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Abstract 

Background and Objective: Changes in mechano-electrochemical properties of 

articular cartilage play an essential role in the majority of cartilage diseases. Despite of 

this importance, the specific effect of each parameter into tissue behavior remains still 

obscure. Parametric computational modeling of cartilage can provide some insights 

into this matter, specifically the study of mechano-electrochemical properties variation 

and their correlation with tissue swelling, water and ion fluxes. Thus, the aim of this 

study is to evaluate the influence of the main mechanical and electrochemical 

parameters on the determination of articular cartilage behavior by a parametric 

analysis through a 3D finite element model. Methods: For this purpose, a previous 3D 

mechano-electrochemical model, developed by the same authors, of articular cartilage 

behavior has been used. Young´s modulus, Poisson coefficient, ion diffusivities and ion 

activity coefficients variations have been analyzed and quantified through monitoring 

tissue simulated response. Results: Simulation results show how Young´s modulus and 

Poisson coefficient control tissue behavior rather than electrochemical properties. 

Meanwhile, ion diffusivity and ion activity coefficients appear to be vital in controlling 

velocity of incoming and outgoing fluxes. Conclusions: This parametric study 

establishes a basic guide when defining the main properties that are essential to be 

included into computational modeling of articular cartilage providing a helpful tool in 

tissue simulations. 

 

Keywords:  Parametric analysis, articular cartilage, mechano-electrochemical model, 

cartilage Young´s modulus, ion diffusivity, ion activity coefficient. 
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 1 Introduction 

Articular cartilage plays a vital role in the function of diarthrodial joints (Boschetti et al. 

2004). The initial event that triggers pathological process of cartilage degeneration is 

still unknown (Wilson et al. 2005). Hence, to investigate the initiation of cartilage 

diseases, most important parameters that control its behavior should be determined. 

So far, the common method to accomplish that, are specific experimental assays 

(Pearle et al. 2005; Albro et al. 2009; Virén et al. 2009). However, these techniques 

require high costs and elevate time consuming. Besides, experimental approaches limit 

the study of parameters in an individual manner. To solve these problems, in the last 

decade, it has emerged the use of computational models to simulate cartilage 

behaviour (Landinez-Parra et al. 2011; Seifzadeh et al. 2012) as well as materials 

mimicking cartilage (Manzano et al. 2014; Krishnan Namboori et al. 2013). Therein, the 

finite element method is the most used (Soulhat et al. 1999; Smith et al., 2013). In the 

literature many material models for articular cartilage can be found. These models 

range from relatively simple, including the biphasic nature of the tissue (Higginson et 

al., 1976; Chen et al. 1997), to models that include descriptions of all major individual 

components of the cartilage (Mow and Guo 2002; Ateshian et al. 2013; Manzano et al. 

2014a; Manzano et al. 2014b; Sun et al. 2004). However, the main parameters to 

consider in these simulations remain still obscure since the requirements of a material 

model are highly dependent on the particular question under research. In general, the 

more features of the composition and structure of articular cartilage are included, the 

larger the number of material parameters that must be determined, and the more 

computationally expensive the model becomes. Hence, we should always try to use 
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the simplest model with the lowest number of tissue properties to obtain the required 

data but without compromising the predictive capacity of the computational model.  

The present parametric study faces important questions like: i) is the weakening of 

collagen matrix enough for tissue to swell or it is required to consider the 

proteoglycans content decrement?; ii) is Poisson coefficient an essential parameter in 

articular cartilage modeling?; iii) which phenomena, mechanical, chemical or electrical 

do manage tissue behavior?; (iv) are they combined to control tissue behavior or one 

of them is more relevant?  

To solve these questions a previous developed three-dimensional mechano-

electrochemical model (Manzano et al. 2014a; Manzano et al. 2014 b) has been used 

to analyze and quantify the influence of each parameter variation into cartilage 

behavior. Specifically, Young´s modulus (E ), Poisson coefficient (ν), cation and anion 

diffusivities (D+ and D-  respectively), cation and anion activity coefficient (γ+ and γ-  

respectively) changes have been addressed. To our knowledge, this is the first 

parametric study that determines the influence of these properties in an isolate 

manner in cartilage behavior, resulting in a basic guide to select the main parameters 

required for articular cartilage simulation. Note that the model includes essential 

biological phenomena, previously described in literature, that affect cartilage 

behaviour (diffusive-convective events and mechano-electrochemical effects) (Mow 

and Guo, 2002; Sun et al., 1999; Lai et al., 1991). However, it excludes those that 

experimentally show less influence as the viscosity of the solid matrix. Often, material 

models of articular cartilage exclude this effect since in short-term type of simulation 

the viscosity does not play a great role and articular cartilage appears as an elastic 
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solid with lower compressibility (Argatov and Mishuris 2015; Julkunen et al., 2013). 

Results show that (i) only collagen degradation is required to promote tissue swelling; 

(ii) minimal variation in ν generates significant differences in tissue swelling and water 

and anion fluxes; (iii) variation in D+ and D- seems to have less influence in capturing 

cartilage behavior than the mechanical parameters, however, they control the velocity 

of ion fluxes and finally, (iv) similar to D+ and D- , γ+ and γ-  show lower influence into 

tissue deformation (one order or magnitude less) than the studied mechanical 

properties.  

The presented parametric study is a helpful tool to decipher the effects on cartilage 

simulated behaviour when varying Young´s modulus, Poisson coefficient, and ion 

activity and diffusivity coefficients. Besides, the inclusion of repulsion phenomenon 

due to negative fixed charges attached to proteoglycans and the 3D nature of the 

model, present this algorithm as a new and easy method for the analysis and selection 

of the main parameters to include in cartilage computational models.   

2 Material and methods 

Based on our previous work (Manzano et al. 2014a) four phases are considered: 

negatively charged porous-elastic solid (s), fluid (f), cations (+) and anions (-). These 

phases dynamically interact with each other triggering essential mechano-

electrochemical phenomena for cartilage maintenance (for more details see (Sun et al. 

2004; Manzano et al. 2014a; Manzano et al. 2014b)).  
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2.1 Mechano-electrochemical model  

2.1.1 Governing equations  

The governing equations of the model are based in the momentum and mass balance 

for the whole mixture and the charge balance for each ion. The relation between the 

four basic unknowns (us the displacement of the solid matrix, 𝜀𝜀𝑤𝑤 the chemical 

potential of water, 𝜀𝜀+ and 𝜀𝜀− the electrochemical potentials for cations and anions 

respectively) are summarized below,  

Momentum balance equation for the whole mixture  

∇ · 𝛔𝛔⏟
𝛔𝛔𝑓𝑓+𝛔𝛔𝑐𝑐+𝛔𝛔𝑠𝑠

= 𝟎𝟎.     (1) 

Mass balance equation for the whole mixture 

∇ · 𝐯𝐯𝑠𝑠 + ∇ · 𝐉𝐉𝑤𝑤 = 0. ( 2) 
 

Charge balance equation for each studied ion 

𝜕𝜕(𝛷𝛷𝑤𝑤𝑐𝑐+)
𝜕𝜕𝜕𝜕

+ ∇ · 𝐉𝐉+⏟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

+ ∇ · (𝛷𝛷𝑤𝑤𝑐𝑐+𝐯𝐯𝑠𝑠)�������
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

= 0, ( 3) 
 

𝜕𝜕(𝛷𝛷𝑤𝑤𝑐𝑐−)
𝜕𝜕𝜕𝜕

+ ∇ · 𝐉𝐉−⏟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

+ ∇ · (𝛷𝛷𝑤𝑤𝑐𝑐−𝐯𝐯𝑠𝑠)�������
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

= 0. ( 4) 
 

In these equations, σ corresponds to the stress tensor related to the total mixture 

while and 𝛔𝛔𝑓𝑓  , 𝛔𝛔𝑐𝑐   and 𝛔𝛔𝑠𝑠   are the stress tensors of the fluid, chemical and solid phases 

respectively. 𝐯𝐯𝑠𝑠 = 𝜕𝜕𝐮𝐮𝑠𝑠

𝜕𝜕𝜕𝜕
  refers to the velocity of the solid matrix. Note that in equation 

1, body and inertial forces are neglected. Moreover, small strain formulation is 

adopted. Besides, 𝑐𝑐+ and 𝑐𝑐−  are cation and anion concentrations respectively. Finally, 

𝛷𝛷𝑤𝑤 corresponds to the porosity of the tissue (Sun et al. 2004). Regarding the different 
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fluxes, the water flux, 𝐉𝐉𝑤𝑤, cation flux,  𝐉𝐉+ , and anion flux, 𝐉𝐉−, can be written as a 

combination of the electrochemical potentials,  

𝐉𝐉𝑤𝑤 = −
𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤

𝛼𝛼
�∇𝜀𝜀𝑤𝑤 +

𝑐𝑐+

𝜀𝜀+
∇𝜀𝜀+ +

𝑐𝑐−

𝜀𝜀−
∇𝜀𝜀−�, 

 

( 5) 
 

𝐉𝐉+ = −
𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤𝑐𝑐+

𝛼𝛼
∇𝜀𝜀𝑤𝑤 − �

𝛷𝛷𝑤𝑤𝑐𝑐+𝐷𝐷+

𝜀𝜀+
+
𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤(𝑐𝑐+)2

𝛼𝛼𝜀𝜀+
�∇𝜀𝜀+ −

𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤𝑐𝑐+𝑐𝑐−

𝛼𝛼𝜀𝜀+
∇𝜀𝜀− , 

 

( 6) 
 

𝐉𝐉− = −
𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤𝑐𝑐−

𝛼𝛼
∇𝜀𝜀𝑤𝑤 − �

𝛷𝛷𝑤𝑤𝑐𝑐−𝐷𝐷−

𝜀𝜀−
+
𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤(𝑐𝑐−)2

𝛼𝛼𝜀𝜀−
�∇𝜀𝜀− −

𝑅𝑅 𝑇𝑇𝛷𝛷𝑤𝑤𝑐𝑐+𝑐𝑐−

𝛼𝛼𝜀𝜀+
∇𝜀𝜀+ , 

 

( 7) 
 

Here, α refers to the drag coefficient between the solid and the water phases. 

Atmospheric conditions are assumed where R  is the universal gas constant and T is the 

absolute temperature (Garcia and Cortes 2006). The corresponding constitutive 

equations associated to the state variables, referring to equations 1-7, are also given 

by,  

𝛔𝛔 = −𝑃𝑃𝐈𝐈�
𝛔𝛔𝑓𝑓�

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

   −𝑇𝑇𝑐𝑐𝐈𝐈�
    𝛔𝛔𝑐𝑐�
𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+𝜆𝜆𝑠𝑠𝜃𝜃𝐈𝐈+ 2µ𝑠𝑠𝛜𝛜��������� ,
𝛔𝛔𝑠𝑠�

𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

 

(8) 
 

𝜀𝜀𝑤𝑤 =
𝑃𝑃
𝑅𝑅 𝑇𝑇

− 𝛷𝛷(𝑐𝑐+ + 𝑐𝑐−) +
𝐵𝐵𝑤𝑤
𝑅𝑅 𝑇𝑇

𝜃𝜃, 

 

(9) 
 

𝜀𝜀+ = 𝛾𝛾+𝑐𝑐+𝑒𝑒𝑒𝑒 𝑝𝑝�
𝐹𝐹𝑐𝑐𝜓𝜓
𝑅𝑅 𝑇𝑇

�, 

 

(10) 
 

𝜀𝜀− = 𝛾𝛾−𝑐𝑐−𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝐹𝐹𝑐𝑐𝜓𝜓
𝑅𝑅 𝑇𝑇

�, 

 

(11) 
 

where 𝜓𝜓 is the electrical potential, 𝐵𝐵𝑤𝑤 is the fluid-solid coupling coefficient, 𝐹𝐹𝑐𝑐 is the 

Faraday constant, 𝛷𝛷 is the osmotic coefficient, and 𝐈𝐈 is the identity tensor. Here, P  
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refers to the fluid pressure, 𝜃𝜃 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝐮𝐮𝐬𝐬 corresponds to the solid matrix dilatation 

related to the infinitesimal strain tensor of the solid matrix, 𝛜𝛜 is the solid matrix 

deformation, and finally, 𝜆𝜆𝑠𝑠 and µ𝑠𝑠 are the Lame constants (Garcia and Cortes 2006).  

The chemical expansion due to proteoglycan repulsion phenomenon, 𝑇𝑇𝐶𝐶 , is considered 

into the computational model though the following constitutive equation. 

𝑇𝑇𝐶𝐶 = 𝑎𝑎0𝑐𝑐𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘
𝛾𝛾∓

𝛾𝛾∓∗
� �𝑐𝑐(𝑐𝑐 + 𝑐𝑐𝐹𝐹 ). 

Here, where 𝑎𝑎0 and 𝑘𝑘 are the proteoglycan repulsion coefficients. 𝛾𝛾∓ and 𝛾𝛾∓
∗
 are the 

mean activity coefficient of ions along the process and in the reference state, 

respectively. 𝑐𝑐 refers to the neutral external salt concentration (Manzano et al. 2014b; 

Lai et al. 1991).  

Tissue anisotropy  has been mathematically incorporated though the depth-dependent 

distribution of fixed charges attached to proteoglycans, porosity and ion 

concentrations within the tissue (Manzano et al. 2014a; Manzano et al. 2014b).  

2.1.2 Numerical implementation  

Three-linear 8-noded hexahedral elements with 2×2×2 Gaussian integration points are 

used. The selected average mesh results in a total of 1680 elements. The highly non-

linear finite element formulation has been implemented in a user defined element 

subroutine of the commercial software package Abaqus 6.11. A detailed description of 

the discretization developed for the formulation is collected in the previous work 

(Manzano et al. 2014a). 
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2.2 Numerical application 

The geometry reproduced as well as the experimental procedure corresponds to those 

assays described by Lai et al. (1991). Therefore, this experimental situation is 

computationally reproduced to analyze and monitor the effect of mechano-

electrochemical parameters in cartilage behavior (Figure 1). Dimensions of cartilage 

specimen correspond to 1.5 mm diameter and 0.5 mm depth and the sample is fixed in 

a confining ring where the z-displacement of the sample is free. Under these 

conditions, external bath solution is modified from 0.15 M to 0.125 M to reach similar 

cartilage swelling observed in physiological conditions. No loads are applied onto the 

sample in z-direction. The ranges of the studied parameters variation are, Young´s 

modulus (from 0.35 to 1 MPa), Poisson coefficient (from 0.12 to 0.36), ion diffusivities 

(0.79·10-9 to 1.65·10-9 m2/s) and/or ion activity coefficients (from 0.527 to 0.72), while 

the rest of model parameters included into the computational model are fixed (Table 

1). Accurate quantification of ion fluxes within the samples and motorization of tissue 

changes along the swelling processes are obtained.  
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Figure 1: Schematic representation of the cartilage sample immersed in NaCl solution with an initial 

concentration of 0.15 M. Boundary conditions of the cartilage sample applied in the computational 

simulation developed for the parametric study. 

 

2.2.1 Boundary conditions  

Boundary conditions of the sample have been established in accordance to confined 

conditions planned experimentally (see Figure 1),  

Free surface:  

𝜎𝜎𝑧𝑧 = 0;        𝜀𝜀𝑤𝑤 = 𝜀𝜀𝑤𝑤
∗
;        𝜀𝜀+ = 𝜀𝜀+

∗
;        𝜀𝜀− = 𝜀𝜀−

∗
. 

Lateral surface: 

𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑦𝑦 = 0;         𝐽𝐽𝑥𝑥,𝑦𝑦
𝑤𝑤 = 𝐽𝐽𝑥𝑥,𝑦𝑦

+ = 𝐽𝐽𝑥𝑥 ,𝑦𝑦
− = 0. 

Lower surface:  

𝐮𝐮 = 𝟎𝟎;         𝐽𝐽𝑧𝑧𝑤𝑤 = 𝐽𝐽𝑧𝑧+ = 𝐽𝐽𝑧𝑧− = 0. 



11 
 

At the beginning of the simulation, 𝑡𝑡 = 0  seconds, the concentration of the external 

solution, 𝑐𝑐∗, is changed as occurs physiologically, from 0.15 M to 0.125 M. Then, the 

tissue response is analyzed from the results of the model described above. In these 

equations, superscript * stands for the quantities in the bath solution. It is important 

to note that the reduced diameter of the sample, 1.5 mm, make that not only uz will be 

constrained in the lower area of the sample, but also ux and uy. Both will be null due to 

the constriction caused by the rigid and impermeable ring extended to the inner area 

of the sample. 

2.2.2 Initial conditions  

The cartilage sample is initially equilibrated with NaCl bath solution, with 

concentration of 𝑐𝑐∗. At 𝑡𝑡 = 0  seconds, the conditions imposed for the cartilage sample 

are, 

𝐮𝐮 = 𝟎𝟎;        𝜀𝜀𝑤𝑤 = 𝜀𝜀𝑤𝑤
∗
;        𝜀𝜀+ = 𝜀𝜀+

∗
;        𝜀𝜀− = 𝜀𝜀−

∗
, 

The reference state selected for this problem refers to that where the tissue is in 

equilibrium with the bathing solution (time 0 seconds, undeformed configuration).  

2.3 Mechano-electrochemical parameters  

To fully understand the effect of mechano-electrochemical parameter variations in 

articular cartilage behavior, two groups of properties have been introduced in the 

computational model. The first, related to mechanical properties, such as E  and ν  and 

the second one, the electrochemical properties, D+, D-, γ+ and γ-. 

Afterward, all these properties are varied in an individual manner to analyze and 

quantify their effect in cartilage simulated response. Note that the selected range for 
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each parameter corresponds to typical values reported in literature for articular 

cartilage simulations. Thus, E and ν studied values have been extracted from literature 

related to mechanical aspects of cartilage (Manzano et al. 2014a; Sun et al. 1999; 

Wong et al. 2000); while electrochemical properties have been obtained from previous 

works related to the measure of these related properties (Sun et al. 1999; Filidoro et 

al. 2005; Deng et al. 2007). 

3 Results and discussion 

3.1 Analysis of the effect of the mechanical parameters in free cartilage swelling 

To fully understand the effect of mechanical properties variation, specifically, E and ν, 

in articular cartilage behavior, these tissue properties have been ranged to their 

minimum to maximal value reported in literature. Thus, this range includes healthy 

and degenerated articular cartilage. They were introduced into previously developed 

three-dimensional computational models. Simulation results show how swelling of 

samples increases according to the reduction of E and ν . Consistently, incoming water 

fluxes resulted higher to those samples with lower E and ν. Regarding ion fluxes, higher 

values are obtained when increasing the mechanical properties of the tissue. 

3.1.1 Effects of Young´s modulus variation 

z-displacement 

When using a low matrix stiffness (E=1.0 MPa and E=0.9 MPa), the model displays a 

maximal displacement of 7.05·10-9 m and 1.12·10-8 m respectively, within 200 seconds 

of simulated time; subsequently after reaching its maximum value of z-displacement, 

the tissue swelling keeps constant until the end of the simulation, 3600 seconds. Note 
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that results are shown for 500 seconds of simulation to capture more in detail the 

saturated phase, corresponding to the process of massive entrance of fluid to the 

sample. After this phase, the equilibrium is reached and the volume of the sample 

keeps constant (Figure 2.a). For higher values of E (E=0.6 MPa and E=0.35 MPa), the 

results present higher z-displacement ranging from 2.98·10-7 m to 1.41·10-5 m after 

1200 s and 800 s of simulated time respectively. The rest of parameters included into 

the computational model are collected in Table 1. Thus, it is observed that when E 

decreases, swelling increases in the tissue. It is important to note that this collagen 

deterioration and subsequent loss of matrix stiffness corresponds to those tissues with 

medium and advanced grades of degeneration such as in case of osteoarthritis and 

aged degenerated tissue. Thus, lower values indicate that the articular cartilage is in a 

healthy state and the rigidity of the collagen network is able to prevent the tissue to 

swell.  

Description Symbol Range or studied value 
Young’s modulus  E 0.35 ─ 1.0 MPa 
Poisson coefficient ν 0.12 ─ 0.36 
Drag coefficient between the solid 
and the water phase 

α 7·1014 N·s·m-4 

Diffusivity of the cations D+ 0.79·10-9 – 1.65·10-9 m·s-1 
Diffusivity of the anions D- 0.79·10-9 – 1.65·10-9 m·s-1 
Initial FCD 𝑐𝑐0𝐹𝐹 0.2 mEq·ml-1 
Activity coefficient of cations 𝛾𝛾+ 0.527 – 0.72 
Activity coefficient of anions 𝛾𝛾− 0.695 – 0.72 
Gas constant R 8.314 J·mol-1·K-1 
Absolute temperature T 298 K 
Osmotic coefficient Φ 0.8 
Initial amount of water in the tissue 𝛷𝛷0𝑤𝑤 0.75 

 

Table 1: Model parameters used in the 3D computational model to simulate articular cartilage swelling 

extracted from the previously developed model (Manzano et al. 2014a; Manzano et al. 2014b) 
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Water and ion fluxes 

The influence of E variation in water and ion fluxes is also considered. Simulation 

results are shown for maximal and minimum tissue stiffness after 200 seconds of 

simulated swelling, coincident with the period of maximal water entrance. Results 

demonstrate that, similarly to swelling, variation of E produces important alterations in 

water and ion fluxes. As explained in previous section, external bath is diluted to 0.125 

M of NaCl resulting in an imbalance between inside of the tissue and the external 

solution.  Hence, for the lower stiffness of the tissue, E=0.6 MPa, values of water fluxes 

exhibit a maximum at the upper surface of the sample correspondent to 1.54·10-9 

m3/s. This value is gradually decreased toward the lower surface of the sample. The 

same tendency is observed for higher values of tissue stiffness, E=1.0  MPa, however, 

the incoming water flux is significantly reduced in this case, being their maximum value 

equal to 5.47·10-10 m3/s at the upper surface. Note that water and ion fluxes 

represented for each mechano-electrochemical parameter refer to the net flux of each 

species (water, cation and ion) where the influence of the flux in each direction is 

considered. Biologically, when collagen structure suffers a deterioration due to any 

cartilage disease, E is reduced, the capacity of the collagen network to retain water 

decreases and its ability to prevent cartilage swelling is also reduced (Figure 2.b). Note 

that water content is essentially controlled by the porosity of the tissue. The influence 

of this parameter into tissue swelling was analysed in our previous work in an isolated 

manner as well as the osmotic coefficient and the fixed charge density variation effects 

(Manzano et al. 2014a). 
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Importantly, here the effect of E variation is done as an isolated event, and not in 

combination with proteoglycans decrement or other related phenomena, to analyze its 

effects in tissue swelling. This fact confirms that the collagen degradation is essential 

to promote tissue swelling.  

Regarding ion fluxes, both anions and cations reached their maximum value for higher 

E  value (E=1.0 MPa), ranging from -5.10·10-5 mol/s (at the lower surface of the 

sample) to -4.40·10-4 mol/s (at the upper surface of the sample) in case of cation fluxes 

while -2.77·10-5 mol/s (at the bottom surface of the sample) to -4.79·10-4 mol/s (at the 

upper surface of the sample) in case of anion fluxes. When E decreases, this pattern is 

altered and lower fluxes of anions occur; from -5.10·10-5 mol/s (at the bottom surface 

of the sample) to -9.42·10-5 mol/s (at the upper surface of the sample) in case of cation 

fluxes and -2.77·10-5 mol/s (at the bottom surface of the sample) to -7.27·10-5 mol/s (at 

the upper surface of the sample) in case of anion fluxes. Thus, for lower stiffness of the 

tissue, cation and anion fluxes are clearly overpassed by the intake water flux, which 

leads to higher substrate swelling.  

(a)  
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(b)  

Figure 2: (a) Surface displacement obtained with the 3D computational model as function of the tissue 

Young´s modulus (E). The rest of model´s parameters are included in Table 1. (b) Z-displacement (uz), 

water (Jw), cation (J+) and ion (J-) fluxes obtained with the 3D computational model during 90 seconds of 

simulated time for E = 0.6 MPa and E = 1.0 MPa. Note that negative fluxes for each studied species 

correspond to the emergence of that component from the sample to the external bath. Conversely, 

positive fluxes refer to the entrance of the different components (water or ions) into the sample (tissue 

gain of material). Rest of parameters included in Table 1. 
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3.1.2 Effects of Poisson coefficient variation 

z-displacement 

To study ν the three most used values for articular cartilage modeling have been 

analyzed. For ν =0.36, simulation results showed a maximal z-displacement of 9.45·10-4 

m. When, the value of this parameter is reduced to ν =0.28, the displacement reaches 

a maximum value of 3.04·10-4 m (Figure 3.a). Despite of expecting an increment of 

tissue swelling when decreasing ν, the difference between the three studied values 

show three orders of magnitude. Consistently, ν seems to represent, in combination 

with E, an essential parameter to include and thus, its accurate determination is 

essential to also obtain accurate results in simulation. Importantly, increment in ν is 

observed in osteoarthritic tissue even in the first stage of the disease (Pearle et al., 

2005). Besides this increase in the tissue rigidity is also shown in aged articular 

cartilage (Bhosale et al., 2008). 

Water and ion fluxes 

Interestingly, water and ion fluxes showed even higher influence in morphological 

changes of the samples than E since they also control the stiffness of the tissue in an 

indirect manner. Thus, according to experimental measures, the physiological values 

commonly used in computational simulation of articular cartilages are ν = 0.28 and ν = 

0.36. Both values have been considered in the present computational model resulting 

into significant differences in the simulated swelling process. For ν = 0.28 the incoming 

water flux goes from 5·10-8 m3/s (at the lower surface of the sample) to 6.37·10-7 m3/s 

(at the upper surface of the sample) (Figure 3.b). Note that, as explained before, these 

values are one order of magnitude higher than the water fluxes obtained with 
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previously studied E variation. Regarding ion fluxes, Figure 3.b shows how outgoing 

cation ranged from 1.80·10-5 mol/s to 5.46·10-5 mol/s while anion fluxes present a 

maximum of 1.87·10-5 mol/s at the upper surface and reduced to 4.43·10-5 mol/s at the 

bottom of the sample. 

In contrast, when ν is increased to 0.36, maximal water flux toward the external bath is 

reduced to 3.76·10-7 m3/s at the upper surface and the cation and anion fluxes exhibit 

a wide range from 1.80·10-5 mol/s to 1.28·10-4 mol/s. 

 

(a)  
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(b)  

Figure 3: (a) Surface displacement obtained with the 3D computational model as function of the tissue 

Poisson coefficient (ν). The rest of model parameters are included in Table 1. (b) Z-displacement (uz), 

water (Jw), cation (J+) and ion (J-) fluxes obtained with the 3D computational model during 90 seconds of 

simulated time for ν = 0.28 and ν = 0.36. Note that negative fluxes for each studied species correspond 

to the emergence of that component from the sample to the external bath. Conversely, positive fluxes 

refer to the entrance of the different components (water or ions) into the sample (tissue gain of 

material). Rest of parameters included in Table 1. 
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3.2 Analysis of the effect of the electrochemical parameters in the free cartilage 

swelling 

In this study, the model has been also applied to analyze the effect of the main 

electrochemical parameters that affect cartilage behavior such as ion diffusivities and 

ion activity coefficients, since cartilage maintenance is based in mediated diffusive 

processes controlled by these parameters. Simulation results show a lower influence of 

these coefficients in comparison with those related to mechanical properties of the 

articular cartilage. 

3.2.1 Ion diffusivities  

Ion diffusivities control the flux velocity of cations and anions in the tissue when a 

gradient in ion concentrations is produced. As mentioned above, the external solution 

is diluted to 0.125 M NaCl which generates an imbalance between the inner and the 

outer medium of the sample. 

z-displacement 

Physically, to balance of difference in ion concentration created between inside and 

outside of the tissue, two flows appear: (i) water incoming flow that causes swelling of 

the sample and (ii) outgoing ion flows. When ion diffusivity is high, the increment of 

the velocity in outgoing flux of ions produces that these ions flow toward the external 

bath to equilibrate the concentration disbalance. Thus, water entrance to the sample is 

reduced. Figure 4.a shows this tendency. When D+ = D- = 0.79·10-9 m2/s, the maximal z-

displacement obtained is 1.99·10-6 m. When diffusivities are reduced, the model shows 

lower swelling of the sample reaching its minimum level at 7.08·10-10 m for D+ = D- = 
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1.34·10-9 m2/s. High values of ion diffusivity coefficients are related to different 

cartilage pathologies such as the osteoarthritis (Deng et al., 2007; Filidoro et al., 2005).  

Water and ion fluxes 

Again water, cation and anion fluxes at 90 s are shown again. Three-dimensional 

computational simulation results show the typical flux pattern exhibited in previous 

studies. Samples clearly highlights the upper as the one with higher outflow zone of 

cations with J+ = -7.83·10-5 mol/s and J- = -8.90·10-5 mol/s for anions when considering 

lower values of D+ = D- = 1.34·10-9 m2/s. When diffusivities are increased, simulations 

show how both cation and anion fluxes increase J+ = -1.78·10-5 mol/s and J- = -1.93·10-5 

mol/s) while outflow of water is reduced in the upper surface (Figure 4.b). 

 

(a)  
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(b)  

Figure 4: (a) Surface displacement obtained with the 3D computational model as function of the tissue 

ion diffusivity coefficients (D+, D-). The rest of model parameters are included in Table 1. (b) Z-

displacement (uz), water (Jw), cation (J+) and ion (J-) fluxes obtained with the 3D computational model 

during 90 seconds of simulated time for D+ = D- = 1.34·10-9 m2/s and D+ = D- = 1.44·10-9 m2/s. Note that 

negative fluxes for each studied species correspond to the emergence of that component from the 

sample to the external bath. Conversely, positive fluxes refer to the entrance of the different 

components (water or ions) into the sample (tissue gain of material). Rest of parameters included in 

Table 1. 
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3.2.2 Ion activity coefficients 

Finally, activity coefficients of cations and anions are also analyzed. Ion activity 

coefficients give a measure of the amount of ions that react in the solution. These 

parameters are of special interest in degenerative processes. Dai et al. in 1996 in their 

pioneer work demonstrated that in cartilage degenerative processes (Dai et al. 1996), 

where a sharp reduction of proteoglycans occurs and the subsequent decrement in 

fixed charge density, an increment in activity coefficient of ions was evidenced. Thus, 

in the present parametric study the effects of activities variation have been modelled 

to analyze its effect in articular cartilage behavior. Similar to ion diffusivity coefficients, 

high ion activity coefficients are commonly associated to cartilage pathologies such as 

osteoarthritis (Sun et al., 2004; Mow and Guo 2002; Sun et al., 1999).  

z-displacement 

Similar to diffusivity of ions, ion activity coefficients increase in case of cartilage 

degeneration. For high values of ion activity coefficients, the amount of ions that react 

inside the tissue is higher. Subsequently, the formation of salt generates higher 

disbalance between inside and outside the tissue. Then, the flux of water required to 

return the steady-state of the tissue is higher. So, simulation results show a maximal 

upper surface displacement of 8.79·10-8 m after 200 s of simulated time for 𝛾𝛾+ = 𝛾𝛾− =

 0.72 (see Figure 5.a). When this value decreases, swelling of the sample is significantly 

reduced. Anyhow, ion activity coefficients seem to have a lesser effect in cartilage 

behavior than the other parameters.  

Water and ion fluxes 
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The influence of ion activity coefficients in water and ion fluxes has also been 

considered. Results demonstrate that, similar to diffusivity, higher values of  𝛾𝛾+  and  

𝛾𝛾− yield the highest water incoming flow, 3.26·10-9 m3/s and cation (J+ = 5.50·10-5 

mol/s) and anion (J- = 6.24·10-5 mol/s) outflows. A slight reduction of all fluxes is 

evidenced when decreasing these ion activity coefficients as shown is Figure 5.b.  

 

(a)  
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(b)  

Figure 5: (a) Surface displacement obtained with the 3D computational model as function of the tissue 

ion activity coefficients (γ+, γ-). The rest of model parameters are included in Table 1. (b) Z-displacement 

(uz), water (Jw), cation (J+) and ion (J-) fluxes obtained with the 3D computational model during 90 

seconds of simulated time for γ+ = γ- = 0.72 and γ+ = 0.527; γ- = 0.677. Note that negative fluxes for 

each studied species correspond to the emergence of that component from the sample to the external 

bath. Conversely, positive fluxes refer to the entrance of the different components (water or ions) into 

the sample (tissue gain of material). Rest of parameters included in Table 1. 
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4 Conclusions 

In this work, a parametric study of the main mechano-electrochemical parameters of 

articular cartilage has been performed. To this aim, a previous developed three-

dimensional mechano-electrochemical model has been used to analyze and quantify 

the influence of each parameter in cartilage behavior (Manzano et al. 2014a; Manzano 

et al. 2014b). Specifically, E , ν, D+, D-, γ+ and γ-  effects have been addressed. To our 

knowledge, this is the first parametric study that determines the influence of these 

properties in an individual manner in cartilage behavior, resulting in a fundamental 

guide to select the main parameters required for articular cartilage simulation. The 

relevance of this previous validated model and its current application lies on the 

impossibility of setting up the parametric variation and subsequent analysis 

experimentally. 

Under these conditions, the obtained results demonstrate that (i) only the 

consideration of collagen fibers degradation by reducing the E results in higher values 

of tissue swelling. Thus, in contrast with other authors that remark the necessity of 

including proteoglycan associated reduction, only collagen degradation is essential to 

promote tissue swelling. (ii) Regarding ν, there is a general tendency to include this 

parameter in computational simulation as a constant and no experimental 

measurement is usually developed to determine its variation upon age, sex or part of 

the body where the tissue is found. However, results derived from this work showed 

that a minimal variation in ν generates significant differences in tissue swelling and 

water and ion fluxes. Therefore, it is essential to include consistent values of ν as well 

as its correlation with the rest of mechanical properties in computational simulation to 



27 
 

capture the correct articular cartilage behavior. Besides, both, E and ν, have been 

shown to be the parameters with more influence in tissue behavior, among all studied 

properties. (iii) Variation in ion diffusivities seems to have less influence in cartilage 

behavior than the other mechanical parameters. In the other hand, they control the 

velocity of ion outgoing fluxes toward the external bath and limit the incoming flux of 

water. Thus, they also control swelling and tissue behavior but less than previously 

analyzed parameters. Finally, (iv) high values of ion activity coefficients generate 

higher disbalance between inside and outside the tissue, however, similar to ion 

diffusivities their influence is lower (one order or magnitude less) than the studied 

mechanical properties. Additionally, since articular cartilage behaviour has been 

evidenced to be very sensitive to variation of several mechano-electrochemical 

parameters, the use of additional sophisticated tools for parametric sensitivity analysis 

is suggested (Ramtani 2007; Raghavan and Vorp 2000). Their use could help in the 

better understanding of the involved parameters.    

With all this, we consider that this parametric study represents a valuable tool to 

predict and quantify the impact of each mechano-electrochemical parameter into 

tissue deformation capacity.  
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