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Abstract

Background and Objective—We live our lives by the calendar and the clock, but time is also 

an abstraction, even an illusion. The sense of time can be both domain-specific and complex, and 

is often left implicit, requiring significant domain knowledge to accurately recognize and harness. 

In the clinical domain, the momentum gained from recent advances in infrastructure and 

governance practices has enabled the collection of tremendous amount of data at each moment in 

time. Electronic Health Records (EHRs) have paved the way to making these data available for 

practitioners and researchers. However, temporal data representation, normalization, extraction 

and reasoning are very important in order to mine such massive data and therefore for constructing 

the clinical timeline. The objective of this work is to provide an overview of the problem of 

constructing a timeline at the clinical point of care and to summarize the state-of-the-art in 

processing temporal information of clinical narratives.

Methods—This review surveys the methods used in three important area: modeling and 

representing of time, Medical NLP methods for extracting time, and methods of time reasoning 

and processing. The review emphasis on the current existing gap between present methods and the 

semantic web technologies and catch up with the possible combinations.

Results—the main findings of this review is revealing the importance of time processing not only 

in constructing timelines and clinical decision support systems but also as a vital component of 

EHR data models and operations.

Conclusions—Extracting temporal information in clinical narratives is a challenging task. The 

inclusion of ontologies and semantic web will lead to better assessment of the annotation task and, 

together with medical NLP techniques, will help resolving granularity and co-reference resolution 

problems.
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1. Introduction

Time is a universal phenomenon that has interested many disciplines of science for many 

years. It provides basic elements for understanding the world in its dynamics: (a) in mining 

actions and changes to recognize pattern evolution, and (b) describing time-oriented 

relations for intelligent decision-making. Similarly, time plays a major role in the clinical 

domain by helping understanding chronological development of clinical procedures such as 

diagnosis (e.g. the order in which symptoms develop), treatment (e.g. time of taking 

medications), and prevention (e.g., signals for pre-disease). Remarkably, researchers have 

avidly studied time concepts and their representations. Mathematicians formulate time 

theories in order to abstract elements of time and temporal entities; philosophers contest 

changes and dynamics since ancient time; physicists, in both Newton’s and Einstein’s 

physics, debate the notions of special time and the dimension of time.

In the clinical domain, patients’ data have been collected over time and recorded in 

Electronic Health Record (EHR) systems; the ever growing complexity of such patterns of 

data reveals challenges in handling its high dimensionality taking into consideration 

complex parameters such as amplitude modifications, time warping and noise. In addition, 

clinical data differs from other time series by the fact that observations are made at irregular 

time intervals, and some of them may be missed or disrupted [1]. Therefore, temporal 

mining will need to provide solutions and innovations in both, theoretical view, such as time 

parameterization and abstraction, and methodological view, such as temporal relations 

extraction and event calculation. Moreover, as we are heading towards the “Big Clinical 

Data” era, we are faced with a torrent of data generated and captured in digital form as a 

result of the advancement of sciences, engineering and information technology. 

Consequently, there is a great potential of new waves of innovation to be aroused on detailed 

trend analyses by taking advantage of this large-scale and high-resolution data sets. 

Nevertheless, the heterogeneity and the complex nature of big data make it challenging to be 

leveraged directly by any algorithms without intensive and manual analysis.

Additionally, approximately 80% of EHR is unstructured [2] [3]. Correspondingly, temporal 

reasoning and interpretation will confront additional challenges as reasoning about time 

requires so-called “common knowledge” which can be notoriously difficult to establish (e.g. 

the yesterday in “yesterday she experienced some pain” could be implemented rigidly as a 

microsecond after midnight). Furthermore, idiosyncratically structured and disparate health 

information suitable for large-scale analyses as well as inference, needs to be dynamically 

transformed into standards. Many grounded researches have been established for better 

extraction of temporal information and providing guidelines for the standardization of 

temporal statements. In this connection, there is yet a gap between semantic inference 

technologies research and clinical and medical NLP approaches. We posit that the 
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fundamental challenges that hinder the secondary use of EHR temporal data include: 1) 

temporal information exists in different formats (structured, semi-structured and non-

structured) [4]; 2) mechanisms to harvest time for specific purposes are not formalized or 

readily available; and 3) Medical Natural Language Processing (Medical NLP) tools are of 

variable quality and completeness with respect to a given extraction purpose.

In this survey, we provide the background approaches of representation and reasoning about 

time-oriented aspects. It is devised in a way that even a non-specialized reader will be able 

to grasp. The current state of this research is inspired by state-of-the-art work in temporal 

annotation and extraction and at the same time reveals relevant issues of research in the near 

future. The paper is organized as follows. The following section overviews the modeling of 

time in the clinical domain; it presents some ontology-based representations and discusses 

temporal reasoning and some applications of time modeling. Section 3 describes the 

handling of time by standardized clinical models of structured data. Section 4 focuses on the 

extraction of temporal information in clinical narratives: it overviews temporal annotation 

schemas and the methods of temporal extraction. Section 5 presents recent work on time 

processing techniques such as time normalization and temporal abstraction and problems 

such as time granularity and temporal co-reference. The last section discusses the 

proposition of our approach for combining semantic web standards and medical NLP tools 

and it concludes this work.

2. Temporal modeling in the clinical domain

The conception of time relies on how we perceive it. People easily distinguish between past, 

present and future, but also, the time is tenseless when defined through a mathematical 

structure. For example, time may be discrete, dense, or continuous according to the 

arithmetical definitions of discreteness, denseness, and continuity respectively. The EHR 

data are rich with statements filled with assertions about time such as patient visits, 

laboratory tests, and disease symptoms and also statements about procedures such as 

diagnosis, prognosis, and medical therapy. Thus, the temporal modeling will provide the 

element to capture all these clinical variables and minimize the risk of information loss [5]. 

In this section we present an overview of methods of representing time and how these 

methods impact the reasoning and other interfaces in the clinical applications.

2.1 Multifaceted aspects of temporal concepts

The requirements of time representation in the clinical domain are many and diverse because 

time is recognized in different ways. Zhou et al [6] realized that time falls into manifold 

categories determined by structure/construct and reference/position and can be represented 

under different aspects such as periodicity and granularity. Table 1 illustrates principal time 

categories and their specifications.

2.2 Temporal representation in the semantic web

The Semantic Web provides a suitable environment for representing the multifaceted 

structures of temporal clinical data. It has gathered the consensuses in time representation in 

many domains for its formality and rich expressiveness [12]. W3C most recommended 
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metadata models and languages have been vividly involved. Web Ontology Language 

(OWL) [13] has been proven to easily incorporate time entities into existing ontologies by 

representing temporal knowledge and time-based information. Temporal Description Logic 

(TDL) [14] has extended standard description logic to capture the evolving behavior of 

dynamic domains. Semantic Web Rule Language (SWRL) [15] is an inferencing rule 

language that has been used for ordering and other forms of reasoning. Temporal RDF 

extended standard RDF by adding an additional dimension of temporal annotation and 

allows for reasoning over incomplete temporal information by combining fuzzy logic [16] 

and undefined intervals techniques [17]. Reification techniques [18] [19] [20] have extended 

OWL’s restriction of unary and binary specification in time relationships by expressing nary 

relations. Temporal querying languages such as t-SPARQL [21] and other extensions of 

SPARQL allow the questioning of RDF triple stores based on temporal descriptions. Many 

ontologies have picked up from these tools for temporal representations. The table 2 

illustrates some of these ontologies.

By and large, these ontologies taken together do not satisfactorily cover some important 

features, such as phase, granular time, and modality. In addition they are meant for the 

general domain and does not fulfill the need of clinical and healthcare applications. For 

these reasons, Clinical Narrative Temporal Relation Ontology (CNTRO) [30] was developed 

towards filling the semantic gap of temporal modeling in the clinical domain. CNTRO is 

meant to annotate temporal expressions and relations in clinical narratives. CNTRO provides 

vocabularies such as Event, Time, Duration, Granularity, Precision, and 

TemporalRelationStatement. The Event is defined to sort occurrences, states, perceptions, 

procedures, symptoms and situations. The Time concept is inherited by some constructs of 

time, like points of time, intervals of time, and periodical time and associated with properties 

such as hasGranularity, hasOrigTime and hasNormalizedTime. TemporalRelationStatement 

is used to describe temporal relations between two events or between an event and a time 

instance. The concepts TimePhase and TimePeriod specify Event concept for representing 

intermittent events. CNTRO has been used for time-oriented question answering in Clinical 

Narratives [31]. The framework provides a query API for users to query represented 

knowledge.

2.3 Temporal reasoning and mining

In recent years, temporal reasoning has gained momentum in clinical applications, partly 

due to the increasing demand for time-related clinical decision support. Many efforts have 

picked up from the latest works on reasoning about temporal relations. Allen’s interval 

algebra, first event ordering systems, has been chosen by many ontology-based reasoning 

systems [31]; however; this theory doesn’t provide accurate precision in ordering intervals 

(e.g. the overlaps relations suffices for the intersection on 1 point in time). The Quality Data 

Model (QDM) [32] has proposed 25 different temporal ordering relations between intervals. 

The constraint propagation algorithm for temporal reasoning [33] and temporal constraint 

networks [34] have extended network-based methods of constraint satisfaction by permitting 

the processing of metric information over continuous variables, and assessing the time 

difference between events. For statistical reasoning, Long [35] used a pseudo-Bayesian 

probabilistic reasoning method to eliminate diagnostic errors such as findings with longer 
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chronic diseases. To manage temporal uncertainty, Palma et al [36] presented a temporal 

model-based diagnosis approach using the fuzzy temporal constraints network (FTCN) 

[127][128]. The proposed model defines temporal patterns that capture temporal and causal 

relations between elements describing the evolution of a disease. Therefore, the diagnostic 

solutions are presented and evaluated in the form of a causal network and possibility theory. 

One emerging solution from that would be designing a medical model that effectively 

combines causal and temporal knowledge, and enable the dynamic derivation of different 

forms of interactions. Table 3 summarizes some Clinical Decision Support systems (CDSS), 

which include temporal reasoning in their core decision systems.

Temporal Data Mining (TDM) [43][44] aimed at extending data mining techniques and 

methods to explicitly handle temporal reasoning which will help find better decisions plans. 

Temporal data mining refers to the extraction of implicit, non-trivial, and potentially useful 

abstract information from large collections of temporal data. Many applications have been 

developed. KarmaLego[41] is a method that exploits the transitivity inherent in temporal 

relations. The usefulness of KarmaLego was proven by finding meaningful temporal patterns 

within a set of records of diabetic patients that were used for classifying multivariate time 

series. Sequential pattern mining [42] and sequential rule mining algorithms [43] have been 

developed to discover sequential rules common to several sequences. The Electronic 

Medical Records (EMR) mining system EMRView[44] enables exploration of the 

relationships precedence between temporal events to identify partial order information of 

patients. We argue that one of the important roles of data mining is to help discovering 

hidden periodic patterns in temporal data.

3. Time representation by standardized clinical models

Many organizations indeed, such as Health Level Seven (HL7), Centre for European 

Normalization (CEN), and Good European Health Record (GEHR) have emphasized on 

structuration and standardization of EHR data in the healthcare arena [45] [46][47]. In this 

section, we highlight the methods of handling time in some standardized clinical data 

models, and we compare their approaches in handling the multifaceted characteristics of 

medical and clinical data.

3.1 Standard clinical models

Rector et al [48] has proposed the method of two-level model, which consists of separating 

clinical data records into two levels: direct observations and the meta-statements [49][50]

[51]. This method has been considered by OpenEHR archetypes [52], Clinical Element 

Models (CEM) [53], and Detailed Clinical Model (DCM) [53]. For example, DCM separates 

out the data generated by functions of record systems from the clinical details, which are 

specific to each record. OpenEHR separates the data level, which is meant to generate 

artifacts from concrete expressions and a processing level, which models the higher-level 

concepts of instructions and actions. In the following we overview the specifications of the 

most important clinical models and we compare their methods of handling time.

Health Level Seven [54] [55] [56] is an international organization developing standards to 

provide a comprehensive frameworks for the exchange, integration, sharing, and retrieval of 
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electronic health information. HL7 standards aim to facilitate transfer of clinical and 

administrative data between hospital information systems[54]. The HL7 Clinical Document 

Architecture (CDA) document is a defined and complete information object that can include 

many types of contents and be conveyed in a HL7 message. The Cancer Data Standards 

Repository caDSR (caDSR CDE) [57] [58] is an open-source license distribution that 

support creating, editing, controlling, deploying, monitoring, and finding reusable medical 

and clinical metadata. It provides a semantic bridge between the data elements in registered 

data objects and standard vocabularies and ontologies. Initially developed to enable quality 

measurement in EHRs, the Quality Data Model (QDM) [32] is intended to enable 

automation of structured data captured during routine care in electronic health records. It 

provides a structure for describing clinical concepts contained within quality measures in a 

standardized format, allowing individuals who monitor clinical performance and outcomes 

(e.g., providers, researchers, or measure developers) to communicate information concisely 

and consistently. Clinical Element Model (CEM) [59] provides an abstract instance model, 

which defines a structure to represent instances of medical data and an abstract constraint 

model, which defines constraints about the abstract instance model. The model uses qualifies 

to represent time and the Coupling Strength as the semantic linking of constraints. 

OpenEHR archetypes [60] allow to specify complex data in an understandable format. 

Archetypes separate informatics concerns and clinical content discussion, enabling therefore 

clinicians to focus on the clinical content instead of technical details. Also they efficiently 

manage the specification of information to share between health care systems [61]

3.2 Comparison of standard models in handling time

The clinical models represent time information in different ways: combining different 

abstraction levels, and using various concepts and relations. The HL7 V 3 provides a 

comprehensive model in terms of covering time and temporal entity concepts. The syntax of 

time is based on the ISO 8601 standard [9] and it has five defined concepts: Point in time, 

Interval, Duration, Periodic time, and Periodic time as sets. Point in time defines a point on 

the axis of natural time; it can be specified as a day and time in the specific calendar or as a 

physical quantity using an epoch and a counter. The definition of points in time is very 

uniform and concise and its granularity is unbounded (i.e. given a precise measuring method 

one can specify the time exact to the millisecond, nanosecond, picosecond, and more). The 

conceptualization of timestamps is independent from any special calendar, and thus can be 

used with many different calendars. In addition, the translations between epoch-granularity-

counter systems (clocks) are simple linear translations between coordinate systems. The 

intervals in HL7 are the generic data type to express a range of values of consecutive points 

in time. An interval is thus a continuous subset of its base data type. Interval is defined by at 

least two of the three properties low boundary, high boundary, and width. Duration is a 

physical quantity that represents a measurement in the dimension of time. Periodic events 

are perfectly represented using periodic continuous functions analysis, which are the 

counterpart of congruence in number theory. Periodic time is represented by periods and 

phases as modulus and remainders respectively, with consideration of an initial time since a 

calendar divides the even flow of time into cycles and counts full cycles in integer numbers. 

The more complex periodic times are expressed based on the simple period/phase model 

(e.g. business hours of a service). This stems from the fact that periodic points in time and 
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periodic intervals of time are special kinds of sets that might be infinite, as the periodic time 

will be defined along the entire time axis from prehistoric past to distant future. HL 7 

represents those temporal entities by combining sets using the operations for union (∪) and 

intersection (∩) to form each complex specification.

On the other hand, time specification in OpenEHR is about potentiality rather than actuality 

(certainty). The time-related datatypes used comprise date, time, date-time, and duration. 

The first three concepts fall into the absolute category while the relative category contains 

only the duration used for expressing durations of clinical phenomena and differences 

between absolute times. One feature taken into account here is that partial or uncertain dates/

times are maintained. Thus, timestamp concept tolerates missing information (day, month, or 

year) or being represented in the format of date-intervals to allow indicating uncertainty. 

This can be useful in many situations, for example when the uncertainty about her date of 

birth; imprecise onsets: 10 ARE +/− 15 min; or when the periodicity of time is not meant to 

be in the strict sense (e.g. “three times a day” not meant to be literally each 8 hours). This 

works with the logic of many applications in the clinical domain when precision in time is 

not a concern or when representing probable occurrences of future events. The table 4 

illustrates a comparison of the standard models mentioned above in handling time. The 

comparison is made according to five entities: point in time, interval, duration, periodic time, 

and periodic time as sets.

To sum up, the standardized clinical models have lot of common similarities as they have 

some differences in the representation of temporal clinical data. These discrepancies can be 

explained by the divergence of their objectives. We realize that both HL7 V3 and QDM 

present some alternatives for representing non-anchored time expressions, only HL 7 V3 

provides representation of cumulative periodic times, and QDM provides an elaborated list 

(25 operators) of temporal interval relations. These models define data types that can be used 

to specify the complex timing of events and processes such as those that occur in clinical 

and medical applications. However, their time models are meant for structured data with 

limited choices of time representation, which remain untapped with the unstructured and 

semi-structured data.

4. Extraction of temporal information

80% of actual clinical data is narrative in nature [2] [3]. One reason is that text is the most 

preferable to humans to keep track of their records. To extract time information existing in 

text and render it machine-readable, computer scientists and linguistics use Medical NLP 

techniques. However, temporal information can be vaguely and implicitly conveyed in 

clinical narratives and discharge summaries, which makes the automation of temporal 

annotation a complex process.

4.1 Temporal clinical guidelines

Many researchers in clinical guidelines inception have picked up from temporal 

representation and modeling advances. From the theoretical view, applications have been 

using clinical data models with standards such specification languages and temporal logic to 

achieve their goals. Time specification languages provide pattern expressions for specified 
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and underspecified temporal expressions. They have been used to annotate events, time 

expressions and temporal relations. The markup language TimeML [62] is the most 

commonly used guideline for temporal annotation. TimeML consists of three types of 

entities EVENTS, TIMEX3s and Signals and three types of relations TLINKS (Temporal 

Links), ALINKS (Aspectual Links) and SLINKS (Subordinate Links). The markup is 

primarily designed to stamp events in absolute timestamp and reason with contextually 

underspecified temporal expressions (e.g. last week, previous visit) in order to sequence the 

events in a chronological timeline and validate their persistence [63]. The TimeML 

specification has been illustrated and proven for the first time using TimeBank [64], an 

English corpus of 186 news articles. Further, the markup has been used in three temporal 

analysis evaluation tasks in the SemEval competitions, namely TempEval-1[65], 

TempEval-2[66], and TempEval-3 [67]. In addition, TimeML has been standardized to ISO-

TimeML [68] to avoid confusion caused by the difference between national notations and to 

increase the portability of the markup language. The ISO-TimeML complies with the 

international standard ISO 8601which specifies numeric representations of date and time. 

Therefore TimeML has been the base for many other annotation schemas. The THYME-

TimeML [69] is an annotation guideline that is developed to create robust gold standards for 

semantic information in clinical notes. A simplified version of this guideline formed the 

basis for the 2012 Informatics for Integrating Biology and the Bedside (i2b2) medical-

domain temporal relation challenge. The TRIOS system [70] added the missing TimeBank 

events and temporal expressions after annotation with TimeML. The addition consisted of 

some semantic links (SLINKs) and some relations between events (RLINK). OntoTimeFL 

annotator [71] is a formalism for reasoning about complex events, it categorizes events as 

narrative, intentional, and causal [72]. TARSQI Toolkit (TTK) [73] is a modular system for 

automatic temporal and event annotation of natural language texts built on top of TimeML. 

TTK includes a module that combines potentially conflicting temporal relations into a 

consistent temporal graph of a document, which can be succinctly displayed using the TBox 

representation [74]. MED-TTK[75] is an extension of TTK for medical narratives. The 

TTK’s time tagger was modified to comply with temporal references in medical notes, also 

the notion of narrative containers (i.e. for event reasoning and ordering) in medical 

applications has been introduced [76].

In the other hand, clinical guidelines entail significant amounts of temporal-logic statements 

that need to be checked for semantics errors and possible extensions. In this connection, 

many formal languages have been used to describe the time logic namely Linear Temporal 

Logic (LTL)[77] which allows to reason about time on single paths, Computation Tree Logic 

(CTL) [78] which quantifies time on sets of paths and Action Computation Tree Logic 

(ACTL) [79] which suitably describes the occurrence of transitions. Perez et al [80] design a 

Model Driven Development based framework to enable authoring and verification of clinical 

guidelines. The framework lies on a model checker to verify guidelines against semantic 

errors and inconsistencies and enables automatically processing manually created guideline 

specifications. The framework considers the LTL to specify temporal properties and 

temporal-logic statements in order to be used for the checking and verification process. The 

same temporal formalism has been used by Bottrighi et al [81] who have adopted an 

approach based on the integration of a computerized guideline management system with a 
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model-checker. For this purpose, they have used GLARE (GuideLine Acquisition, 

Representation and Execution) [82] to represent temporal constraints in clinical guidelines. 

The GLARE allows to represent temporal constraints and to check their consistency during 

the guideline acquisition phase, and to check the consistency between action execution-times 

and the constraints in the guidelines during the execution phase [83]. Kamsu-Foguem et al 

[84] propose a formal modeling of temporal knowledge using Computational Tree Logic 

(CTL) in order to introduce the semantic interpretation of the temporal logic expressions in 

models of conceptual graphs. The method was used in formal medical guideline 

specification and background knowledge representation. Groot et al. [85] propose a method 

for critiquing using model checking. Given patient data and a treatment plan as input 

(temporal specifications), the critiquing system uses a model checker to verify consistency 

with respect to a guideline model and generates a critique. As a cast to a critiquing system, 

the temporal logic is used to formally describe the actions taken by a medical doctor in the 

management of the disease of a patient. Also the properties of guidelines are specified using 

both CTL and LTL. In case of non-compliance with a guideline, the critic is then generated 

using the model checker. Also an example of using LTL, Hommersom et al [86] have set up 

a general framework for the verification of medical guidelines consisting of three 

components : medical guideline, medical background knowledge, and quality requirements. 

Schmitt et al [87] have developed KIV (Karlsruhe Interactive Verifier) a model for 

background knowledge support and task verification based on linear temporal logic. The 

application can handle large-scale formal models by efficient proof techniques, multi-user 

support, and an ergonomic user interface. Mor [88] presented an interesting work covering 

the reviews of methods and papers presenting Computer Interpretable Guidelines (CIG). The 

author has found that among 8 different topics in the lifecycle of the CIGs development, the 

higher number of publications focus on two topics: CIGs modeling languages and 

knowledge acquisition and specification tools.

Overall, even though the state of the art in temporal guideline is very developed, the 

temporal annotation schemas often cover specific types of clinical narratives and are not 

suitable for others. In this connection, some efforts have been made to merge multiple 

temporal annotations considering both the annotator performance and domain particularities 

[89]. We realize that the combination of the annotation standards with a formalism of time 

domain knowledge such as ontologies will lead to high-quality semantically annotated 

corpora. In addition, this hybrid representation will provide the mean to support temporal-

based reasoning into the temporal annotation process.

4.2 Extraction of temporal expressions, evens, and temporal relations

The annotation of temporal events and expressions needs to take into consideration the 

peculiarities of the clinical domain. Indeed, the clinical text can be of different structures and 

formats, for example report-style documents such as patient summary exhibits few tense and 

aspect variations and contains limited absolute time markers whereas narrative-style 

documents such as clinical note is rich of temporal information. Furthermore, while the 

human brain is capable of processing temporal information very efficiently, identifying 

temporal relations between events remains a difficult task due to the diversity of linguistic 

mechanisms for expressing temporal information and the complex interplay of explicit and 
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implicit inference required to understand such information [90]. We distinguish three 

temporal entities that need to be annotated in a clinical text: temporal expression, event, and 

temporal relation.

Temporal expression extractors are various. The Heidelberg University’s tool of HeidelTime 

extracts temporal expressions from documents and normalizes them according to the 

TIMEX3 annotation standard. MedTime [91] is a temporal information extraction system 

that uses rule-based and machine-learning pattern recognition procedures. TIPSem/TIPSem-

B [92], and TRIOS [93] have been used in temporal expressions tagging of clinical 

narratives as well. For event extraction, the Mayo’s cTAKES (clinical Text Analysis and 

Knowledge Extraction System) pipeline [94] uses well trained components such as sentence 

boundary detector, tokenizer, part-of-speech tagger, shallow parser, named entity recognizer 

and context discovery modules to extract events in the clinical narratives. The National 

Center for Biomedical Ontologies (NCBO) [95] uses transitive closure, semantic distance 

and mapping concepts from UMLS and NCBO ontologies to annotate temporal events in 

clinical narratives. Song et al [96] proposed Semantator, a protégé-based semi-automatic 

tool to connect ontology representation to existing clinical NLP tools for events annotation. 

The 2010 i2b2/VA competition task about event named entity recognition has resulted in 

many approaches for extracting medical entities (i.e. 22 systems for concept extraction 

evaluated on held out test data) [97]. Gurulingappa et al [98] and Jonnalagadda and 

Gonzalez [99] applied a semi-supervised Conditional Random Fields CRF that used 

‘distributional semantics’ features to implement a semi-automatic tools for events extraction. 

Min et al’s system [100] employed a machine learning approach using standard features to 

classify main events in consecutive sentences. Puşcaşy’s system [101] inferred temporal 

relations from temporal reasoning applied on a temporally tagged parse tree formed from 

heuristic inferences based on semantic properties and syntactic types.

As for annotation of temporal relations, the i2b2 2012 Challenge for clinical records has 

focused on temporal relation classification as one of the most important temporal 

information extraction (IE) tasks. This challenge has classified temporal relation into three 

sets, namely: (a) temporal relations between EVENTs and TIMEX3s within the same 

sentence; (b) temporal relations between the main EVENTs in adjacent sentences; and (c) 

temporal relations between two EVENTs where one dominates the other [102]. Many works 

in classifying temporal relations evaluated their results on the i2b2 clinical temporal 

relations challenge corpus [103]. Wang et al. [104] demonstrate the feasibility of the tasks 

defined by the i2b2 organizer and develop an end-to-end temporal relation system that 

includes three subsystems: an event extraction system, a temporal extraction system and a 

temporal relation system. Koyla et al [105] studied the identification of relations between 

events and their document creation times and developed two systems, one based on machine 

learning using Conditional Random Field (CRF) and the other based on constructed 

handcrafted rules. The Evaluation results showed that the rule-based system performs better 

compared to the machine learning. Mirroshandel et al [106] used Support Vector Machine 

(SVM) to improve the accuracy of classification of temporal relation using the automatically 

generated syntactic features. The study demonstrated that adding syntactic features results in 

a considerable improvement over the state-of-the-art methods of temporal relations 

classification. D’Souza et al [107] classified TLINKs using PropBank-style predicate-
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argument relations, and discourse relations. TLINK represents the temporal relation that 

holds between events, times or between an event and a time with different subsets of values 

(simultaneous, before, after, etc.) [108]. The authors used semantic and discourse relations 

and a combination between machine learning and rule based systems. In another work, 

D’Souza et al [109], have identified and classified temporal relations to 12 relation types 

rather than focusing on ‘three’ temporal relations as in the shared task, the experiments on 

the i2b2 corpus showed the effectiveness of the approach over the state-of-the-art 3-class 

classification results reported in the 2012 i2b2 challenge. The temporal relation extraction is 

also the process of identifying the chronological order of entities. For ordering events based 

on temporal relations, Allen [10] proposed thirteen relations are exhaustive and any 

unspecified qualitative relation can be designed by a combination of them [10]. Chang et al 

[110] stated that many rules were left out or not stated formally in many extracting systems 

in i2b2 and proposed TEMPTING (TEMPoral relaTion extractING) that integrates the 

results of both rule-based and supervised learning systems. Nikfarjam [111] proposed a 

system extracting the temporal relations from clinical notes. The system designed a separate 

extraction components for different types of temporal relations and utilized machine-

learning and graph-based inference to extract the links between events and temporal 

expressions in the clinical notes. Santos et al [112] proposed a framework to reason about 

uncertainty over temporal constraints using Temporal Bayesian Knowledge Base (TBKB). 

TBKB permits to manage incompleteness and cycles in temporal knowledge and represent 

highly dynamic events.

4.3 Temporal corpora

Annotated corpora are an important asset in the clinical domain, standing as readily 

available resources for training clinical language processing algorithms and their evaluation. 

Several datasets manually annotated with temporal relations were produced in the past 

decade, including the TimeBank corpus [64], works on the 2012 i2b2 shared task on 

temporal relation extraction [102], in addition to TempEval-1 [65] and TempEval- 2 [66]. 

The TempEval-2 task involved identifying temporal relations between events and temporal 

expressions in the clinical text. The i2b2 project developed a temporally annotated corpus of 

clinical narratives for temporal relation extraction to promote research. The corpus is 310 

de-identified discharge summaries annotated with clinical events, temporal expressions and 

temporal relations. Besides their nature and their purpose (extraction, evaluation, research, 

etc.) clinical corpora differ in their ways of handling the temporal annotation (temporal 

tagger) and their methodology of annotating temporal relations (i.e. intra-sentential, inter-

sentential). CLEF (Clinical E-Science Framework) [113] has used the TimeML annotation 

schema to annotate 566K of documents using GUTime [114][115][116] as the temporal 

tagger. The corpus of annotated History of Present Illness (HPI) [117] uses i2b2 annotation 

to annotate 44 sections with 410 sentences and 7704 tokens using the HeidelTime temporal 

tagger with emphasis on intra-sentential annotation. Sun et el [118] have developed an 

annotated corpus of 40 discharge summaries with intra-sentential and intra documents 

support. THYME corpus [119], has examined 1,254 de-identified notes from a large 

healthcare practice (the Mayo Clinic), which has been made publicly available, and 

proposed for use in a SemEval 2015 task.
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4.4 Temporal annotation challenges

A most prominent work in corpus annotation comes through shared tasks and temporal 

extraction challenges. The TempEval challenges have been motivated by the importance of 

temporal annotation for Medical NLP tasks and to advance research on temporal information 

processing, which could eventually help applications like question answering, textual 

entailment, and summarization. The first challenge task TempEval-1 [65], called also 

TempEval-Task 15, was organized at the SemEval workshop 2007 and was deliberately 

focused on subtasks of the larger problem of automatic temporal annotation. The TempEval-

Task 15 corpus used the same documents as TimeBank 1.2 corpus [120] but used a 

simplified set of temporal relations, grouped into three separate tasks. Task A involved 

classification of temporal relation between an event and temporal expression in the same 

sentence; Task B involved classification of temporal relation between an event and the 

document creation time (DCT); and Task C involved classification between main events in 

consecutive sentences. TempEval-2 [66] is a follow-up on TempEval-1 and is a multilingual 

task that comprises additional evaluation tasks related to temporal classification which has 

included automatic classification of sub-ordinated event relations within the same sentence 

(i.e., relations between two events where one event syntactically dominates the other). 

TempEval-3 picks up from the two past TempEval events and incorporates a three-part task 

structure covering event, temporal expression and temporal relation extraction. TempEval-3 

has included relevant features such as the use of the complete set of TimeML temporal 

relations instead of a simplified version as used in previous editions; a 10-times larger 

dataset; and single overall performance scores which allow the ranking of the participating 

systems in each task and also in general.

The 2012 Informatics for Integrating Biology and the Bedside (i2b2) challenge [121] 

marked a shift in the wide community in the sense that it refocused the research initiative 

towards temporal relation extraction from newswire data to data from the clinical domain 

[107]. Twenty teams representing 23 organizations and nine countries have participated in 

the medication challenge. The teams produced rule based, machine learning, and hybrid 

systems targeted to the task. The challenge focused specifically on the identification of 

clinically relevant events in the patient record, and the relative ordering of the events with 

respect to each other and with respect to time expressions included in the records. Tang, Wu, 

Jiang, et al [122] proposed a cascaded classifier for event extraction and their attributes. The 

system uses CRFs and SVM to assign polarity and modularity respectively for each event. 

For the extraction of TIMEXs, the system uses separate modules: normalized TIMEX3, 

type, value, and modifier. The extraction of TLINKs is done on two phases: TLink 

candidates generation and TLink candidates classification. The system was ranked first for 

both End to End TLink track and TLink only track and fourth in Temporal Expression 

Extraction. [123] Grouin, Grabar, Hamon, et al used a machine learning library to predict 

modality and polarity of events. The system presented a suggestion to adapt HeidelTime to 

clinical domain and used a post processing normalization of temporal expressions to fit i2b2 

requirements. Sun, Rumshisky, Uzuner, et al [102] pointed out that event detecting is more 

challenging in 2012 i2b2 due to the addition of three new EVENT types finding out that the 

most hardest to detect are acronyms and anaphoric expressions and suggest that better co-

reference and acronyms handling may improve the result. The authors also pointed out that 
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relative time normalization remains challenging problem indicating that context-aware 

temporal expression understanding requires further research. Sunghwan, Kavishwar, 

Dingcheng et al [124] described MayoTime, a TIMEX3 system, as a comprehensive 

temporal information extraction and classification system for i2b2 2012 NLP challenge. 

Roberts, Rink, Harabagiu, et al [125] have proposed a method for recognition of medical 

events and expressions, normalizing temporal expressions, and detecting temporal relations. 

The methods are based on supervised and unsupervised learning and they performed well in 

the 2012 i2b2 shared task.

5. Temporal processing in the clinical domain

Temporal information processing in medicine is a task that draws from many fields, 

including philosophy, artificial intelligence, database management, computational 

linguistics, and biomedical informatics. The significant impact of computer technologies in 

this area is to normalize and abstract temporal information and resolve problems like 

granularity and co-reference. In this section of the survey we shed some light in some 

advances researches on these aspects.

5.1 Temporal information normalization

With the variety of representations of time and time-related concepts comes the necessity for 

a system of normalization of time. Different types of information are required to determine 

the normalized meaning of an expression, for example, if it’s a relative time (e.g., this 

morning 7 a.m.) we need the reference of time, if it has a positional offset (e.g., next month) 

we need the quantity of time, if it’s durative (3 days 4 hours) we need the quantity of time or 

if simply it has uncommon temporal expression formats (e.g., “April 28=12”), we will need 

to look for similar pattern resources. This disparity of formats makes it difficult to process 

time expressions for normalization tasks. The norm ISO8601 [126] requires date/time 

TIMEX3s to be normalized to [YYYY-MM-DD]T[HH:MM] format and duration/frequency 

TIMEX3s to be normalized to R[#1 times]P[#2][Units] (repeat for #1 times during #2 units 

of time). For example, ‘twice every three weeks’ is normalized as R2P3W. Also, similarly to 

TimeML TIMEX3s, the i2b2 TIMEX3s have a modifier attribute (MOD) that represents a 

subset of TimeML TIMEX3 modifier values: MORE, LESS, APPROX, START, END, 

MIDDLE and the default NA[119]. There are a number of temporal taggers that include a 

temporal normalization component such as TempEx, GUTime, CHRONOS, Terseo, 

TimexTag, TEA, Dante, HeidelTime, TRIPS, TRIOS, TIPSem, and TIPSemB. For example, 

HeidelTime extracts temporal expressions from documents and normalizes them according 

to the TIMEX3 annotation standard. CHRONOS sets the values of all TIMEX2 attributes 

based on the context information collected during the detection phase. However, these 

systems include their own custom rule sets (e.g. Heideltime has its own rule resources, 

pattern resources and normalization resources) and also much of the normalization effort is 

not inherently language independent (e.g. newswire). Because of that, separating the logic of 

dealing with a specific domain from language-specific requirements will enable effective 

normalization across languages [127]. In an attempt to use the ontological reasoning, Tao et 

al [30] applied a normalizer in their CNTRO ontology that converts commonly used time 

notations to the xsd DateTime Data Type format by defining two data properties, 
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hasOrigTime and hasNormalizedTime. The normalization is meant to keep track of the time 

instant in both its original form and in the normalized form. With regard to complex datasets 

and automation of query processing, the TEXer [128] combined heuristic rule and pattern 

learning methods for temporal expression identification that use TimeML and its XML-

based format of TimeX3 to normalize temporal expressions. TIMEN [127] is an open 

extensible and state-of-the-art temporal normalization library for building and sharing 

knowledge and rules for TimeML temporal expression normalization subtask, it can be 

easily integrated as a module in temporal information processing system.

For the temporal event annotation it is recommended to consider words or phrases that have 

a meaningful and contextually relevant match in the Unified Medical Language System 

UMLS, which can be accessible to annotators via UMLS Terminology Services. In this 

connection, events can be split into two subsets, top-down category, which designate the 

common health items, such as diseases, disorders, treatments, procedures and drugs 

prescribed to the patient as well as normal health situations like pregnancy that may affect 

the patient’s health and the bottom-up category which gathers detailed events in a defined 

sequence of care such as patient arriving and leaving, patient declared symptoms, pre-

measurement of temperature and so on. This last category is focused on local observations 

and actions and depends on particular medical applications.

5.2 Temporal Abstraction

Temporal abstraction (TA) is a well known data analysis technique that is frequently applied 

in clinical domains to analyze complex multivariate clinical histories [129] [130], i.e. the 

series of relevant clinical events occurring to a patient (e.g. hospitalizations, visits, drug 

intakes, sudden variations of arterial blood pressure and glycemic control). Temporal 

patterns detection can be particularly useful for a variety of medical analyses, such as data 

exploration and summarization, temporal reasoning, evaluation of the response to specific 

treatments, anomaly detection, and prediction of clinical outcomes. Temporal patterns can 

be extracted in different ways and several methodologies have been proposed in the 

literature to achieve this goal [131]. Sacchi et al [131] proposed JTSA (Java Time Series 

Abstractor), a Java-based framework providing a library of algorithms for Temporal 

Abstraction detection, which can be easily extended and integrated into other applications. 

JTSA can be used both as a standalone tool for data summarization and as a module to be 

embedded into a complex architecture to select specific phenotypes based on TAs in a large 

dataset. Alvarez et al [132] proposed an algorithm for discovering frequent temporal patterns 

from a set of time-stamped event sequences called ASTPminer. This algorithm represents 

temporal patterns as metric temporal constraint networks for a set of events, where precise or 

imprecise information could be induced between each pair of events represented in the 

network. The ASTPminer allows to search for frequent temporal patterns by considering a 

pattern to be a temporal arrangement between a set of event types that satisfies some 

similarity criteria through different occurrences. Despite the relevance of TA as a 

methodology for temporal reasoning, only few efforts have been made to create a framework 

that is general, easy to use and simple to integrate into other applications [131]. Conceptual 

graphs (CGs) are used to represent clinical guidelines because they support visual reasoning 

with a logical background, making them a potentially valuable representation for guidelines 
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[133]. Kamsu-Foguem et al [134] address problem of improving the integration of the visual 

and analytical methods applied to medical monitoring systems. They have described a 

methodology for the provision of a user-centered visual analysis to medical decision support 

systems that builds on an existing methodology and an existing Intensive Care Units 

monitoring system. In another effort, Kamsu-Foguem et al [135] proposed a conceptual 

graph formalism to facilitate sharing and reusing of medical practices and provided a visual 

reasoning mechanism for selecting best procedures for treating diseases. The nested 

conceptual graphs are used to visually express the semantic meaning of computation tree 

logic (CTL) constructs that are used for formal specification of temporal properties of the 

domain of knowledge. This approach mitigates knowledge loss with conceptual 

development assistance to enable the automated verification of compliances requirements 

models of the domain knowledge and to improve the quality of care and patient safety. 

Juarez et al [136] proposed a visualization model based on multiple temporal axes (MTA) 

model. MTA was evaluated using a controlled experiment approach, and demonstrated in a 

tool called 8VISU used in a real-world ambient assisted living system for elderly people 

living alone. The results of the experiments show the advantages of the MTA model over 

other models (timeline, Gantt, spiral) in different scenarios.

5.3 Time granularity

The granularity of temporal information is the level of abstraction at which the information 

is exposed. Medical and clinical events may be annotated using time points and time spans 

with different granularities. The granular value of time is an important factor that cannot be 

underestimated. It doesn’t only add valuable detail to the temporal expression but also 

handles some semantic information intrinsic to the expression. For instance, an event that is 

counted by minutes carry a semantic precision higher than a one that can last for months. 

Moreover, the projection from finer to coarser granularity or the reverse involves complex 

semantic issues [137]. That is, it sounds mathematically correct to convert all entities of date 

time to the smallest unit of time, but this will also erase the semantics of expressions, so in 

the end it will be uncomfortable to say that a treatment has lasted for seconds or minutes. 

Table 5 shows that switching from finer to coarser (left to right) or coarser to finer (right to 

left) granularities cause semantic problems.

Thus, the resolution of granularity depends not only on the time expressions themselves but 

on the contextual information as well. Iqbal et al [138] concluded that in order to solve 

temporal granularity issues in discharge summaries, one should be able to (a) represent and 

store time instants with different and mixed granularities, (b) handle granularity mismatches 

in operations between temporal primitives with different granularities, (c) convert a temporal 

primitive from one granularity to another, and (d) consider different interpretations for time 

labels [139].

5.4 Co-reference resolution problem

The coreference in clinical text refers to the problem of relating together all medical 

mentions that refer to the same medical entity. This latter can be an event, state or even a 

marked temporal entity associated with the patient’s medical condition and healthcare. 

Resolving this task has proven essential for many types of problems such as temporal 
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annotations [140], temporal questions/ answering [31], and redundant information within 

and across clinical narratives [141]. One question that may arise thus far is the possible 

existence of multiple syntactic derivations of the same entity (e.g. cauterize, cauterization). 

One proposed answer[141] is to refer to the UMLS which includes a large Metathesaurus of 

concepts and terms from many biomedical vocabularies and a lexicon which contains 

syntactic, morphological, and orthographic information for biomedical and common words 

in the English language. In fact, UMLS has 2,404,937 concept unique identifiers and 

15,333,246 links between them as seen in the full UMLS graph structure. A medical concept 

in UMLS represents a single meaning and contains all atoms in the UMLS that express that 

meaning in any way, whether formal or casual, verbose or abbreviated. In the i2b2/VA 

challenge on co-reference resolution [142], a large amount of records have been fully de-

identified and manually annotated for co-reference. The challenge provided the community 

with two annotated ground truth corpora and evaluated systems on co-reference resolution in 

two ways: first, it evaluated systems for their ability to identify mentions of concepts and to 

link together those mentions. Second, it evaluated the ability of the systems to link together 

ground truth mentions that refer to the same entity [142].

Resolving the co-reference problem has been done quite satisfactorily manually [143], 

however this task not only seems to be costly in human effort but also lacks some abilities 

such as annotation of distributed temporal concepts at topic level or document level [144]. 

For that purpose, extracting semantic and temporal features helps identify conditionally 

independent views of the medical event which is an important step in order to co-train 

classifiers and make the co-reference decision. Additionally, the semantic and temporal 

feature sets are naturally independent (i.e. semantic features help identify synonymous 

medical concepts and the temporal feature helps identify time of occurrence). For the 

calculation of the semantic feature, k-Neighborhood decentralization method [145] seems to 

outperform breadth-first and depth-first searches between concepts in the UMLS graph 

structure[145]. KNDM can be used to index and transitively traverse associated relations 

between concept unique identifiers in the UMLS graph and reveal reachability, distance, and 

summary of paths, between two concepts in the UMLS graph structure. On the other hand, 

for calculating the temporal feature, it is well known that medical concept instances, cited 

throughout a document, that have occurred at the same time (stamped with the same time 

expression) tend to be similar. However, in clinical narratives, many temporal concepts are 

left with implicit reference. In this case, a successful path to determining temporal features 

uses the headed information of patient admission and discharge date to learn about assigning 

medical concepts to time periods referred to as time-bins. For this purpose, nine of the top 

10 systems used conditional random fields (CRFs), which is a statistical modeling method 

for sequential data labeling [146]. This method consists of using sections as logical, and at 

times, temporal grouping of information in the narrative (e.g. way before admission, before 

admission, on admission, after admission, after discharge). Thus sequencing the observation 

of medical concepts in the order in which they appear in a clinical narrative help leveraging 

the temporal feature.

Although co-reference resolution is a well-studied problem in computational linguistics 

[141], there have been very few efforts at tackling this problem in longitudinal clinical 

narratives[143]. Ragjavan et al [141] have used the supervised binary classification task for 
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medical concepts coreference resolution with MaxEnt classifiers through semi-supervised 

methods that co-train MaxEnt classifiers and MaxEnt models using posterior regularization. 

The approach is based on using two independent views of the data - semantic view and 

temporal view. The first tested method consists of co-training two MaxEnt classifiers, one on 

the semantic features and the other for temporal features of the data, to classify pairs of 

medical concepts as co-refer or no-co-refer in a semi-supervised fashion[147]. The 

algorithms used allow for labeling unlabeled data for both classifiers (semantic and temporal 

features set) to augment the training data. The problem here is the need to set a threshold for 

an unlabeled sample to be added to the labeled pool. This issue is overcome by proposing to 

repeatedly update the size of the pool of the medical pairs that co-refer and that don’t co-

refer. The second method consists of using a learning method applied to MaxEnt with 

posterior regularization using expectation constraints [148]. Semi-supervised posterior 

regularization is used to derive a multiview-learning algorithm (semantic view and temporal 

view) while specifying constraints that the models should agree on (i.e. desired level of 

precision and recall).

6. Observations and conclusion

The objective of this review was to find out how theories, models, and ontologies of time, 

available to date, cover the representation of time and time related concepts in the clinical 

domain, particularly in clinical narratives. It investigated on how the Medical NLP 

approaches catch up with the available reasoning and inferencing systems. We found that 

both point and interval constructs are used in time specification and, the periodicity and 

cumulative periodicity are commonly used and need to be implemented in accurate and 

unambiguous way. The Allen’s theory of interval relations has been widely applied for 

temporal ordering and partitioning. On the other hand, uncertainty and granularity of time, 

and co-reference of events are relevant features that necessitate adequate interpretation and 

representation. The information models of structured data have been described and 

compared on their methods of handling time. Based on the comparison of five clinical data 

models, namely, HL7 V3, QDM, CEM, caDSR CDE and OpenEHR, it is found that these 

models fulfill different objectives and they use different tools (object-oriented, archetypes, 

etc.) Also, these models cover only basic aspects of time and cannot represent unstructured 

data, which represent 80 % of clinical data. The uncertainty and granularity in time instants 

and intervals are barely supported by temporal models. It has been proved that ontologies of 

time are potential candidate to fulfill these facets. It is found that, except for CNTRO 

ontology that has represented clinical intrinsic features such as normalization, granularity, 

and periodicity, most of developed ontologies remain for only restricted and general use. On 

the other hand, the co-reference remains poorly covered. Some contributions in co-reference 

resolution and the narrative containers are valuable and need to be implemented integrated 

with existing ontologies of time. For that we posit that a cross-disciplinary effort is required.

The automatic temporal extraction is a promising and active research field in the clinical 

domain. In the last few years, temporal taggers have matured and acquired reuse capabilities. 

However, there are competing goals that hinder the obtaining of high-quality annotated 

corpora, namely to fully comply with the domain specification and the avoidance of 

unnecessary annotations. In order to resolve this issue, we need a dynamic adaptation of 
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extraction rules and use of machine learning for annotator training and automation. In 

addition, precise and concise extraction of temporal events in clinical narratives has been a 

long-standing interest in the clinical domain. There are three types of approaches namely, 

data-driven approaches, knowledge-driven approaches, and hybrid approaches. The data-

driven approach develops models that approximate linguistic phenomena from large text 

corpora using quantitative techniques. Some methods of the approach are support vector 

machine, multi-class classifier, and hierarchical clustering techniques. However, this 

approach has been criticized for the large amount of data needed to generate statistically 

significant results. The knowledge driven approach, by contrast, exploits syntactic and 

semantic patterns encoded in the form of rules to extract desired information. Even though 

this approach has proven its consistency, it remains inaccurate when some knowledge of 

linguistics or domain expertise is missing. In hybrid approach, methods have been encoding 

lexical knowledge as features for statistical learning to extract events. Overall, although 

these approaches have showed good results in many extraction contests and challenges, there 

is still a large semantic gap between Medical NLP techniques and rules-based systems. As a 

proposition to solve this problem, we suggest, in figure 1, a new temporal extraction pipeline 

for the clinical domain. This architecture will allow for a tight combination of Medical NLP 

based methods such as Hidden Markov models, Maximum Entropy, SVM, and conditional 

random field (CRF) and semantic web technologies such as OWL, RDF, and techniques of 

querying.

In conclusion, combining Medical NLP and semantic web techniques to construct a timeline 

from medical records is promising. In essence, the Medical NLP provides the necessary 

tools and methods to extract, normalize, classify and summarize temporal data in clinical 

narratives whereas, ontologies and semantic web techniques are proven tools for knowledge 

driven approaches that allow for the use and management of information and domain 

knowledge. One challenge here is how to combine the information and knowledge of both 

temporal extraction process and application domain into one knowledge base. One way to do 

so is by considering mapping between concepts. Furthermore, in order to establish a 

counterbalance of using some specific techniques or methods along with keeping the 

flexibility required in such situations, the Markov Logic Network (MLN) [149] is a first-

order knowledge base used to combining first-order logic and probabilistic graphical models 

in a single representation. Using such an approach will enrich the interaction, for example, 

of rules and machine learning system for the temporal relations extraction.
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Highlights

• Multifaceted aspects in time and time-oriented concepts

• Comparison of clinical data models in handling time

• Ontologies of representation and reasoning about time in the clinical domain

• Constructing the timelines for the medical histories of patients
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Figure 1. 
Temporal-extraction pipeline. The ontologies of both application and time tagger gather their 

knowledge base (KB) for annotating the temporal expressions and events; the temporal 

relations and ordering of events can be then inferred by using rules or/and machine learning 

techniques.
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Table 1

Principal categories and sub categories of temporal expressions

Category Types Definition Features

Primitive of time

Point Ideal for specifying accurate positions in 
time

Scheduling, planning, temporal constraints 
and temporal relations are barely supported 
[7] [8]

Interval Ideal for representing coarse and 
incomplete temporal knowledge [9]

Used by Allen’s temporal logic [10].

Linear or branching Linear time Time flows from past to future in a 
timeline order

Used by time-lining events

Branching time Time is linear from the past till present, 
after it divides into several futures

Used for hypothesizing. Suitable for 
diagnosis and prognosis

Circular time Time turns around a circle Used to describe recurrent events, such as 
“administration of regular insulin every 
morning”

Reference of time absolute/Anchored date and 
time

Accurate position in the time/day clock Has limited temporal reasoning tasks

Relative / unanchored date 
and time

More expressive, comprises more 
information such as temporal relation to 
other expressions

Entails prevalent time-based knowledge 
[11] and requires linguistic analysis tools

Duration of time Quantitative duration Fixed quantity in time Not flexible in reasoning

Qualitative duration Ideal for the specification of temporal 
constraints

Flexible for qualitative reasoning over 
events and temporal expressions
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Table 2

Principal ontologies for modeling time

Ontology Description

OWL-Time ontology [22] Provides vocabularies for instants and intervals, durations, datetime, and Allen’s Interval Temporal Logic 
[10].

SWRL temporal ontology [23] Contains SWRL built-ins to reason about defined temporal information

DAML ontology of time [24] Integrates First-order predicate calculus for topological temporal relations such as intervals, events, dates and 
times.

CHRONOS [25] Stand-alone ontology and Allen’s Interval Temporal Logic framework that enable to infer implied relations, 
detect inconsistencies and ensure path consistency

PSI-Time Ontology [26] Represents the concepts of relativist and absolutist durations, periodic time intervals, interval phases, open 
time, linear time, discrete time, anisotropic time, and the relations, point-to-point, point-to-interval and 
interval-to-interval.

RSCDF Ontology [27] Temporal and contextual extension of RDF

Reusable Time ontology [28] Represents time granularity by reusing a Physical-Quantities ontology that belongs to Ontolingua library 
[29].
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Table 3

CDSS and temporal reasoning. This table describes the most the best well-known decision support systems in 

real use in the clinical domain that support temporal based decision-making

CDSS Owner/ Architecture Applications Knowledge base

IndiGO, individualized guidelines 
and outcomes

Archimedes, Inc. At-risk patient populations and 
patient-specific care plans

EHRs, and disease registries

Autonomy Health Cambridge University HP 
Healthcare Analytics (Subsidiary)

Diagnostic Clinical big data stores.

DiagnosisOne Microsoft, Oracle and, RedHatt Real-time patient and population 
assessment

Disease packages Cypress 
patient test inputs

DxPlain Massachusettes General Hospital Diagnostic Contains 2400 Diseases, 
5000 clinical findings, and 
230 data points.

Elsevier Clinical Decision Support CDS developers in Elsevier Analytics and reporting; 
Predictive analytics

Drug database

Isabel Healthcare Jason and Charlotte Maude Diagnosis for uncommon or rare 
disease

100,000 documents and 
“knowledge kernels”

Problem-Knowledge Coupling PKC Dr. Lawrence Weed Diagnoses and care plans EHR and the subjective, 
objective, analytical, and 
planning (SOAP) approach

Micromedex V2.0 Thomson Reuters Medication safety, health and 
disease management, patient 
education, and toxicology

More than 3,500 hospitals in 
83 countries

ProVation Wolters Kluwer Health Evidence-based clinical content Up-to-date knowledge base

Zynx Health Cedars-Sinai Health System and 
Zynx Health

Evidence-based clinical content 500 clinical decision support 
rules and 1,100 templates
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Table 5

Granular time examples. This table illustrates time granularity in the clinical text. The sentences in the left 

denote some durations and intervals of time, which, when converted to finer granularities (right column), have 

caused the semantic to change.

1. The patient has tested blood sugar every week. a. The patient has tested blood sugar every 7 days.

2. The x-rays are valid within 19 June 2015. b. The x-rays are valid within 19 June 2015 at midnight.

3. The treatment has to be completed within 1 day. c. The treatment has to be completed within 24 hours.
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