinct alterations of the spontaneous 

MEG oscillations. More recently, Osipova et al. [30] performed a source analysis of MEG signals in 

AD. Their findings suggested that MEG slowing in AD might not be due to the slowing of existing 

sources, but it might be owing to an increase in activation of low frequency generators. This 

hypothesis is supported by the findings of Fernández et al. [46,47], which observed an enhanced 

value in dipole density at δ and θ bands, when they analysed spontaneous MEG oscillations in AD. 

This result could be related to the increase of slow rhythms in AD. Nevertheless, more exhaustive 

studies are needed to confirm these hypotheses. 

 Results improved when we combined individual relative power values. We obtained more 

significant differences (p < 0.0001) with r2, r3 and r4 than with relative power in conventional frequency 

bands. The lowest p-value (p = 0.000011 < 0.0001) was obtained with r2. Moreover, with r2 optimum 

classification parameters of 75.0% sensitivity, 90.5% specificity and 82.9% accuracy were achieved. It 

should be noticed that both r3 and r4 used β and δ bands in their definition. These results suggest a 

significant increase of δ power and a parallel decrease in β oscillations, as it can be noticed in Fig. 2. 

This issue is supported by a previous MEG study, which performed an exhaustive frequency analysis 

in AD [31]. Hence, two well differentiated regions of interest between 2 to 4 Hz and 16 to 28 Hz were 

found when the spectrum of AD patients and controls was compared [31]. The important role of β and 
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δ bands in AD characterisation has also been observed in several EEG works [20−24]. Table 4 

summarises the results obtained by previous studies that analysed the EEG activity using spectral 

ratios to explore the dynamics associated with AD. 

 

Insert Table 4 about here 

 

Special attention to β band has also been paid by Bennys et al. [23]. In an analogous EEG 

study using spectral ratios, they found significant differences between AD patients and control 

subjects. They employed two power ratios similar to r1 and r2. It is noteworthy that, unlike our study, 

they discarded the use of δ band due to electrooculographic activity and suggested the use of θ band 

in the spectral ratio definition. Nevertheless, our results suggest that δ band should be taken into 

consideration in the characterisation of AD patients’ electromagnetic brain activity, as it has been 

showed with r2, r3 and r4. In this sense, Leuchter et al. [21] observed that the highest classification 

rates were achieved using parameters based on low frequency bands (i.e. δ and θ bands), when they 

studied regional differences in the EEG between demented patients and controls. Furthermore, their 

findings suggested that the parameters yielded complementary information and could be then 

sensitive to different pathologic processes in dementia [21]. Finally, the usefulness of δ band has also 

been proved by Jelic et al. [22]. They showed a strong correlation between cerebrospinal fluid (CSF) 

tau levels and two spectral ratios, when the EEG activity from AD patients was analysed. 

 On the other hand, Soininen et al. [20] did not obtain significant differences in β power 

between groups, but a significant slowing of the power spectrum was reported. Results improved 

when several ratios were defined. Soininen et al. [20] concluded that the EEG slowing was different at 

the time of AD diagnosis and 1 year later, due to the heterogeneity of the disease for each patient. In 

this sense, Matousek et al. [24] found that the RP(θ)/RP(α) ratio was more correlated to the degree of 

dementia than individual power measures. Moreover, the EEG slowing was highly dependent on the 

type of regional syndrome affecting each patient. In a similar sense, our findings also suggest that the 

spectral ratios show a stronger correlation with the severity of dementia than individual relative power 

measures. However, in the present study the patients are slightly more demented than in the work 

carried out by Matousek et al. [24]. Therefore, we observed that the highest correlation was found with 
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r2. In addition, it is noteworthy that r3 and r4 exhibited correlation coefficients close to those obtained 

with r2, which indicated an advanced degree of dementia. 

 EEG and MEG slowing have not only been observed in AD, but also in other forms of 

dementia as mild cognitive impairment [18,19,32], vascular dementia [25,27], dementia associated 

with Parkinson’s disease [26,48], Lewy body dementia [26,28,49], major depression [50,51], 

Huntington’s chorea and progressive supranuclear palsy [16,26]. Further investigation should be 

attempted in order to study differences in slowing for every disorder. In a similar way, it might be 

possible that the increase in relative power of slow frequencies could be drug-related. Nevertheless, in 

our study, none of patients were receiving any medication which could affect spontaneous MEG 

activity. 

 Another important limitation of our study is related to the small sample size. Thus, 

considerations about type I (incorrectly deciding to reject a null hypothesis) and type II (incorrectly 

deciding not to reject a null hypothesis) errors should be made. The reduced number of subjects 

involves an increase of beta (probability of making a type II error) and of the probability of a false 

negative. To overcome the problem and to ensure generalisation, results should be extended on a 

larger population. 

Finally, it is noteworthy that, in the sake of simplicity, the present approach involves a loss of 

spatial information, since the parameters were averaged over the 148 channels. A partial solution 

could be based on computing the average of each index for several brain regions, taking into account 

that the MEG activity recorded by a sensor could not reflect only the brain rhythms under the channel, 

but it might also measure the activity from other areas. In this sense, further works could be carried out 

to explore the spatial patterns for each parameter. 

5. CONCLUSIONS 

Life conditions in western countries have notably improved during the last decades. This issue 

involves an increase in life expectancy and, therefore, in the prevalence of neurodegenerative 

diseases associated with ageing, such as AD. To the previous issue, the difficulties faced in AD 

identification, like the low diagnostic accuracy, should be added. Nevertheless, an early and accurate 

identification should be attempted both to optimise the treatment and to develop strategies for coping 

with the disease. In this sense, it is worth noting that AD is a cortical degenerative dementia affecting 

the electromagnetic brain activity. Hence, both the EEG and MEG are expected to reflect functional 
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and structural deficits of the brain damaged by the disease. While the spectral features of the EEG 

have been extensively analysed, only a few MEG studies have explored the ability of spectral 

measures as AD descriptors [29−33]. In this sense, to the best of our knowledge, this study is the first 

approximation to demonstrate the ability of spectral ratios to extract discriminating features from AD 

patients’ MEG background activity in comparison to elderly controls. Our results support the notion 

that AD involves a slowing of electromagnetic brain activity when compared with elderly subjects and 

point out the importance of β band in the understanding of the disease. Additionally, spectral ratios 

correlate more significantly with the severity of the dementia than individual power measures, 

suggesting a potential usefulness of these indexes. Further works will be carried out to explore the 

spatial patterns for each parameter using a larger data set, including patients suffering from other 

neurodegenerative diseases. 

In summary, our findings suggest that the spectral ratios can be useful descriptors of the 

spontaneous MEG rhythms in AD. Moreover, the significant correlation between these measures and 

the severity of dementia can provide further insights on brain dynamics in AD. 
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TABLE CAPTIONS 

Table 1. Percentage of variance explained by the first principal component (% Var. PC1) for all 

frequency bands and spectral ratios, together with the coefficient of determination (R
2
) between each 

PC1 and the corresponding mean values over all channels 

 

Table 2. Pearson correlation coefficients (r) between the mean values over all channels and the age, 

the MMSE and the FAST scores 

 

Table 3. Classification results of linear discriminant analysis with a leave-one-out cross-validation 

procedure, together with the corresponding p-values from ANOVA corrected for age. Both analyses 

were performed using the mean values over all channels for each parameter 

 

Table 4. Summary of previous EEG studies, in alphabetical order, concerning the analysis of AD by 

means of spectral ratios 
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FIGURE LEGENDS 

Fig. 1. Normalised power spectral density (PSDn) functions averaged over all channels for healthy 

controls (C) and AD patients (AD). 

 

Fig. 2. Notched boxplots displaying the distribution of the mean relative power values averaged for all 

channels at each frequency band and the corresponding p-values: (a) RP(δ) (AD patients: 0.32 ± 0.13; 

Control subjects: 0.17 ± 0.06, mean ± SD); (b) RP(θ) (AD patients: 0.22 ± 0.10; Control subjects: 0.15 

± 0.05); (c) RP(α) (AD patients: 0.18 ± 0.08; Control subjects: 0.21 ± 0.08); (d) RP(β1) (AD patients: 

0.11 ± 0.05; Control subjects: 0.18 ± 0.04); (e) RP(β2) (AD patients: 0.10 ± 0.05; Control subjects: 0.20 

± 0.08); (f) RP(γ) (AD patients: 0.06 ± 0.03; Control subjects: 0.09 ± 0.04). 

 

Fig. 3. Notched boxplots displaying the distribution of the mean spectral ratios averaged for all 

channels and the corresponding p-values: (a) r1 (AD patients: 1.05 ± 0.78; Control subjects: 1.62 ± 

0.78, mean ± SD); (b) r2 (AD patients: 1.20 ± 0.98; Control subjects: 2.65 ± 1.04); (c) r3 (AD patients: 

1.20 ± 1.29; Control subjects: 3.10 ± 1.46); (d) r4 (AD patients: 0.56 ± 0.55; Control subjects: 1.59 ± 

0.84). 
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Figure 1 

 

 

 



 23

Figure 2 
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Figure 3 

 

  

(a) (b) 

  

(c) (d) 

 



 25

Table 1 

 

Parameters % Var. PC1 R
2
 

Relative 

power 

RP(δ) 81.48 0.99964 

RP(θ) 77.22 0.99763 

RP(α) 72.22 0.99944 

RP(β1) 83.13 0.99962 

RP(β2) 88.01 0.99972 

RP(γ) 83.39 0.99858 

Spectral 

ratios 

r1 83.65 0.99914 

r2 84.21 0.99989 

r3 86.11 0.99995 

r4 87.07 0.99992 
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Table 2 

 

Parameters 

Age MMSE FAST 

r p-value r p-value r p-value 

Relative 

power 

RP(δ) 0.29628 0.059978 -0.53130 0.000351 0.57052 0.000098 

RP(θ) 0.48492 0.001313 -0.35818 0.021483 0.41321 0.007249 

RP(α) 0.11680 0.467063 0.28533 0.070564 -0.19954 0.211000 

RP(β1) -0.29332 0.062707 0.41225 0.007399 -0.50449 0.000770 

RP(β2) -0.47208 0.001832 0.42785 0.005264 -0.50876 0.000682 

RP(γ) -0.47505 0.001698 0.22553 0.156263 -0.33805 0.030638 

Spectral 

ratios 

r1 -0.25696 0.104845 0.44015 0.003980 -0.42045 0.006199 

r2 -0.42960 0.005062 0.54683 0.000216 -0.60202 0.000031 

r3 -0.38160 0.013823 0.51896 0.000508 -0.58739 0.000054 

r4 -0.43426 0.004556 0.51509 0.000569 -0.58417 0.000061 
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Table 3 

 

Parameters Sensitivity (%) Specificity (%) Accuracy (%) p-value 

Relative 

power 

RP(δ) 15/20 (75.0) 16/21 (76.2) 31/41 (75.6) 0.000101 

RP(θ) 13/20 (65.0) 17/21 (81.0) 30/41 (73.2) 0.007813 

RP(α) 12/20 (60.0) 12/21 (57.1) 24/41 (58.5) 0.120047 

RP(β1) 14/20 (70.0) 19/21 (90.5) 33/41 (80.5) 0.000249 

RP(β2) 14/20 (70.0) 19/21 (90.5) 33/41 (80.5) 0.000167 

RP(γ) 12/20 (60.0) 14/21 (66.7) 26/41 (63.4) 0.038629 

Spectral 

ratios 

r1 14/20 (70.0) 16/21 (76.2) 30/41 (73.2) 0.005298 

r2 15/20 (75.0) 19/21 (90.5) 34/41 (82.9) 0.000011 

r3 15/20 (75.0) 18/21 (85.7) 33/41 (80.5) 0.000015 

r4 15/20 (75.0) 17/21 (81.0) 32/41 (78.0) 0.000014 
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Table 4 

 

Study Data set Parameters Results 

Bennys et al. [23] 35 AD patients and 

25 elderly controls 

( )
( ) ( )1βα

θ

RPRP

RP

+
 

( ) ( )
( ) ( )βα

θδ

RPRP

RPRP

+

+
 

Significant differences were found using the spectral ratios. 

The classification results, applying a discriminant analysis 

without a leave-one-out cross-validation scheme, showed a 

sensitivity of 65.7% and a specificity of 94.2% at parieto-

temporo-occipital derivations, using the RP(θ)/[RP(α)+RP(β1)] 

ratio. Sensitivity of 71.4% and specificity of 88.5% were 

obtained using the [RP(δ)+RP(θ)]/[RP(α)+RP(β)] ratio. 

Jelic et al. [22] 14 AD patients, 12 

mild cognitive 

impairment (MCI) 

patients and 14 

elderly controls 

( )
( )δ

α

RP

RP
 

( )
( )θ

α

RP

RP
 

A strong correlation between cerebrospinal fluid (CSF) tau 

levels and the spectral ratios was observed in AD patients, 

whereas significant correlations between EEG slowing and 

CSF tau levels were not found neither in MCI patients nor in 

healthy controls. 

Leuchter et al. [21] 
1
 49 AD patients, 29 

multi-infarct 

dementia (MDI) 

patients and 38 

elderly controls 

( ) ( )
( ) ( )12

12

θδ

αθ

RPRP

RPRP

+

+
 

( )
( ) ( )12

2

θδ

α

RPRP

RP

+
 

( )
( ) ( )12

1

θδ

β

RPRP

RP

+
 

( )
( ) ( )12

2

θδ

β

RPRP

RP

+
 

( )
( ) ( )12

2

αθ

α

RPRP

RP

+
 

( )
( ) ( )12

1

αθ

β

RPRP

RP

+
 

( )
( ) ( )12

2

αθ

β

RPRP

RP

+

 

The parameters showed regional differences in distinguishing 

between AD and MID patients and in their association with 

age and cognitive status. The highest classification rates 

were obtained using parameters based on low frequency 

bands (i.e. δ and θ bands). In addition, the predicted 

probabilities of true diagnosis enhanced substantially with the 

increase in the number of parameters per subject used to 

classify. 

Matousek et al. [24] 77 AD patients ( )
( )α

θ

RP

RP
 

The spectral ratio was more correlated to the degree of 

dementia than individual power measures. Given the fact that 

the EEG slowing was highly dependent on the type of 

regional syndrome affecting each patient, it was concluded 

that EEG analysis would be more worthwhile in the early-

onset type of AD. 

Soininen et al. [20] 24 AD patients and 

14 elderly controls 

( )
( )θ

α

RP

RP
 

( )
( )δ

α

RP

RP
 

( )
( ) ( )θδ

α

RPRP

RP

+
 

( ) ( )
( ) ( )θδ

βα

RPRP

RPRP

+

+
 

No significant differences between groups were found in β 

power at the T6-O2 derivation. However, a significant 

increase in the power of δ and θ bands and a decrease of α 

power was reported. The use of spectral ratios improved the 

statistical results. Although all quantitative variables described 

the EEG slowing, it was different at the time of AD diagnosis 

and 1 year later. 

1 
A particular subdivision of the conventional frequency bands was made in [21]: δ2 (2-4 Hz), θ1 (4-6 

Hz), θ2 (6-8 Hz), α1 (8-10 Hz), α2 (10-14 Hz), β1 (14-18 Hz) and β2 (18-22 Hz). 

 


