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Abstract: A compartmental model for the in vitro uptake kinetics of the anti-cancer agent topotecan 

(TPT) has been extended from a previously published model. The extended model describes the drug 

activity and delivery of the pharmacologically active form to the DNA target as well as the catalysis of 

the aldehyde dehydrogenase (ALDH) enzyme and the elimination of drug from the cytoplasm via the 

efflux pump. Verification of the proposed model is achieved using scanning-laser microscopy data 

from live human breast cancer cells. Before estimating the unknown model parameters from the 

experimental in vitro data it is essential to determine parameter uniqueness (or otherwise) from this 

imposed output structure.  This is formally performed as a structural identifiability analysis, which 

demonstrates that all of the unknown model parameters are uniquely determined by the output 

structure corresponding to the experiment. 
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1. Introduction 

This paper presents a novel extension of a non-linear drug kinetic model, by Evans et al.[1], on the in 

vitro uptake of the anti-cancer agent topotecan (TPT) for live human breast cancer cells (MCF-7 cell 

line) in order to account for cell transporters and drug resistance proteins. In this paper, the transporter 

located in the cell membrane acts as an efflux pump to drive the drug out of the cell before it can reach 

the target in the nucleus. The model permits analysis of the kinetics and temporal interactions of the 

pharmacologically active form of the drug to the DNA target. The scanning-laser microscopy 

experiment used to collect the data imposes an output structure on the model that corresponds to the 

functions of the variables that can be directly observed or measured (in this case, total concentrations 

of TPT in extracellular medium, cytoplasm and nucleus). 

This paper consists of five main sections, including the introduction (Section 1), Section 2 provides a 

background on the underlying biochemistry of the anti-cancer agent TPT in addition to an introduction 

to drug efflux pumping mechanism and resistance proteins. Section 3 includes a detailed explanation of 

the mathematical model developed and a reduced order model generated via quasi-steady state 

assumptions that also yields a reduction in the number of the unknown model parameters. 

The symbolic software MATHEMATICA [2] was used in this study to perform a structural identifiability 

analysis of the model (Section 4). Finally, experimental data collected have been used for parameter 

estimation (Section 5) using the software package FACSIMILE (MCPA Software, U.K.), further results 

and concluding remarks are outlined in this section.   

    

2. Background 

2.1 Action of the anti-cancer agent TPT 

TPT is a derivative of Camptothecin (CPT), an extract from the Chinese tree Camptotheca acuminata 

and is water-soluble [3-5]. CPT is specific in that it acts as a reversible poison of the DNA cellular 

enzyme topoisomerase I [6]. TPT has been widely used against ovarian and small cell lung carcinomas 

[1]. The function of topoisomerase I enzyme is to facilitate DNA supercoiling by cleavage and 
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religation of one strand of double-stranded DNA (dsDNA) [7]. Topoisomerase I is targeted by TPT in 

the nucleus, and traps it in a reversible ternary complex with DNA. The death of TPT-targeted cells 

results from the collision between the complex and the DNA replication process causing the dsDNA to 

break resulting in cell death [4,6].  

The ring-closed, parent lactone form (TPT-L) undergoes reversible hydrolysis to an open-ringed 

hydroxy acid form (TPT-H). TPT-L is the pharmacologically active form in that it is the form of TPT 

which is responsible for inhibiting the enzyme topoisomerase I reversibly and maintaining the TPT-

topoisomerase I-DNA complex as well as DNA binding. The reversible hydrolysis process is pH 

dependent, in which the parent form predominates at a high-acidic medium pH (<4), whereas the 

hydroxy acid form prevails in a high-basic medium pH (>10) [8-9].   

The reversible hydrolysis of TPT-L was modelled by Evans et al. [10] using a linear two-compartment 

model with parameter estimation from high performance liquid chromatography (HPLC) data in 

buffers at different pH levels. A non-linear five-compartment model describing the uptake kinetics of 

TPT in a medium enclosing human lymphoma cells (SU-DHL-4 cell line) was developed based on the 

two-compartment model. The non-linear model characterises the kinetics of TPT in the entire cell 

population [1]. Similar to the model in Evans et al. [10], the unknown parameters for the five-

compartment model were estimated from HPLC data.  

TPT is a naturally fluorescent agent which can be excited using ultra-violet wavelengths (350-360 nm) 

and detected at a visible wavelength with peak emission at 540 nm. Accordingly, HPLC is used to 

compute the amount of drug in human plasma [10] and extracts. The binding characteristics of drug to 

DNA have been determined using the high-photon absorption property [8]. In the current paper, 

delivery and localisation of the drug in single cells are examined using two-photon laser scanning 

microscopy. The optical sectioning capacity of this technique provides high-resolution spatial 

information representing the fluorescence intensity in the compartments and, therefore, quantifying the 

drug concentration in these compartments, i.e. nucleus, cytoplasm and extra-cellular environment. The 

kinetics of the uptake for each sub-compartment can be analysed via time-lapse sequences, thus 

providing the primary data for mathematical modelling, and parameter estimation.  
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2.2 The BCRP/ABCG2 drug efflux pump and the enzyme ALDH 

One of the major forms of cancer treatment is chemotherapy. In general, cancers are either resistant to 

chemotherapy or obtain resistance during treatment, thereby leading to ineffective chemotherapy [11]. 

Examples of drugs to which resistance has been observed or acquire resistance during treatment 

include topoisomerase inhibitors (eg, TPT), anthracyclines (eg, doxorubicin), the Vinca alkaloids (eg, 

vincristine) and the taxanes (eg, paclitaxel) [11]. The model in this paper describes the mechanism by 

which human cancers develop resistance to drugs, that is, the overexpression of efflux transport 

proteins in the plasma membrane of cancer cells. Examples include, P-glycoprotein (P-gp) [12] in 

addition to the multidrug resistance protein 1 (MRP1) [13]. More recently, other human binding 

cassette (ABC) transporters that are involved in the resistance of anti-cancer drugs have been 

discovered. The most important of these is the breast cancer resistance protein (BCRP) also known as 

ABCG2 [14], placenta specific ABC protein [15] or mitoxantrone-resistance protein [16]. 

Studies conducted in various laboratories have verified that enforced expression of BCRP 

complementary DNA in different types of cells caused resistance to multiple anti-cancer drugs 

including TPT and reduced drug accumulation in the cell [17-19]. This protein is significantly 

expressed in organs central for absorption, distribution, elimination, and deposition of drugs. Further 

investigations have come to the conclusion that BCRP plays a significant role in drug deposition [11]. 

BCRP, also known as ABCG2, is the second member of the sub-family G of the human ATP binding 

cassette (ABC) transporter. Moreover, BCRP is a half-transporter, in that it consists of a one nucleotide 

binding domain followed by a one membrane-spanning domain, which is unlike P-gp and MRP1 which 

are arranged in two repeated halves. It has been shown from various studies on drug efflux 

mechanisms that BCRP is mostly localised at the plasma membrane instead of at internal vesicular 

membranes. Therefore, BCRP is presumably in active transport from the cell rather than in transport 

into internal vesicles [14,20-21]. The actual efflux pumping mechanism is explained in detail in the 

following section.  

Aldehyde dehydrogenases (ALDHs) [aldehyde: NAD(P)
+
 oxidoreductase] are an enzyme group that 

catalyse the conversion of aldehydes to the corresponding acids irreversibly by means of an NAD(P)
+
-

dependent reaction [22]. ALDHs are distinguished based on properties including physicochemical 
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characteristics, enzymological, subcellular localisation and tissue distribution [23]. ALDH enzymes 

demonstrate high activity in oxidising aldophosphamide and detoxifying anti-cancer agents. It has been 

proven that this drug resistance was associated with the transcriptional activation of ALDH expression 

in cancer cells [24].  

 

3 Mathematical model  

3.1 Extended model  

The original model proposed by Evans et al. [1] allows for mixing in the medium by dividing the 

medium into two separate pools: the medium region into which the drug is added and the extracellular 

region in which the cells are located. The drug exchange between the cells and medium takes place 

only through the extracellular region. In this model, the cellular pool that contains all of the individual 

cells has been extended to include the cell membrane. Therefore, this leads to a model with five 

experimental regions: the medium, the extracellular region, the cell membrane, the cytoplasm, and the 

nucleus which are denoted by subscripts m, e, cm, c, and n, respectively.  

Fig. 1 provides a schematic diagram of the extended compartmental model, where L and H stand for 

the concentrations of TPT-L and TPT-H, respectively. Therefore, Lm(t), Le(t), Lc(t), and Ln(t), denote 

the concentrations of TPT-L in the medium, extracellular region, cytoplasm and nucleus respectively, 

at time t following the addition of drug. The corresponding variables for TPT-H are Hm(t), He(t), and 

Hc(t). The concentration of TPT-H bound to the efflux pump is denoted by THcm(t), and the variable 

T(t) represents the total concentration of available ABCG2 (drug transporter) binding sites at time t. 

TPT-H (the form favoured by the efflux pump) in the cytoplasm (Hc) binds to the drug transporter (T) 

to form an intermediate complex (THcm) which breaks in one way to release free drug transporter (T0) 

and TPT-H in the extracellular region (He). In Evans et al. [1,10], it is assumed that all drug in the 

nucleus is bound and only TPT-L binds to DNA. This assumption is a simplification of the real case in 

which the nucleus may contain unbound drug as well; therefore, this postulation requires further 

experimental investigation. In the three experimental pools, i.e. medium, extracellular region and 

cytoplasm, TPT undergoes reversible and pH dependent hydrolysis. Assuming homogeneity in pH 



 6 

and/or any other factors that might have an effect on the hydrolysis, the rate constants are kcm and kom 

for the ring closing of TPT-H and ring opening of TPT-L, respectively, for both the medium and the 

extracellular region. Additionally, the corresponding rate constants for the cytoplasm are kcc and koc. 

ALDH isozymes including ALDH1A1, are important for multiple biological activities including drug 

resistance [25-26]. We have demonstrated that the uptake of TPT in cells exposed to an ALDH 

inhibitor (disulfiram) is enhanced (unpublished; data not shown). Moreover, kinetic analysis of TPT 

uptake also suggests that the change in charge upon ring hydrolysis would favour exclusion via the 

ABCG2 pump, and this is the overriding process to remove TPT from the cellular environment [27]. 

Therefore based on these analyses, the active drug in the cytoplasm is assumed to bind irreversibly to 

the enzyme ALDH where it is converted to the form favoured by the efflux pump (TPT-H). The rate at 

which TPT-L binds to ALDH is assumed to be proportional, with the association rate ka, to the product 

of the concentrations of TPT-L in the cytoplasm, Lc(t), and free enzyme, E(t). Additionally, 

dissociation of drug bound to ALDH occurs at a first-order rate, with rate constant kd. If E0 denotes the 

total concentration of available ALDH, then the concentration of free ALDH is E(t) = E0 – ELc(t), 

where ELc(t) is the concentration of enzyme-drug complex. In the nucleus, it is assumed that only TPT-

L binds to DNA and that all drug is bound. 

 

(Fig. 1 here) 

 

Mixing between the medium and extracellular pools can be modelled by first-order flows between 

them. Assuming that the rate constants are the same for the lactone and hydroxy acid forms, kmi 

denotes the flow from the medium to the extracellular pool and kmo denotes the flow out of the 

extracellular pool to the medium.  

Flow between the extracellular region and the cellular pool, including the cell membrane and 

cytoplasm, takes place simultaneously via two distinct processes. The first process is the efflux 

pumping mechanism in which the BCRP/ABCG2 transporter carries TPT-H through the cell 

membrane to the extracellular region irreversibly. The rate at which TPT-H in the cytoplasm binds to 
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the efflux pump is assumed to be proportional, with association rate constant k1, to the product of the 

concentrations of the inactive drug in the cytoplasm, Hc(t), and free transporter, T(t). The dissociation 

of drug bound to the efflux pump (THcm) is assumed to be first order with rate constant k2. If T0 denotes 

the total concentration of available (BCRP/ABCG2) drug transporter, then the concentration of free 

transporter is the difference between T0 and the concentration of bound drug (THcm), that is 

0( ) ( )cmT t T TH t . The second is the diffusion between the cytoplasm and the extracellular region, 

which is modelled via a first-order process. Note however, that only TPT-L diffuses across the cell 

membrane, based on previous observations and physical properties of TPT-H with respect to the lipid 

bilayer traverse. The rate constant for influx of Le(t) into the cytoplasm is ki and the rate constant for 

the efflux of Lc(t) into the extracellular pool is ke. Similarly, the binding rate of TPT-L to DNA is 

assumed to be proportional (with constant kb) to the product of the concentrations of TPT-L in the 

cytoplasm and free binding sites BF(t). Let BT denote the total concentration of available DNA binding 

sites, therefore, the concentration of free sites, BF(t), is the difference between BT and the concentration 

of bound drug, Ln(t), that is BF(t) = BT - Ln(t). Dissociation of bound drug is assumed to occur at a first-

order rate as either TPT-L, with rate constant kdl, or TPT-H, with rate constant kdh. Thus TPT-L may 

bind to DNA in a reversible manner and can then, once bound, be converted to TPT-H [28]. 

If the volumes of the medium, extracellular region, cytoplasm, cell membrane and nucleus, are denoted 

by Vm, Ve, Vc, Vcm, and Vn, respectively, then the postulated mathematical model for the uptake kinetics 

of TPT is given by the following system of differential equations: 

0( )m
om mi m cm m mo e

dL
k k L k H k v L

dt
               (1) 

0( )m
om m cm mi m mo e

dH
k L k k H k v H

dt
               (2) 

0 1

( )e mi m e c
mo om i e cm e

dL k L k L
k k k L k H

dt v v
               (3) 

3 2

0 1

( )e mi m cm
om e cm mo e

dH k H v k TH
k L k k H

dt v v
               (4) 

1 2 0( ) ( ) ( )c
i e e oc c cc c dl n b T n c a c

dL
k v L k k L k H k v L k B L L k E EL

dt
            (5) 
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2 1 0( )c
oc c cc c dh n cm c d c

dH
k L k H k v L k T TH H k EL

dt
             (6) 

2

( ) ( )n b
T n c dl dh n

dL k
B L L k k L

dt v
               (7) 

1 0
2

3

( )cm c cm
cm

dTH k H T TH
k TH

dt v
               (8) 

0( )c
a c c d c

dEL
k L E EL k EL

dt
               (9) 

where, v0 = Ve/Vm, v1 = Ve/Vc, v2 = Vn/Vc, v3 = Vcm/Vc, and v1/v3 = Ve/Vcm. Time t = 0 corresponds to the 

(first) addition of drug as a bolus injection. The corresponding initial conditions for the model are 

given by: 

Hm(0) = Le(0) = He(0) = Lc(0) = Hc(0) = Ln(0) = ELc(0) = THcm(0) = 0, and Lm(0) = (1 + v0)D,        (10) 

where D is the concentration of dose in the full physical medium (i.e. 2 ml or 2×10
12

 μm
3
). 

According to Evans et al. [1,10], the estimates obtained for the volumes, using data collected from 

optical sectioning using a confocal microscope, are: Vc + Vcm = 829 μm
3
 (SD=232 μm

3
) for the average 

volume of cytoplasm and cell membrane in single cell; the volume of the nucleus in a single cell (Vn) is 

326 μm
3
 (SD=85.5 μm

3
); and therefore, the total volume of the average cell (Vc + Vcm + Vn) is 1155 

μm
3
. According to the above values, the radius of the cell can be calculated assuming that the cell is 

spherical, therefore, the average radius of a single cell is 6.51 μm and the average radius of the nucleus 

in a single cell is 4.27 μm. The cell membrane thickness is approximately 3-10 nm [29]. There is 

therefore relatively little variation in the plasma membrane thickness between cells. In this model, the 

chosen value of the membrane thickness is 7 nm. The resulting calculations for the average volumes of 

Vcm, and Vc in a single cell are 8.4 μm
3
 and 820.5 μm

3
, respectively. The culture medium has a volume 

of 2×10
12

 μm
3
, therefore: 

12 3

12
30

0

2 10  μm , 

and so, 

2 10
 μm .

1

m e

e

V V

v
V

v

 

Given that the culture medium contains 1×10
5
 cells, the cellular volume ratios are given by:  
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12
0 0

1 5
0 0

2 10

1 11 10 820 5

e

c

V v v
v

V v v
 

( ) .
 

where α = 2.4375×10
4
, v2 = 3.9732×10

-1
, and v3 = 1.0238×10

-2
. Evans et al. [10] used experimental 

data for the hydrolysis of TPT in buffers with different pH to obtain values for the ring opening and 

closing rate constants against pH. Cells were placed in a medium with pH = 7.2 in the experiments 

used to collect data for estimating unknown parameters in the proposed model. With the assumption 

that the hydrolysis rate constants are primarily dependent on pH the corresponding values for kom, kcm, 

koc and kcc from Evans et al. [1,30] are used, these values are kom = koc = 1.5599×10
-4

 s
-1

 and 

kcm = kcc = 2.9553×10
-4

 s
-1

. In the experiment used to collect data for parameter estimation, 

concentrations were measured in μΜ, the initial dose was D = 10 μΜ, and time was measured in 

seconds. 

 

3.2 Pseudo-steady state approximation of the model 

In this section, the extended model in Fig. 1 is reduced by assuming that the binding kinetics of both 

the ALDH enzyme and the BCRP/ABCG2 efflux pump are saturable within the physical volume of 

space considered. That is the concentrations of the enzyme and the transporter are much lower than the 

concentration of associated substrates. A structural identifiability analysis (Section 4) of the unknown 

parameters of the system is performed for the reduced system following a pseudo-steady state 

approximation [30]. The structural identifiability properties of the reduced model will change from 

those of the original system [31]. Therefore, fewer system parameters (of the basic model) may be 

structurally globally identifiable as they enter in new parameter groupings in the reduced order model. 

This technique is widely applied to models in pharmacokinetics, biology and biomedicine.   

The assumptions on the relative sizes of the model parameters, are the following, firstly, the 

concentration of the enzyme is much lower than the active form of the drug in the cytoplasm, that is 

E0 << Lc and/or the binding affinity of the enzyme ALDH is much lower than unity, kd/ka << 1. 

Secondly, the concentration of the transporter (BCRP/ABCG2) is much lower than the concentration 

of the inactive form of the drug in the cytoplasm, T0 << Hc and/or the binding affinity of the transporter 
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is low k2/k1 << 1. Following the administration of drug, saturation of the available binding sites 

(enzyme and transporter) or equilibrium of bound substances is virtually instantaneous, whereby a 

quasi-steady state approximation can be made [31]. 

According to the assumptions above, the intermediate compounds THcm and ELc reach an equilibrium 

state rapidly and therefore, (8) and (9) have zero rate of change. Therefore (4), (5), and (6) can be 

reformulated and reduced to (11), (12), and (13) respectively: 

3 1

0 1 3 1

( )
( )

e mi m c
m om e cm mo e

m c

dH k v V H
H k L k k H

dt v v v k H
                          (11) 

m2
1 2

2

( ) ( )
( )

c c
i e e oc c cc c dl n b T n c

m c

dL V L
k v L k k L k H k v L k B L L

dt k L
                (12) 

3 1 2
2

3 1 2( ) ( )

c m c m c
oc c cc c dh n

m c m c

dH v V H V L
k L k H k v L

dt v k H k L
                                      (13) 

where km1 = k2/k1, km2 = kd/ka, Vm1 = k2T0 and Vm2 = kdE0. The kmi values represent Michaelis-Menten 

constants and Vmi values are the numerical constants that represent the maximum velocity obtained 

when the enzyme and the transporter exist completely in the form THc (i = 1) and ELc (i = 2), 

respectively [32].  

Such (outer solution) approximations provide accurate results for the asymptotic behaviour of drug 

uptake. Moreover, the number of unknown parameters in the model has been reduced by two and the 

system equations are reduced to seven.  

 

4. Identifiability analysis  

4.1 Structural identifiability 

Based on the microscopy experiments used to collect data for parameter estimation, an output structure 

on the suggested model has been imposed. This consists of functions of the model variables that are 

directly measured. The output structure has to uniquely determine the unknown parameters in the 

postulated model to obtain meaningful parameter estimates. If the unknown parameters are not 

uniquely determined, the proposed experiment should be redesigned (if possible) in order to obtain an 
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output structure that uniquely determines the unknown parameters. Therefore, a structural 

identifiability analysis is a prerequisite for experiment design, system identification and parameter 

estimation. In mathematical terms, consider a postulated parametric model given by: 

( , ) ( ( , ), )x p f x p pt t              (14) 

0(0, ) ( )x p x p              (15) 

( , ) ( ( , ), )t ty p h x p p             (16) 

where p = (p1, …, pq)
T
 is a constant q-dimensional vector representing the unknown model parameters 

and lies in some open set 
q
 of feasible vectors. It is assumed that both f(·, p) and h(·, p) are 

fractions of polynomials (i.e., rational functions) in both x and p. The n-dimensional vector x(t, p) = 

(x1(t, p), …, xn(t, p))
T
 is the state vector, where xi(t, p) are the model variables. M(p) is a connected 

open subset of 
n

 such that x(t,p) M(p) for all t ≥ 0. The vector y(t, p) = (y1(t, p), …, yr(t, p))
T
 is the 

response function or the observation function, where y(t,p)
r
. It is also assumed that the initial 

condition x0(·) is a fraction of polynomials in p. 

According to the proposed experiment, r linear combinations of the variables of the model are 

measured, ci1(p)x1(t, p) + ··· + cin(p)xn(t, p), (i = 1, …, r). Thus the following equation represents the 

output structure of the model for the systems considered: 

11 1

1

( (

( , ) ( ) ( , ) where ( )

( (

n

r rn

c c

t t

c c

p) p)

y p C p x p  C p .

p) p)

          (17) 

The input in this particular experiment consists of a single impulse, i.e. injection of the drug TPT into 

the system, therefore, the corresponding amounts, are included in the initial conditions x0(p). 

Otherwise, there are no external inputs to the system and no further input terms are included in (14).  

If a parameter can take any of a distinct (countable) number of values for a given observation function, 

y(t, p), then the parameter is locally identifiable [33]. In particular, if the parameter can only take 

a unique value (in the entire parameter space) for the given observation function, then the parameter is 

globally (uniquely) identifiable for that particular experiment. Otherwise, the parameter is 

unidentifiable. 
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Definition 1. A compartmental system of the form (14) – (17) is said to be structurally 

globally/uniquely identifiable if all the unknown parameters of the model are globally/uniquely 

identifiable. 

Definition 2. A compartmental model of the form (14) – (17) is said to be structurally locally 

identifiable if all the unknown parameters of the model are locally identifiable and at least one 

parameter (pi) is not globally identifiable.  

Definition 3. Otherwise, a model of the form (14) – (17) is said to be unidentifiable if at least one of the 

unknown parameters (pi) of the model is unidentifiable.   

The Taylor series approach [34] is applicable to systems in which the administration is through bolus 

injection. This method depends upon expanding components of y(t, p), the observation function, as 

Taylor series around t = 0
+
. An important condition to perform this test is that the observation must be 

analytic. For the system described in (14) – (17), the Taylor series approach is used to verify that the 

system is structurally globally identifiable. Uniqueness of the coefficients in the Taylor series 

expansions of yi(t, p) entails the following, if p Ω  is such that y(t, p) = y(t, p ) for all t ≥ 0, then, for 

each i = 1, …, r and k = 1, 2, 3, … 

yi
(k)

(0,p) = ( ) (0, )k

iy p  where, yi
(0)

(0,p) = yi(0,p).               (18) 

             

4.2 Structural identifiability analysis of the system  

For the structural identifiability analysis of this model, the Taylor series approach is applied to the 

pseudo-steady state model ((1)-(3) and (7)-(13)) with initial conditions given in (10). The vector p 

comprising the thirteen unknown parameters of the model is given by: 

0 1 1 2 2( , , , , , , , , , , , , ) .mi mo i e b dl dh T m m m mk k k k k k k B v V k V kp
T  

The model parameters are positive, therefore, the set of feasible parameter vectors, Ω, comprises the 

vectors (p1, …, p11)
┬
 such that pi > 0 (1 ≤ i≤ 13). The set M(p) is 7  and the initial condition for the 

state space representation of the model (for D = 10 μM) is given by: 
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0 0( , ) ((1 ) ,0,0,0,0,0,0)t v Dx  p
T  

An arbitrary parameter vector is denoted by p  such that: 

0 1 1 2 2( , , , , , , , , , , , , )p mi mo i e b dl dh T m m m mk k k k k k k B v V k V k T  

for which, ( , ) ( , )y  p y  pt t  for all t ≥ 0. Computer algebra systems such as MATHEMATICA have 

proven helpful for the symbolic calculation of these coefficients, particularly when they become 

algebraically complicated. For k = 0 in (18) for i = 1, 2 and 3, yields no information since each of these 

coefficients is 0. For k = 1 in (18) (i = 1, 2 and 3) we have 

0 0

0 0

( (1 ) )
.

((1 ) )

mi

mi

k v v
k

v v
             (19) 

Using (19) and applying the 2
nd

 derivative (k = 2) yields: 

0 0 0 0 0 0 0

0 0 0 0 0 0

( ) ( ) ( ) (1 )
,  and .

(1 ) (1 ) (1 )

i mi mo mo mi i

mo i

k v v v k k v k v k k v v
k k

v v v v v v
           (20) 

Now considering the next derivative (k = 3) in addition to using the relations in (19) and (20), the 

following equation must hold to satisfy (18) for each i and k = 0, …, 3: 

0 0, , , , ,  and .T b

T e e i i mi mi mo mo

b

B k
B k k k k k k k k v v

k
           (21) 

Calculating the fourth derivative terms (k = 4) and using the relations in (21), yields 

2 2

2 2

1 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2

1

1 2 2 1 2 2

,

and .

 m m

dl dh dh dl

m m

m m m oc m e m m m m m m m m e m m m m

m

m m m oc m m m

V V
k k k k

k k

k k k k V k k k k V k k V V k k k k V
V

k k k k k k V

          (22) 

From the next set of coefficients in the Taylor series expansions (k = 5), as well as using the relations 

in (21) and (22), the following relations must hold in order to satisfy (18) for each i and k = 0, …,5: 

0 0

2 2

2 2

1 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2

1

1 2 2 1 2 2

, , , , ,

,

and .

 

T b

T e e i i mi mi mo mo

b

m m

dl dh dh dl

m m

m m m oc m e m m m m m m m m e m m m m

m

m m m oc m m m

B k
B k k k k k k k k v v

k

V V
k k k k

k k

k k k k V k k k k V k k V V k k k k V
V

k k k k k k V

          (23) 
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Equating and substituting the parameter relations resulting from equating the sixth derivative (k = 6) in 

(23) gives 

1 1

1

1

2 2 0 0 2 2

, , , , , ,

, , , , , and .  

m m

T T b b dh dh dl dl m e e

m

i i m m mi mi mo mo m m

k V
B B k k k k k k V k k

k

k k k k k k k k v v V V

           (24) 

Finally, equating the eighth set of coefficients (k = 7), and using the relations in (24) yields  

2 2

1 1 0 0 2 2 1 1

, , , , , , ,

, , , , , and .

T T b b dh dh dl dl e e i i m m

m m mi mi mo mo m m m m

B B k k k k k k k k k k k k

k k k k k k v v V V V V  
           (25) 

Equation (18) is therefore satisfied, that is p p  (for each i and all k). This is true for generic p , 

thus the model is structurally globally identifiable, that is all of the model parameters are uniquely 

determined by the output structure corresponding to the proposed experiments. 

 

5. Parameter estimation  

TPT uptake into each cellular compartment was screened using two photon laser scanning microscopy. 

The set up of the instrument was calibrated in order that the fluorescence response was linear for 0-15 

µM TPT, therefore, making the conversion to the concentration of drug from fluorescence intensity 

(following background subtraction) simple to calculate [1]. 

Parameter estimation was performed using the commercial simulation software package FACSIMILE 

(MCPA Software, U.K.). This software uses a robust implicit numerical integrator. The optimisation 

method used to obtain parameter estimates involves the minimisation of the weighted least-squares 

criterion given by: 

2 2

1 1

( ( ) ( )) /
r N

i i j i

i j

d j y tRSS               (26) 

where yi(tj) is the ith output of the model at the jth sampling time (tj) and the corresponding 

experimental data point is denoted by di(j). The dynamic fluorescent intensities representing the drug 

concentration were derived from the three main cell compartments: the nucleus, cytoplasm and 

medium. Experimental data points were collected starting from t1 = 0 second to t91 = 450 seconds. 
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Therefore, each cell has three observations at each sampling time tj. The standard error associated with 

the data series di = (di(1),…, di(N)) is denoted by σi [35]. The standard error (σi) in FACSIMILE is equal 

to the product of e (estimate of the overall accuracy of the data) and Ri (range for the experimental data 

point), i.e., σi = eRi.  

The method that FACSIMILE uses in estimating parameters involves the natural logarithms of the model 

parameters. During the fitting procedure, a statistical analysis is performed to detect parameters that are 

not well-determined (NWD) by the data. Once detected, NWD parameters are treated as unknowns in 

subsequent tests. The default standard deviation of the natural logarithm (SDLN) of each of the 

remaining fitted parameters, P
0
, is estimated from the variance-covariance matrix of P - P

0
 [1]. The 5% 

and 95% confidence limits are estimated for each of the well-determined parameters, assuming a 

normal distribution for the natural logarithms of these parameters.  

Three different types of curve fittings were conducted for the model represented in (1)-(13) at 

pH = 7.2. Firstly, data from 13 individual cells were averaged and the postulated model fitted to these 

averaged data, as shown in Fig. 2a. Secondly, the model was fitted to data from an individual high 

loading cell (relatively high concentration of Ln(t)) (Fig. 2b). Thirdly, data from an individual low 

loading cell (relatively low concentration of Ln(t)) were used in the fitting (Fig. 2c). The chosen value 

of pH was 7.2 for the three fittings, i.e., averaged data fitting, high loader and low loader. The fitted 

(estimated) parameter values with estimates for their confidences are presented in Tables 1-3, where it 

is seen that all parameters are well-determined by the data. These parameter estimates correspond to 

the averaged data fitting, high loader fitting and low loader fitting respectively. The model fits in Fig. 2 

show that there is close reproduction of the experimental data by the simulated output from the model 

with parameters taking values from Tables 1-3. 

 

(Fig. 2 here) 

 

Based on Tables 1-3, the estimated parameters are well-determined across the three fits. Additionally, 

the rate constant for the efflux of Lc(t) into the extracellular pool (ke) is lower in the high loader than 
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the low loader, indicating that this parameter plays an important role in maintaining the drug in the 

nucleus. Moreover, the rate constants for the flow of both Le(t) and Lm(t) into the cytoplasm and 

extracellular pool (respectively) are higher in the high loader suggesting that these parameters preserve 

the active form of drug in the cellular pool. However, the binding constant (kb) at which TPT-L binds 

to DNA increases for the high loader, which offers another reason why the cells receive more 

pharmacologically active drug. The binding affinity of the drug (km1) to the efflux pump is around 750 

times higher in the low loading cells, therefore, the drug transporter mainly resists the anti-cancer agent 

TPT. The rate constant for dissociation of bound drug (kdl) is relatively low for the high loading cell, 

providing another reason for the retention of the active form of the drug bound to DNA for these cells. 

Although the concentration of TPT-L in the nucleus for the high loader is relatively high compared to 

that for the low loader, the value of BT in the low loading cell is approximately 35 times larger. This 

suggests that the efflux pumping mechanism plays a key role in the resistance of anti-cancer drugs. 

 

(Table 1 here) 

 

(Table 2 here) 

 

(Table 3 here) 

 

Fig. 3 shows normal probability plots of the three fittings, i.e. average, high loader and low loader, and 

this is used to test whether or not the weighted residuals are normally distributed with standard 

deviation of 1 and zero mean. To obtain these normal probability plots [36]; the residuals are listed in 

an ascending numerical order r1 < r2<  < r273 (the smallest value is numbered 1 and the largest is 

numbered 273), and zi = (i – 0.5 )/273 where (i = 1, …, 273). Next, data tables for the normal 

distribution are used to obtain a Zi value from the standard normal distribution corresponding to the 

cumulative probability given in the previous step. Finally, the resulting graph from the Zi values plotted 
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against the ordered residuals (ri) is the normal probability plot. Fig. 3 suggests that the residuals are 

normally distributed (with zero mean and a standard deviation of 1) since the graph is approximately 

linear. This is an indicator for the appropriateness of the standard error σi used for each observation yi. 

 

(Fig. 3 here) 

 

6. Conclusions 

A compartmental model of the in vitro kinetics of the anti-cancer agent TPT has been extended from a 

previously published model. The postulated model takes into account the effect of ALDH enzyme and 

the elimination of drug from the cytoplasm via the efflux pump.  

Structural identifiability, which is an a priori analysis for parameter estimation, was performed using 

the computer algebra system MATHEMATICA, this tool has proven useful for symbolic computations 

mainly when they become algebraically complicated. The identifiability analysis demonstrates that all 

of the unknown model parameters are uniquely determined by the output structure corresponding to the 

real experiment. 

Parameter estimation was performed using the robust software package FACSIMILE. Three different 

curve fittings were conducted for average, low loading and high loading cells. Model simulations have 

been compared with live human breast cancer cell (MCF-7 cell line) data and found to give good 

qualitative agreement. All unknown model parameters were estimated to a high level of confidence. In 

comparison between the three curve fittings, the averaged data from the 13 individual cells, the high 

loading cell and the low loading cell, the efflux pumping mechanism resulting from BCRP/ABCG2 

transporter is a key factor in resisting the anti-cancer agent TPT. According to the normal probability 

plots for the weighted residuals for each of the three curve fittings, it is suggested that the weighted 

residuals in the three cases are normally distributed with zero mean and standard deviation of 1 

indicating the appropriateness of the constant standard errors used for each observation.  

The model allows in silico estimations and predictions of the relationship between the target binding 

and the dose, with different expressions of the drug resistance protein and the ALDH enzyme, leading 
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to the possibility of the design of optimal dosing regimens. The next step is to use the extended single-

cell model in this paper to consider compartmental modelling for a population of cells and compare it 

to the multi-cell model described in Cheung et al. [37], to determine sensitivity, model robustness and 

model validation. Moreover, the current kinetics model will be coupled with a dynamics model to 

study the response of the regulatory protein cyclin B with the presence of the anti-cancer agent TPT to 

assist in drug design. 
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Appendix  

 

ALDH Aldehyde dehydrogenase 

BCRP Breast cancer resistance protein 

CPT Camptothecin  

DNA Deoxyribonucleic acid 

dsDNA double-stranded DNA 

HPLC High performance liquid chromatography 

MRP1 Multidrug resistance protein 1 

NWD Not well-determined 

P-gp P-glycoprotein 

SD Standard deviation 

SDLN Standard deviation of the natural logarithm 

TPT Topotecan 

TPT-H Topotecan hydroxy acid form 

TPT-L Topotecan lactone form   
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Captions 

 

Table 1 - Parameter values for averaged data obtained for the model (1)-(13), estimated using two-photon 

scanning laser microscopy data. The cellular hydrolysis rate constants are fixed at values obtained from 

Reference [9] for pH = 7.2 buffered solution where: kom = koc = 1.5599 × 10
-4

 s
-1

 and kcm = kcc = 2.9553 × 

10
-4

 s
-1

.  

 

Table 2 - Parameter values for high loading cell obtained for the model (1)-(13), estimated using two-

photon scanning laser microscopy data. The cellular hydrolysis rate constants are fixed at values obtained 

from Reference [9] for pH = 7.2 buffered solution where: kom = koc = 1.5599 × 10
-4

 s
-1

 and kcm = kcc = 2.9553 

× 10
-4

 s
-1

.  

 

Table 3 - Parameter values for low loading cell obtained for the model (1)-(13), estimated using two-

photon scanning laser microscopy data. The cellular hydrolysis rate constants are fixed at values obtained 

from Reference [9] for pH = 7.2 buffered solution where: kom = koc = 1.5599 × 10
-4

 s
-1

 and kcm = kcc = 2.9553 

× 10
-4

 s
-1

.  

 

Fig. 1 - Schematic of the mathematical model used to investigate the uptake kinetics of TPT in a culture 

medium containing human breast cancer cells (MCF-7 cell line) in suspension. 

 

Fig. 2 - Simulated output from the model (1) – (13) with parameters taking values in Tables 1-3. (a) 

Average fitting (b) High loading cell. (c) Low loading cell.   

 

Fig. 3 – Normal probability plot. (a) Average fitting (b) High loading cell. (c) Low loading cell.   
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Table 1 

Parameter Value SDLN 5% 95% 

ki (s
-1) 2.4100×10-2 0.0242 2.3158×10-2 2.5081×10-2 

ke (s
-1) 8.6475×10-3 0.0498 7.9669×10-3 9.3862×10-3 

kb (s
-1 µM-1) 3.2780×10-5 0.0421 3.0584×10-5 3.5133×10-5 

kmi (s
-1) 1.4630×10-6 0.0267 1.4000×10-6 1.5288×10-6 

kmo (s
-1) 9.0270×10-2 0.0296 8.5983×10-2 9.4770×10-2 

kdl (s
-1) 7.0520×10-2 0.0003 7.0480×10-2 7.0560×10-2 

kdh (s
-1) 2.8800×10-4 0.0349 2.7194×10-4 3.0501×10-4 

v0 1.5013×10-5 0.0252 1.4404×10-5 1.5648×10-5 

BT (µM) 1.1734×10+3 0.0431 1.0932×10+3 1.2595×10+3 

Vm1 (s
-1 µM) 1.5840×10-4 0.1202 1.2999×10-4 1.9302×10-4 

Vm2 (s
-1 µM) 1.1500×10-4 0.0629 1.0369×10-4 1.2754×10-4 

km1 (µM) 6.9740×10-6 0.1167 5.7555×10-6 8.4504×10-6 

km2 (µM) 1.0555×10-5 0.0456 9.7923×10-6 1.1377×10-5 
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Table 2  

Parameter Value SDLN 5% 95% 

ki (s
-1) 2.6069×10-2 0.0621 2.3537×10-2 2.8873×10-2 

ke (s
-1) 7.1650×10-3 0.0502 6.5970×10-3 7.7819×10-3 

kb (s
-1 µM-1) 9.5340×10-5 0.1477 7.4777×10-5 1.2156×10-4 

kmi (s
-1) 1.5953×10-6 0.0647 1.4343×10-6 1.7744×10-6 

kmo (s
-1) 9.0229×10-2 0.0314 8.5688×10-2 9.5010×10-2 

kdl (s
-1) 5.0529×10-2 0.1230 4.1271×10-2 6.1863×10-2 

kdh (s
-1) 4.7387×10-4 0.1707 3.5785×10-4 6.2750×10-4 

v0 1.6083×10-5 0.0698 1.4339×10-5 1.8040×10-5 

BT (µM) 3.2164×10+2 0.1713 2.4266×10+2 4.2631×10+2 

Vm1 (s
-1 µM) 6.6807×10-4 0.0593 6.0600×10-4 7.3650×10-4 

Vm2 (s
-1 µM) 1.6544×10-4 0.1710 1.2488×10-4 2.1916×10-4 

km1 (µM) 3.6853×10-3 0.0673 3.2992×10-3 4.1167×10-3 

km2 (µM) 8.1485×10-6 0.1876 5.9847×10-6 1.1095×10-5 
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Table 3  

Parameter Value SDLN 5% 95% 

ki (s
-1) 2.3087×10-2 0.0419 2.1549×10-2 2.4734×10-2 

ke (s
-1) 7.4253×10-3 0.0321 7.0432×10-3 7.8282×10-3 

kb (s
-1 µM-1) 7.4016×10-6 0.0602 6.7034×10-6 8.1725×10-6 

kmi (s
-1) 8.1920×10-7 0.0295 7.8046×10-7 8.5987×10-7 

kmo (s
-1) 8.1728×10-2 0.0315 7.7595×10-2 8.6081×10-2 

kdl (s
-1) 1.7341×10-1 0.0675 1.5520×10-1 1.9376×10-1 

kdh (s
-1) 3.8292×10-4 0.0978 3.2602×10-4 4.4976×10-4 

v0 9.0944×10-6 0.0444 8.4540×10-6 9.7833×10-6 

BT (µM) 1.1815×10+4 0.0510 1.0864×10+4 1.2849×10+4 

Vm1 (s
-1 µM) 1.2555×10-4 0.0481 1.1600×10-4 1.3589×10-4 

Vm2 (s
-1 µM) 9.3606×10-5 0.1076 7.8421×10-5 1.1173×10-4 

km1 (µM) 4.8979×10-6 0.1119 4.0746×10-6 5.8876×10-6 

km2 (µM) 1.0419×10-5 0.0591 9.4537×10-6 1.1483×10-5 
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Fig. 1 
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