
The OCarePlatform: A Context-Aware System to
Support Independent Living

F. De Backerea,∗, P. Bontea, S. Verstichela, F. Ongenaea, F. De Turcka

aDepartment of Information Technology (INTEC), Ghent University – iMinds,
Gaston Crommenlaan 8, bus 201, B-9050 Gent, Belgium

Abstract

Background: Currently, healthcare services, such as institutional care facilities,

are burdened with an increasing number of elderly people and individuals with

chronic illnesses and a decreasing number of competent caregivers.

Objectives: To relieve the burden on healthcare services, independent living at

home could be facilitated, by offering individuals and their (in)formal caregivers

support in their daily care and needs. With the rise of pervasive healthcare, new

information technology solutions can assist elderly people (“residents”) and their

caregivers to allow residents to live independently for as long as possible.

Methods: To this end, the OCarePlatform system was designed. This semantic,

data-driven and cloud-based back-end system facilitates independent living by

offering information and knowledge-based services to the resident and his/her

(in)formal caregivers. Data and context information are gathered to realize

context-aware and personalized services and to support residents in meeting

their daily needs. This body of data, originating from heterogeneous data and

information sources, is sent to personalized services, where is fused, thus creating

an overview of the resident’s current situation.

Results: The architecture of the OCarePlatform is proposed, which is based on

a service-oriented approach, together with its different components and their

interactions. The implementation details are presented, together with a run-

∗Corresponding author; Tel: +32 9 331 49 38; Fax: +32 9 331 48 99
Email addresses: femke.debackere@intec.ugent.be (F. De Backere),

pieter.bonte@intec.ugent.be (P. Bonte), stijn.verstichel@intec.ugent.be
(S. Verstichel), femke.ongenae@intec.ugent.be (F. Ongenae),
filip.deturck@intec.ugent.be (F. De Turck)

Preprint submitted to Elsevier November 25, 2016

ning example. A scalability and performance study of the OCarePlatform was

performed. The results indicate that the OCarePlatform is able to support a

realistic working environment and respond to a trigger in less than 5 seconds.

The system is highly dependent on the allocated memory.

Conclusions: The data-driven character of the OCarePlatform facilitates easy

plug-in of new functionality, enabling the design of personalized, context-aware

services. The OCarePlatform leads to better support for elderly people and

individuals with chronic illnesses, who live independently.

Key words: eCare, ontologies, SOA, OSGi

1. Introduction

There are many challenges involved in caring for the increasing number of el-

derly individuals and those with chronic illness in independent living facilities

(“residents”) [1]. One of these challenges is a shortage of skilled caregivers to

provide help for residents [2] and a wide range of caregivers, some being formal

(such as home nurses) and others being informal (such as neighbors).

As new technologies become available, they are also used to facilitate aging in

place [3]. Several reviews have already proven and indicated the rising impor-

tance of the use of information technology (IT) in healthcare [4, 5]. The past

years, there has been an uptake in the use of personal, smart devices [6, 7].

Other IT devices are used in our daily lives; for example, sensors [8, 9]. These

devices and technologies generate large amounts of data. Within the pervasive

or ubiquitous computing domain, data can be used to extract new knowledge.

This knowledge makes it possible to make context-aware or situation-aware de-

cisions [10]. Together with the uptake of pervasive computing, this approach

has been used in specific domains, such as healthcare [11].

Next to pervasive healthcare [12], Ambient Assisted Living (AAL) solutions [13]

have been introducted. AAL solutions offer IT products, services and systems,

with their focus being on the improvement of the Quality of Life (QoL) of the

individual. This technology can target specific parts of the QoL experience [14].

In recent years, AAL solutions have seen an increased uptake and have risen to

the foreground. Based on reviews in the domain of AAL [13, 15, 16], it becomes

2

clear that current AAL solutions often lack a strong base using a requirement

analysis and a mapping of the needs of elderly and people with chronic dis-

eases [15, 13]. Moreover, only a limited number of these solutions takes the

whole AAL ecosystem into account [15]. Ontologies facilitate communication,

collaboration and integration. Context-aware applications can benefit from in-

corporating ontologies as these models enable knowledge sharing, reasoning and

increase interoperability [17]. Currently, semantic knowledge components in

AAL systems [18, 19, 20, 21, 22, 23] are always deployed as a central entity

within the framework. Such an approach negatively impacts the scalability and

performance of the entire system. Other issues arise when ontologies are used at

different endpoints, as discussed in [24, 25], which entails that both ontologies

should be kept in sync.

Unlike other solutions described in the literature, our solution was created within

the interdisciplinary OCareCloudS (OCCS) project [26]. In this project, all

stakeholders of the AAL ecosystem were brought together to get insights into

their needs and incorporate these features into the system. The core of this

OCCS system is the OCarePlatform, an intelligent, semantic, modular back-end

system. The OCarePlatform is designed in a scalable and extensible manner in

order to address the shortcomings in existing AAL solutions. This makes it

possible to easily add new functionality, based on the needs of the stakeholders.

Moreover, the OCarePlatform is be able to process the data in a timely manner

and respond within acceptable time ranges.

Previous publications focussed on the use cases where the OCareCloudS system

and OCarePlatform can be used, namely in meeting the daily needs of residents

and caregivers in home care [26] and handling falls using multiple sensors and

context [27].

2. Data flows and manipulation

To achieve a modular, scalable system, a generic, structured format was created

to communicate data in the OCareCloudS system and OCarePlatform. This

format is called a MetaCareFragment (MCF) and has several properties, such

3

CD MCD MCI MCK

MCC

ReasoningTaggingLinking

Figure 1: Visualization of the dependencies and definitions of the commonly adopted
MetaCareFragment

as timestamps and identification of data source and user. The MCF is formatted

as a JavaScript Object Notation [28] (JSON) fragment.

Based on the stage in the life cycle and the location in the OCareCloudS system,

this fragment is enriched with new information. As a consequence, the fragment

changes its name. This life cycle is shown in Figure 1. Data generated by data

sources, such as sensors and devices, are called Care Data (CD). This is just raw

data. This body of data is gathered in a central collection point in the resident’s

home, where it is linked with information of the resident and the caregiver, such

as time information and identification of the individual. At this stage, the

body of data is called Meta Care Data (MCD). Meta Care Concepts (MCC)

are used to tag MCD with concepts corresponding from the ontology used in

the OCarePlatform. By tagging MCD, the fragment is transformed into Meta

Care Information (MCI). Adding MCC enables the OCarePlatform to interpret

the type of data. After the processing by services in the OCarePlatform, MCI

is transformed into Meta Care Knowledge (MCK), which is new knowledge

inferred out of the combination and/or processing of MCI and MCK.

3. The OCareCloudS system, OCarePlatform components and their
interactions

The OCarePlatform is an intelligent, semantic, modular back-end, which adopts

a data-driven approach. This means that all data from the resident, devices,

sensors and caregivers are gathered and directly sent to the platform. The

4

platform will then forward the data to services, which have indicated their

interest in specific types of data.

Data, such as sensor data, gathered from within the resident’s home, are sent

to the Controllers by the Local Gateway. This Local Gateway is responsible for

translating CD into MCD by adding identification data. This Local Gateway

forwards all data to the Controllers. The Controllers are able to add MCC to the

fragment and transform it into MCI. Moreover, the Controllers directly receive

data from the smartphones from the resident or caregivers. The Controllers

are also able to contact the caregiver, based on the information received by the

OCarePlatform. After the processing step in the Controllers, the data are sent

to the OCarePlatform.

The OCarePlatform can be split up in 4 different parts (2), the main features

of each being described in the following subsections.

3.1. Preprocessing the data

The collected data enter the OCarePlatform through the Gateway. The Gate-

way receives all the data packets and forwards them to the Matching Service.

The Matching Service will analyze MCI, structured as a JSON object. Based

Gateway

Matching	Service

Observation	Adapter RFID	Adapter TV	Adapter Visit	Adapter

Trend	Adapter Task	Adapter Person	Adapter

Semantic	Communication	Bus	(SCB)

Help	Selection Pressure	Monitoring RFID	Monitoring Task	Service

Trend	Manager Medication	Reminder Notification	Service

JSON	messages	
(MCD) JSON	messages	(MCI,	MCK)

OWL	
individuals
(MCI)

JSON	messages	(MCI)JSON	messages	(MCI)

OWL	individuals	
(MCI/MCK)

Pressure	
sensors

Motion	sensors

Temp/Hum/Light	 sensor

Local	
Gateway						
Transform							
into	MCD							

Controllers
Transform	into	MCI

JSON	messages	(MCI)

Resident’s	home
OCarePlatform
Preprocessing	steps
Context	Adapters
MCI	Services

Figure 2: Detailed architecture of the OCarePlatform

5

on the tagged MCC, the Matching Service will then decide which Adapter needs

to receive the data.

3.2. Context Adapters: Transforming the data into individuals

Context Adapters within the OCarePlatform are responsible for translating the

JSON fragments into Web Ontology Language (OWL) individuals. The OWL

individuals represent the semantically enriched received data, which are inter-

pretable for the ontologies used in the next parts of the OCarePlatform. Each

Context Adapter is responsible for the translation of one or more specific types

of fragments.

Within the OCarePlatform, the Context Adapters were designed thus:

• Observation Adapter: This transforms all data concerning sensory obser-

vations done in the resident’s home, for example, this involves the obser-

vations made by sensors.

• RFID Adapter: This receives and enriches input whenever caregivers reg-

ister their presence in the home of the resident by using an RFID card.

• TV Adapter: The home of the resident is also equipped with a smart TV.

This TV is used as a sensor. This means that the TV sends logs of per-

formed actions to the OCarePlatform, which can then be used as context

information. The OCarePlatform can also control the TV, for example by

sending notifications to the device or by controlling the ambilight. Data

sent from the TV are processed by the TV Adapter.

• Visit Adapter: Care organizations use planning tools to plan, update or

delete visits of the formal caregivers to the patients/clients. This informa-

tion can easily be inserted in the OCarePlatform using the Visit Adapter.

For example, data from Google Calendar can be gathered by the Con-

trollers, where it is also transformed into MCI. This MCI can then be fed

to the OCarePlatform, through the Visit Adapter.

• Trend Adapter: When caregivers visit, they can request some trends,

using for example the TV (as this screen is big enough to see the graphs).

Examples of trends that can be shown are the walking or sleeping behavior

6

of the resident, based on the input of the sensors. The requests to collect

specific trends are handled by the Trend Adapter.

• Task Adapter: This handles various tasks. If an event concerning a task

enters the OCarePlatform, such as the acceptance or refusal of a specific

task, the Task Adapter will handle it.

• Person Adapter: Residents needing care at home are often helped by sev-

eral informal and formal caregivers. They sometimes have better relation-

ships with specific caregivers. Therefore, the OCareCloudS system makes

it possible to define trust relationships with a specific degree between res-

ident and caregivers. New caregivers for a resident thus need to create a

trust relationship. These relationships can be taken into account in case

of non emergency calls for example. The Person Adapter is responsible

for the creation, deletion and editing of trust relationships.

3.3. Semantic Communication Bus: Intelligently and semantically filtering the
data

As the OCarePlatform is a data-driven platform, it has to be able to process

a huge amount of data within a limited time period. To this end, the Seman-

tic Communication Bus [29] (SCB, sometimes called the Bus in short), acts

as the central component of the OCarePlatform and offers an intelligent filter

mechanism.

The SCB is designed based on the publish/subscribe design pattern [30], en-

abling high performance and modifiability. The SCB uses ontologies to se-

mantically filter the individuals published by the Context Adapters and MCI

Services. More information on the specific MCI Services can be found in Sec-

tion 3.4. Subscribers, in this case MCI Services, pass filter rules to the SCB

defined as OWL classes. These OWL classes are added to the internal ontology

of the Bus. When publishing new individuals, the SCB will reason and derive

which MCI Service have indicated an interest to receive the data and will act

upon this request.

As the size of the internal ontology of the SCB and the number of filter rules

can have a large impact on the reasoning process and hence, on the performance

of the Bus, a cache was added.

7

3.4. MCI Services: Reasoning on the data

The actual processing of the data in the OCarePlatform is executed in the MCI

Services. MCI Services are atomic services with specific functionality. To this

end, each MCI Service has its own internal ontology and reasoner. The ontology

is kept small to make the service as efficient as possible. MCI Services publish

filter rules to the SCB, receive individuals from the SCB and process them.

After processing, they will again publish their findings to the Bus, enabling

other services to further process it.

Currently, there are seven MCI Services defined in the OCarePlatform. New

services can easily be added. This only requires the implementation of the

specific service functionality and registering the filter rules on the SCB. From

the moment they have registered these rules on the Bus, they will immediately

receive relevant information.

• Help Selection MCI Service: This service is responsible for determining

which caregiver is best suited to execute a task. To do this, context

information, fed to the OCarePlatform, is taken into account. Examples

of such information is location, availability, travel time of the caregiver

and their trust relationship with the resident.

• Pressure Monitoring MCI Service: The MCI Service analyzes the pressure

sensors, which are being used in the home. Individual rules per resident

can be defined to detect abnormal situations.

• RFID Monitoring MCI Service: Whenever a caregiver registers him/her-

self to the registration system in the home of the resident using his/her

RFID card, the RFID Monitoring MCI Service receives this information.

Information generated by this service can be of interest to other MCI

Services, such as the Task MCI Service, which will then generate a task

list.

• Task MCI Service: Relevant task data are sent to this MCI Service. It

keeps track of all the tasks of the different caregivers and can generate

a task list when, for example, a caregiver has registered his/her presence

in the resident’s home. The generation of a personalized task list, based

8

Upper

Sensor

TaskContext

Medical

Profile

Role &
Competence

Generic Core
ontologies

Cure
Task

Care
Task

Cure
Role

Care
Role

Cure
Competence

Care
Competence

Cure
Doc

Care
Doc

Care
Profile

Cure
Context

Cure
ontologies

Care
ontologies

extends

Figure 3: Overview of the Ambient-aware Continuous Care Ontology

on the profile and capabilities of the caregiver, will be triggered when the

service receives the individual generated in the RFID Monitoring MCI

Service, confirming the presence of a specific caregiver in the resident’s

home.

• Trend Manager MCI Service: When trends are requested by the caregiver,

the Trend Manager MCI Service will gather the requested information.

• Medication Reminder MCI Service: This service can be connected to ex-

ternal data sources, which contain for example the medication scheme of

the resident.

• Notification MCI Service: This service is the only service able to communi-

cate with the outside world. This means that every MCI Service wanting

to notify or communicate with caregivers or the resident has to push a

message on the Bus, which then will be picked up by this MCI Service.

It will pass this information through to the Controllers. The Controllers

will then process the information.

4. Ontologies

The OCarePlatform makes use of the Ambient-aware Continuous Care Ontol-

ogy [31]. As shown in Figure 3, it consists of 2 parts. The core ontologies model

9

general knowledge that is applicable across all continuous care settings, e.g., hos-

pitals, independent living facilities and nursing homes. Seven core ontologies are

provided, each with its own focus:

• Upper ontology: Model generic classes and relations, such as IDs, events

and temporal information.

• Sensor ontology: It is an extension of the W3C Semantic Sensor Net-

work Ontology (SSN) [32], which models sensors, devices and actuators

used within the continuous care domain together with the observations

they make and the actions they can take.

• Context ontology: This model captures the contextual environment

information, such as the layout of the care setting, the purpose of the var-

ious rooms and the available furniture. Most importantly, it also models

localization information of people and objects.

• Role & Competence ontology: This ontology models the various roles

and competences that the various (in)formal caregivers can have and how

they map on each other and the tasks they can execute.

• Profile ontology: This model contains the profile information about the

(in)formal caregivers and the care receivers. It captures the biological,

sociological, psychological profile as well as the behavioral and medical

risk profile.

• Task ontology: This ontology models continuous care process workflows.

A workflow represents a sequence of related continuous care tasks, which

are conducted in a particular order. For this, the OWL-S Process ontol-

ogy [33] was imported.

• Medical ontology: This model contains all the medical knowledge per-

taining to a particular resident.

This modular approach of the core ontology allows that MCI Services or appli-

cations can easily select the parts of the ontology they require instead of the

whole model. It also facilitates the creation of domain-specific extensions of

10

a particular module, as a smaller, focused ontology is easier to interpret and

extend with new concepts, relations and definitions. As can be seen in Fig-

ure 3, various domain-specific extensions were made, e.g., modelling particular

roles and competences within a certain care setting and how they map on each

other. The Cure ontologies model domain-specific extensions for hospital set-

tings, while the care ontologies focus on the independent living and residential

care settings. More information about the ontologies can be found in Ongenae

et al. [31].

5. Implementation

The following sections present the different frameworks and technologies used

to implement the OCarePlatform system.

5.1. OSGi

In order to realize a truly modular and modifiable back-end, the OSGi frame-

work [34, 35] was selected. OSGi makes it possible to design a modular, service-

oriented platform using the Java Programming language [36, 37]. The OSGi

service platform is built of bundles, which can be compared to Java Archive

(JAR) files [38]. These bundles can be dynamically installed, started, stopped,

updated and uninstalled without requiring a restart of the Java Virtual Machine

(JVM). This concept is known as the life cycle management of the software

components and is the most important feature of OSGi. Large and complicated

applications can be divided into smaller pieces, called services. These services

can be re-used and exchanged between applications, leading to collaborations.

Bundles can register their functionality as services, providing an interface which

can be used by other services [37].

As the OSGi framework facilitates the design of Service-Oriented Architectures,

it is ideally suited to implement the OCarePlatform. Moreover, the OCare-

Platform will not have to be taken offline to add, update or delete services and

different versions of the same service can be deployed.

11

5.2. Web Ontology Language Application Programming Interface (OWL API)

OWL 2 [39] is the current version of the Web Ontology Language (OWL). OWL

is the most populare language currently used to describe an ontology. The

OWL 2 language is designed in order to ease the development and sharing of

ontologies.

The OWL API [40] supports the creation and manipulation of OWL ontologies.

The API is implemented in Java and is open source. The OWL API does not

work at the level of triples, but at the level of axioms, which is a higher level of

abstraction.

5.3. Reasoners

Ontologies can be processed by a reasoner [41]. The two reasoners used within

the OCarePlatform are discussed in the following sub-sub-sections.

5.3.1. Hermit

The SCB and the MCI Services use a Hermit reasoner to derive knowledge

from the ontologies and the data within the model. The Hermit reasoner [42]

is the first reasoner using hypertableau calculcus, resulting in a more efficient

reasoning process than other reasoners.

5.3.2. Pellet and SPARQL Protocol and RDF Query Language (SPARQL)

The Pellet reasoner [43] was used in the Jena ARQ query engine to process the

SPARQL queries used in the MCI Services. The SPARQL Protocol and RDF

Query Language [44] (SPARQL) is the query language for Resource Description

Framework (RDF) content. SPARQL consists of similar operations as the SQL

language.

6. Example application

Within the OCareCloudS project [26], an interdisciplinary design methodology

was used, namely the Innovation Binder approach [45]. During this iterative

approach, personas and scenarios were designed to get insights into the envi-

sioned system [46]. One of these scenarios was used to technically evaluate the

12

OCarePlatform. A more elaborate version of the scenario and the accompanying

personas can be found in [26]. This scenario, together with the more technical

details, is discussed in the following paragraphs.

6.1. Scenario

Yousuf, 80 years old, lives with his daughter Fatima and is experiencing in-

creased mobility problems since a recent fall. Fatima depends on formal care-

givers when she is at work. Lydia is Yousuf’s regular home care nurse, while

Karen fills in if needed. Ann is an informal caregiver, living next door and helps

out occasionally or in case of an emergency.

The home of Fatima and Yousuf is equipped with the OCareCloudS system,

which utilizes the OCarePlatform as an intelligent, cloud-based back-end. Sev-

eral sensors are installed within their home, such as a bed pressure sensor,

movement and PIR sensors. The OCareCloudS registration system, using RFID

cards, is also installed in the home. The system is configured in such a way that

when the pressure sensor in Yousuf’s bed is still activated at 10 o’clock in the

morning, an alarm is triggered.

1. On Monday, Fatima works an early shift at work and relies on Ann to help

Yousuf out of bed.

2. However, Ann has forgotten that she agreed to help out that morning.

3. At 10 o’clock, the system detects that Yousuf is still in bed.

4. A message is sent to Yousuf to ask whether he needs assistance to get out

of bed or if he is willing to wait until Lydia arrives, later that day.

5. Yousuf indicates that he needs help to get out of bed, using his tablet.

6. The system acts upon this information and searches the most appropriate

caregiver to assist Yousuf.

7. The system sends Lydia a message to help Yousuf out of bed.

8. Lydia receives the message on her smartphone and accepts the request.

9. Lydia arrives at the home and registers her presence using the registration

system and her RFID card. This way the system knows that somebody is

taking care of Yousuf’s needs.

13

6.2. Technical realization of the scenario

The technical scenario can be realized using the OCarePlatform. The scenario

is split up into 3 large parts. In the first step, it is past 10 o’clock and the

OCarePlatform detects that Yousuf is still lying in bed. In step 2, Yousuf

indicates he wants assistance to get out of bed. Finally, in step 3, Lydia is

notified of this incident and indicates she will offer assistance. Data from sensors

are collected by the Local Gateway, which is installed in the home of the resident.

The Controllers are operating in the cloud, as well as the OCarePlatform. The

following subsections go into detail on how decisions and actions are made/taken

in the OCarePlatform.

6.2.1. Step 1: OCarePlatform detects Yousuf still lying in bed

The pressure sensor in Yousuf’s bed sends out signals in frequent intervals,

indicating whether the sensor is pressed (= 1) or not (= 0). The pressure

sensor sends out such a signal every minute. At 10 o’clock in the morning, the

pressure sensor will still transmit 1 as a value. The Local Gateway processes

this data and transforms the CD into MCD. Next, the information is sent to the

Controllers, responsible for translating the MCD into MCI. This in fact means

adding the correct concepts from the ontology to the MCF.

Then, MCI is forwarded to the OCarePlatform. All data enter the OCarePlat-

form through the Gateway. The Gateway adds an internal identification number

to the fragment and sends the data to the Matching Service. This Matching Ser-

vice analyzes the MCI and decides, based on the MCC within the MCI, which

adapter is able to translate the JSON fragment into OWL individuals. In this

case, the Matching Service sends the data to the Observation Adapter, respon-

sible for processing all observations done in the home of the resident. Within

the Observation Adapter, the MCI is transformed into OWL individuals and

then published on the SCB.

The SCB knows which MCI Services are interested in this type of data based

on the hasContext ObjectPropertyAssertion, and forwards it accordingly to

the Pressure MCI Service, based on the filter rule the Pressure MCI Service

registered to the SCB when the MCI Service bundle was started. This filter

rule is shown below.

14

hasContext some(isObservationOf some(hasSensorPart some

PressureSensor))

The Pressure MCI Service uses a SPARQL query to deduct that Yousuf should

already be out of bed. The observation created by the Observation Adapter is

filled (x) and the time the resident is expected to be out of bed also (y). For

Yousuf, this time is set to 10 o’clock in the morning.

Based on the results of the reasoning process, the Pressure MCI Service pub-

lishes new individuals on the SCB with a hasContext of taskEvent. Thus, a

task is generated to ask Yousuf if assistance is needed.

Based on the type taskEvent, the SCB knows that the Help Selection MCI

Service and the Task MCI Service are interested in this new information and

forwards it accordingly. The Help Selection MCI Service updates the status of

the task to pending, while the Task MCI Service indicates that the status has

been updated in parallel. This information is again published on the SCB using

the notificationEvent as hasContext type. The Bus forwards this information

to the Notification MCI Service, as the filter rules indicate that the Notification

MCI Service is interested in notification events. The Notification MCI Service

sends this information, formatted in a JSON format, to the Controllers, which

in its turn forwards the information to Yousuf’s tablet, asking him whether he

needs assistance.

6.2.2. Step 2: Yousuf requesting help

Yousuf receives the message on his tablet, asking him if he is in need of assis-

tance. Yousuf indicates that he can use some assistance to get out of bed. Data

from the smart devices are directly sent to the Controllers. Thus, data from

these devices are sent as MCD, as the personal data of the user can be added

on the device. The Contollers transforms the request of Yousuf into MCI by

adding MCC and then forwards the information to the OCarePlatform. The

Gateway again sends the MCI to the Matching Service, which now analyzes that

this type of information should be sent to the Task Adapter. The Task Adapter

translates the JSON format into OWL individuals and pushes it on the SCB

using the taskEvent type. This type of individuals is of interest for the Help

15

Selection MCI Service and the Task MCI Service. The Help Selection MCI Ser-

vice reasons that Lydia is the most appropriate caregiver to assist Yousuf and

updates the status of the task to “assigned”. The Task MCI Service indicates

the status of the task is changed. This information is pushed to the Bus using

the notificationEvent type. The Bus forwards this information, based on the fil-

ter rules, to the Notification MCI Service. This service transforms the message

from individuals to a JSON format and sends it to the Controllers, where it is

forwarded to Lydia.

6.2.3. Step 3: Lydia accepting task

Lydia receives this notification on her smartphone. As she is nearby, she accepts

the task, using her smartphone. The message, informing the OCarePlatform

that she accepts the task, is sent as MCD to the Controllers. The Controllers

add the necessary ontology concepts as tags and forwards this information to

the OCarePlatform and, thus, the Gateway. The Gateway receives the MCI

and redirects it to the Matching Service. As this is an acceptance of a task,

the Matching Service forwards the information to the Task Adapter. The Task

Adapter transforms it into OWL individuals using the type taskEvent and pub-

lishes it on the Bus. The Bus, as in the previous step, will forward the task

information to the Help Selection MCI Service and the Task MCI Service, which

enables these services to use this information, and new reasoning processes are

started. In the end, Yousuf is notified by the Notification MCI Service and the

Controllers that help is on its way.

7. Experimental evaluation

7.1. Evaluation set-up & approach

To get more insights into the scalability and performance of the OCarePlatform,

several tests were conducted. All tests were performed using the same server

with 4 x Dual-Core AMD Opteron™ Processor 2212 CPU with 12 GB RAM and

running Debian 3.2.65-1+deb7u1 x86_64 GNU-Linux.

Each data fragment entering and leaving a component in the OCarePlatform is

timed. This way, the execution time of each component can be calculated. Each

16

test was executed 35 times, the first three and last two runs were omitted to

eliminate any influence of the warm-up and cool-down phases. The mean and

standard deviation were calculated over the remaining 30 iterations.

7.2. Evaluation results

The running example was evaluated in terms of execution times. The evalua-

tions, following this analysis of the running example, focus on getting a better

understanding of the scalability of the platform, the ontology was scaled up to

resemble a realistic working environment.

7.2.1. Evaluation of the example application

In a first test, the standard scenario as described in Section 6 was evaluated.

In the first step of the scenario, the OCarePlatform detects that Yousuf is still

lying in bed. Table 1 shows the results. The Pressure MCI Service needs the

most processing time, on average 233.06 ms or 68.13%. The other components

performing reasoning, namely the Help Selection MCI Service and the Task MCI

Service, needing respectively 15.70% (53.80 ms) and 8.97% (30.77 ms), complete

the top 3. The other components use about 7.19% of the processing time. As

can be seen in the table, the Gateway, responsible for merely delegating data

fragments to the Matching Service, is negligible. Data are pushed to the SCB

3 times, and the results are mentioned separately.

Table 1: Percentage, mean and standard deviation for the first step in the scenario

Component Percentage (%) Mean (ms) Std dev (ms)
Gateway 0 0 0
Matching Service 0.17 0.57 0.50
Observation Adapter 1.25 4.3 1.1
SCB 1 0.47 0.14 0.5
Pressure MCI Service 68.14 233.6 24.51
SCB 2 0.09 0.3 0.50
Help Selection MCI Service 15.69 53.80 4.81
Task MCI Service 8.97 30.77 10.03
SCB 3 0.07 0.23 0.43
Notification MCI Service 5.48 18.8 2.04
Total 100 342.83 44.36

In the second phase of the scenario, Yousuf confirms he needs help. The results

of the evaluation can be found in Table 2. Again, the Help Selection MCI Service

17

(57.70%) and Task MCI Service (23.36%) consume the most processing time,

followed by the Notification MCI Service, which uses 15.33% or 19.53 ms. This

is as expected because of the reasoning processes within these services. The

SCB and the Matching Service utilize in total 0.94% or 1.20 ms. Again, the

Gateway is negligible.

Table 2: Percentage, mean and standard deviation for the second step in the scenario

Component Percentage (%) Mean (ms) Std dev (ms)
Gateway 0 0 0
Matching Service 0.29 0.37 0.48
Task Adapter 2.67 3.4 1.17
SCB 1 0.29 0.37 0.48
Help Selection MCI Service 57.7 73.53 12.70
Task MCI Service 23.36 29.77 9.26
SCB 2 0.36 0.47 0.50
Notification MCI Service 15.33 19.53 4.68
Total 100 127.43 29.28

The last step of the scenario is similar to the second step, as the same compo-

nents are called. The results are shown in Table 3. Again, the MCI Services

consume most of the total execution time in step 3 (96.41% or 130.73 ms).

Table 3: Percentage, mean and standard deviation for the third step in the scenario

Component Percentage (%) Mean (ms) Std dev (ms)
Gateway 0 0 0
Matching Service 0.27 0.37 0.48
Task Adapter 2.51 3.40 1.05
SCB 1 0.44 0.60 0.49
Help Selection MCI Service 49.73 67.43 67.54
Task MCI Service 31.98 43.37 69.40
SCB 2 0.37 0.50 0.50
Notification MCI Service 14.7 19.93 6.36
Total 100 135.60 148.82

To obtain an overview of the performance for this scenario, the execution times

for each component were added (Table 4). In Figure 4, a pie-in-pie chart is

shown to visualize these results. The smallest pie resembles the four least con-

suming components in the scenario. The MCI Services and Context Adapters,

responsible for the reasoning in the platform and for the transformation of the

data into individuals consume the most time. However, the execution times of

the Context Adapters are negligible compared to those of the MCI Services.

18

Pressure	MCI
38.56%

Help	Selection	MCI
32.15%

Task	MCI
17.15%

Notification	MCI
9.62%

Task	Adapter
1.12%

Observation	Adapter
0.71%

SCB

0.48%

Matching	
Service
0.21%

Other
2.53%

Figure 4: Execution time of the complete scenario

7.2.2. Evaluation of an increasing number of residents supported by the OCare-
Platform

In a realistic working environment, formal caregivers handle requests for help

between 10 to 12 residents per day. This is based on Gellatly et al [47] where

nurse aide ratios in nursing homes are set to 8 to 12 patients and based on

the rules used in home care worker schedules [48] as travelling should also be

taken into account. As the scenario discussed in Section 6 contains 2 formal

caregivers, the number of residents in this evaluation is steadily increased to 23

residents. This way, a prediction can be made on how the number of residents

in the ontology influences the behavior of the OCarePlatform. The results of

the evaluation are shown in Figure 5. As can be seen in Figure 5, the execution

time increases with the growing number of patients in the ontology. The first

iteration with 1 patient and 2 formal caregivers takes about 600 ms. The total

Table 4: Total execution times of the technical scenario

Component Percentage (%) Mean (ms) Std
dev (ms)

Pressure MCI Service 38.56 233.60 24.51
Help Selection MCI Service 32.15 194.77 85.05
Task MCI Service 17.15 103.90 88.68
Notification MCI Service 9.62 58.27 13.08
Task Adapter 1.12 6.80 2.22
Observation Adapter 4.30 1.1 0.71
SCB 0.48 2.93 3.35
Matching Service 0.21 1.30 1.46
Gateway 0 0 0
Total 100 605.87 219.46

19

execution time for an ontology with 23 residents and 2 formal caregivers is about

700 ms. A linear trend can be identified, depending on the number of residents

in the ontology. The error bars in the graph visualize the standard deviation.

As can be seen, some standard deviations are bigger than others. The larger

deviations are caused by the garbage collection of the Java Virtual Machine

(JVM).

350

450

550

650

750

850

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ti
m
e	
(in

	m
s)

Number	of	patients

Linear	 	(Trendline)

Figure 5: Influence of the number of residents in the ontology

7.2.3. Evaluation of an increasing number of (in)formal caregivers and residents

Within this evaluation, the number of residents, their informal caregivers and

formal caregivers is steadily increased. In each step, one formal caregiver is

added to the ontology, together with 12 residents, for which this formal care-

giver is responsible. Each resident has zero to three informal caregivers in their

care network, which are assigned at random based on a normal distribution.

Per iteration, one pressure sensor of one patient chosen at random triggers the

OCarePlatform. In a realistic work setting, formal caregivers work together in

teams of 8 to 10 people. Therefore, the number of formal caregivers in the

ontology was increased from 1 to 10, meaning the number of residents rose to

120.

20

Pressure sensor indicates unexpected situation in the home. This evaluation

starts from the scenario as discussed in Section 6. The results of the evaluation

are illustrated in Figure 6. For an ontology with 10 formal caregivers and 120

residents, each with their own informal caregivers, the execution time climbs up

to 3680 ms. Again, this is a linear trend in terms of the increasing number of

caregivers.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10

Ti
m
e	
(m

s)

Number	 of	formal	caregivers

Linear	 	(Trendline)

Figure 6: Influence of the number of residents, formal and informal caregivers in the ontology
when pressure sensor triggers an unexpected situation

Registration in the home and task assignment. Within this evaluation, a care-

giver enters the home of the resident and registers him/herself using an RFID

card. Based on the person entering the house, the personal task list is generated

and sent to this person. This way, the caregivers knows which tasks, together

with the associated priority, can and should be executed and the associated

priority. As can be seen in Figure 7, the execution time for an ontology with 10

formal caregivers, which have each been assigned zero to four tasks, based on a

normal distribution, and 120 residents, climbs up to 450 ms.

7.2.4. Influence of memory allocation on the execution times

A final evaluation focuses on the influence of the amount of memory, allocated to

the server, on the execution times of the OCarePlatform. In order to compare

this, the technical scenario was executed on a server with 4 GB RAM and

21

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ti
m
e	
(m

s)

Number	 of	formal	caregivers

Figure 7: Influence of the number of residents, formal and informal caregivers in the ontology
when caregiver registers in the home

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Ti
m
e	
(m

s)

12	GB	of	memory 4	GB	of	memory

Figure 8: Comparison of the execution times of the technical scenario with an increasing
number of (in)formal caregivers and residents using different memory sizes

12 GB RAM. The results are shown in Figure 8. As can be seen from this

graph, the execution times increase more rapidly when only 4 GB RAM is used.

8. Discussion

In the coming years, healthcare services will be increasingly burdened with an

increasing number of elderly people and people with chronic diseases. Moreover,

the number of available caregivers is decreasing steadily. A solution for this

problem is home care, where people can receive care in the comfort of their

own home, supported by technology. State of the art research indicated that

22

AAL solutions often lack a thorough requirements analysis and do not meet the

needs of all the involved stakeholders, such as residents and caregivers [15, 13].

Ontologies can be used in these solutions to enable context-awareness, reasoning

and interoperability. However, as ontologies often are centralized [18, 19, 20, 21,

22, 23], the system may be robbed of its scalability and performance. In this

paper, we presented the OCarePlatform, a semantic modular back-end system.

The OCarePlatform is designed as a SOA, in which various semantic services are

able to process heterogeneous data, originating from both resident and caregiver.

These services form dynamic workflows, tailored to the needs and to support all

involved stakeholders of the AAL ecosystem in a scalable and efficient manner.

The OCarePlatform is designed in a scalable and extensible manner, making it

possible to easily add new functionality. The core of the OCarePlatform uses the

Semantic Communication Bus (SCB), which is responsible for redirecting the

plethora of data. While the SCB has an overall picture of the system using the

core ontologies, the services only use a domain-specific extension of (a subset

of) the core ontologies. By designing multiple services responsible for very

specific functionality, dynamic workflows are created that are loosely coupled.

These advantages all contribute to a more scalable and extensible platform. One

shortcoming of this system is that during the realization of the first only limited

focus was given to privacy and security.

Unlike other solutions, this system was developed using an interdisciplinary

methodology, bringing together all involved stakeholders and focussing on their

needs. By using a communication bus with core ontologies, responsible for

forwarding the data to specific services, the SCB performs efficient and is no

bottleneck for the system, unlike the systems discussed in [18, 19, 20, 21, 22, 23].

Other solutions like [24, 25] propose an approach in which a system is deployed

on two endpoints. Both endpoints use an ontology to process the data, which

entails that both ontologies should be kept in sync. By using a cloud-based

solution, the OCarePlatform does not have to keep all ontologies of the services

in sync. Only the core ontologies in the SCB should be stable.These design

decisions guarantee a more efficient and scalable use of ontologies, resulting in a

timely delivery of notifications to caregivers and residents. By using the OCare-

Platform, caregivers are at ease as they know they will be informed whenever

23

something happens. In summary, the OCarePlatform facilitates aging in place

and living independently at home for as long as possible.

The most important limitation of the OCarePlatform is ensuring the privacy

of the data of the resident and the caregivers. As the OCarePlatform is used

to communicate health and care information, it is important that security and

privacy are guaranteed. Currently, this is done by using trust circles. When a

caregiver is added to the trust circle of the resident, the caregiver is added to the

platform and will also receive notifications from the platform. In the future, in-

tegration with external data sources, such as Vitalink and the eHealth platform,

would make this process easier, as this platform takes trust relationships into

account. One drawback of using OWL API is its in-memory representation, lim-

iting the size of the processed ontologies [40]. It can be concluded that allocating

enough memory is of crucial importance when deploying the OCarePlatform in

order to deliver messages in a timely manner. By deploying the OCarePlatform

in the cloud, the memory allocation is not an issue. Moreover, if memory does

become problematic, MCI Services could be deployed on different servers in or-

der to provide sufficient memory to maintain a good performance. Finally, the

core ontologies within the SCB should be stable. If core ontologies are updated

this will influence backward compatibility and already deployed MCI services.

By using intermediate concepts to make changes to the ontology, this issue can

be avoided.

9. Conclusions

In the present contribution, we describe the design and implementation of a

semantic, data-driven platform, referred to as the OCarePlatform. This system

facilitates independent living by offering information and knowledge-based ser-

vices to the resident and his/her (in)formal caregivers. This is realized by gath-

ering data collected from various and heterogeneous sources within the home

of the resident. Moreover, context information of the resident and the care-

givers is also collected. The OCarePlatform processes this data semantically by

making use of ontologies. The Semantic Communication Bus (SCB) filters and

forwards data to services, which have indicated an interest in that specific type

24

of such data. Several MCI Services are plugged onto this Bus, providing specific

functionality.

The evaluation of the OCarePlatform shows that the OCarePlatform is able to

deal with an increasing number of residents and caregivers within a realistic

working environment. Further analysis showed that the performance of the

platform is highly dependent on the allocated memory. Future work will focus

on deploying the OCarePlatform on devices that have limited resources.

Acknowledgment

Part of this research was supported by the iMinds Project OCareCloudS co-

funded by the IWT, iMinds and the following partners: Televic Healthcare,

TPVision, Telecom IT and Boone NV. We thank OCMW Kortrijk, OCMW

Ghent and Familiehulp, for their cooperation on the project.

References

[1] C. Röcker, Ambient assisted living: Chances and challenges of intelligent

homecare solutions, in: 9th Japanese-German Frontiers of Science Sympo-

sium, 2012, pp. 6–14.

[2] B. d. Ruyter, E. Pelgrim, Ambient assisted-living research in carelab, In-

teractions 14 (4) (2007) 30–33.

[3] CDC, Healthy places – healthy places terminology (2009).

URL http://www.cdc.gov/healthyplaces/terminology.htm

[4] S. J. Gentles, C. Lokker, K. A. McKibbon, Health information technology

to facilitate communication involving health care providers, caregivers, and

pediatric patients: A scoping review, Journal of Medical Internet Research

12 (2).

[5] B. Lindberg, C. Nilsson, D. Zotterman, S. Söderberg, L. Skär, Using in-

formation and communication technology in home care for communication

between patients, family members, and healthcare professionals: A system-

atic review, International Journal of Telemedicine and Applications (2013)

2.

25

[6] K. Dery, D. Kolb, J. MacCormick, Working with connective flow: How

smartphone use is evolving in practice, European Journal of Information

Systems 23 (5) (2014) 558–570.

[7] A. Oulasvirta, T. Rattenbury, L. Ma, E. Raita, Habits make smartphone

use more pervasive, Personal and Ubiquitous Computing 16 (1) (2012) 105–

114.

[8] G. Goggin, Cell Phone Culture: Mobile Technology in Everyday Life, Rout-

ledge, 2012.

[9] M. F. Dennedy, J. Fox, T. R. Finneran, Technology evolution, people, and

privacy, in: The Privacy Engineer’s Manifesto, Springer, 2014, pp. 3–24.

[10] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE

Personal Communications 8 (4) (2001) 10–17.

[11] C. Doukas, I. Maglogiannis, Bringing iot and cloud computing towards

pervasive healthcare, in: 6th International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing (IMIS), IEEE, 2012, pp.

922–926.

[12] U. Varshney, Pervasive healthcare: Applications, challenges and wireless so-

lutions, Communications of the Association for Information Systems 16 (1)

(2005) 3.

[13] P. Rashidi, A. Mihailidis, A survey on ambient-assisted living tools for older

adults, IEEE Journal of Biomedical and Health Informatics 17 (3) (2013)

579–590.

[14] G. van den Broek, F. Cavallo, C. Wehrmann, AALIANCE Ambient As-

sisted Living Roadmap, Vol. 6, IOS press, 2010.

[15] D. Calvaresi, D. Cesarini, P. Sernani, M. Marinoni, A. F. Dragoni,

A. Sturm, Exploring the ambient assisted living domain: A systematic

review, Journal of Ambient Intelligence and Humanized Computing (2016)

1–19.

26

[16] W. Ludwig, K.-H. Wolf, C. Duwenkamp, N. Gusew, N. Hellrung,

M. Marschollek, M. Wagner, R. Haux, Health-enabling technologies for the

elderly – an overview of services based on a literature review, Computer

Methods and Programs in Biomedicine 106 (2) (2012) 70–78.

[17] H. Chen, T. Finin, A. Joshi, An ontology for context-aware pervasive com-

puting environments, The Knowledge Engineering Review 18 (03) (2003)

197–207.

[18] A. Forkan, I. Khalil, Z. Tari, Cocamaal: A cloud-oriented context-aware

middleware in ambient assisted living, Future Generation Computer Sys-

tems 35 (2014) 114–127.

[19] M. Amoretti, S. Copelli, F. Wientapper, F. Furfari, S. Lenzi, S. Chessa,

Sensor data fusion for activity monitoring in the persona ambient assisted

living project, Journal of Ambient Intelligence and Humanized Computing

4 (1) (2013) 67–84.

[20] H. Kuijs, C. Rosencrantz, C. Reich, A context-aware, intelligent and flexible

ambient assisted living platform architecture, Cloud Computing.

[21] R. F. Navarro, M. Rodriguez, J. Favela, Intervention tailoring in augmented

cognition systems for elders with dementia, IEEE Journal of Biomedical

and Health Informatics 18 (1) (2014) 361–367.

[22] V. F. S. Fook, S. C. Tay, M. Jayachandran, J. Biswas, D. Zhang, An

ontology-based context model in monitoring and handling agitation be-

havior for persons with dementia, in: 4th Annual IEEE International Con-

ference on Pervasive Computing and Communications Workshops, IEEE,

2006, pp. 5–pp.

[23] D. Zhang, Z. Yu, C.-Y. Chin, Context-aware infrastructure for personalized

healthcare, Studies in Health Technology and Informatics 117 (2005) 154–

163.

[24] N. Lasierra, A. Alesanco, J. Garcia, Designing an architecture for monitor-

ing patients at home: Ontologies and web services for clinical and technical

27

management integration, IEEE Journal of Biomedical and Health Infor-

matics 18 (3) (2014) 896–906.

[25] F. Paganelli, D. Giuli, An ontology-based system for context-aware and

configurable services to support home-based continuous care, IEEE Trans-

actions on Information Technology in Biomedicine 15 (2) (2011) 324–333.

[26] F. De Backere, F. Ongenae, F. Vannieuwenborg, J. Van Ooteghem, P. Duys-

burgh, A. Jansen, J. Hoebeke, K. Wuyts, J. Rossey, F. Van den Abeele,

K. Willems, J. Decancq, J. H. Annema, N. Sulmon, D. Van Landuyt, S. Ver-

stichel, P. Crombez, A. Ackaert, D. De Grooff, A. Jacobs, F. De Turck, The

ocareclouds project: Toward organizing care through trusted cloud services,

Informatics for Health and Social Care 41 (2) (2014) 159–176.

[27] F. De Backere, F. Ongenae, F. Van den Abeele, J. Nelis, P. Bonte,

E. Clement, M. Philpott, J. Hoebeke, S. Verstichel, A. Ackaert, et al.,

Towards a social and context-aware multi-sensor fall detection and risk as-

sessment platform, Computers in biology and medicine 64 (2015) 307–320.

[28] D. Crockford, The application/json media type for javascript object nota-

tion (json) (2006).

[29] J. Famaey, S. Latré, J. Strassner, F. De Turck, An ontology-driven seman-

tic bus for autonomic communication elements, in: Modelling Autonomic

Communication Environments, Springer, 2010, pp. 37–50.

[30] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The many

faces of publish/subscribe, ACM Computing Surveys 35 (2) (2003) 114–

131.

[31] F. Ongenae, P. Duysburgh, N. Sulmon, M. Verstraete, L. Bleumers,

S. De Zutter, S. Verstichel, A. Ackaert, A. Jacobs, F. De Turck, An on-

tology co-design method for the co-creation of a continuous care ontology,

Applied Ontology 9 (1) (2014) 27–64.

[32] W3C Semantic Sensor Network Incubator Group, Semantic sensor network

ontology (2011).

URL http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

28

[33] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,

K. Sycara, OWL-S: Semantic markup for web services, W3C Member Sub-

mission (2004).

URL http://www.w3.org/Submission/OWL-S/

[34] O. Gruber, B. Hargrave, J. McAffer, P. Rapicault, T. Watson, The eclipse

3.0 platform: Adopting osgi technology, IBM Systems Journal 44 (2) (2005)

289–299.

[35] O. Alliance, About the osgi service platform, technical white paper revision

4.1, 7 june 2007 (2007).

[36] C. Lee, D. Nordstedt, S. Helal, Enabling smart spaces with osgi, IEEE

Pervasive Computing 2 (3) (2003) 89–94.

[37] R. Hall, K. Pauls, S. McCulloch, D. Savage, OSGi in Action: Creating

Modular Applications in Java, Manning Publications Co., 2011.

[38] M. Campione, K. Walrath, A. Huml, The Java Tutorial: A Short Course

on the Basics, Vol. 1, Addison-Wesley Professional, 2001.

[39] D. L. McGuinness, F. Van Harmelen, Owl web ontology language overview,

W3C Recommendation 10 (10).

[40] M. Horridge, P. F. Patel-Schneider, Owl 2 web ontologyllanguage manch-

ester syntax, W3C Working Group Note.

[41] X. H. Wang, D. Q. Zhang, T. Gu, H. K. Pung, Ontology based context

modeling and reasoning using owl, in: Pervasive Computing and Com-

munications Workshops, 2004. Proceedings of the Second IEEE Annual

Conference on, Ieee, 2004, pp. 18–22.

[42] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, Hermit: An owl 2

reasoner, Journal of Automated Reasoning 53 (3) (2014) 245–269.

[43] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical

owl-dl reasoner, Web Semantics: Science, Services and Agents on the World

Wide Web 5 (2) (2007) 51–53.

29

[44] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of sparql,

in: International Semantic Web Conference, Vol. 4273, Springer, 2006, pp.

30–43.

[45] A. Jacobs, P. Duysburgh, L. Bleumers, F. Ongenae, A. Ackaert, S. Ver-

stichel, The innovation binder approach: A guide towards a social-technical

balanced pervasive health system, in: Pervasive Health, Springer, 2014, pp.

69–99.

[46] J. Pruitt, J. Grudin, Personas: Practice and theory, in: Conference on

Designing for User Experiences, ACM, 2003, pp. 1–15.

[47] L. Shi, et al., Managing human resources in health care organizations, Jones

& Bartlett Publishers, 2010.

[48] C. Akjiratikarl, P. Yenradee, P. R. Drake, PSO-based algorithm for home

care worker scheduling in the UK, Computers & Industrial Engineering

53 (4) (2007) 559 – 583.

30

