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Abstract

Background and Objective Classification of gene expression data is

the common denominator of various biomedical recognition tasks. How-

ever, obtaining class labels for large training samples may be difficult or

even impossible in many cases. Therefore, semi-supervised classification

techniques are required as semi-supervised classifiers take advantage of

unlabeled data.

Methods Gene expression data is high-dimensional which gives rise to

the phenomena known under the umbrella of the curse of dimensionality,

one of its recently explored aspects being the presence of hubs or hub-

ness for short. Therefore, hubness-aware classifiers have been developed

recently, such as Naive Hubness-Bayesian k-Nearest Neighbor (NHBNN).

In this paper, we propose a semi-supervised extension of NHBNN which

follows the self-training schema. As one of the core components of self-

training is the certainty score, we propose a new hubness-aware certainty

score.

Results We performed experiments on publicly available gene expres-

sion data. These experiments show that the proposed classifier outper-

forms its competitors. We investigated the impact of each of the compo-
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nents (classification algorithm, semi-supervised technique, hubness-aware

certainty score) separately and showed that each of these components are

relevant to the performance of the proposed approach.

Conclusions Our results imply that our approach may increase clas-

sification accuracy and reduce computational costs (i.e., runtime). Based

on the promising results presented in the paper, we envision that hubness-

aware techniques will be used in various other biomedical machine learn-

ing tasks. In order to accelerate this process, we made an implementation

of hubness-aware machine learning techniques publicly available in the

PyHubs software package (http://www.biointelligence.hu/pyhubs) imple-

mented in Python, one of the most popular programming languages of

data science.

Keywords Gene expression, machine learning, semi-supervised classi-

fication, high dimensionality.

1 Introduction

Various tissues are characterized by different gene expression patterns. Ad-

ditionally, a number of diseases and disease subtypes may be associated with

characteristic gene expression patterns. Therefore, recognition tasks related to

gene expression data may contribute to the diagnosis of various diseases such

as colon cancer, lymphoma, lung cancer and subtypes of breast cancer [9]. Due

to the large amount of data (e.g., even if we consider just a single patient, ex-

pression levels of thousands of genes may be measured), such recognition tasks

are typically solved by computers, and state-of-the-art solutions are based on

machine learning.

In case of supervised machine learning, a previously collected dataset (e.g.,

gene expression levels measured for a set of patients) together with evidence

or indication (e.g., the presence, absence or subtype of a particular disease for
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each patient) is used to induce a decision model, called classifier. Once the

classifier is induced, it will be able to solve the recognition task for new data

instances (e.g., the classifier will be able to recognize the subtype of cancer for

new patients). With training the classifier we refer to the induction of the model,

while the data used to induce the model is called training data. If the data is

associated with evidence, it is called labeled data, e.g., a labeled dataset may

contain gene expression levels together with the information describing which

patient has which subtype of cancer, in contrast, if only the gene expression

levels are available without knowing the subtype or presence of the disease, the

dataset is unlabeled. The value of the evidence is called label, e.g., if a patient

has estrogen receptor positive (ER+) subtype of breast cancer, we say its label

is “ER+” (at the technical level, labels are usually coded by integer numbers,

such as 0 for “ER+” and 1 for “ER−”).

The classification task is challenging for several reasons. Usually, the ex-

pression levels of several thousands of genes are measured, therefore, the data is

high-dimensional which gives rise to the phenomena known under the umbrella

of the curse of dimensionality [3]. While well-studied aspects of the curse are

the sparsity and distance concentration, see e.g. [19], a recently explored aspect

of the curse is the presence of hubs [14], i.e., instances that are similar to sur-

prisingly many other instances. According to recent observations, the presence

of hubs characterizes gene expression datasets [10],[15]. A hub is said to be bad

if its class label differs from the class labels of those instances that have this

hub as one of their k-nearest neighbors. In the context of k-nearest neighbor

classification, bad hubs were shown to be responsible for a surprisingly large

portion of the total classification error.

Recently, algorithms have been developed under the umbrella of hubness-

aware data mining, see e.g. [5],[12],[13],[15],[22],[25],[26],[20] and [21] for a sur-
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vey. These algorithms try to recognize bad hubs and reduce their influence on

classifications of unlabeled instances.

It may be expensive (or even impossible in case of rare diseases) to collect

large amount of labeled gene expression data, therefore, we have to account for

the fact that only relatively few labeled instances are available which may not

reflect the structure of the classes well enough. Therefore, while training the

classifier, in addition to learning from labeled data, the classifier should be able

to use unlabeled data too in order to discover the structure of the classes.

In this paper we introduce a semi-supervised hubness-aware classifier, i.e., a

classifier that uses both labeled and unlabeled data for training. In particular,

our approach is an extension of the Naive Hubness Bayesian k-Nearest Neighbor,

or NHBNN for short [23], which is one of the most promising hubness-aware

classifiers. As we will show, straightforward incorporation of semi-supervised

classification techniques with NHBNN leads to suboptimal results, therefore,

we develop a hubness-aware inductive semi-supervised classification scheme. We

propose to use our classifier for recognition tasks related to gene expression data.

To our best knowledge, this paper is the first that studies hubness-aware semi-

supervised classification of gene expression data.

2 Methods

Semi-supervised classification, often in a general data mining context, i.e., with-

out special focus on the analysis of genetic data, has been studied intensively,

see e.g. [6],[11] and the references therein for related works on semi-supervised

classification. In order to ensure that our study is self-contained, we begin this

section by reviewing the Naive Hubness Bayesian k-Nearest Neighbor (NHBNN)

classifier [23] and the self-training semi-supervised learning technique in Sec-

tion 2.1 and Section 2.2. The presentation of NHBNN and self-training is based
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on [21] and [11] respectively. Subsequently, we describe our proposed semi-

supervised approach in Section 2.3, which is followed by the methods used for

the experimental evaluation in Section 2.4.

2.1 NHBNN: Naive Hubness Bayesian k-Nearest Neigh-

bor
Notation

Nk(x) de-

notes the set

of k-nearest

neighbors of x.

P (y = C|Nk(x))

denotes probabil-

ity that x belongs

to class C given

its nearest neigh-

bors.

P (x ∈ Nk|C)

denotes the

probability of

the event that x

appears as one

of the k-nearest

neighbors of any

labeled training

instance belong-

ing to class C.

P (C) denotes

the prior prob-

ability of the

event that an

instance belongs

to class C.

We aim at classifying instance x∗, i.e., we want to determine its unknown class

label y∗. We use Nk(x∗) to denote the set of k-nearest neighbors of x∗. For

each class C, Naive Hubness Bayesian k-Nearest Neighbor (NHBNN) estimates

P (y∗ = C|Nk(x∗)), i.e., the probability that x∗ belongs to class C given its

nearest neighbors. Subsequently, NHBNN selects the class with highest proba-

bility.

NHBNN follows a Bayesian approach to assess P (y∗ = C|Nk(x∗)). For each

labeled training instance x, one can estimate the probability of the event that

x appears as one of the k-nearest neighbors of any labeled training instance

belonging to class C. This probability is denoted by P (x ∈ Nk|C). While

calculating nearest neighbors, throughout this paper, an instance x is never

treated as the nearest neighbor of itself, i.e., x 6∈ Nk(x).

Assuming conditional independence between the nearest neighbors given the

class, P (y∗ = C|Nk(x∗)) can be assessed as follows:

P (y∗ = C|Nk(x∗)) ∝ P (C)
∏

xi∈Nk(x∗)

P (xi ∈ Nk|C). (1)

where P (C) denotes the prior probability of the event that an instance belongs

to class C. From the labeled training data, P (C) can be estimated as

P (C) ≈ |D
lab
C |

|Dlab|
, (2)
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Figure 1: Running example used to illustrate NHBNN. Labeled training in-
stances belong to two classes, denoted by circles and rectangles. From each
labeled training instance, a directed edge points to its first nearest neighbor
among the labeled training instances. The triangle is an instance to be classi-
fied. For details, see the description of NHBNN.

where |DlabC | denotes the number of labeled training instances belonging to class

C and |Dlab| is the total number of labeled training instances. The maximum

likelihood estimate of P (xi ∈ Nk|C) is the fraction Notation

(cont.)

Nk,C(x) de-

notes how many

times x occurs

as one of the k-

nearest neighbors

of labeled train-

ing instances

belonging to

class C.

P (xi ∈ Nk|C) ≈ Nk,C(xi)

|DlabC |
, (3)

where Nk,C(xi) denotes the (k,C)-occurrence of an instance xi, i.e., how many

times xi occurs as one of the k-nearest neighbors of labeled training instances

belonging to class C.

Example. Fig. 1 shows a simple two-dimensional example, i.e., instances,

denoted from now on as x1, . . . , x11 in text, correspond to points of the plane.

In this example, we use k = 1. In Fig. 1, a directed edge points from each

labeled training instance to its first nearest neighbor among the labeled training

instances. In other words: the nearest neighbor relationships shown in the Fig. 1

are calculated solely on the labeled training data.

Out of the ten labeled training instances, six belong to the class of circles (C1)

and four belong to the class of rectangles (C2). Thus: |DlabC1
| = 6, |DlabC2

| = 4,
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P (C1) = 0.6 and P (C2) = 0.4. Next, we calculate Nk,C(xi) for both classes and

classify x11 using its first nearest neighbor, i.e., x6. In particular, Eq. (3) leads

to

P (x6 ∈ N1|C1) ≈ N1,C1
(x6)

|DlabC1
|

=
0

6
= 0

and

P (x6 ∈ N1|C2) ≈ N1,C2
(x6)

|DlabC2
|

=
2

4
= 0.5.

According to Eq. (1) we calculate

P (y11 = C1|N2(x11)) ∝ 0.6× 0 = 0

and

P (y11 = C2|N2(x11)) ∝ 0.4× 0.5 = 0.2.

As P (y11 = C2|N2(x11)) > P (y11 = C1|N2(x11)), x11 will be classified as a

rectangle.

The previous example also illustrates that estimating P (xi ∈ Nk|C) accord-

ing to (3) may simply lead to zero probabilities. In order to avoid this, we can

use a simple Laplace-estimate for P (xi ∈ Nk|C) as follows:

P (xi ∈ Nk|C) ≈ Nk,C(xi) +m

|DlabC |+mq
, (4)

where m > 0 and q denotes the number of classes. Informally, this estimate can

be interpreted as follows: we consider m additional pseudo-instances from each

class and we assume that xi appears as one of the k-nearest neighbors of the

pseudo-instances from class C. We use m = 1 in our experiments.

Even though (k,C)-occurrences are highly correlated, as shown in [21] and [23],

NHBNN offers improvement over the basic kNN. This is in accordance with
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other results from the literature that state that Naive Bayes can deliver good

results even in cases with high independence assumption violation [16].

2.2 Self-training

Self-training is one of the most commonly used semi-supervised algorithms.

Self-training is a wrapper method around a supervised classifier, i.e., one may

use self-training to enhance various classifiers. To apply self-training, for each

instance x∗ to be classified, besides its predicted class label, the classifier must

be able to output a certainty score, i.e., an estimation of how likely the predicted

class label is correct.

Self-training is an iterative process during which the set of labeled instances

is grown until all the instances become labeled. Let Lt denote the set of labeled

instances in the t-th iteration (t ≥ 0) while Ut shall denote the set of unlabeled

instances in the t-th iteration. L0 denotes the instances that are labeled initially,

i.e., the labeled training data, while U0 denotes the set of initially unlabeled

instances. In each iteration of self-training, the base classifier is trained on

the labeled set Lt. Then, the base classifier is used to classify the unlabeled

instances. Finally, the instance with highest certainty score is selected. This

instance, together with its predicted label ŷ, is added to the set of labeled

instances in order to construct Lt+1 the set of labeled instances in the next

iteration. We refer to [11] for the pseudocode and an illustration of the self-

training algorithm.

If an unlabeled instance is classified incorrectly and this instance is added

to the training data of the subsequent iterations, this may cause a chain of

classification errors. Therefore, as noted in [8], it may be worth to stop self-

training after a moderate number of iterations and use the resulting model to

label all the remaining unlabeled instances.
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2.3 Certainty Estimation for NHBNN

In order to allow NHBNN to be used in self-training mode, we only need to

define an appropriate certainty score. A straightforward certainty score may be

based on the probability estimates as follows:

certainty(x∗) =

P (C ′)
∏

xi∈Nk(x∗)

P (xi ∈ Nk|C ′)∑
Cj∈C

(
P (Cj)

∏
xi∈Nk(x∗)

P (xi ∈ Nk|Cj)
) . (5)

where C ′ denotes the class with maximal estimated probability and C denotes

the set of all the classes. In the example shown in Fig. 1, the above certainty

estimate gives

0.2

0 + 0.2
= 1

when classifying x11.

However, this certainty estimate does not take into account that, usually,

unlabeled instances appearing as nearest neighbors of many labeled instances

can be classified more accurately as these instances are expected to be located

“centrally” in the dataset, i.e., they appear in relatively dense regions of the

data, see e.g. [25]. Therefore, we propose to use the following hubness-aware

certainty score: Notation

(cont.)

N ′
k(x) denotes

how many times

x occurs as one

of the k-nearest

neighbors of

other instances

when considering

Dlab ∪ {x}.

hc(x∗) =

(
N ′k(x∗)

)α
P (C ′)

∏
xi∈Nk(x∗)

P (xi ∈ Nk|C ′)∑
Cj∈C

(
P (Cj)

∏
xi∈Nk(x∗)

P (xi ∈ Nk|Cj)
) , (6)

where N ′k(x∗) denotes how many times instance x∗ appears as one of the k-

nearest neighbors of other instances when considering the labeled training data

Dlab together with the unlabeled instance x∗, i.e., Dlab ∪{x∗} and α is a hyper-

parameter that controls the contribution of N ′k(x∗) to the value of certainty

score. Please note that in order to calculate hc(x∗), we do not take other
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unlabeled instances into account.

According to our empirical results (see Section 3), the above certainty esti-

mation works well with α = 0.2 in various domains ranging from breast cancer

over colon cancer to lung cancer, therefore we use α = 0.2 by default. In the

example shown in Fig. 1, the above certainty estimate gives

20.2 × 0.2

0 + 0.2
≈ 1.149

when classifying x11, as x11 appears as nearest neighbor of x6 and x9 when

considering all the eleven instances for the computation of the nearest neighbor

relationships (we assume that the distance between x11 and x9 is lower than

the distance between x9 and x6, therefore, x11 will be the nearest neighbor of

x9 when considering all the instances).

2.4 Datasets and Methods for Evaluation

Datasets. We used publicly available gene expression data of breast cancer

tissues [18], colon cancer tissues [1], and lung cancer tissues [2]. In these datasets,

the expression levels of 7650, 6500 and 12,600 genes have been measured for 95,

62 and 203 patients respectively. The breast and colon cancer datasets had two

classes, while the lung cancer dataset had five classes. In all the cases, classes

correspond to subtypes of the disease or healthy tissues, see [9] for details. Out of

the five classes of the lung cancer dataset, we ignored one because extraordinarily

few instances (in particular, only six instances) belonged to that class.

Experimental protocol. We simulated two scenarios in which the available

training data is not fully representative. In both scenarios, we selected a few

instances as labeled training data while the remaining instances were considered

as unlabeled data. The classifiers were evaluated on this unlabeled data. The
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true class labels of the “unlabeled instances” were given in the datasets, how-

ever, these true class labels were only used for evaluation, i.e., the labels of the

“unlabeled instances” were unknown to the classifier.

In the first scenario, denoted as BreastCancer-B, ColonCancer-B and Lung-

Cancer-B we considered five randomly selected instances per class as labeled

training data. This results in balanced distribution of classes in the labeled

training data whereas the entire datasets were class-imbalanced [9].

In the second scenario, denoted as BreastCancer-I, ColonCancer-I and Lung-

Cancer-I, we considered an imbalanced sample as labeled training data. In order

to ensure a challenging classification task in which the labeled training data

is not representative, we selected 5 instances from the majority class and 10

instances from the minority class(es) as labeled training data. By default, we

report results observed in the first (balanced) scenario, unless the opposite is

stated explicitly.

We repeated all the experiments 100 times with 100 different initial random

selections of the labeled training instances. We measured the performance of

the classifiers in terms of classification accuracy, i.e., the fraction of correctly

classified unlabeled instances, macro-averaged F1-score and Matthews correla-

tion coefficient (MCC). Both F1-score and MCC were aggregated over the runs

and classes. We report the average and standard deviation of the accuracies

achieved in the aforementioned 100 runs. Additionally, we used binomial test

as suggested in [17], in order to judge if the differences between our approach

and the baselines are statistically significant. We performed the aforementioned

binomial test in each of the 100 runs and considered the difference to be statis-

tically significant if the median of the resulting p-values was less than 0.05.

Compared Methods. We focus on the comparison of the following approaches:

• NHBNN-HS, i.e., NHBNN in self-training mode with the proposed hubness-
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aware certainty score according to Formula (6),

• NHBNN-Simple, i.e., NHBNN in self-training mode with the straightfor-

ward certainty score according to Formula (5),

• k-NN in self-training mode with the proposed hubness-aware certainty

score according to Formula (6),

• NHBNN-SV, i.e., supervised NHBNN that uses only the labeled training

instances but does not learn from the unlabeled data,

• HFNN, i.e., Hubness-aware Fuzzy Nearest Neighbors, which is a hubness-

aware supervised classifier, therefore, it uses only the labeled training in-

stances but does not learn from the unlabeled data, see [26] for more

details,

• GRF, i.e., semi-supervised classification with Gaussian Random Fields1

based on [29].

Additionally, we run experiments with other classifiers, in particular SVMs and

supervised k-NN.

In accordance with [22], by default, we used k = 5 for all the aforementioned

variants of NHBNN and k-NN. Note, however, that we performed experiments

with other k values as well and we observed similar trends. As distance measure,

we used the Cosine distance with all the aforementioned classifiers.

For semi-supervised classifiers, by default, we report results for 20 iterations

of self-training, i.e., 20 instances were labeled and added to the training set iter-

atively (one instance was labeled in each iteration) and then the model resulting

after the 20th iteration was used to label all the remaining unlabeled instances.

1We predicted class labels according to Formula (5) in [29]. We note that in order to
avoid numerical problems, we set GRF’s length scale hyperparameters σd as 100-times the
standard deviation of the d-th “component”, which is the expression level of the d-th gene, in
our case. In case of the binary classification tasks, we used the “default” decision threshold of
0.5. In case of the non-binary classification tasks, LungCancer-B and LungCancer-I, we used
the one-vs-rest protocol with GRF.
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3 Results

Table 1 and Table 2 show the accuracy and F1-score of our approach and the

baselines. Our approach, NHBNN-HS, consistently outperforms all the exam-

ined baselines on all the three datasets in both scenarios. The only exception

is in case of BreastCancer-I when NHBNN-HS performs slightly worse than

NHBNN-Simple, although the difference is not significant statistically. We note

that even in this case, NHBNN-HS significantly outperforms k-NN, HFNN and

GRF. We observed similar trends when we evaluated our approach and the

baselines in terms of MCC. Fig. 2 shows that NHBNN-HS systematically out-

performs its competitors for various k values, except for k = 1. The diagrams

in the top of Fig. 3 show the accuracy of our approach as function of α, i.e., the

exponent of N ′k(x∗) in Formula (6). As one can see, α = 0.2 can be considered

as a reasonable “default” setting of α. The diagrams in the bottom of Fig. 3

show the accuracy of our approach, NHBNN-HS, and NHBNN-Simple as func-

tion of the number of self-training iterations. For comparison, the accuracy of

the NHBNN-SV is shown as well. As one can see, NHBNN-HS systematically

outperforms NHBNN-Simple for various settings of the number of iterations.

Additionally, we tried (a) supervised k-NN and (b) support vector machines

from the Weka software package [28] with polynomial and RBF kernels with

various settings of the complexity constant and the exponent of the polynomial

kernel. According to our observations, self-training was not able to substan-

tially improve the performance of SVMs overall: SVMs without self-training

performed as well as (or sometimes even better than) SVMs with self-training.

More importantly, NHBNN-HS was competitive to SVMs, too: for example on

the Breast Cancer and Colon Cancer datasets, best performing SVMs achieved

classification accuracy of 0.781 and 0.705 respectively.

Despite the fact that cancer is a multifactorial disease, and therefore it is
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Figure 2: Accuracy of our approach, NHBNN-HS, and its competitors for vari-
ous k values on the BreastCancer dataset.

inherently difficult, if not impossible, to determine the reason why an individual

patient got the disease, we argue that the model built by NHBNN, i.e., the con-

ditional probabilities describing how often characteristic patients (hubs) appear

as nearest neighbors of patients from different classes, may be more interpretable

to human experts than the model built by SVMs. Regarding supervised k-NN,

we note that NHBNN-HS outperformed supervised k-NN as well which is in

accordance with the previous results.

4 Discussion

As one can see from Table 1, both the algorithm and the certainty score are

relevant: both NHBNN in self-training mode with the straightforward certainty

score and k-NN with the hubness-aware certainty score achieve suboptimal ac-

curacy compared with our approach NHBNN-HS. Furthermore, as we expected,

semi-supervised classification outperforms supervised classification as it can be

seen from the comparison against NHBNN-SV. These observations are con-

firmed by the results in case of various k values as shown in Fig. 2.

As one can see in the bottom of Fig. 3, on the Breast Cancer and Colon

Cancer datasets NHBNN-HS and NHBNN-Simple converge to similar accura-
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Table 1: Accuracy ± its standard deviation for our approach, NHBNN-HS, and
the baselines averaged over 100 runs. Bold font denotes the best approach for
each dataset. The symbols •/◦ denote if the differences between NHBNN-HS
and its competitors are statistically significant (•) or not (◦).

BreastCancer-B ColonCancer-B LungCancer-B

NHBNN-HS 0.844 ± 0.040 0.808 ± 0.086 0.798 ± 0.128

NHBNN-Simple 0.835 ± 0.049 ◦ 0.790 ± 0.082 ◦ 0.679 ± 0.114 •
k-NN 0.649 ± 0.155 • 0.650 ± 0.162 ◦ 0.674 ± 0.329 ◦
NHBNN-SV 0.756 ± 0.103 ◦ 0.637 ± 0.139 • 0.617 ± 0.125 •
HFNN 0.753 ± 0.107 ◦ 0.633 ± 0.139 • 0.558 ± 0.130 •
GRF 0.619 ± 0.138 • 0.442 ± 0.154 • 0.621 ± 0.234 •

BreastCancer-I ColonCancer-I LungCancer-I

NHBNN-HS 0.831 ± 0.080 0.845 ± 0.035 0.876 ± 0.066

NHBNN-Simple 0.835 ± 0.065 ◦ 0.817 ± 0.047 ◦ 0.755 ± 0.086 •
k-NN 0.465 ± 0.251 • 0.615 ± 0.281 ◦ 0.482 ± 0.335 •
NHBNN-SV 0.795 ± 0.093 ◦ 0.719 ± 0.110 ◦ 0.657 ± 0.103 •
HFNN 0.569 ± 0.185 • 0.477 ± 0.152 • 0.499 ± 0.125 •
GRF 0.275 ± 0.000 • 0.255 ± 0.000 • 0.094 ± 0.027 •

cies. In contrast, the proposed approach, NHBNN-HS converges to a much

better solution on the Lung Cancer dataset.

Based on the observations above, we note that even in cases in which NHBNN-

HS and NHBNN-Simple converge to the same solution, NHBNN-HS is prefer-

able to NHBNN-Simple as (i) the former may lead to more accurate results if

the number of self-training iterations is fixed or (ii) the same accuracy may be

achieved in fewer self-training iterations. For example, on the Breast Cancer

dataset, NHBNN-HS achieves an accuracy of 0.84 in just 13 iterations, whereas

NHBNN-Simple requires 31 iterations to achieve the same accuracy, while on the

Lung Cancer dataset, NHBNN-HS achieves an accuracy of 0.75 in 13 iterations,

whereas NHBNN-Simple requires 36 iterations to achieve the same accuracy.

As shown in the top of Fig. 2, hyper-parameter α that controls the contri-

bution of N ′k(x∗) to the value of the certainty score effects the performance of
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Table 2: Macro-averaged F1-scores of our approach, NHBNN-HS, and the base-
lines. Bold font denotes the best approach for each dataset.

BreastCancer-B ColonCancer-B LungCancer-B

NHBNN-HS 0.828 0.789 0.801

NHBNN-Simple 0.817 0.781 0.756

k-NN 0.594 0.581 0.793

NHBNN-SV 0.746 0.642 0.729

HFNN 0.745 0.638 0.706

GRF 0.416 0.367 0.407

BreastCancer-I ColonCancer-I LungCancer-I

NHBNN-HS 0.810 0.806 0.823

NHBNN-Simple 0.814 0.792 0.762

k-NN 0.521 0.645 0.727

NHBNN-SV 0.784 0.725 0.726

HFNN 0.669 0.619 0.686

GRF 0.216 0.203 0.399

the proposed approach which is in accordance with our expectations: setting

α = 0, the certainty scores of Formula (6) reduces to the straightforward cer-

tainty score of Formula (5). On the other hand, higher values of α result in

increased influence of the N ′k(x∗). While it is important to take N ′k(x∗) into

account in the certainty score, as our observations show, the balance between

the hubness-score N ′k(x∗) and the straightforward certainty scores leads to the

overall best results.

Assuming that the distances between instances can be pre-calculated and

cached, NHBNN-HS can be implemented with minimal additional computa-

tional costs compared with NHBNN-Simple. For each labeled instance, we only

need to record the distance to its k-th nearest neighbor among the labeled in-

stances. Let us call this distance the k-distance of a labeled instance. Let us

consider a labeled instance x and an unlabeled instance x∗. By comparing the

k-distance of x and the distance between x and x∗, one can simply decide if x∗

16



Figure 3: Accuracy of our approach, NHBNN-HS as function of: (i) α, i.e., the
parameter controlling the contribution of N ′k(x∗) to the certainty score (in the
top), and (ii) the number of self-training iterations (in the bottom). Addition-
ally, the accuracy of NHBNN-Simple and NHBNN-SV is shown in the diagrams
in the bottom.

appears as one of the nearest neighbors of x when considering Dlab∪{x∗}. This

way, N ′k(x∗) can be calculated quickly. At the end of each self-training iteration,

k-distances are to be updated based on the instance(s) that became labeled in

that iteration. As these operations require minimal additional computational

costs compared to other costs of the learning algorithm (such as distance calcu-

lations), for the same number of self-training iterations, the computational costs

of NHBNN-HS and NHBNN-Simple are approximately the same. Taking the

previous observations into account, we conclude that NHBNN-HS may achieve

more accurate results with (approximately) the same computational costs, or

the same accuracy with remarkably less computational costs.

While instances may influence classification decisions in many ways, hubs

are generally known to play a crucial role in classification decisions. Specifically,

in case of NHBNN, hubs influence the neighbour occurrence profiles of many
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instances, i.e., they affect the conditional probabilities P (xi ∈ Nk|C) of many

instances.

Figure 4: Excerpt from the gene expression profiles of two characteristic patients
(hubs) of the Breast Cancer dataset.

To demonstrate that the proposed approach is indeed able to label hubs

correctly, we selected two patients from the BreastCancer dataset, identified

by X21600 and X21621 respectively. X21600 has ER+ subtype of breast can-

cer and appears as one of the k-nearest neighbors (k = 5) of 24 other ER+

patients, while it appears as one of the nearest neighbors of only one ER− pa-

tient. X21621 has ER− subtype of breast cancer and appears as one of nearest

neighbors of 11 other patients, each of them having ER− subtype of breast can-

cer. The expression levels of the genes with descriptions containing “BRCA” is

depicted in Figure 4 for these two patients. We considered the runs when these

instances were not among the initially labeled instances and we observed that

NHBNN-HS labeled X21621 always correctly, while it labeled X21600 in 97% of

the aforementioned runs correctly. This illustrates that NHBNN-HS performs

well in terms of labeling of the “most important” instances.

Next, we discuss the performance of GRF. One of the most important hyper-

parameters of GRF, which may affect its performance, is the decision threshold.

In our experiments, we used the “default” value of 0.5, which is called harmonic

threshold in [29]. This selection is in accordance with our assumption that only
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a small set of labeled instances is given and this set is not a fully representative

sample of the unlabeled data. On the other hand, in several practical appli-

cations, additional information might be available which allows to set GRF’s

decision threshold in a more informed way.

4.1 Concluding Remarks

In many applications, obtaining reliable class labels for large training samples

may be difficult or even impossible. Therefore, semi-supervised classification

techniques are required as they are able to take advantage of unlabeled data.

Some of the most prominent recent methods developed for the classification of

high-dimensional data follow the paradigm of hubness-aware data mining. How-

ever, hubness-aware classifiers have not been used for semi-supervised classifica-

tion tasks previously. Therefore, in this paper, we introduced a semi-supervised

hubness-aware classifier and we showed that it outperforms all the examined

relevant baselines on the classification of gene expression data.

Based on the promising results presented in the paper, we envision that

hubness-aware techniques will be used in further biomedical recognition tasks

such as ECG-based person identification [7], diagnosis of schizophrenia [4] or

link prediction in biomedical networks [27]. In order to accelerate this process,

we made an implementation of hubness-aware machine learning techniques pub-

licly available in the PyHubs software package on our website.2 The PyHubs

software package is implemented in Python, one of the most popular program-

ming languages of data science. PyHubs may be seen as complementary to

HubMiner [24] which is a Java-based implementation of hubness-aware machine

learning techniques.

2http://www.biointelligence.hu/pyhubs
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