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Abstract

Background and Objective—Dimensionality reduction techniques are developed to suppress 

the negative effects of high dimensional feature space of lung CT images on classification 

performance in computer aided detection (CAD) systems for pulmonary nodule detection.

Methods—An improved supervised locally linear embedding (SLLE) algorithm is proposed 

based on the concept of correlation coefficient. The Spearman’s rank correlation coefficient is 

introduced to adjust the distance metric in the SLLE algorithm to ensure that more suitable 

neighborhood points could be identified, and thus to enhance the discriminating power of 

embedded data. The proposed Spearman’s rank correlation coefficient based SLLE (SC2SLLE) is 

implemented and validated in our pilot CAD system using a clinical dataset collected from the 

publicly available lung image database consortium and image database resource initiative (LICD-

IDRI). Particularly, a representative CAD system for solitary pulmonary nodule detection is 

designed and implemented. After a sequential medical image processing steps, 64 nodules and 140 

non-nodules are extracted, and 34 representative features are calculated. The SC2SLLE, as well as 

SLLE and LLE algorithm are applied to reduce the dimensionality. Several quantitative 

measurements are also used to evaluate and compare the performance.

Results—Using a 5-fold cross-validation methodology, the proposed algorithm achieves 87.65% 

accuracy, 79.23% sensitivity, 91.43% specificity, and 8.57% false positive rate, on average. 

Experimental results indicate that the proposed algorithm outperforms the original locally linear 

embedding and SLLE coupled with the support vector machine (SVM) classifier.

Conclusions—Based on the preliminary results from a limited number of nodules in our dataset, 

this study demonstrates the great potential to improve the performance of a CAD system for 

nodule detection using the proposed SC2SLLE.
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1. Introduction

The aggressive and heterogeneous nature of lung cancer has made it a prominent concern in 

the war against cancer. Lung cancer is the second most common and the primary cause of 

cancer-related death in both men and women. In the United States, the estimated new cases 

and deaths in 2013 were 228,190 and 159,480, respectively [1]. It has been shown that 

computed tomography (CT) screening can improve early detection accuracy of lung cancer 

in high-risk individuals [2]. Therefore, early detection of potentially cancerous pulmonary 

nodules becomes considerably crucial to improve the patients’ relative survival rate. 

Significant efforts have been made to develop computer aided detection system for early 

detection of lung lesions from CT images [3–7]. A CAD system could significantly enhance 

the sensitivity and specificity of spiral CT lung screening and reduce costs by reducing 

physician time needed for interpretation. It is an alternative option for radiologists before 

suggesting a biopsy test [8].

The procedures of a CAD system mainly include CT image preprocessing, region of interest 

(ROI) extraction, feature extraction and classification. It is well known that feature 

extraction and classification are the two key steps and they have significant impacts on the 

effectiveness of the CAD system. Specifically, the input space of the pattern classifier will 

directly impact the classification performance. The complexity of medical characteristics in 

lung CT images determines high dimensional feature space to present pulmonary nodules, 

and plenty of redundancies and correlations hide important relationships between different 

feature variables. This might lead to negative effects on classification performance. Thus, 

dimensionality reduction (DR) techniques have been developed to eliminate the 

redundancies of the data to obtain more informative, descriptive, and compact data 

representations for subsequent classifications. This can also help to reduce the requirements 

of computational cost and memory and potentially enhance the discriminating power.

Dimensionality reduction methods can fall into two categories: feature selection and feature 

extraction. While both feature selection and extraction approaches result in some loss of 

information compared to the original raw data, they are effective ways to deal with high 

dimensional data for classification problems. Feature selection usually chooses feature 

subset directly from the original feature space based on certain criteria, while feature 

extraction obtains subset by projecting the original data to lower-dimensional intrinsic 

spaces. They also have received significant attention in lung nodule detection. Masahito A. 

et al [9] employed feature selection to choose different combinations of features by 

evaluating the performance of linear discriminant analysis (LDA) in distinguishing begin 

nodules from malignancy ones in terms of receiver operating characteristic (ROC) analysis. 

They added or removed features one-by-one in an iterative way and finally received the 

AUC (area under the ROC curve) value of 0.84 when multiple slices were used. In 
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references [10] and [11], feature selection stage was carried out to determine the subset of 

candidate features based on the area under the ROC curve by using different classifiers. 

Nevertheless, these feature selection methods have drawbacks that cannot be negligible. 

They need complex computation to evaluate all the features, and it is difficult to avoid local 

optimum. Besides, they are often not robust in complex scenes. Thus, researchers attempt to 

use feature extraction approaches, which are more robust to variation. And they are 

computationally superior to the optimal feature selection methods [12]. Theoretically 

speaking, feature extraction is to obtain meaningful low-dimensional structures latent in 

high-dimensional data. Classical approaches, such as principal components analysis (PCA) 

or multidimensional scaling (MDS), work well in linear cases. However, the intrinsic 

structures of real-world data are often highly nonlinear and cannot be approximated by 

linear manifolds. Recently, a promising solution is to use nonlinear manifold learning 

algorithms [13], i.e., locally linear embedding (LLE), Isomap, Laplacian Eigenmaps (LE). 

Those methods have a small number of free parameters, they cannot be trapped by local 

minima, and the non-iterative form makes them simple to implement to obtain the 

embedding [14–17]. These methods are supposed to overcome the difficulties encountered 

by other classical nonlinear approaches (e.g., the self-organizing map, generative 

topographic mapping, mixtures of linear models, etc.). However, they are unsupervised and 

mostly intended for data mining and visualization when the number of classes and 

relationships between elements of different classes are unknown, and users often want to 

observe the data structure in order to make a decision about what to do next. As 

aforementioned, the goal of our CAD platform is to distinguish the true nodules from non-

nodules, which is a two-category problem. The feature dataset contains two (often disjoint) 

manifolds, corresponding to two classes. To solve this problem, De Ridder et al. extended 

the concept of LLE to multiple manifolds and developed a supervised LLE (SLLE) 

algorithm which has been proved to be a suitable feature extraction step prior to 

classification [18].

The dissimilarity between data samples from different categories can be measured by their 

distances. It is generally believed that the neighborhood of a sample from one class should 

be composed of samples belonging to the same class. In the SLLE, by taking into account 

label information, the inter-class distance is greater than the Euclidean distance by adding a 

constant to the pairs of points belonging to different classes. Otherwise, it remains the 

Euclidean distance. It has been demonstrated that the SLLE is a powerful feature extraction 

method, which can yield promising recognition results coupling with simple classifiers. 

Subsequently, various improved SLLE methods were proposed to enhance the performance 

of SLLE. Liu et al. [19] proposed a new SLLE in tensor space (SLLE/T) where a local 

manifold structure within the same class is preserved and the separability between different 

classes is enforced by maximizing distance of each point with its neighbors. Wen and Jiang 

[20] designed a rescaling distance function to shrink the intra-class distance and kept the 

inter-class distance. Zhang [21] modified the distance metric by shrinking the intra-class 

distance while expanding the inter-class distance to strengthen the discriminating power and 

generalization ability of embedded results in dimensionality reduction. Experimental results 

demonstrated that the improved distance method can yield better classification performance 

on lung nodule classification [12]. Similarly, a kernel Euclidean distance was introduced by 
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Zhou [22] to define the distance metric to map the data into feature space where points 

belonging to the same classes are close to each other while points belonging to different 

classes are far away from each other. Zhao and Zhang [23] designed a probability-based 

distance metric that enlarges the Euclidean distance for labeled and unlabeled points. The 

enlarged quantity of the distance is variable and proportional to the probability of two points 

belonging to different classes. However, the aforementioned literatures did not take it into 

account that the Euclidean distance merely considers the intrinsic geometry of the data [24]. 

The Euclidean distance could not well represent the similarity between data points in high 

dimensional space, which might leads to undesirable neighborhood.

Inspired by the aforementioned work, in this paper, we propose to perform dimensionality 

reduction for the input space of the pattern classifier before the classification procedure 

using an improved Spearman’s rank correlation coefficient (hereinafter referred to as 

Spearman correlation coefficient) based SLLE algorithm (SC2SLLE). Unlike the classic 

SLLE that mainly focus on maintaining the intra-class distances and enlarging the inter-class 

distances, the improved algorithm not only enlarges the inter-class dissimilarity but also 

adjusts both the intra- and inter-class dissimilarity by modifying the distance metric with the 

correlation coefficients. Because the improved algorithm can help to find more suitable 

neighborhood, the discriminating power of embedded data for multi-class issues is enhanced 

and it can help to detect cancerous nodules with a high probability at the early stage. The 

proposed algorithm is also evaluated on a clinical data set downloaded from the publicly 

available lung image database consortium and image database resource initiative (LIDC-

IDRI) database. Experiment results demonstrate the promising performances.

The rest of this paper is organized as follows. In section 2, the LLE and SLLE algorithm are 

briefly reviewed and the proposed SC2SLLE is elaborated. In section 3, the detail 

experimental materials, procedure and results are presented. The related issues are discussed 

in section 4 and the conclusion is made in the last section.

2. Research Methodology

2.1. LLE

Suppose the input dataset X consists of N real-valued vectors X = [x1, ··· xi, ··· xN] where xi 

∈ RD and D is the dimension of the vectors. The output Y of LLE, Y = [y1, ··· yi, ··· yN] with 

yi ∈ Rd, is obtained by mapping the high dimensional input X into a single global coordinate 

system of lower dimensionality d (d ≪ D). The classic LLE [16, 17] mainly includes the 

following three steps.

S1 Finding the K neighbors of each data point xi in terms of the Euclidean 

distance. We denote the indexes of the neighborhood of each data xi as Ji, and 

the neighbors of xi are defined as xj, j∈ Ji.

S2 Computing the reconstruction weights Wi by minimizing the reconstruction 

errors
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(1)

subject to two constraints

(2)

The weights wij summarize the contribution of the jth data point to the ith 

reconstruction and the optimal weights can be found by solving a least-squares 

problem. By exploiting the constraints in Eq. (2), the reconstruction error can 

be rewritten as

(3)

Denoting the local covariance matrix Qjl = (xi − xij)T(xi − xil), we have

(4)

The reconstruction error Eq. (4) can be minimized in a closed form using a 

Lagrange multiplier in terms of the inverse local covariance matrix

(5)

and the optimal weights can be calculated as

(6)

it should be noticed that when the neighbor number is greater than the input 

dimension (K>D), the local covariance matrix is singular or nearly singular, 

and it can be solved by adding a regularization term

(7)
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where γ is a regularization parameter whose value is usually set between 

[10−3,10−5], Tr(Qjl) is the trace of Qjl and Ijl is the identity matrix.

S3 Computing the low-dimensionality embedding yi that best preserve the local 

intrinsic geometric properties hidden in the high-dimensional space by fixing 

the weights Wi and optimizing the coordinates yi. The embedding vectors yi 

can be found by minimizing the cost function:

(8)

(9)

where I represents the unit identity matrix. The two constrains make the 

coordinates of yi centered on the origin with a unit covariance. The cost 

function is further transformed into the following form,

(10)

Based on the properties of matrix transformation, the cost is written as,

(11)

where M = (I − W)T(I − W) is a N × N matrix. With the constraints in Eq. (9), 

this optimization problem Eq.(11) can be solved by the Lagrange multiplier. 

Then we have,

(12)

Thus the optimal embedding can be found by computing the bottom d + 1 

eigenvectors of the sparse matrix M. The bottom eigenvector of this matrix is 

the unit vector with all equal components, representing a free translation mode 

of eigenvalue zero. It is discarded to enforce the constraint  in Eq. 

(9), and the remaining d eigenvectors yield the final embedding Y.

2.2. SLLE

The supervised LLE was introduced to deal with data sets containing multiple (often 

disjoint) manifolds corresponding to different classes [18]. For each data point xi, it should 

be reconstructed from its neighbors belonging to the same class for the purpose of 
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classification. One way is to enlarge the Euclidean distance by adding a constant to the pairs 

of points from different classes, and the distance of data points from the same class is kept. 

Mathematically, it can be expressed as

(13)

where o(i, j) is the Euclidean distance between xi and xj, max ({o(i, j)}) is the maximum 

value of the Euclidean distance set {o(i, j)} between data points, Δij = 1 when xi and xj 

belong to different classes, Δij = 0 when xi and xj belong to the same class, and α ∈ [0,1] is a 

tuning parameter. When α = 0, the SLLE is degraded to the original unsupervised LLE; 

When α = 1, one obtains the fully supervised LLE (1-LLE); A varying α between 0 and 1 

gives a partially supervised LLE (α-LLE).

2.3. Spearman Correlation Coefficient based SLLE (SC2SLLE)

An ideal neighborhood searching mechanism should attempts to maximize the inter-class 

dissimilarity and minimize the intra-class dissimilarity. Based on this principle, the SLLE 

algorithm is employed rather than the LLE. In this paper, the Spearman correlation 

coefficient is introduced to further improve the performance of SLLE, which is named 

SC2SLLE. The SLLE is typically implemented by using the Euclidean distance. However, 

the Euclidean distance may assign a data point neighbors that in fact are far away [24]. The 

SC2SLLE algorithm is developed by modifying the neighborhood searching mechanism in 

the SLLE. In statistics Spearman correlation coefficient is a nonparametric measure of rank 

correlation. It assesses how well the relationship between two variables (whether linear or 

not) can be described using a monotonic function [25], and it is not necessary to assume the 

distribution of the data. It is also independent of the spatial geometry of the data, thus it can 

be employed to search the neighbors of strong correlation with a given data point.

The significant difference between the SC2SLLE and SLLE lies in the neighborhood 

searching mechanism. The SLLE enlarges the Euclidean distance by adding a constant to the 

pairs of points from different classes while others are kept unchanged. Let ρij be the 

Spearman correlation coefficient between xi and xj. Because a greater |ρij| implies stronger 

correlation between xi and xj and a smaller Euclidean distance o(i, j) means better similarity, 

we combine the two different measures to achieve stronger capability to search the nearest 

neighbors in high dimensional space. We use 1 − |ρ(i, j)| to multiply the Euclidean distance 

o(i, j) to achieve the goal. The modified distance metric is defined as:

(14)

Based on the new distance formula Eq. (14), we have the SC2SLLE algorithm as follows. 

First, we find the K nearest neighbors of each data point xi in terms of the distance metric 

Eq. (14); then, we follow the same procedures S2 and S3 for LLE in section 2.1.
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2.4 SC2SLLE for Classification

When the supervised dimension reduction algorithm is applied for classification, the training 

and testing samples need to be considered separately. After the dimension reduction, the 

training data with label information can be used to train a classifier. However, there is no 

label information in the testing set. While the steps of SC2SLLE algorithm in 2.3 can be 

performed to obtain the embedding results for the training set, they should be modified for 

the testing set as follows.

S1 For each data xi in the testing set, finding the K nearest neighbors xj(j = 1, ··· 

K) in the training set in terms of the adjusted Euclidean distance

(15)

S2 Computing the weight Wi that best reconstruct each testing data xi from its 

neighbors;

S3 Interpolating yi from the corresponding yj(j = 1, ··· K) in the training set using 

the weight Wi

(16)

3. Experiments and Results

3.1. Data Preparation

In this pilot study, the goal is to distinguish the pulmonary nodules from the non-nodules, 

which is a two-category classification problem. A set of clinical images was downloaded 

from the lung image database consortium (LICD) and image database resource initiative 

(IDRI). The specific objective of the LIDC was to provide a reference database for the 

relative evaluation of image processing or CAD algorithms [26]. The LIDC-IDRI database 

(http://ncia.nci.nih.gov/ncia/) consists of 1018 cases. Each case includes images from a 

clinical thoracic CT scan and an associated extensible markup language (XML) file that 

records the results of a two-phase annotation process performed by four experienced 

thoracic radiologists. It is a web-accessible international resource for development, training, 

and evaluation of CAD methods for lung cancer detection and diagnosis [27].

Because solidary pulmonary nodules are the dominating type of nodule in the whole 

database, we focus on the solitary pulmonary nodules in this pilot study. Two rules are 

considered to select the training and testing sets. On the one hand, the associated XML files 

are employed to ensure that correct nodule type is chosen. For nodules > =3mm, each reader 

is asked to subjectively assess the nodule’s several characteristics in a 1–5 scale, such as 

subtlety, internal structure, speculation, texture, malignancy, etc. Two of them provide 

information about solid nodules: one is internal structure, which means the internal structure 

or expected internal composition of the nodules (1: soft tissue, 2: fluid, 3: fat, 4: air); and the 
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other is texture, which is defined by 3 terms (1:non-solid/ground glass opacity, 3: part solid/

mixed, 5: solid texture) [28]. Those characteristics are recorded in the associated XML files. 

In term of these two characteristics, we can narrow down the search space and select the 

images of primary interest. On the other hand, because the LIDC annotations provide no 

information on the nodule typology, it is based on the visual assessment to determine 

whether the nodules used in this paper are juxta-pleural.

In our experiments, 60 cases were randomly collected based on the aforementioned rules to 

evaluate the effectiveness of the proposed algorithm. After a series of medical image 

processing steps presented in our previous work [29], 204 candidate nodules of size > 3mm 

were extracted, consisting of 64 nodules and 140 non-nodules marked by at least one 

radiologist.

3.2. Experimental Design

The flowchart of our CAD system for pulmonary nodules detection is shown in Fig. 2. Our 

experiment includes five major steps.

S1 Image Preprocessing. Image de-noising and pulmonary parenchyma 

segmentation are carried out. Median filter is performed to suppress the 

Gaussian noise in the CT images. The well-known thresholding method is 

employed to perform an initial segmentation in terms of the grayscale values 

between pulmonary parenchyma and surrounding areas. After that, other image 

analysis techniques (e.g. filling, region growing, morphology operation, 

multiply operator) are implemented to remove the background and the 

interference tissues (e.g. bronchus and blood vessels) to obtain the complete 

pulmonary parenchyma. Longitudinal scan and morphological erosion 

operation are also explored when there are connections between the left and 

right pulmonary parenchyma.

S2 Region of Interest (ROI) Extraction. All the suspicious nodules are extracted 

in this step. An optimal thresholding algorithm is executed to determine the 

preliminary ROIs according to the difference of CT values among the lung 

parenchyma and lesions. Classical image processing technology and circular 

filter are designed to eliminate the highlights noise points and suppress the 

linear structures, respectively.

S3 Feature Extraction. Thirty-four features are extracted from the ROIs, which 

are obtained in the second step depending on the manifestation of solidary 

pulmonary nodules in CT images. More details about extracted nodule features 

can be found in our previous work [28]. All those extracted features are listed 

in Table 1. They are gray features including gray mean and gray variance, 

morphological features such as seven invariant moments, area, diameter, long 

and short axis, circularity and compactness and texture features consisting of 

contrast, correlation, angular second moment and homogeneity based on gray-

level co-occurrence matrix (GLCM) along four directions 0°, 45°, 90° 

and135°, thus 4 × 4= 16 texture features are included.
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S4 Feature Dimensionality Reduction. It is the key step that this paper focuses 

on. The features extracted from step 3 are high-dimensional data, and they may 

include plenty of redundancies and correlations hiding important relationships. 

Therefore, our proposed SC2SLLE algorithm is utilized to reduce the 

dimensionality, aiming to eliminate the redundancies and obtain more 

meaningful low-dimensional structures hidden in high dimensional data. This 

is helpful for subsequent classification operations.

S5 Classifier Design. Finally, to further eliminate false positive nodules, support 

vector machine (SVM) based classifiers are trained and used for classification.

Note: In table 1, we assume an I × J image with the pixel intensity f (i, j) corresponding to 

the coordinate (i, j). , r = 1 + (p + q)/2 is the normalized central moment with 

order (p, q), where μpq = Σi Σj (i − ī)p(j − j̄)q f(i, j) is the (p, q) order central moment, ī = 

m10/m00, j̄ = m01/m00 and mpq = 2Σi Σj ip jq f (i, j). p (i, j) is the probability density of the 

gray-level co-occurrence matrix (GLCM).

3.3. Results and Analysis

To evaluate the embedding performance of the proposed method, not only the SC2SLLE but 

also the LLE and SLLE are implemented for dimension reduction. Based on the observation 

that all the raw features have different scales, a normalization step is employed to make all 

the features in a common scale. This can help to eliminate the effects caused by different 

scales. In this study, the raw features are standardized by using the standard scores as follow,

(17)

where x is a given raw feature, μ is the mean of the feature population, σ is the standard 

deviation of the feature population, and x* is the corresponding normalized feature.

The first step for dimensionality reduction techniques is parameter setting. In the LLE, there 

are two parameters, which are embedded dimension d and the number of neighbors for each 

data point k. In the SLLE and SC2SLLE, there are three parameters: the embedded 

dimension d, the number of neighbors k and the tuning parameter α. Mapping quality is 

quite sensitive to these parameters. For the embedded dimension d, on one hand, if d is too 

big, the mapping will enhance noise; and on the other hand, if d is too small, distinct parts of 

the data set might be mapped on the top of each other. Therefore, various automatic 

techniques have been developed to estimate the intrinsic dimensionality of a given dataset. 

In this experiment, we employed several state-of-the-art intrinsic dimensionality estimation 

techniques, such as MLE, MiND_ML, MiND_KL, DANCo and DANCoFit [30, 31] to 

determine the value d. As can be seen in Fig. (2), the majority of these methods move 

towards agreement around d= 10, thus we employ d= 10 for our system. Regarding the 

parameter k, the mapping will not reflect the global properties if k is too small; if it is too 

big, the mapping will lose its nonlinear character because the entire data set is seen as a local 

neighborhood. Given that there are 51(or 52) nodules and 112 non-nodules in the training 

Wu et al. Page 10

Comput Methods Programs Biomed. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set, when k ≤ 52, it can be guaranteed that those k neighbors could be chosen from the same 

class. Otherwise, the k neighbors come from different classes, and one could not make full 

use of the label information of the training set which will diminish the advantages of the 

SLLE and SC2SLLE. Hence, this process is implemented empirically by investigating the 

range of 12 ≤ k ≤ 52 with an interval 1. The parameter α controls the amount to which the 

class information should be incorporated [32]. Here, 0 ≤ α ≤ 1 with an interval 0.1 is 

performed.

To quantitatively evaluate the effectiveness of the proposed SC2SLLE, the SVM classifier is 

trained and employed, with the purpose of reducing the false positive nodules and 

identifying the true ones. The penalty parameter c of the error term and the Gauss kernel 

parameter γ in the SVM are automatically determined through a grid search approach for 

each experiment [33]. A standard tool in statistics known as N-fold cross-validation (CV) is 

adopted to improve the credibility of classification results. We take N= 5, so five 

experiments will be executed and the results are averaged. The feature dataset is randomly 

divided into five different subsets equally. In one experiment, four subsets are used to train 

the classifier and the remaining one is assigned as the test dataset for validation. This 

experiment is repeated in 5 different ways, and each subset is unbiasedly evaluated once. 

Table 2 lists all the possible outcomes of a test procedure and the gold standard.

A large number of experiments are conducted to validate the performance of the algorithms. 

Table 3 summarizes the optimal values α and k for the best classification accuracy with 

respect to different dimensionality reduction technique. As shown in Table 3, the best 

classification accuracy (92.68%) is achieved by the SC2SLLE when α= 0.2 and k= 23, while 

the counterparts of the SLLE and LLE are 87.80 % (α= 0.2, k= 28,30) and 80.49 %(k= 19). 

Notice that only the first occurrence of best result is recorded in Table 3 in each experiment. 

On average, the mean accuracies for the three methods are 87.65%, 84.30% and 76.35%, 

respectively. We can see that the supervised SC2SLLE and SLLE outperform the 

unsupervised LLE in terms of the classification accuracy. Moreover, to achieve the best 

classification accuracy, the parameters α and k should be set neither too small nor too big 

due to their sensitivity.

To comprehensively evaluate the performance of CAD systems for lung nodule detection, in 

addition to the classification accuracy, several metrics stand out based on the outcomes of 

the validation procedure: sensitivity, specificity, false positive rate (FPR) and ROC analysis. 

Performance comparisons are summarized in Table 4. Experimental results of nodule 

recognition without employing dimensionality reduction method are also presented in Table 

4 for comparison. As can be seen in Table 4, the LLE algorithm doesn’t show any advantage 

compared to the situation when the dimensionality reduction process is not applied in the 

system, and it is even worse than that in terms of accuracy and sensitivity. However, clear 

performance improvements can be observed when the SLLE and SC2SLLE algorithm are 

utilized. One can also compare the performances of SC2SLLE and SLLE algorithms. It is 

shown that better classification accuracy can be obtained by the SC2SLLE than the SLLE. 

Both of them have a comparable specificity and false positive rate. Particularly, better 

sensitivity (79.23%) is achieved by the SC2SLLE compared to the SLLE (68.97%), which is 

of crucial importance in clinical applications.

Wu et al. Page 11

Comput Methods Programs Biomed. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, p-values between different performances of the LLE, SLLE and SC2SLLE are 

computed using t-test. Fig. 4 shows the overall performance with different approaches in our 

CAD system in terms of accuracy, AUC, and p-value. It can be observed that the differences 

between performances regarding LLE vs. SLLE, as well as LLE vs. SC2SLLE are 

significant since the p-values are all less than 0.05 (significant level p = 0.05) in terms of 

both accuracy and AUC. Although no significant performance differences (p>0.05) are 

observed between the SLLE and SC2SLLE, it is evident that SC2SLLE is superior to SLLE 

(p<0.25) based on the average classification accuracy and the average AUC. Our analysis 

indicates that the supervised dimensionality reduction algorithm boosts the classification 

performance and the proposed SC2SLLE outperforms the SLLE algorithm.

4. Discussion

In this paper, an improved SLLE algorithm is proposed by incorporating the correlation 

coefficient, named SC2SLLE. By combining the two different measures to search the 

optimal nearest neighbors, the SC2SLLE modifies the dissimilarity between data points by 

adjusting their Euclidean distance, in addition to enlarge the inter-class dissimilarity. The 

proposed algorithm can help to find more suitable neighborhood even for the data points in 

the same classes. Consequently, the discriminating power of embedded data is enhanced for 

multi-class issues. The proposed SC2SLLE algorithm is employed in feature extraction in 

the framework of our pilot CAD system for lung nodule detection, and its effectiveness is 

demonstrated on nodules features extracted from the LIDC-IDRI database.

Because it is still a challenging problem to extract features for classification in CAD systems 

for lung nodule detection, extensive interests have been attracted to this area. However, it is 

difficult to make an objective comparison with previously published CAD systems due to the 

variability in the dataset (such as number of cases, scanning protocols), nodule type and size 

criterion, and different validation procedures. Nevertheless, we believe it is still important to 

attempt a relative comparison. For this purpose, we identified several representative methods 

that have reported better results. Li et al. [12] used supervised manifold learning algorithm 

to extract features before the lung nodule classification based on fusion of all-class and 

pairwise-class structure. Comparable classification results are obtained when it is combined 

with only one classifier, while the recognition accuracy was improved significantly when 

multi-classifiers system was employed. Nevertheless, the limitations lie in that different 

dataset was adopted and only classification accuracy was reported in their experiment. It is 

noteworthy that ensembles of alternative classifiers are possible solutions to maximize 

performance. As the aforementioned, in addition to the feature extraction, feature selection 

is also widely used in CAD systems in nodule detection. Zhu et al. [34] adopted a genetic 

algorithm to find and select textures features of solitary pulmonary nodules, and its 

performances were evaluated based on the selected features. A similar AUC value 0.8748 

was presented by using the SVM classifier. However, the finally selected features are 

determined after 300 genetic generations, which requires ultra-high computational cost for 

clinical applications. Temesguen et al. [35] used a sequential forward selection process to 

determine the optimal feature subset. A 7-fold cross-validation performance analysis using 

the LIDC database showed a CAD sensitivity of 82.66% with an average of 3FPs per CT 
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scan/case. Nevertheless, 80.4% nodule candidates were correctly identified using 40 selected 

features in their CAD system, which is lower than that in our study.

It should be pointed out that the proposed algorithm also has some limitations. A lot of 

distance metrics have been proposed to enhance the performance of SLLE. Along this 

direction, more reasonable and potentially powerful distance formulas could be designed for 

multi-manifold space based on three basic principles: non-negativity, symmetric and triangle 

inequality. Besides, in this pilot study, we merely take the solitary pulmonary nodules into 

account without considering more sophisticated cases, and the entire feature extraction 

process is based on the traditional image processing techniques for the CT images. When we 

deal with different type of nodules or different database, the proposed algorithm is lack of 

generalization. From the reported results, though the proposed algorithm outperforms the 

original LLE and SLLE methods, no dramatic performance improvement is observed by our 

entire CAD system. This probably is due to lack of advanced image processing techniques 

or only with a small number of dataset. Thus, further research is needed to improve the 

existing systems for better solutions. The recently prevalent dictionary learning framework 

makes it possible to learn class-specific dictionaries and features directly from the original 

CT images. This can help to avoid the image processing steps to further improve the 

accurate rates. Meanwhile, we will try to extract more discriminating and compact features 

for specific classes with these class-specific dictionaries. Currently, the supervised classifier 

SVM is trained and a testing sampling is interpolated in the low dimensional space for 

classification. However, plenty of other information is available for many clinical 

applications, such as the class sizes of the data sets, the desired sensitivity for each class, etc. 

In the near future, we will incorporate this information into the training and classification 

procedures to further improve the performance of the CAD system.

5. Conclusion

In summary, an improved SLLE algorithm (SC2SLLE) is proposed by incorporating the 

correlation coefficient for multi-classification problem. The proposed algorithm is employed 

in our pilot CAD system for lung nodule detection and a detailed performance comparison 

and analysis are presented based on the publicly available LIDC-IDRI database. Better 

experimental results are obtained with the improved algorithm compared to that with the 

LLE and SLLE algorithms. This study demonstrates the potential for improving the 

performance of the CAD system in nodule detection with a high probability of being cancers 

at its early stage.
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Highlights

• A correlation coefficient is introduced to adjust the distance metric in 

the supervised locally linear embedding to ensure more suitable 

neighbors that could be chosen, and thus to enhance the discriminating 

power of embedded data.

• The method is validated on a clinical lung image database.
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Figure 1. 
The flowchart of our CAD system
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Figure 2. 
Estimated intrinsic dimensionality with different techniques
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Figure 3. 
Performance comparison of the classification system. (a) Accuracy v.s. p-value; and (b) 

AUC of ROC v.s. p-value.
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Table 1

Features used in the experiment

name feature

mean

variance

seven invariant moments

M1 = η20 + η02

M2 = (η20 + η02)2 + 4η11
2

M3 = (η30 + 3η12)2 + (3η21 + η03)2

M4 = (η30 + η12)2 + (η21 + η03)2

M5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2](3η21 − η03)(η21 + η03)[3(η30 + η12)2 − 2(η21 + η03)2]

M6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11 (η30 + η12)(η21 + η03)

M7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2(η03 + 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

inscribed radius Ri

circumradius Rc

perimeter P

long axis (l)

short axis

circularity Ri/Rc

compactness 4πA/P2

constrast Σi,j(i−j)2p(i,j)

correlation

angular second moment Σi,jp2(i,j)

homogeneity

area (A) The actual number of pixels in each ROI

flat l/s
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Table 2

All possible outcomes of a test

Test result
Gold standard

Positive Negative

Positive True Positive(TP) False Positive(FP)

Negative False Negative(FN) True Negative(TN)

Total TP+FN FP+TN
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Table 4

Performance (mean) comparison with respect to different methods

Method

Accuracy (%) Sensitivity (%) Specificity (%) FPR (%)

Without DR 77.43 57.95 86.43 13.57

LLE 76.35 49.36 88.57 11.43

SLLE 84.30 68.97 91.43 8.57

SC2SLLE 87.65 79.23 91.43 8.57
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