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Abstract

Background and Objective—Understanding the causes of disagreement among experts in 

clinical decision making has been a challenge for decades. In particular, a high amount of 

variability exists in diagnosis of retinopathy of prematurity (ROP), which is a disease affecting 

low birthweight infants and a major cause of childhood blindness. A possible cause of variability, 

that has been mostly neglected in the literature, is related to discrepancies in the sets of important 

features considered by different experts. In this paper we propose a methodology which makes use 

of machine learning techniques to understand the underlying causes of inter-expert variability.

Methods—The experiments are carried out on a dataset consisting of 34 retinal images, each 

with diagnoses provided by 22 independent experts. Feature selection techniques are applied to 

discover the most important features considered by a given expert. Those features selected by each 

expert are then compared to the features selected by other experts by applying similarity measures. 

Finally, an automated diagnosis system is built in order to check if this approach can be helpful in 

solving the problem of understanding high inter-rater variability.

Results—The experimental results reveal that some features are mostly selected by the feature 

selection methods regardless the considered expert. Moreover, for pairs of experts with high 

percentage agreement among them, the feature selection algorithms also select similar features. By 

using the relevant selected features, the classification performance of the automatic system was 

improved or maintained.
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Conclusions—The proposed methodology provides a handy framework to identify important 

features for experts and check whether the selected features reflect the pairwise agreements/

disagreements. These findings may lead to improved diagnostic accuracy and standardization 

among clinicians, and pave the way for the application of this methodology to other problems 

which present inter-expert variability.
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1. Introduction

Retinopathy of prematurity (ROP) is a disease affecting low-birth weight infants, in which 

blood vessels in the retina of the eye develop abnormally and cause potential blindness. ROP 

is diagnosed from dilated retinal examination by an ophthalmologist, and may be 

successfully treated by laser photocoagulation if detected appropriately [1]. Despite these 

advances, ROP continues to be a major cause of childhood blindness in the United States 

and throughout the world [2]. This is becoming increasingly significant in middle-income 

countries in Latin America, Eastern Europe and Asia because these countries are expanding 

neonatal care, yet have limited expertise in ROP. In addition, the number of infants at risk 

for ROP throughout the world is increasing dramatically because of improved survival rates 

for premature infants [3], while the availability of adequately-trained ophthalmologists to 

perform ROP screening and treatment is decreasing [4].

An international classification system was developed during the 1980s, and revised in 2005, 

to standardize clinical ROP diagnosis [5]. One key parameter of this classification system is 

called “plus disease”, and is characterized by tortuosity of the arteries and dilation of the 

veins in the posterior retina. Plus disease is a boolean parameter (present or absent), and is 

the most critical parameter for identifying severe ROP. Numerous clinical studies have 

shown that infants with ROP who have plus disease require treatment to prevent blindness, 

whereas those without plus disease may be monitored without treatment. Therefore, it is 

essential to diagnose plus disease accurately and consistently.

However, high levels of inconsistency among experts when diagnosing ROP have been 

demonstrated [6, 7]. Inter-expert variability in clinical decision making is an important 

problem which has been widely studied in the literature for several decades [8]. Much of this 

previous work has examined inter-expert variability in the interpretation of ophthalmic 

images [9, 6, 10, 11]. There are also studies which focus on the variability in diagnosis of 

acute diseases such as prostate cancer [12], breast cancer [13], melanoma [14], papillary 

carcinoma [15], and polycystic ovary disease [16]. Although there is a broad range of 

studies on analysis of inter-expert variability, few of them focus on investigating its 

underlying causes [17, 18, 19, 20].

Understanding the causes of disagreement among experts is a challenging problem. In the 

cognitive process during clinical diagnosis, some features may be considered more 

important by certain experts than by others. If two experts consider different sets of features 
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during diagnosis, then we might expect to see a strong disagreement between them. Hence, 

such a feature-observer analysis enables us to understand the underlying causes of inter-

expert variability.

In this work, we propose a methodology for investigating the important features for the 

experts when diagnosing ROP, with the final aim of building automated diagnosis systems. 

The proposed system makes use of feature selection, which is a machine learning technique 

employed to detect the most important features for a given classification task [21]. After 

selecting the useful features for each expert, we carry out a similarity analysis to see if the 

selected features can reflect the disagreement among experts. Finally, we propose an 

approach to build automated diagnosis tools applying machine learning techniques. The 

contributions of this paper are, (i) use and comparison of various feature selection 

algorithms to understand the underlying causes of inter-expert disagreement, (ii) a similarity 

analysis to validate whether feature selection results are consistent with the disagreement 

among experts, and (iii) the construction of an automatic diagnosis system that makes use of 

the feature selection results and similarity analysis findings.

In our previous work [20], we proposed a method to investigate whether there are groups of 

observers who decide consistently with each other and if there exist important features these 

experts mainly focus on. The previous approach involved a hierarchical clustering of the 

experts using a pair-wise similarity based on mutual information between the diagnostic 

decisions. Next, we performed an analysis to see the dependence between experts' decisions 

and image-based features which enabled us to qualitatively assess whether there are popular 

features for the group of observers obtained through clustering. Different than our previous 

study, in this work (i) we provide an in-depth analysis to find important features for each 

expert using various feature selection algorithms, (ii) we validate the feature selection results 

performing a quantitative similarity analysis between the selected features and the experts' 

agreement (i.e. we expect to select the same features for expert pairs with a high degree of 

agreement), and (iii) we build an automated classification system considering the analysis 

results and compare different classification algorithms.

The remainder of this paper is organized as follows: Section 2 explains the research 

methodology, and Section 3 details the problematics of ROP diagnosis. Finally, Section 4 

reports the experimental results, and Section 5 describes the discussion of the main findings 

and conclusions.

2. Research methodology

In order to develop automatic systems that can support clinicians in the diagnosis of ROP, it 

is necessary to extract the knowledge from the medical experts. However, as discussed 

before, there is a high degree of disagreement among experts, and the reasons behind this 

disagreement are not clear. This paper proposes a methodology to understand the causes of 

inter-expert variability in ROP diagnosis, as a step toward extracting the necessary 

knowledge to build an automatic diagnosis tool.

A four-step methodology is thus applied, as illustrated in Figure 1. First, the problem needs 

to be analyzed to check if disagreement among experts exists. Second, several feature 
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selection methods are applied to discover which features are the most important to each 

individual expert. Third, a similarity analysis is performed to check if, for experts with a 

high ratio of agreement, the feature selection methods also select similar features. Finally, 

the classification performance is calculated in order to see whether the selected features are 

sufficient for a correct classification of the given samples. We explain each step in the 

following subsections. A more detailed description of the employed methods is available in 

Appendix A.

2.1. Assessment of experts' agreement

Bearing in mind that the objective of this work is to evaluate the causes of disagreement 

among experts, it is necessary to use measures that are able to calculate the amount of 

disagreement. These measures can be divided into two main groups: pairs' tests and group 

tests. The former involve a comparison between two reference criteria (for example, a pair 

of experts or a human expert and a computer-aided diagnosis system). Pairs' tests include 

contingency tables, percentage agreement methods and the Kappa statistic. Group tests, on 

the other hand, offer an overall view of the set of experts by locating each expert in relation 

to the others. Examples of group tests include the Williams' index.

Table 1 shows the interpretation given by Landis and Koch [22] for different ranges of 

values for the Kappa statistic and Williams' index. The Kappa measure must be used with 

caution, however, particularly in cases where few classification categories exist, or where 

the validation examples are concentrated in a single category. In these cases, a low Kappa 

value does not necessarily indicate disagreement between observers but could be due, in 

fact, to an unbalanced distribution among the classes [23].

2.2. Feature selection

After studying the degree of disagreement between experts for ROP diagnosis, the second 

and third steps of this methodology aim to understand if the causes of the disagreement are 

related with the features which are relevant for each expert, since the features extracted from 

the retinal blood vessels play an important role in the subsequent detection of the disease 

[24, 25]. Therefore, feature selection methods are applied trying to find out the important 

features for each expert.

Feature selection is a well-known machine learning technique which aims to identify the 

relevant features for a problem and discarding the irrelevant ones, in some cases even 

achieving an improvement in the performance of automatic classifiers compared to 

classification systems using all features [21]. Feature selection methods can be divided into 

two approaches: individual evaluation and subset evaluation [26]. Individual evaluation is 

also known as feature ranking and assesses individual features by assigning them weights 

according to their degrees of relevance. On the other hand, subset evaluation produces 

candidate feature subsets based on a certain search strategy. Each candidate subset is 

evaluated by a certain evaluation measure and compared with the previous best one with 

respect to this measure. While the individual evaluation is incapable of removing redundant 

features because redundant features are likely to have similar rankings, the subset evaluation 

approach can handle feature redundancy with feature relevance. However, methods in this 
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framework can suffer from an inevitable problem caused by searching through all the feature 

subsets required in the subset generation step, and thus, both approaches are worth to be 

studied. Among the broad suite of feature selection methods available in the literature, we 

employ correlation-based feature selection (CFS) [27], consistency-based filter [28], 

INTERACT [29], Information Gain [30], ReliefF [31] and Recursive Feature Elimination 

for Support Vector Machines (SVM-RFE) [32], since they are widely used and based on 

different metrics ensuring some variability in our comparative analysis. It has to be noted 

that three of these methods return a subset of optimal features (CFS, INTERACT and 

Consistency-based) whilst the remaining three return a ranking of all the features 

(Information Gain, ReliefF and SVM-RFE).

2.3. Similarity analysis

Once we have determined the degree of variability among experts and the important features 

for each expert, we are interested in studying if, for those experts with a high degree of 

agreement among them, the selected features are also similar. Thus, we use similarity 

measures, which evaluate the sensitivity of the result given by a feature selection algorithm 

to variations in the training set (in this case, to variations in the class label). It is expected 

that, for those experts which show a reasonable amount of agreement in their labels, the 

features returned by the feature selection methods would be similar. We employ three 

different measures: (i) Jaccard index, (ii) Spearman correlation coefficient, and (iii) Kendall 

Index. While using these measures, we consider whether the feature selection method 

returns a subset of optimal features (Jaccard) or a ranking of features (Spearman and 

Kendall).

2.4. Classification

After studying the causes of inter-expert variability through the application of feature 

selection techniques, the last step of the proposed methodology is devoted to checking if the 

features selected as relevant for each expert are enough for building an automatic system 

able to classify new images in “plus”, “pre-plus” or “neither”. In addition to this, entrusting 

the task of distinguishing between class labels to an automatic classification system can be 

helpful to solve the problem of the high variability among experts, since this type of systems 

are objective and rely on the characteristics of the data. In the proposed methodology, we 

use four popular classifiers, C4.5 [33], naive Bayes [34], k nearest neighbors, and Support 

Vector Machine (SVM) [35], which are described in detail in Appendix A.

3. Retinopathy of Prematurity

This paper proposes a methodology trying to analyze the causes of variability between 

observers in ROP diagnosis by applying feature selection methods. The experiments will be 

performed on a set of 34 images that had been previously rated by 22 experts [6, 36]. In the 

original study, Chiang et al. recruited 22 eligible experts who were defined as “practicing 

pediatric ophthalmologists or retina specialists who met at least 1 of the following 3 criteria: 

having been a study center principal investigator for one of the two major NIH-funded 

multi-center randomized controlled trials involving ROP treatment [1, 37], having been a 

certified investigator for either of those studies, or having coauthored at least 5 peer-
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reviewed ROP manuscripts”. These experts, utilizing a secure website to review a set of 

retinal images, were asked to classify each of the 34 retinal posterior pole images as either 

“plus”, “pre-plus”, “neither”, or “cannot determine”. In a previous work [19], a total of 66 

features have been extracted, some of which were curve-based and others of which were 

tree-based.

For data analysis, “cannot determine” decisions were excluded since there were few 

observers who decided “cannot determine” for at least one sample. In particular, three of the 

22 experts decided “cannot determine” for at least one sample. The number of samples each 

expert decided as “cannot determine” was 1, 6 and 11 respectively. Figure 2 shows the 

different diagnoses given by the different experts for each image whereas Table 2 shows the 

percentage of images that were labeled as each one of the three categories. Note that there 

are some images in which all the 19 experts agreed (such as images 6, 10, 11 or 34) while 

there are other images in which the experts did not coincide in their diagnoses (such as 

images 5, 14, 16 or 25).

For a better understanding, Figure 3 shows the percentage of agreement and the Kappa 

statistic between each pair of experts. As can be seen, the Kappa statistic is more 

conservative than the percentage agreement. In any case, the maximum agreement between 

experts is reported between experts 12 and 17, and there are four pairs of experts which 

show high level of agreement. In general, the experts who obtained the highest percentage 

agreement and Kappa statistic with other experts were 8, 10, 12 and 17. On the contrary, the 

experts who achieved the lowest ratios of agreement with the remaining experts were 2, 7 

and 11.

If we simplify the problem to a binary problem and we only consider the diagnosis of “plus” 

versus “not plus”, the ratios of agreement increase, as can be seen in Figure 4. In this case, 

the maximum percentage of agreement is over 97% and the Kappa statistic is over 93%, 

which confirm the fact that multiclass problems are much more difficult than binary ones.

4. Experimental results

In this section we will report the results obtained after applying the methodology explained 

in Section 2 to the problem of ROP diagnosis.

4.1. Feature selection

First, we will analyze the results obtained with subset filters (CFS, Consistency-based and 

INTERACT) and then we will analyze the results achieved by ranker methods (Information 

Gain, ReliefF and SVM-RFE).

4.1.1. Subset methods—Figure 5 shows the number of times that a feature was selected 

for the label given by each expert according to the selection obtained by CFS, INTERACT 

and Consistency-based. As can be seen, there are some features that are mostly selected by 

these filters, as it is summarized in Table 3. Notice that, in the description of the features, it 

is indicated if they belong to a vein (v) or to an artery (a).
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In light of the results visualized in Table 3, the most important feature seems to be the mean 

of the tortuosity index in veins, followed by the same feature in arteries, mean acceleration 

and CM2 of tortuosity index in veins, and maximum of MBLF in arteries.

4.1.2. Ranker filters—In this case, each ranker method (Information Gain, ReliefF and 

SVM-RFE) returned an ordered ranking of all the features. In order to analyze these results, 

we have calculated a combination of all the rankings for each method, using the SVM-Rank 

technique [38]. In Tables 4, 5 and 6, we can see the top 10 features ranked by Information 

Gain, ReliefF and SVM-RFE, respectively (after combining the 19 rankings with SVM-

rank). It is interesting to note that the feature that is ranked in the first position for the three 

ranker methods is, again, the mean of the tortuosity index in veins, confirming its crucial 

importance.

4.2. Similarity

In this section we try to check if, for experts with a high ratio of agreement, the feature 

selection methods also selected similar features. For the subset filters (CFS, Consistency-

based and INTERACT) we have calculated the Jaccard-index. Figures 6(b), 6(c) and 6(d) 

show the Jaccard-index for each pair of experts for the subsets of features selected by CFS, 

consistency-based and INTERACT, respectively, in which the higher the value, the higher 

the similarity. For a visual comparison, we have included the percentage agreement among 

experts at the first panel. In order to quantify the dependency between similarity index and 

the percentage agreement, we compute the Mutual Information (MI) between the index and 

the percentage agreement by utilizing Kernel Density Estimation. MI estimates are reported 

at the caption of each figure. MI values tell how much is known about percentage agreement 

given the similarity index. Hence, a higher MI value shows that a corresponding feature 

selection algorithm gives more consistent features with the percentage agreement. Note that 

these estimates only provide a relative comparison between methods.

In general, the similarity between subsets is low, as it is expected because feature selection 

methods tend to be very sensible to variations in the data. It is interesting to note that, for the 

three subset methods, some of the experts with a low ratio of agreement (see Figure 3) also 

obtained low similarities regarding their optimal subsets of features. For example, this 

happens with experts 2 and 11. On the other hand, the similarity between the features 

selected by experts 12 and 17 (who obtained high percentage agreement and Kappa statistic) 

and the remaining experts is quite high. In terms of MI, the stability of the features selected 

by CFS seem to be more consistent with the percentage of agreement than the remaining 

subset methods.

Figures 7 and 8 show the Spearman correlation coefficient and Kendall-index for each pair 

of experts for the rankings of features obtained by Information Gain, ReliefF and SVM-RFE 

as well as the agreement between experts for comparisons. Again, the higher the value, the 

higher the similarity between rankings.

It is easy to see that the rankings obtained by Information Gain are much more similar to the 

percentage agreement than those obtained by ReliefF and SVM-RFE. This happens because 

Information Gain is a univariate method (each feature is considered independently) whereas 
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ReliefF and SVM-RFE are multivariate methods (they consider relationships between 

features). So, univariate filters such as Information Gain tend to obtain more stable rankings 

than multivariate methods. This fact is also reflected if one focuses on the MI values.

Regarding the results achieved with the filter Information Gain, in Figures 7(b) and 7(c) one 

can see that the rankings for the experts 2, 7 and 11 are very dissimilar compared with the 

rankings obtained by the remaining experts, since these experts had not achieved high rates 

of agreement with other experts. On the contrary, the similarities between the rankings 

achieved by experts 12 and 17 are again fairly high.

4.3. Classification

In order to check if the features selected by the different methods are sufficient for a correct 

classification of the data, we performed some classification experiments. Since we have the 

data labeled by 19 different experts, we have opted for determining the class label by 

majority vote. Information about more sophisticated methods for aggregation of opinions 

from multiple experts can be found in [39], although this kind of techniques are out of the 

scope of this paper.

We have chosen four well-known different classifiers available in the Weka tool [40], with 

default values for their parameters: C4.5, naive Bayes, k-NN and SVM. The three former 

filters can directly deal with multiclass datasets but, in the case of SVM, it is necessary to 

employ a one-versus-rest approach. As validation technique, we have chosen leave-one-out 

cross-validation, which is a common choice when the number of available samples is small 

[41]. This technique is an extreme case of k-fold cross-validation, where the dataset is 

divided into as many parts as there are instances, each instance effectively forming a test set 

of one. If k is the number of instances, then k classifiers are generated, each from k – 1 

instances, and each is used to classify a single test instance. The estimated classification 

error is the total number of incorrectly classified instances divided by the total number of 

instances.

As for the feature selection stage, for the subset filters (CFS, consistency-based and 

INTERACT) we have used the union of all the subsets of features selected for all the 

experts. For the ranker methods (Information Gain, ReliefF and SVM-RFE) we have used 

the ranking obtained by SVM-rank after combining the rankings for all the experts. Since for 

ranker methods we need to establish a threshold, we have opted for classifying with top 50% 

of the ranked features.

In Table 7 we can see the average test classification results for all classifiers and feature 

selection methods. We also trained a classifier using all features (i.e. without feature 

selection (FS)) as displayed in the first row of the table. Notice that the best result was 

achieved using feature selection (SVM-RFE + NB) and that, for all classifiers, feature 

selection is able to improve the classification error, which demonstrates that this problem 

contains irrelevant features that can hinder the process of classification.

To assess the automatic system globally, group tests were applied to the results obtained 

from the complete analysis of the 19 experts plus the system (in this case, the best option 
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was SVM-RFE + NB in Table 7). Figure 9 shows the Williams' indices obtained using both 

the percentage agreement and the Kappa value measures. From among the Williams' indices 

obtained, the highest indices correspond to expert 10, which means that this expert exhibits 

the highest agreement with the remaining experts. For the system, the indices obtained are 

greater than 1, from which it can be deduced that (a) the agreement between the system and 

the group of experts is greater than the agreement among experts; and (b) the influence of 

chance is practically null, as is to be expected from an automatic computer-based system. 

Therefore, results indicate that the system can be asserted to behave in a similar manner to 

the experienced experts.

In order to simplify the task, we have converted the multiclass problem into a binary 

problem, i.e., we are only interested in distinguishing between plus disease and not plus 

disease. In Table 8 we show the average test classification results for all classifiers and 

feature selection methods. As can be seen, the results have improved as a consequence of 

simplifying the classification task. For all classifiers tested, adding a feature selection stage 

results in improving or maintaining the test error, so this demonstrates the adequacy of 

feature selection techniques for this problem.

Again, we applied group test to assess the performance of the system (in this case, we have 

chosen the combination of ReliefF + naive Bayes in Table 8). Figure 10 shows the Williams 

indices obtained using both percentage agreement and the Kappa value as measures of 

agreement. As in the multi-class case, the highest indices correspond to expert 10. For the 

system, the indices obtained are quite close to 1, which means that the agreement between 

the system and the group of experts is similar to the agreement among experts and the 

influence of chance is practically null.

5. Discussion and conclusion

Retinopathy of prematurity is an important public health problem which affects a high 

number of infants in the world. One key parameter of the diagnosis of ROP is called plus 

disease, and is characterized by tortuosity of the arteries and dilation of the veins in the 

posterior retina. Plus disease is a boolean parameter (present or absent), and the most critical 

for identifying severe ROP. Numerous clinical studies have shown that infants with ROP 

who have plus disease require treatment to prevent blindness, whereas those without plus 

disease may be monitored without treatment. Therefore, it is essential to diagnose plus 

disease accurately and consistently. However, even when having sophisticated image 

analysis programs, a critical factor for ROP diagnosis is the inconsistency among experts.

In order to solve this problem, in this paper we have proposed a methodology to discover the 

underlying causes of variability among experts when diagnosing plus disease and to check if 

an automatic system could overcome this limitation. The proposed methodology consists of 

applying feature selection techniques to discover the features which are more important for a 

given expert. After that, the features selected for each expert are compared in order to see if 

experts showing a high level of agreement are also focusing on the same features. Finally, an 

automatic system is built with the mostly selected features, using machine learning 
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techniques, to check if the use of this type of systems could help in solving the problem of 

the high inter-rater variability.

The experiments were carried out on a dataset of 34 retinal images diagnosed by 22 experts, 

in which a high level of disagreement among experts was found. After applying different 

feature selection methods, based on different metrics, we have found that some features 

were mostly selected, regardless of the feature selection algorithm. The top selected features 

are the mean of venous and arterial tortuosity (#12 and #45), the mean of venous 

acceleration (#5) and the maximum main branch leaf node factor (MBLF) in arteries (#63). 

This is surprising because the standard definitions for the diagnosis of severe ROP with 

“plus disease” are based on arterial tortuosity and venous dilation, although some experts 

anecdotally mention other factors such as arterial dilation, venous tortuosity, vascular 

branching pattern and peripheral retina features [42, 43]. In light of the obtained results, it 

seems that although it is expected that the great majority of experts focus on the 

representative features (according to the standard), they are also paying attention to other 

features, maybe being this the cause of their disagreement.

After obtaining the features most relevant for each expert, we have calculated if the experts 

who agree in their diagnosis also share relevant features (according to the feature selection 

algorithms applied). With this aim, we have computed several measures of similarity, 

depending on if the feature selection method returned a subset of optimal features or an 

ordered ranking of all the features. The experimental results revealed that, in fact, groups of 

experts with high percentage agreement among them also selected similar features.

Finally, we have built an automatic system using machine learning techniques and the 

features mostly selected by the feature selection algorithms, in order to see if they were 

enough for a correct classification of the problem and to check if an automatic system is able 

to classify with a similar performance to the experts. We have applied several classifiers to 

assess the multiclass problem (“plus”, “pre-plus” or “neither”) and also the binary problem 

(“plus” vs. “neither”). By using feature selection, the classification performance was 

improved or maintained, confirming the adequacy of focusing on the relevant features for 

the problem in hand. For evaluating the system, we have also calculated group tests. The 

high Williams' indices obtained by it reinforced the idea that the system demonstrates a 

behavior similar to that of expert clinicians. This, together with the fact that its agreement 

with the experts is greater or similar to agreement between the experts themselves, permit 

our system to be considered at least as skillful as the experts.

Although the behavior of the automatic system was satisfactory, it was hard to come up with 

a “golden standard” to train the model. A common practice is to train only with those images 

in which the whole set of experts agree. However, this was not possible for our case study 

due to the high level of disagreement among experts. So we opted for computing the golden 

standard as majority vote among all the labels given by the experts. Note that acquisition of 

a golden standard in ROP diagnosis is extremely difficult. One major difficulty is that 

agreement for diagnosis, even among national and international experts, has been shown to 

be imperfect in numerous studies [6, 44, 7, 45]. One possible approach would be to define a 

gold standard based on long-term follow-up of subjects to determine clinical outcomes. 
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However, that approach would probably be impractical in the real world because infants 

who are felt to have severe disease during clinical examination are always treated to prevent 

blindness.

In summary, our study findings suggest that disagreement among experts can be produced 

by the fact that the experts' decisions are based on the examination of different features. This 

can be due to the fact that the standard for diagnosing ROP considers only a couple of 

features, but they might be not enough for a correct detection of the problem (at least for an 

automatic system). These study findings have implications that may lead to improved 

diagnostic accuracy and standardization among clinicians, and for development of 

computer-based decision support tools that model expert behavior. Moreover, we leave as 

future work the application of the proposed methodology to other real problems in which 

variability among experts is present.
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Appendix A. Methods

This appendix shows the description of the methods used in the four-step methodology 

described in Section 2.

Appendix A.1. Measures to assess experts' agreement

Appendix A.1.1. Contingency tables

A contingency table juxtaposes two elements of opinion for each of the classes under 

consideration. Usually, it is considered that one of these elements provides the correct 

classification (reference system) and the other provides a prediction respecting this 

classification (classification system); in other words, the second opinion is evaluated in 

terms of the first one. Correct predictions will be located on the diagonal of the matrix and 

all the other cells of the table will correspond to misclassifications. Contingency tables are 

particularly useful in the detection of systematic errors committed by the system undergoing 

validation; they are also valuable in analysing low levels of agreement between confronted 

pairs.

Appendix A.1.2. Percentage agreement and the Kappa statistic

The percentage agreement method is a straightforward measurement in which an index of 

agreement between two observers is calculated as
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(A.1)

where k represents the number of classification categories; nii is the number of cases where 

both observers agree to classify as category i and N represents the total number of cases 

considered.

The Kappa statistic [46] is also a measure of agreement between pairs of experts but 

introduces a correction factor that eliminates those agreements that can be attributed to 

chance. The Kappa statistic is defined as

(A.2)

where p0 is the observed proportion of agreements (Eq. (A.1)); pc is the agreement by 

chance, calculated as

(A.3)

with pi and pj being the marginal probabilities calculated, respectively, for each ith row and 

jth column of the k × k contingency table that confronts a pair of experts.

Appendix A.1.3. Williams' measurements

Williams' measurements [47] provide a method for determining the level of agreement 

between an isolated expert and a group of reference experts, and defined as an index In as 

follows:

(A.4)

with

(A.5)

and

(A.6)

where P(a, b) represents the percentage agreement between expert a and expert b; n is the 

number of experts (excluding the isolated expert); and 0 is the isolated expert.
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Appendix A.2. Feature selection

Appendix A.2.1. Correlation-based Feature Selection, CFS

This is a simple filter algorithm that ranks feature subsets according to a correlation based 

heuristic evaluation function [27]. The bias of the evaluation function is toward subsets that 

contain features that are highly correlated with the class and uncorrelated with each other. 

Irrelevant features should be ignored because they will have low correlation with the class. 

Redundant features should be screened out as they will be highly correlated with one or 

more of the remaining features. The acceptance of a feature will depend on the extent to 

which it predicts classes in areas of the instance space not already predicted by other 

features. CFS's feature subset evaluation function is

(A.7)

where MS is the heuristic ‘merit’ of a feature subset S containing k features,  is the mean 

feature-class correlation (f ∈ S) and  is the average feature-feature intercorrelation. The 

numerator of this equation accounts for how predictive of the class a set of features is; and 

the denominator accounts for amount of redundancy among the features.

Appendix A.2.2. Consistency-based Filter

The filter based on consistency [28] evaluates the worth of a subset of features by the level 

of consistency in the class values when the training instances are projected onto the subset of 

attributes. From the space of features, the algorithm generates a random subset S in each 

iteration. If S contains fewer features than the current best subset, the inconsistency index of 

the data described by S is compared with the index of inconsistency in the best subset. If S is 

as consistent or more than the best subset, S becomes the best subset. The criterion of 

inconsistency, which is the key to success of this algorithm, specify how large can be the 

reduction of dimension in the data. If the rate of consistency of the data described by 

selected characteristics is smaller than a set threshold, it means that the reduction in size is 

acceptable. Notice that this method is multivariate.

Appendix A.2.3. INTERACT

The INTERACT algorithm [48] is based on symmetrical uncertainty (SU) [29], which is 

defined as the ratio between the information gain (IG) and the entropy (H) of two features, x 

and y:

(A.8)

where the information gain is defined as IG(x|y) = H(y) + H(x) – H(x, y), being H(x) and 

H(x,y) the entropy and joint entropy, respectively.

Beside SU, INTERACT also includes the consistency contribution (c-contribution). C-

contribution of a feature is an indicator about how significantly the elimination of that 

feature will affect consistency. The algorithm consists of two major parts. In the first part, 
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the features are ranked in descending order based on their SU values. In the second part, 

features are evaluated one by one starting from the end of the ranked feature list. If c-

contribution of a feature is less than an established threshold, the feature is removed, 

otherwise it is selected.

Appendix A.2.4. Information Gain

The Information Gain filter [30] is one of the most common univariate methods of 

evaluation attributes. This filter evaluates the features according to their information gain 

and considers a single feature at a time. It provides a ranking for all the features, and then a 

threshold is required to select a certain number of them according to the order obtained.

Appendix A.2.5. ReliefF

The filter ReliefF [31] is an extension of the original Relief algorithm [49]. This extension is 

not limited to two class problems, is more robust, and can deal with incomplete and noisy 

data. As the original ReliefF algorithm, ReliefF randomly selects an instance Ri, but then 

searches for k of its nearest neighbors from the same class, nearest hits Hj, and also k nearest 

neighbors from each one of the different classes, nearest misses Mj(C). It updates the quality 

estimation W[A] for all attributes A depending on their values for Ri, hits Hj and misses 

Mj(C). If instances Ri and Hj have different values of the attribute A, then this attribute 

separates instances of the same class, which clearly is not desirable, and thus the quality 

estimation W[A] has to be decreased. On the contrary, if instances Ri and Mj have different 

values of the attribute A for a class then the attribute A separates two instances with different 

class values which is desirable so the quality estimation W[A] is increased. Since ReliefF 

considers multiclass problems, the contribution of all the hits and all the misses is averaged. 

Besides, the contribution for each class of the misses is weighted with the prior probability 

of that class P(C) (estimated from the training set). The whole process is repeated m times 

where m is a user-defined parameter (See Algorithm 1).

Algorithm 1: Pseudo-code of ReliefF algorithm

Data: training set D, iterations m, attributes a

Result: the vector W of estimations of the qualities of attributes

The function diff(A, I1, I2) calculates the difference between the values of the attribute A for 

two instances, I1 and I2.
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Appendix A.2.6. Recursive Feature Elimination for Support Vector Machines, SVM-RFE

This embedded method [32] carries out feature selection by iteratively training a SVM 

classifier with the current set of features and removing the least important feature indicated 

by the weights in the SVM solution.

Appendix A.3. Similarity measures

Appendix A.3.1. Jaccard-index

The Jaccard-index (J) is a metric which measures dissimilarity between sets of samples (in 

this case, sets of features). It is defined as the cardinality of the intersection divided by the 

cardinality of the union of the sets A and B.

Appendix A.3.2. Spearman correlation coefficient

The Spearman correlation coefficient (ρ) is a metric which measures similarity between 

rankings of features. It is defined as the Pearson correlation coefficient between the ranked 

variables. In this measure, A and B are rankings, d is the distance between the same elements 

in both rankings and #feats is the total number of features in the sets A and B.

Appendix A.3.3. Kendall-index

The Kendall-index (K) is a metric that counts the number of pairwise disagreements between 

two ranking lists A and B. The larger the index, the more similar the two lists are.

where

P is the set of unordered pairs of distinct elements in A and B

K̄i,j(A,B) = 1 if i and j are in the same order in A and B

K̄i,j(A,B) = 0 if i and j are in the opposite order in A and B
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Appendix A.4. Classification

Appendix A.4.1. C4.5

C4.5 is a classifier developed by [33], as an extension of the ID3 algorithm (Iterative 

Dicotomiser 3). Both algorithms are based on decision trees. A decision tree classifies a 

pattern doing a descending filtering of it until finding a leaf, that points to the corresponding 

classification. One of the improvements of C4.5 with respect to ID3 is that it can deal with 

both numerical and symbolic data. In order to handle continuous attributes, C4.5 creates a 

threshold and depending on the value that takes the attribute, the set of instances is divided.

Appendix A.4.2. naive Bayes, NB

A naive Bayes classifier [34] is a simple probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions. This classifier assumes that the 

presence or absence of a particular feature is irrelevant to the presence or absence of any 

other feature, given the class variable. A naive Bayes classifier considers each of the 

features to contribute independently to the probability that a sample belongs to a given class, 

regardless of the presence or absence of the other features. Despite their naive design and 

apparently oversimplified assumptions, naive Bayes classifiers have worked quite well in 

many complex real-world situations. In fact, naive Bayes classifiers are simple, efficient and 

robust to noise and irrelevant attributes.

Appendix A.4.3. k-nearest neighbors, k-NN

K-Nearest neighbor [50] is a classification strategy that is an example of a “lazy learner”. 

An object is classified by a majority vote of its neighbors, with the object being assigned to 

the class most common amongst its k nearest neighbors (where k is some user specified 

constant). If k = 1 (as it is the case in this paper), then the object is simply assigned to the 

class of that single nearest neighbor.

Appendix A.4.4. Support Vector Machine, SVM

A Support Vector Machine [35] is a learning algorithm typically used for classification 

problems (text categorization, handwritten character recognition, image classification, etc.). 

More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a 

high- or infinite-dimensional space, which can be used for classification, regression, or other 

tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest 

distance to the nearest training data point of any class (so-called functional margin), since in 

general the larger the margin the lower the generalization error of the classifier.

Appendix B. Extracted features for diagnosing ROP

Table B.9 reveals the description of the 66 extracted features from the retinal images for 

ROP diagnosis. Several structured features are considered for both veins (first column) and 

arteries (second column). Curve-based features account for the dilation and tortuosity of the 

vessels, whilst tree-based features are related to branching in vessel junction points [20].
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Table B.9
Description of features extracted for ROP diagnosis

Index veins Index arteries Description

1 34 Minimum acceleration

2 35 2nd minimum acceleration

3 36 2nd maximum acceleration

4 37 Maximum acceleration

5 38 Mean acceleration

6 39 CM2 acceleration

7 40 CM3 acceleration

8 41 Minimum tortuosity

9 42 2nd minimum tortuosity

10 43 2nd maximum tortuosity

11 44 Maximum tortuosity

12 45 Mean tortuosity

13 46 CM2 tortuosity

14 47 CM3 tortuosity

15 48 Minimum diameter

16 49 2nd minimum diameter

17 50 2nd maximum diameter

18 51 Maximum diameter

19 52 Mean diameter

20 53 CM2 diameter

21 54 CM3 diameter

22 55 Minimum distance to disc center (DDC)

23 56 2nd minimum DDC

24 57 2nd maximum DDC

25 58 Maximum DDC

26 59 Mean DDC

27 60 CM2 DDC

28 61 CM3 DDC

29 62 Minimum branching factor

30 63 Maximum branching factor

31 64 Mean branching factor

32 65 CM2 branching factor

33 66 CM3 branching factor
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Highlights

• Inter-expert variability in clinical decision making is an important problem.

• Retinopathy of prematurity is a disease that suffers from inter-expert variability.

• We propose a methodology for understanding the causes of disagreement.

• The methodology provides a framework to identify important features for 

experts.

• An automatic system was also developed to deal with this problem.
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Figure 1. Steps of the research methodology
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Figure 2. Labels given by experts
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Figure 3. Agreement among experts considering three classes: plus, pre-plus, neither
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Figure 4. Agreement among experts considering two classes: plus, not plus
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Figure 5. Features selected by CFS, INTERACT and Consistency-based feature selection 
methods
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Figure 6. Jaccard-index for subset filters
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Figure 7. Spearman correlation coefficient and Kendall-index for rankings of features (I)
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Figure 8. Spearman correlation coefficient and Kendall-index for rankings of features (II)
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Figure 9. 
Williams' index calculated utilizing percentage agreement and the Kappa statistic as 

agreement measurements.
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Figure 10. 
Williams' index calculated utilizing percentage agreement and the Kappa statistic as 

agreement measurements in the binary case.

Bolón-Canedo et al. Page 31

Comput Methods Programs Biomed. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bolón-Canedo et al. Page 32

Table 1
Interpretation of Kappa statistic and Williams' index

Statistic Value Interpretation

Kappa 1.00 Total agreement

0.75-1.00 Excellent level of agreement

0.40-0.75 Fairly good to good level of agreement

0.00-0.40 Poor level of agreement, which could be considered due to chance

0.00 Agreement entirely due to chance

<0.00 Agreement even lower than that expected by chance

Williams' > 1.00 Agreement between isolated expert and group of experts is greater than agreement among members of group

1.00 Agreement between isolated expert and group of experts is equal to agreement among members of group

0.00-1.00 Agreement between isolated expert and group is less than agreement among members of group

Comput Methods Programs Biomed. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bolón-Canedo et al. Page 33

T
ab

le
 2

A
bs

ol
ut

e 
ag

re
em

en
t 

in
 p

lu
s 

di
se

as
e 

di
ag

no
si

s 
am

on
g 

19
 e

xp
er

ts
 la

be
lin

g 
34

 im
ag

es
 (

nu
m

be
r 

of
 im

ag
es

 a
nd

 p
er

ce
nt

ag
e)

Im
ag

e
N

ei
th

er
P

re
-P

lu
s

P
lu

s

1
3

15
.7

9%
13

68
.4

2%
3

15
.7

9%

2
4

21
.0

5%
15

78
.9

5%
0

0.
00

%

3
0

0.
00

%
6

31
.5

8%
13

68
.4

2%

4
4

21
.0

5%
10

52
.6

3%
5

26
.3

2%

5
9

47
.3

7%
7

36
.8

4%
3

15
.7

9%

6
0

0.
00

%
0

0.
00

%
19

10
0.

00
%

7
10

52
.6

3%
8

42
.1

1%
1

5.
26

%

8
0

0.
00

%
1

5.
26

%
18

94
.7

4%

9
11

57
.8

9%
8

42
.1

1%
0

0.
00

%

10
19

10
0.

00
%

0
0.

00
%

0
0.

00
%

11
0

0.
00

%
0

0.
00

%
19

10
0.

00
%

12
10

52
.6

3%
9

47
.3

7%
0

0.
00

%

13
0

0.
00

%
13

68
.4

2%
6

31
.5

8%

14
8

42
.1

1%
9

47
.3

7%
2

10
.5

3%

15
0

0.
00

%
8

42
.1

1%
11

57
.8

9%

16
10

52
.6

3%
8

42
.1

1%
1

5.
26

%

17
2

10
.5

3%
10

52
.6

3%
7

36
.8

4%

18
9

47
.3

7%
9

47
.3

7%
1

5.
26

%

19
5

26
.3

2%
12

63
.1

6%
2

10
.5

3%

20
0

0.
00

%
1

5.
26

%
18

94
.7

4%

21
12

63
.1

6%
7

36
.8

4%
0

0.
00

%

22
0

0.
00

%
9

47
.3

7%
10

52
.6

3%

23
0

0.
00

%
4

21
.0

5%
15

78
.9

5%

24
14

73
.6

8%
5

26
.3

2%
0

0.
00

%

25
9

47
.3

7%
8

42
.1

1%
2

10
.5

3%

26
0

0.
00

%
5

26
.3

2%
14

73
.6

8%

27
11

57
.8

9%
7

36
.8

4%
1

5.
26

%

28
0

0.
00

%
7

36
.8

4%
12

63
.1

6%

Comput Methods Programs Biomed. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bolón-Canedo et al. Page 34

Im
ag

e
N

ei
th

er
P

re
-P

lu
s

P
lu

s

29
5

26
.3

2%
13

68
.4

2%
1

5.
26

%

30
0

0.
00

%
3

15
.7

9%
16

84
.2

1%

31
11

57
.8

9%
7

36
.8

4%
1

5.
26

%

32
4

21
.0

5%
12

63
.1

6%
3

15
.7

9%

33
0

0.
00

%
5

26
.3

2%
14

73
.6

8%

34
0

0.
00

%
0

0.
00

%
19

10
0.

00
%

Comput Methods Programs Biomed. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bolón-Canedo et al. Page 35

Table 3
Summary of features mostly selected by subset filters

Feature Index Description No. of times selected

CFS Cons INT

5 Mean Acc (v) 42% 26% 32%

12 Mean TI (v) 100% 19% 84%

13 CM2 TI (v) 42% 32% 32%

45 Mean TI (a) 47% 21% 47%

63 Max MBLF (a) 68% 32% 53%
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Table 4
Top 10 features ranked by Information Gain

Feature Index Description

12 Mean TI (v)

13 CM2 TI (v)

63 Max MBLF (a)

5 Mean Acc (v)

21 CM3 Diameter (v)

22 Min DDC (v)

27 CM2 DDC (v)

20 CM2 Diameter (v)

19 Mean Diameter (v)

23 2nd Min DCC (v)
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Table 5
Top 10 features ranked by ReliefF

Feature Index Description

12 Mean TI (v)

5 Mean Acc (v)

63 Max MBLF (a)

45 Mean TI (a)

6 CM2 Acc (v)

13 CM2 TI (v)

37 Max Acc (a)

46 CM2 TI (a)

10 2nd Max TI (v)

36 2nd Min Acc (v)
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Table 6
Top 10 features ranked by SVM-RFE

Feature Index Description

12 Mean TI (v)

63 Max MBLF (a)

5 Mean Acc (v)

23 2nd Min DCC (v)

25 Max DDC (v)

24 2nd Max DDC (v)

29 Min MBLF (v)

20 CM2 Diameter (v)

32 CM2 MBLF (v)

21 CM3 Diameter (v)
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Table 7
Average classification error (%) using leave one out cross validation

Method C4.5 NB k-NN SVM

No FS 58.82 38.24 64.71 44.12

CFS 52.94 35.29 44.11 38.24

Cons 70.59 32.35 44.12 38.24

INT 70.59 32.35 44.11 38.24

InfoGain 41.18 41.18 50.00 35.29

ReliefF 70.59 35.29 58.82 41.18

SVM-RFE 52.94 20.59 47.06 32.35
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Table 8
Average test classification error results (%) on binary dataset using leave one out

Method C4.5 NB k-NN SVM

No FS 29.41 11.76 38.24 20.59

CFS 35.29 14.71 26.47 20.59

Cons 32.35 14.71 32.35 20.59

INT 32.35 14.71 26.47 17.65

InfoGain 29.41 20.59 29.41 17.65

ReliefF 35.29 11.76 35.29 11.76

SVM-RFE 29.41 14.71 26.47 17.65
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