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Abstract

Sample Entropy (SampEn) is a nonlinear regularity index that requires the a priori selection
of three parameters: the length of the sequences to be compared, m, the patterns similarity toler-
ance, r, and the number of samples under analysis, N . Appropriate values for m, r and N have
been recommended and widely used in the literature for the application of SampEn to some phys-
iological time series, such as heart rate, hormonal data, etc. However, no guidelines exist for the
selection of that values in other cases. Therefore, an optimal parameters study should be required
for the application of SampEn to not previously analyzed biomedical signals. In the present work,
a thorough analysis on the optimal values for m, r and N is presented within the context of atrial
fibrillation (AF) organization estimation, computed from surface electrocardiogram recordings.
Recently, the evaluation of AF organization through SampEn, has revealed clinically useful infor-
mation that could be used for a better treatment of this arrhythmia. The present study analyzed
optimal SampEn parameter values within two different scenarios of AF organization estimation,
such as the prediction of paroxysmal AF termination and the electrical cardioversion outcome in
persistent AF. As a result, interesting recommendations about the selection of m, r and N , to-
gether with the relationship between N and the sampling rate (fs) were obtained. More precisely,
(i) the proportion between N and fs should be higher than one second and fs ≥ 256 Hz, (ii)
overlapping between adjacent N -length windows does not improve AF organization estimation
with respect to the analysis of non-overlapping windows, and (iii) values of m and r maximizing
successful classification for the analyzed AF databases should be considered within a range wider
than the proposed in the literature for heart rate analysis, i. e. m = 1 and m = 2 and r between
0.1 and 0.25 times the standard deviation of the data.
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1 Introduction

The application of nonlinear regularity metrics to physiological signals is a valuable tool because

“hidden information” related to underlying mechanisms can be obtained [1, 2]. To this respect, the

employment of sample entropy (SampEn) to estimate non-invasively atrial fibrillation (AF) organi-

zation has revealed clinically useful information, which could be used for a better treatment of the

arrhythmia [3–5]. The organization estimation of AF is a relevant aspect to improve its compre-

hension, since its mechanisms are still unexplained [6] despite of affecting up to 1% of the general

population [7, 8].

Given a time series with N data points, the a priori selection of two unknown parameters, m and

r, is required to compute SampEn [2]. The parameter m determines the length of the sequences to be

compared and r is the tolerance for accepting similar patterns between two segments. Although these

parameters are critical in determining the outcome of SampEn, no guidelines exist for optimizing

their values. Typically recommended m and r values are m = 1 and m = 2 and r between 0.1

and 0.25 times the standard deviation (SD) of the data [9]. This recommendation is largely based

on the application of approximate entropy (ApEn) to relatively slow dynamic signals such as heart

rate [1, 9, 10] and hormone secretion data [11]. Given that SampEn is a modified version of ApEn to

solve its shortcomings, such as bias, relative inconsistency and dependence on the sample length [2],

these values are also applicable to SampEn.

However, a recent work has demonstrated that the typically recommended values for ApEn are

not always appropriate for fast dynamic signals [12]. As a consequence, since only few values,

within the range suggested in the literature [9], were tested in the previous works where SampEn was

applied to AF organization estimation [3–5], the main goal of the present study is to carry out an in

depth analysis on SampEn parameters able to achieve optimized classification of AF events which

are directly dependent on AF organization. Thus, several combinations of m and r, over a range

wider than the one typically recommended, together with the number of analyzed samples, N , and

the overlapping effect between adjacent N -length windows have been analyzed. Additionally, since

in AF organization estimation, SampEn is applied to a time series that depends on the original ECG
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sampling rate (fs), the relationship between N and fs is also addressed.

Due to the lack of a method able to generate AF signals with a priori controlled organization,

the use of simulated signals is not possible. As a consequence, real AF signals with organization-

dependent events were selected. Two different scenarios, such as the prediction of paroxysmal AF

termination and the electrical cardioversion (ECV) outcome in persistent AF, in which organization

plays an important role, as corroborated by invasive recordings [13], were analyzed.

2 Materials

In the present work, two databases were used with the aim of providing general recommendations,

for optimal SampEn computation, that are applicable to a wide range of AF studies in which orga-

nization has to be estimated, like ablation guiding or drug effects. Firstly, a set of paroxysmal (i.e.,

spontaneously terminating) AF recordings were analyzed to predict the termination of the arrhythmia

and, secondly, a set of persistent AF recordings (i. e., requiring external intervention for termination)

were studied to predict ECV outcome. The recordings belonging to each data set were sampled at

different rates, as will be described in the next subsections.

2.1 Paroxysmal AF Database

Fifty Holter recordings of 30 seconds in length and two leads (II and V1) available in Physionet [14]

were analyzed. The database included non-terminating AF episodes (group N), which were observed

to continue in AF for, at least, one hour following the end of the excerpt, and AF episodes termi-

nating immediately after the end of the extracted segment (group T). These signals were digitized at

a sampling rate of 128 Hz and 16-bit resolution. Nevertheless, they were upsampled to 1024 Hz in

order to allow better alignment for QRST complex subtraction, such as Bollmann et al suggested [13].

This step is necessary to extract the atrial activity (AA) from surface ECGs, see section 3.1. A cubic

splines interpolation method was used because it provided the best resolution (lower than 1 ms) in

the R peak detection in comparison with other methods analyzed for the same purpose [15]. After the

AA extraction, the residual signal was downsampled back to 128 Hz.
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2.2 Persistent AF Database

Sixty-three patients (20 men and 43 women, mean age 73.35± 9.02 years) with persistent AF lasting

more than 30 days, undergoing ECV were followed during four weeks. A standard 12-lead ECG

was acquired for each patient during the whole procedure and a segment of 30 seconds in length was

extracted from each recording for the analysis. All the signals were digitized at a sampling rate of

1024 Hz and 16-bit resolution.

After the ECV, 22 patients (34.93%) maintained normal sinus rhythm (NSR) during the first

month. On the contrary, in 31 patients (49.20%), NSR duration was below one month and, in the

remaining 10 (15.87%), AF recurred immediately after ECV. These 41 patients constituted the group

of AF recurrence. All the patients were in drug treatment with amiodarone. The median arrhyth-

mia duration was 10.58 months (range 1–47.22), echocardiography demonstrated a mean left atrium

diameter of 45.82 ± 6.93 mm and 20.63% of the patients presented underlying heart disease. No

significative differences were found in the aforementioned clinical parameters between the patients

who maintained NSR and relapsed to AF.

2.3 Data Preprocessing

In both databases, lead V1 was chosen for the analysis because previous works have shown that AA

is prevalent in this lead [16]. The recordings were preprocessed in order to improve later analysis.

Firstly, baseline wander was removed making use of bidirectional high pass filtering with 0.5 Hz cut-

off frequency [17]. Secondly, high frequency noise was reduced with an eight order bidirectional IIR

Chebyshev low pass filtering, whose cut-off frequency was 70 Hz [18]. Finally, powerline interference

was removed through adaptive notch filtering, which preserves the ECG spectral information [19].
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3 Methods

3.1 Strategy to estimate AF organization

The proper application of SampEn to the surface ECG in AF requires the fulfillment of several steps.

Firstly, the ventricular activity has to be removed making use of a cancellation technique. Next, the

main atrial wave (MAW) has to be extracted from the AA and, finally, SampEn computation can be

applied to this wave.

Regarding the first step, AA analysis from surface ECG recordings is complicated by the simulta-

neous presence of ventricular activity, which is of much greater amplitude. Whereby, the AA signal

has to be firstly extracted. Although a variety of different techniques exist for this purpose, a QRST

cancellation method was used, since only one lead was considered in the study. Thus, the highest

variance eigenvector of all the ECG beats was considered as the ventricular template for the cancel-

lation. This QRST template was selected because it provided a higher quality AA extraction in short

AF recordings, such as the analyzed in this work, than the obtained by averaging all the beats [20].

Nevertheless, since QRST morphology is affected by respiration, patient movement, etc., QRST

residua and noise are often present in the extracted AA signal [16]. These nuisance signals degrade

the AA organization estimation using non-linear regularity indexes, which provokes unsuccessful

results [21]. To overcome this problem, the MAW has to be gained from the AA [21]. The MAW

can be considered as the fundamental waveform associated to the AA, as Fig. 1 shows, its wavelength

being the inverse of the AA dominant frequency [22].

In order to extract the MAW, the AA power spectral density (PSD) was firstly computed using

the Welch Periodogram. A Hamming window of 4096 points in length, a 50% overlapping between

adjacent windowed sections and a 8192-points Fast Fourier Transform (FFT) were used as computa-

tional parameters, as suggested by previous works [23]. The highest amplitude frequency within the

3–9 Hz range was selected as the dominant atrial frequency (DAF) [22], and the MAW was obtained

by applying a selective filtering to the AA centered on the DAF. A linear phase FIR filter was used

to prevent distortion [24]. The filter was designed by the Chebyshev approximation, with 3 Hz band-

width and 768 coefficients, as detailed in previous works [3,25]. Finally, SampEn was computed over
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the MAW in order to estimate AF organization.

3.2 Sample entropy definition

SampEn examines a time series for similar epochs and assigns a non-negative number to the sequence,

with larger values corresponding to more irregularity in the data [2]. This number is the negative

natural logarithm of the conditional probability that two sequences similar for m points remain similar

for m + 1 points, within a tolerance r, excluding self-maches. Thus, for a time series of N points,

{x(n), n = 1, . . . , N}, the k = 1, . . . , N − m + 1 vectors of length m are formed as Xm(k) =

{x(k + i), i = 0, . . . ,m− 1}. The distances among vectors are calculated as the maximum absolute

distance between their corresponding scalar elements. The vectors number of which distance with the

vector i is below a tolerance r is counted as Bi. The counting number of different vectors is calculated

and normalized as

Bm(r) =
1

N −m

N−m∑
i=1

Bi

N −m− 1
. (1)

Repeating the process for vectors of length m + 1, Bm+1(r) can be obtained and SampEn can be

defined as

SampEn(m, r, N) = − ln
[Bm+1(r)

Bm(r)

]
. (2)

A more detailed description of SampEn, from a mathematical point of view, can be found in several

previous works [2, 26, 27].

3.3 Selection of N and fs

Previous works, in which heart rate and hormonal data regularity were analyzed [1, 9, 11, 28], have

shown that for m = 2, values of r from 0.1 to 0.25 times the SD of the data and values of N

between 100 and 5000 samples produce good statistical validity of ApEn. Additionally, Pincus and

Goldberger [1] suggested that N should be at least 10m and, preferably, at least 30m when heart rate

regularity is analyzed. However, this recommendation is not applicable to the case studied in this

work, because the MAW length depends on the ECG sampling rate. To this respect, the selection of
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a specific number of samples N will stretch out more or less MAW information as a function of the

sampling rate. Hence, for high fs, a low MAW time interval would be analyzed and the opposite also

holds. As a consequence, the selection of a sampling rate, as the one defined by the Nyquist criterion,

is not a guarantee of accurate organization estimation in AF.

Determining the optimal value of N has important practical relevance. When small N values are

used to compute SampEn, the estimates can be inaccurate, because they can present a large variance.

On the contrary, large N values may contain abrupt changes in amplitude that could result in inac-

curate estimates due to normalization errors in the parameter r. However, it is noteworthy that N

depends on fs, since N = T · fs, where T denotes the time interval (in seconds) on which SampEn

is computed. Thereby, in addition to the optimal value of N , it is important to determine the most

appropriate sampling rate for the MAW.

To obtain the optimal values of these parameters, the MAW sampling rate was varied and, for

each case, SampEn was computed with different N values. More precisely, the selected N values

were 30, 60, 120, 240, 480, 960, 1920, . . . , L samples, where L is the closest series length lower than

the analyzed MAW segment. Given that the minimum considered sampling rate was 64 Hz and that

the ECG lengths were 30 seconds, their combination yields 1920 samples. As a consequence, all the

selected N values took that number as reference, divided or multiplied by a power of two. For each N ,

the mean and SD of SampEn values corresponding to all the AF episodes were obtained. It should be

noted that SampEn was computed with m = 2 and r = 0.25 times the SD of the analyzed segment.

These values were chosen because they provided the best classification results in previous works

dealing with AF organization estimation through SampEn [3–5, 25]. Additionally, the discriminative

abilities for both predictions of paroxysmal AF termination and ECV result were calculated making

use of the receiver operating characteristic (ROC) curves. The ROC curve is a graphical representation

of the trade-offs between sensitivity and specificity. Sensitivity was considered as the proportion

of non-terminating paroxysmal AF episodes correctly discerned, whereas specificity represented the

percentage of terminating episodes properly identified for the spontaneous AF termination prediction.

Similarly, for the prediction of ECV outcome, sensitivity was the proportion of patients relapsing to

AF appropriately classified and specificity was the percentage of patients resulting in NSR after ECV
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accurately predicted. The total number of paroxysmal AF patients and ECVs precisely classified was

considered as the diagnostic accuracy corresponding to each prediction. As the number of episodes

included into each database was not notably long, to evaluate the statistical robustness of the accuracy

obtained for each prediction, a leave-one-out cross-validation scheme was used. Finally, significant

differences between terminating and non-terminating AF episodes and between patients who resulted

in NSR and relapsed to AF were evaluated making use of Student’s t–test. All the groups had a

normal and homoscedastic distribution as the Shapiro–Wilks and Levene tests proved, respectively.

A two–tailed value of p < 0.01 was considered statistically significant.

The MAW was downsampled or upsampled to 64, 128, 256, 512, 1024 and 2048 Hz. Since

the original sampling rates were 128 Hz for paroxysmal AF and 1024 Hz for persistent AF, when

interpolation was necessary, a method based on cubic splines was applied, as previously commented.

The results obtained through the described tests, which will be presented in section 4.1, showed

that several combinations of N and fs provided good discrimination between terminating and non-

terminating AF episodes and between patients who resulted in NSR and relapsed to AF after ECV.

Thereby, for several N and fs values, within the 30 seconds-length segment selected for each an-

alyzed patient, the overlapping effect between adjacent N -length windows was tested on SampEn

computation. Overlapping factors of 20%, 40%, 60% and 80% between adjacent windows were

studied.

3.4 Selection of m and r

Once the optimal combinations of N and fs were obtained, the most adequate selection of m and

r was investigated. The accuracy and confidence of SampEn estimate improves as the number of

length m matches increases. The number of matches can be increased by choosing small m (short

templates) and large r (wide tolerance). However, penalties appear when too relaxed criteria are

used [28]. For smaller r values, poor conditional probability estimates are achieved, while for larger

r values, too much detailed system information is lost and SampEn tends to 0 for all the processes.

To avoid a significant noise contribution on SampEn computation, one must choose r larger than
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most of the noise [28]. Overall, to get optimal m and r values, an approach similar to the developed

by Lake et al [29, 30] was used. SampEn was computed using a 10× 20 matrix of combinations of

m = 1, 2, . . . , 10 and r = 0.05, 0.1, 0.15, . . . , 1 times the SD of the analyzed segment. Normalizing

r to the SD of the analyzed segment provides a translation and scale invariance, in the sense that

SampEn remains unchanged under uniform process magnification, reduction, or constant shift to

higher or lower values [9]. For each combination, the SampEn mean and SD values corresponding to

all the AF episodes were obtained. Sensitivity, specificity, accuracy and statistical significance were

also computed for each prediction. Moreover, a leave-one-out cross-validation approach was applied

to assess statistically the robustness of the diagnostic accuracy obtained for each combination of m

and r.

4 Results

4.1 Selection of N and fs

Tables 1 and 2 show the mean and SD of SampEn values obtained for terminating and non-terminating

AF episodes when N and fs were selected as described in section 3.3. Similarly, Tables 3 and 4

present the corresponding information for persistent AF patients resulting in NSR and relapsing to

AF after ECV. As can be appreciated for a given N , when fs increases, SampEn decreases. On the

other hand, for a given fs of 256 Hz and above, Tables 1 through 4 show that SampEn increases when

N also increases up to a reduced variation point. Thus, for higher N , very similar SampEn values

were obtained. In fact, only variations lower than ±5% were observed. On the contrary, for fs of

128 Hz and below, variable behavior was noticed for each Table and no clear increasing tendency was

observed. In addition, the value of N from which the limited increasing behavior was noticed was

dependent on fs. Thus, for rates of 256, 512, 1024 and 2048 Hz, thereduced variation N values for

SampEn were 240, 480, 960 and 1920, respectively.

The discriminative differences between subsets both for paroxysmal and persistent AF were

mainly maintained for fs of 256 Hz and above. Indeed, a high predictive accuracy was provided,

9



such as Fig. 2 shows. Precisely, for fs ≥ 256 Hz the lowest accuracy was 86% for paroxysmal

AF and 73.02% for persistent AF, being 90% and 74.60% of cross-validated grouped cases correctly

classified, respectively. In addition, statistical significant differences between patient groups were

observed, given that a statistical significance lower than 0.01 was obtained for all the cases. On the

contrary, for fs ≤ 128 Hz a limited predictive ability was obtained for the most part of combinations

of N and fs. Moreover, in most of the cases, significant differences between groups were not noticed

(p > 0.01).

It is also noteworthy that for N equal or higher than the reduced variation values for SampEn, the

diagnostic accuracy presented a constant value of 92% for paroxysmal AF and 79.37% for persistent

AF, which was higher than the obtained with lower N values for a given fs (see Fig. 2). In addition,

a higher statistical significance (p < 0.0001) together with an identification accuracy of 96% and

82.54% of cross-validated grouped cases, respectively, were also provided.

These results show that several combinations of N and fs can provide good classification for

both AF databases. Thereby, the overlapping effect between adjacent N–length windows on SampEn

computation was tested only for two different combinations. Precisely, the test was developed for

fs of 256 and 1024 Hz and N of 240 and 960 samples, respectively. The obtained results with

overlapping factors of 20%, 40%, 60% and 80% provided very limited variations in SampEn, lower

than ±1%, both for paroxysmal and persistent AF episodes. In addition, classification improvement

was unnoticed.

4.2 Selection of m and r

For the two pairs of N and fs selected in the previous subsection, SampEn was computed using

the 200 combinations of m and r described in section 3.4. Obtained results reported that SampEn

decreased when m and r increased. However, SampEn variation with m and r was out of clinical

interest, because useful medical information could not be retrieved. Thereby, only the outcomes

related to the diagnostic accuracy achieved by each combination of m and r are presented next.

Figs. 3 and 4 show the diagnostic accuracy color maps provided by the two tested combinations of
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N and fs for paroxysmal and persistent AF episodes, respectively. Both figures show a remarkable

region in which a high accuracy for the two AF databases was reached. In addition, a very good

statistical significance (p < 0.00001) was also obtained. As can be seen, the region was slightly

larger for the pair N = 960 samples and fs = 1024 Hz. This area can be approximately delimited,

for both AF types, by m = 1 to m = 5 and r between 0.1 and 0.6 times the SD. Additionally, in

all the cases, the optimal combination of m and r providing the highest diagnostic accuracy values

was found within the indicated area. Thus, for paroxysmal AF, the maximum accuracy was 96%,

with 96% of cross-validated grouped cases correctly identified, which was obtained with m = 3 and

r = 0.4 (p = 3.4567 × 10−13) for fs = 256 Hz and m = 2 and r = 0.35 (p = 4.2134 × 10−13) for

fs = 1024 Hz, respectively. Regarding persistent AF, maximum accuracy of 82.54%, with 87.30% of

cross-validated grouped cases accurately identified, was achieved for fs = 256 Hz, m = 3 and r = 0.3

(p = 5.2483× 10−3) and, for fs = 1024 Hz, with the pairs m = 2 and r = 0.4 (p = 9.3892× 10−4)

and m = 3 and r = 0.25 (p = 8.7756× 10−4), respectively.

5 Discussion and Conclusions

The motivation of this study was based on the fact that no generalized guidelines exist for the selection

of m, r and N when SampEn has to be applied to biomedical data. In this respect, only some values

of m and r have been recommended and widely used for heart rate regularity analysis [1, 9, 10] and

hormone secretion data [11]. On the other hand, Lewis et al [30] analyzed the optimal parameters

when SampEn was applied to estimate the regularity of QT time series during rest and exercise.

Additionally, similar studies were developed to characterize surface electromyographic signals [31]

and the variability of respiratory patterns [32]. Anyway, a survey on the optimal parameters selection

is recommended for the application of SampEn to not previously analyzed biomedical signals.

The results presented in Tables 1, 2, 3 and 4 showed that, for a given N , when fs was double

and higher than 128 Hz, SampEn was approximately reduced by a half. To elucidate a possible

explanation of this fact, it is obvious that the higher the fs, the lower the temporal distance between

consecutive samples acquired from the original signal. As a consequence, the probability of finding
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equal patterns (i.e. with a distance lower than r) will increase, because the signal variation from

sample to sample will be reduced. In addition, for fs of 256 Hz and above, the differences between

each subset, both for paroxysmal and persistent AF, were maintained independently of N . On the

other hand, for a specific fs higher than 128 Hz, when N increased, SampEn also increased up to a

reduced variation point. However, this behavior was not observed for fs = 128 Hz and below. In this

case, SampEn showed random variations with N and a reduced diagnostic accuracy was also noticed.

Overall, a first recommendation is that the MAW sampling rate should be equal or higher than 256 Hz

for an appropriate AF organization evaluation with SampEn.

On the other hand, considering the reduced variation point of N (SampEn variation < ±5%)

where a constant accuracy was reached for both AF types (92% for paroxysmal and 79.37% for

persistent), a clear relationship between N and fs can be elucidated for all of these situations. As the

time period analyzed with SampEn, T , is the proportion between N and fs, for all these cases we

have that T = 240
256

= 480
512

= 960
1024

= 1920
2048

= 0.9375 s. As a consequence, any combination such that

the analyzed time period is longer than one second would be appropriate to evaluate AF organization

with SampEn. Nevertheless, considering a real time implementation of the proposed method, the

most adequate combination of N and fs would be 240 samples and 256 Hz, respectively, since the

lowest computational burden would be reached.

Regarding overlapping between adjacent N -length windows, SampEn only presented slight vari-

ations with all the tested factors. Thereby, other finding that merits consideration for the application

of SampEn is that no accuracy improvement was provided by overlapping. As a consequence, it can

be avoided to reduce computational cost.

With regard to optimal values for m and r, developed experiments showed that a high diagnostic

accuracy (92% for paroxysmal and 79.37% for persistent AF) can be reached through several com-

binations. Therefore, not only one, but several combinations of m and r can classify AF events with

very good accuracy. However, the region outlined by these combinations was notably independent on

the values of N and fs and on the type of analyzed AF episodes, since slight differences in m and

r were only noticed for all the cases. In addition, it is noteworthy that this region was considerably

larger than the one typically recommended in the literature [9], because it was approximately delim-
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ited by 1 ≤ m ≤ 5 and 0.1 ≤ r ≤ 0.6. Nevertheless, these results prove that previous works used

adequate values for the SampEn parameters in the estimation of AF organization [3–5]. However, a

better diagnostic precision could be reached for each prediction (96% for paroxysmal and 82.54% for

persistent AF) with a combination of m and r placed within the wider indicated region. An interesting

observation is that optimal values reporting the highest diagnostic accuracy were dissimilar depend-

ing on the combination of N and fs and on each type of AF. As a consequence, it can be suggested

that the optimal combination of m and r has to be searched, within the proposed range, before the

first application of SampEn to a non-previously analyzed database. This should only be made with

very few recordings of that new database. In this way, the highest predictive ability will be reached.

Nevertheless, as global conclusion of the developed tests, it could be suggested that the selection of

m between 2 and 3 and r between 0.3 and 0.4 would probably yield optimal classification results in

most of the situations related to AF.

As indicated in Section 1, a previous work has recently shown that the selection of a low r, be-

tween 0.1 and 0.2 times the SD, can lead to an incorrect regularity estimation with ApEn on fast

dynamic signals [12]. To circumvent this limitation, Lu et al [12] proposed to choose the r that

maximizes ApEn for each analyzed signal. In addition, the authors provided the equations needed

to estimate automatically the recommended r for m = 2, m = 3 and m = 4. With the objective

of analyzing if a better classification could be reached for both predictions, SampEn was computed

making use of the r value provided by the proposed equations and m = 2, 3 and 4. This experiment

was developed for the two combinations of N and fs used in previous tests. In both combinations,

accuracy was 88% for spontaneous AF termination prediction and 76.19% for ECV result, indepen-

dently of the used m value. In this case, cross-validation provided a correct classification of 86% and

76.19% of grouped cases, respectively. This observation leads to the conclusion that selecting the r

that maximizes SampEn is inappropriate for AF organization evaluation, because other values of r

will provide better classification outcomes.

A possible limitation of this study could be the use of paroxysmal and persistent AF recordings

sampled at a fixed rate of 128 Hz and 1024 Hz, respectively, since upsampling involves interpolation

and could provoke an overestimation of the analyzed time series regularity with SampEn. Initially,
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it would be preferable to digitize the recordings directly at the different sampling rates analyzed

in the study. Other alternative could be to use the highest studied sampling rate and only apply

downsampling operations to both databases. In any case, the effect of interpolation was tested by

comparing SampEn between downsampled and interpolated ECV signals for each sampling rate.

Results yielded a relative difference in SampEn between both sets lower than 0.085% in the worst

case. As a consequence, it can be considered that the interpolation operation does not alter the result

of SampEn. Moreover, the coherent outcomes obtained for fs values between 128 and 1024 Hz with

persistent (original fs of 1024 Hz) and paroxysmal (original fs of 128 Hz) AF recordings suggest

that signal interpolation did not provoke remarkable effects in the results. Finally, the sampling

rate modification use to be a very limited operation, when available, in conventional ECG recording

systems.

A final reflexion that has to be addressed is the kind of optimization achieved through the pro-

posed methodology. In fact, the study presented herein optimizes SampEn parameters to maximize

classification performance in different scenarios and databases of AF. However, the specific events

which are classified are directly associated to measurable differences in AF organization, as dis-

cussed in [3–5, 21, 25]. Hence, it can be considered that the achieved results also maximize the

estimation of AF organization via SampEn. In other words, the consequence of a method able to esti-

mate robustly AF organization will be the ability to distinguish successfully between terminating and

non-terminating paroxysmal AF patients and between successful and unsuccessful AF ECV patients.

To summarize, the present study has demonstrated that the selection of m, r and N plays a critical

role in determining the outcome of SampEn when applied to physiological time series. Overall, this

work has studied optimal parameters to apply SampEn as an AF organization estimator. The authors

consider that both the methodology and the outcomes provided by this study could serve as a startup

framework in the application of SampEn to other biomedical signals. In this sense, the fact that the

range of values typically recommended and used in the literature may not include optimal values for

a concrete biomedical application has to be remarked. On the other hand, the methodology itself, as

presented in the manuscript, where the effects of m, r, N and fs are jointly studied, can be taken as a

reference for future studies dealing with the fine-tuning of SampEn in the context of other biomedical
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signals.
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Figure 1: (a) Example of a 10 seconds-length ECG segment with paroxysmal AF. (b) Extracted AA
signal. (c) MAW derived from the AA signal whose organization was estimated via SampEn.
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Figure 2: Diagnostic accuracy color maps obtained with different combinations of N and fs for (a)
paroxysmal AF termination and (b) cardioversion of persistent AF. NaN in some cells stands for Not
a Number because SampEn did not report similarity in such a short time series.
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Figure 3: Diagnostic accuracy color maps for paroxysmal AF termination prediction obtained as a
function of m = 1, 2, . . . , 10 and r = 0.05, 0.1, 0.15, . . . , 1 times the SD of the data, being N and fs

(a) 240 samples—256 Hz and (b) 960 samples—1024 Hz, respectively.
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1, 2, . . . , 10 and r = 0.05, 0.1, 0.15, . . . , 1 times the SD of the data, being N and fs (a) 240 samples—
256 Hz and (b) 960 samples—1024 Hz, respectively.
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Table 1: Mean and SD of SampEn values obtained with different combinations of N and fs for

terminating paroxysmal AF episodes. The N value from which limited variations of SampEn (<

±5%) are observed is highlighted for fs of 256 Hz and above. NaN in some cells stands for Not a

Number because SampEn did not report similarity in such a short time series.

N (samples)
.

fs (Hz) 64 128 256 512 1024 2048

30 NaN NaN 0.2022 ± 0.0245 0.1092 ± 0.0124 0.0590 ± 0.0066 0.0349 ± 0.0031

60 0.6056 ± 0.0323 0.4826 ± 0.0438 0.2725 ± 0.0270 0.1191 ± 0.0204 0.0556 ± 0.0070 0.0305 ± 0.0031

120 0.5547 ± 0.0246 0.4702 ± 0.0346 0.3102 ± 0.0334 0.1339 ± 0.0247 0.0534 ± 0.0082 0.0266 ± 0.0030

240 0.5487 ± 0.0269 0.4832 ± 0.0350 0.3352 ± 0.0389 0.1476 ± 0.0268 0.0589 ± 0.0089 0.0256 ± 0.0035

480 0.5461 ± 0.0275 0.4928 ± 0.0463 0.3454 ± 0.0459 0.1570 ± 0.0280 0.0650 ± 0.0105 0.0280 ± 0.0045

960 0.5430 ± 0.0287 0.5001 ± 0.0513 0.3506 ± 0.0569 0.1613 ± 0.0302 0.0691 ± 0.0111 0.0309 ± 0.0051

1920 0.5437 ± 0.0286 0.5012 ± 0.0576 0.3528 ± 0.0624 0.1633 ± 0.0330 0.0712 ±0.0119 0.0328 ± 0.0054

3840 — 0.5005 ± 0.0656 0.3512 ± 0.0676 0.1628 ± 0.0343 0.0719 ± 0.0126 0.0337 ± 0.0056

7680 — — 0.3484 ± 0.0766 0.1623 ± 0.0370 0.0724 ± 0.0137 0.0341 ± 0.0061

15360 — — — 0.1613 ± 0.0393 0.0720 ± 0.0148 0.0338 ± 0.0059

30720 — — — — 0.0719 ± 0.0129 0.0336 ± 0.0066

61440 — — — — — 0.0340 ± 0.0059
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Table 2: Mean and SD of SampEn values obtained with different combinations of N and fs for

non-terminating paroxysmal AF episodes. The N value from which limited variations of SampEn

(< ±5%) are observed is highlighted for fs of 256 Hz and above. NaN in some cells stands for Not a

Number because SampEn did not report similarity in such a short time series.

N (samples)
.

fs (Hz) 64 128 256 512 1024 2048

30 NaN NaN 0.2686 ± 0.0289 0.1412 ± 0.0129 0.0759 ± 0.0062 0.0434 ± 0.0033

60 0.5903 ± 0.0300 0.5591 ± 0.0365 0.3282 ± 0.0221 0.1787 ± 0.0262 0.0746 ± 0.0079 0.0390 ± 0.0033

120 0.5444 ± 0.0244 0.5463 ± 0.0231 0.3839 ± 0.0233 0.2020 ± 0.0289 0.0770 ± 0.0102 0.0350 ± 0.0034

240 0.5313 ± 0.0225 0.5502 ± 0.0158 0.4221 ± 0.0260 0.2231 ± 0.0302 0.0858 ± 0.0114 0.0358 ± 0.0043

480 0.5308 ± 0.0218 0.5574 ± 0.0149 0.4219 ± 0.0292 0.2355 ± 0.0314 0.0945 ± 0.0120 0.0400 ± 0.0050

960 0.5307 ± 0.0205 0.5649 ± 0.0126 0.4326 ± 0.0306 0.2414 ± 0.0319 0.1000 ± 0.0125 0.0440 ± 0.0053

1920 0.5310 ± 0.0204 0.5681 ± 0.0120 0.4387 ± 0.0327 0.2433 ±0.0316 0.1030 ± 0.0129 0.0464 ± 0.0054

3840 — 0.5698 ± 0.0119 0.4395 ± 0.0346 0.2434 ± 0.0311 0.1040 ± 0.0128 0.0475 ± 0.0055

7680 — — 0.4419 ± 0.0345 0.2425 ± 0.0325 0.1050 ± 0.0132 0.0482 ± 0.0056

15360 — — — 0.2424 ± 0.0335 0.1046 ± 0.0131 0.0478 ± 0.0064

30720 — — — — 0.1051 ± 0.0124 0.0480 ± 0.0059

61440 — — — — — 0.0476 ± 0.0063
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Table 3: Mean and SD of SampEn values obtained with different combinations of N and fs for

patients resulting in NSR after ECV. The N value from which limited variations of SampEn (< ±5%)

are observed is highlighted for fs of 256 Hz and above. NaN in some cells stands for Not a Number

because SampEn did not report similarity in such a short time series.

N (samples)
.

fs (Hz) 64 128 256 512 1024 2048

30 NaN 0.5381 ± 0.1427 0.2894 ± 0.0778 0.1339 ± 0.0379 0.0709 ± 0.0172 0.0414 ± 0.0090

60 0.6421 ± 0.1020 0.5109 ± 0.1001 0.3211 ± 0.0801 0.1480 ± 0.0472 0.0682 ± 0.0189 0.0371 ± 0.0099

120 0.6238 ± 0.0976 0.5235 ± 0.0989 0.3438 ± 0.0830 0.1599 ± 0.0501 0.0657 ± 0.0201 0.0327 ± 0.0086

240 0.6095 ± 0.0985 0.5404 ± 0.0976 0.3802 ± 0.0920 0.1751 ± 0.0523 0.0715 ± 0.0233 0.0310 ± 0.0095

480 0.6244 ± 0.0868 0.5432 ± 0.1101 0.3874 ± 0.0986 0.1854 ± 0.0585 0.0771 ± 0.0246 0.0341 ± 0.0103

960 0.6002 ± 0.0851 0.5526 ± 0.1139 0.3981 ± 0.0990 0.1872 ± 0.0601 0.0829 ± 0.0261 0.0359 ± 0.0111

1920 0.6351 ± 0.0888 0.5642 ± 0.1158 0.3862 ± 0.0965 0.1861 ± 0.0672 0.0851 ± 0.0278 0.0389 ± 0.0166

3840 — 0.5512 ± 0.1201 0.3899 ± 0.1018 0.1809 ± 0.0712 0.0844 ± 0.0296 0.0394 ± 0.0121

7680 — — 0.3954 ± 0.1061 0.1795 ± 0.0689 0.0831 ± 0.0285 0.0389 ± 0.0127

15360 — — — 0.1834 ± 0.0707 0.0836 ± 0.0303 0.0401 ± 0.0132

30720 — — — — 0.0861 ± 0.0310 0.0392 ± 0.0145

61440 — — — — — 0.0393 ± 0.0140
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Table 4: Mean and SD of SampEn values obtained with different combinations of N and fs for

patients relapsing to AF after ECV. The N value from which limited variations of SampEn (< ±5%)

are observed is highlighted for fs of 256 Hz and above. NaN in some cells stands for Not a Number

because SampEn did not report similarity in such a short time series.

N (samples)
.

fs (Hz) 64 128 256 512 1024 2048

30 NaN 0.6432 ± 0.0888 0.3094 ± 0.0462 0.1628 ± 0.0314 0.0856 ± 0.0192 0.0449 ± 0.0082

60 0.6911 ± 0.0936 0.5921 ± 0.0619 0.3685 ± 0.0385 0.1872 ± 0.0358 0.0822 ± 0.0169 0.0399 ± 0.0084

120 0.6436 ± 0.0869 0.5839 ± 0.0603 0.4186 ± 0.0451 0.2061 ± 0.0351 0.0839 ± 0.0185 0.0383 ± 0.0080

240 0.6327 ± 0.0681 0.5938 ± 0.0587 0.4511 ± 0.0486 0.2159 ± 0.0387 0.0913 ± 0.0196 0.0372 ± 0.0086

480 0.6354 ± 0.0672 0.6098 ± 0.0563 0.4681 ± 0.0499 0.2376 ± 0.0401 0.0982 ± 0.0201 0.0405 ± 0.0091

960 0.6219 ± 0.0648 0.6132 ± 0.0505 0.4654 ± 0.0541 0.2442 ± 0.0409 0.1046 ± 0.0209 0.0442 ± 0.0096

1920 0.6187 ± 0.0632 0.5991 ± 0.0566 0.4693 ± 0.0536 0.2473 ± 0.0412 0.1072 ± 0.0211 0.0491 ± 0.0101

3840 — 0.6315 ± 0.0438 0.4701 ± 0.0504 0.2461 ± 0.0399 0.1086 ± 0.0218 0.0498 ± 0.0108

7680 — — 0.4709 ± 0.0529 0.2492 ± 0.0422 0.1072 ± 0.0221 0.0503 ± 0.0112

15360 — — — 0.2487 ± 0.0436 0.1081 ± 0.0215 0.0510 ± 0.0114

30720 — — — — 0.1065 ± 0.0234 0.0506 ± 0.0120

61440 — — — — — 0.0499 ± 0.0118
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