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ABSTRACT 
 

Background and Objective: Here we present a retrospective analysis of six heart failure 

patients previously discussed at a multidisciplinary team meeting. Only three out of six 

patients underwent LVAD insertion as the most appropriate management option.  

Methods: We sought to reproduce the baseline conditions of these patients on hospital 

admission using our cardiovascular software simulator (CARDIOSIM©). Subsequently, we 

simulated the effects of LVAD support and drug administration on left and right 

ventricular energetics parameters. LVAD assistance was delivered by CARDIOSIM© 

based on the module reproducing the behavior of the Berlin Heart INCOR pump.  

Results: The results of our simulations were in agreement with the multidisciplinary 

team meeting outcome. The analysis of ventricular energetics parameters based on 

external work and pressure volume area confirmed LVAD support as a beneficial 

therapeutic option for the three patients considered eligible for this type of treatment. 

The effects induced by LVAD support and drugs administration showed specific patterns 

between the two groups of patients.  

Conclusion: A quantitative approach with the ability to predict outcome during patient’s 

assessment may well be an aid and not a substitute for clinical decision-making.      

 

 

Key words: Heart failure; External work; Pressure volume area; Software simulation; 

LVAD; Milrinone. 
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INTRODUCTION 
 

Patient-specific modelling has received particular attention in recent years in view of its 

potential to tailor the most suitable treatment according to the group of patients 

considered [1].   The success of this approach would largely depend on the method used 

and its suitability within the constraints of the clinical environment. Although 3D 

modelling based on imaging reconstruction from CT-scan is an attractive prospect, the 

high computational power required for a complete haemodynamic analysis remains the 

main limitation. Nevertheless, this method would be more suitable for long-term 

planning in elective cases. Pressure-volume analysis of cardiovascular function is a 

powerful approach that has been mainly confined to a research environment although 

its application to a clinical setting has been long recognized but not completely accepted 

[2]. Lumped parameter modelling gives a simplified and effective description of the 

cardiovascular system during a healthy and diseased status.  A modified time-varying 

elastance is appropriate in this context given the criticism to the original concept when 

applied to a mechanically supported left ventricle [3]. The aim of our project is to 

introduce a different approach to the clinical environment based on modelling and 

simulation for optimization of device treatment and outcome prediction. In other 

words, a system based on a more quantitative approach and not a substitute for clinical 

experience: the clinician remains the ultimate decision-maker based on the available 

data. The software used for the analysis has been developed and refined by our group 

over the years in order to be ready for applications based on real life clinical scenarios. 

The ultimate hurdle was to prove the ability of the software to reproduce accurately and 



De Lazzari Claudio 

4 

 

reliably clinical data obtained from echocardiographic and right heart catheter 

assessment which would be used to simulate baseline conditions and the potential 

outcome in order to optimize and select the most suitable treatment for different group 

of patients. Advanced heart failure patients are complex and demanding requiring a 

significant amount of investigations and data. Particularly, a group of them had 

generated heated discussion during MDT meetings (MC). Therefore, we considered this 

group of six patients as an ideal pilot study that may well generate further research and 

possibly a prospective comparison in a non distant future. 

In previous work, we have addressed the issues related to the preoperative 

assessment of patients in advanced heart failure and argued the potential of a 

simulation approach in the clinical decision-making process with a view to outcome 

prediction and optimization of device treatment. Our efforts mainly focused on the 

hemodynamic parameters derived from echocardiographic assessment and right heart 

catheter [4-6].  

CARDIOSIM© is the numerical simulator of the cardiovascular system used for 

the study [7-15]. This software is based on 0-D mathematical models, which reproduce 

the ventricular, atrial and septal behavior according to a modified time-varying 

elastance concept [4, 7, 8]. The library of the simulator allows the assembly of specific 

modules describing different circulatory districts [8-15]. 

We have already reproduced the baseline hemodynamic conditions of advanced 

heart failure patients on hospital admission in recently published work. Subsequently, 

we simulated the effects induced on hemodynamic parameters by left ventricular assist 
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device (LVAD) support and by Milrinone administration. LVAD assistance was delivered 

by CARDIOSIM© module reproducing the behavior of the Berlin Heart INCOR Pump [4, 

5], which is a continuous flow pump specifically designed for long-term support but also 

suitable as a bridge to transplant and bridge to recovery. 

In the present work, we have considered both a hemodynamic and energetics 

analysis of the effects induced by LVAD support and drug administration according to 

the previously used approach. We have analyzed the baseline conditions on hospital 

admission and following LVAD support (with or without Milrinone administration) for 

each patient in terms of left and right ventricular external work (EW) and pressure 

volume area (PVA) using CARDIOSIM© [10, 12, 13]. Then, we have compared the 

measured and the simulated parameters by statistical analysis with Stata© using 

Student’s t-test and Mann-Whitney test to evaluate the accuracy and reliability of the 

simulations. 

 
MATERIAL AND METHOD 
 
Cardiovascular and Berlin Heart INCOR pump numerical models 
 

The cardiovascular network configuration used to simulate the baseline 

hemodynamic conditions on hospital admission for the six patients included in this study 

is represented in Fig. 1. The network consists of left and right heart, systemic arterial 

and venous sections, main, small, arteriole, capillary and venous pulmonary sections. In 

addition, an electrical analogue of LVAD is showed in Fig. 1. The behavior of both native 

ventricles was implemented using a modified time-varying elastance theory. Also the 

inter-ventricular septum (IVS) activity was described by the time-varying elastance 
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model [4, 6, 16]. Based on these assumptions, the following equations described the IVS 

interaction and the instantaneous left and right ventricular pressure: 
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In the same way, both the native atrial and the inter-atrial septum (IAS) behavior were 

implemented applying the time-varying elastance concept; consequently, the IAS 

interaction and the left and right instantaneous atrial pressure were described by [4, 6, 

16]:   
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Table 1 shows the symbols used in Eqs. (1) and (2).  

The software used in this work can be reproduced applying Ohm’s law, 

Kirchhoff’s circuit laws and Eqs. (1) and (2) to resolve the cardiovascular network (Fig. 1). 

The INCOR pump when applied as LVAD takes blood from the left ventricle and ejects it 

into the aorta (Fig. 1). The rotor pump produces a maximum flow rate of 5 L/min with a 
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rotational speed between 5000 and 10000 rpm. The continuous blood flow can be 

modelled as [4, 5, 17, 18]: 
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The INCOR pump behavior is reproduced by solving the network reported in 

Fig.1 and using Eq. (3). 

Table 2 shows symbols and parameter values used during the simulations. 

After manual insertion of heart rate (HR), mean arterial blood pressure (BP), 

stroke volume (SV), left ventricular ejection fraction (EFLEFT) and body surface area (BSA), 

CARDIOSIM© software estimates end-diastolic volume (EDV), end-systolic volume (ESV) 

and the slope (Ees) of left ventricular end-systolic pressure volume relationship (ESPVR). 

This task allows placement of the left ventricular loop in the pressure-volume (P-V) 

plane to reproduce the baseline conditions of each patient (Fig. 2).  The simulated mean 

left atrial pressure (which can be considered equivalent to the measured capillary 

wedge pressure - PCWP) allows CARDIOSIM© software to reproduce left ventricular 

filling. 

Heart Failure Patients 

 
The retrospective analysis was performed starting with hemodynamic data 

measured in the six patients (Table 3). Patients #1, #2, and #3 had been described in 

previous work [4-6]. Patient #4 was diagnosed with dilated cardiomyopathy, patients #5 

and #6 were diagnosed with ischaemic cardiomyopathy.  
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Hemodynamic data were measured using right heart catheterization (RHC).   

Experimental Method 
 

Firstly, we reproduced the baseline conditions for each patient on hospital 

admission using the cardiovascular simulator in order to evaluate left and right external 

work and pressure volume area [19-22]. Secondly, the Berlin Heart INCOR pump 

delivered assistance according to different settings: 

1] for the first three patients, the pump was driven with a rotational speed of 

6000 rpm to obtain the best hemodynamic conditions. Then, the effect of Milrinone 

administration [4-6, 23] was simulated during LVAD assistance [24]. Milrinone is a 

phosphodiesterase inhibitor, which enhances cardiac contractility by increasing 

intracellular levels of cyclic adenosine monophosphate (c-AMP). The drug is a positive 

inotropic and vasodilator agent used in the intensive care setting for short-term 

treatment of severe congestive heart failure unresponsive to conventional maintenance 

therapy, and for the treatment of patients with acute heart failure, including low output 

states following cardiac surgery [25];  

2] for patients #4 and #5, the simulations included the analysis of the effects 

induced by continuous LVAD assistance (with and without Milrinone administration) 

with a rotational speed of 6000 and 8900 rpm; 

3] for patient #6, the simulations included the analysis of the effects of 

continuous LVAD assistance (with and without Milrinone administration) with a 

rotational speed of 8900 and 10000 rpm. 
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For patients #1, #2 and #3, left and right ventricular EW and PVA were estimated 

by the cardiovascular simulator. For patients #4, #5 and #6, the simulations aimed to 

obtain the best hemodynamic conditions and evaluate left and right ventricular EW and 

PVA (Fig.2).  

Finally, the accuracy and reliability of the cardiovascular software simulator 

assembled as described in [4, 5] was evaluated with the program Stata© using Student’s 

t-test and Mann Whitney test in view of the multi-parametric nature of the software 

[26]. Some of the measured and simulated baseline parameters were compared and a p-

value < 0.05 was considered statistically significant. The p-value from Student’s t-test 

was considered when the two tests agreed; discordance between the two tests would 

warrant the p-value from Mann-Whitney test because more accurate given its non-

parametric nature. 

 

RESULTS 

Table 4 shows the simulation results of the hemodynamic parameters measured 

in the six patients. The Ea/Ees ratio describes the interaction between the left ventricle 

and the arterial system, namely ventricular-arterial coupling, which is an index of global 

cardiovascular efficiency.  

Table 5 shows the effects on hemodynamic parameters induced by simultaneous 

LVAD assistance and Milrinone administration in patients #4, #5 and #6 with a rotational 

speed of 8900 rpm. 
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Figure 3 shows the effects on left ventricular EW induced by LVAD assistance 

with or without Milrinone administration in the six patients. The upper panel shows the 

percentage variation of EW compared to baseline (admission) conditions in patients #1, 

#2 and #3 during LVAD support with and without drug administration. The pump 

rotational speed was fixed at 6000 rpm, which gave the best hemodynamic conditions 

[4, 5].  In all three patients, LVAD support reduced left ventricular EW by values ranging 

from 9% to 14% compared to non-assisted conditions. Concomitant LVAD support and 

Milrinone administration produced an opposite effect on left ventricular EW with 

particular reference to patients #1 and #3 where EW increased compared to baseline 

(admission) conditions. This effect may be related to improved ventricular contractility 

following drug administration. Left ventricular EW percent variation compared to 

baseline conditions calculated for patients #4, #5 and #6 are listed in the lower panel of 

Fig. 3. The LVAD rotational speed remained at 6000, 8900 and 10000 rpm for patient #4 

during simulations with drug administration. A pump rotational speed of 8900 and 

10000 rpm was considered in patients #5 and #6. Concomitant   LVAD support at 6000 

rpm with Milrinone administration was not carried out for patient #6. Left ventricular 

assistance caused a reduction in left ventricular EW in all these patients, with particular 

reference to patients #4 and #6 where an EW reduction up to 70% compared to baseline 

was observed. Simulations with INCOR pump and Milrinone showed an EW percent 

variation between 30% and 63% in all patients. 

LVAD support alone did not influence right ventricular EW significantly in all 

patients (Fig. 4). Simulations with LVAD support and drug administration showed an 
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appreciable increase in right ventricular EW in patients #1, #2, #3, #4 and #6 regardless 

of the pump rotational speed. 

Figure 5 shows the percent variation of left ventricular pressure volume area 

compared to control conditions. The upper panel shows PVA variation of patients #1, #2 

and #3 during LVAD support with a rotational speed of 6000 rpm and Milrinone 

administration. The simulations showed PVA reduction in patient #3 by 30% in both 

cases. Simulations with a pump rotational speed at 6000 rpm produced the best 

hemodynamic conditions for these three patients [4, 5]. The results for patients #4, #5 

and #6 are listed in the lower panel. In all cases during LVAD support alone, a PVA 

reduction from 30% to 60% compared to baseline conditions was observed. A lower 

reduction in PVA percent variation occurred during LVAD support at 10000 rpm and 

Milrinone administration in patients #4 and #6. Figures 4, 5 and 6 show that the best 

mechanical circulatory support system (MCSS) achievable performance in terms of 

energetics parameters depends on the patient's baseline conditions following hospital 

admission [27-29] in line with the effect of preload on MCSS performance from a 

hemodynamic point of view [29, 30]. 

 

STATISTICAL ANALYSIS  

Despite the limited number of patients considered, the statistical analysis gave 

encouraging and promising results about the accuracy and reliability of the simulations 

carried out. Here are some findings:  
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✓ SBP (systolic blood pressure): the p-value from Student’s t-test was 0.32 with test 

concordance confirming the accuracy of CARDIOSIM© for this parameter. 

✓ DBP (diastolic blood pressure): the analysis using Mann-Whitney test showed a p-

value of 0.42 with test discordance showing a statistical significance consistent with 

the tendency of the diastolic blood pressure to a "normal distribution" among the 

population. An indefinitely increase of the sample size would lead to a very slight 

overestimation of the parameter. 

✓ RA (right atrial pressure): the p-value from Mann-Whitney test was 0.01 confirming a 

slight underestimation of the parameter. 

✓ RV (right ventricular pressure): the p-value from Mann-Whitney test was 0.07 

confirming again the accuracy of the parameter reproduced by the software.  

✓ PA and PCWP (pulmonary arterial and pulmonary capillary wedge pressures): the p-

value from Student’s t-test was 0.73 for PA whereas from Mann-Whitney test it was 

0.29 for PCWP. Test concordance confirmed the accuracy of the parameters 

reproduced by the cardiovascular software simulator. 

✓ EFLEFT (left ventricular ejection fraction): the p-value from Student’s t-test was 0.61 

with test concordance confirming the accuracy of the parameter reproduced by 

CARDIOSIM©. Figure 7 shows that measured and simulated values are almost 

identical for all six patients.  

✓ EDV and ESV (end-diastolic and end-systolic volumes): the p-value from Student’s t-

test was 0.66 (0.48) with test concordance confirming once again the accuracy of the 

parameters reproduced by the software simulator. 
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DISCUSSION 

Integration of experimental and clinical data through acquisition and parameter 

estimation techniques is showing consistent performance towards the application of 

computational modelling and simulation into daily clinical practice [31]. Nevertheless, 

model accuracy and reliability remain key issues to consider before its applicability to a 

clinical setting. In other words, the aim is model verification by solving the equations 

appropriately and model validation by solving the right equations leading to increased 

peer acceptance and gap bridging between analysts, experimentalists and clinicians 

[32]. The level of accuracy for a model depends on its use. From an engineering point of 

view, absolute truth is not required. A statistically meaningful comparison between 

computational findings and experimental measurements in relation to model use may 

be sufficient taking into account sources of error and uncertainty [32]. Needless to say, 

diagnostic challenges and outcome prediction reflect a need for further development of 

modelling approaches and data analysis in the context of a dynamical interaction 

between the heart and the vascular system in relation to changes following disease with 

a view to better understanding and targeted therapeutic intervention. The difficulty 

remains the translation of modelling analysis into meaningful and helpful tools for 

assessment and decision-making in a clinical setting [31]. The cardiovascular simulator 

used in this study addresses this issue given its ability to reproduce measured data in an 

accurate manner leading to reliable simulations with great potential for device 

treatment optimization and outcome prediction. The statistical analysis was designed 
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and applied in such a way to take into account the small number of patients and the 

parametric nature of our software. The outcome went beyond our expectations and 

definitely gave the final proof that our software is fit for purpose. A combined approach 

based on 0-D models, pressure-volume analysis and modified time-varying elastance 

seems an appropriate tool with easy translation to clinical practice with emphasis on 

patient-specific modelling, which remains a key player to understand disease 

mechanism and optimize its treatment [33]. Although left ventricular ejection fraction 

remains an important parameter for diagnosis and management of heart failure 

patients, its limitations must be taken into account with particular reference to its 

preload and afterload dependence and its relation with risk factors such as 

hypertension, diabetes and renal failure. An integrative approach including left and right 

ventricular function, ventricular and atrial geometry and clinical parameters gives a 

more accurate evaluation of clinical status and risk prediction [34]. Our modelling and 

simulation approach reflects this line of thinking considering the significant relationship 

between form and function in heart failure [35, 36]. We also advocate the inclusion of 

the Ea/Ees ratio as an additional non-invasive measurement of ventricular-arterial 

coupling and its relation to remodeling and prognosis in chronic heart failure [37]. 

Finally, an analysis from the energetic point of view may give additional information 

about the efficiency and reserve of a failing system and its implication in relation to 

treatment and prognosis. 
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CONCLUSIONS 

Our software has shown consistent performance as far as accuracy is concerned 

leading to reliable simulations based on patient-specific modelling. This is an additional 

step towards a prospective study, which could compare patient selection for LVAD 

support during a multidisciplinary team (MDT) meeting with and without simulation 

with a view to further validate its role for treatment optimization in cardiovascular 

disease with particular reference to advanced heart failure. A quantitative approach 

based on modelling and simulation with the ability to predict outcome during patient’s 

assessment may become an aid and not a substitute for clinical decision-making. 

 

 

 

 



De Lazzari Claudio 

16 

 

 
NOMENCLATURE 
 

BP Blood pressure [mmHg] 
BSA Body surface area [m2] 
c-AMP Cyclic adenosine monophosphate 
CI Cardiac index [L/min/m2] 
CO Cardiac output [L/min] 
COVENTR Left ventricular output flow [L/min] 
DBP Diastolic blood pressure [mmHg] 
Ea Arterial elastance [mmHg/ml] 
eAsp IAS elastance [mmHg/ml] 
ela Left atrial elastance [mmHg/ml] 
elv Left ventricular elastance [mmHg/ml] 
Ees Slope of ESPVR [mmHg/ml] 
era Right atrial elastance [mmHg/ml] 
erv Right ventricular elastance [mmHg/ml] 
eVsp IVS elastance [mmHg/ml] 
EDV End-diastolic volume [ml] 
EFLEFT Left ventricular ejection fraction 
ESV End-systolic volume [ml] 
EDPVR (ESPVR)  End-diastolic (end-systolic) pressure volume relationship 
EW External work 
HR Heart rate [bpm] 
IAS Inter-atrial septum 
IVS Inter-ventricular septum 
LVAD Left ventricular assist device 
MCSS Mechanical circulatory support system 
MDT Multidisciplinary team 
Pla Left atrial pressure [mmHg] 
Pla,0 Resting left atrial pressure [mmHg] 
Plv Left ventricular pressure [mmHg] 
Plv,0 Resting left ventricular pressure [mmHg] 
Pra Right atrial pressure [mmHg] 
Pra,0 Resting right atrial pressure [mmHg] 
Prv Right ventricular pressure [mmHg] 
Prv,0 Resting right ventricular pressure [mmHg] 
P-V Pressure-volume 
PA Pulmonary arterial pressure [mmHg] 
PCWP Pulmonary capillary wedge pressure [mmHg] 
PE Potential energy 

P-V Pressure-volume 
Ped(Pes) End-diastolic (end-systolic) ventricular pressure [mmHg] 
PVA Pressure volume area 
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PVR Pulmonary vascular resistance [mmHg∙s/ml] 
QLVAD LVAD flow [L/min] 
RA Right atrial pressure [mmHg] 
RHC Right heart catheterization  
RV Right ventricular pressure [mmHg] 
RVSWI Right ventricular stroke work index [g/m2/beat] 
SBP Systolic blood pressure [mmHg] 
SV Stroke volume [ml] 
TPG Trans-pulmonary pressure gradient [mmHg] 
V0 Zero pressure filling volume [ml] 
Vla Left atrial volume [ml] 
Vla,0 Resting left atrial volume [ml] 
Vlv Left ventricular volume [ml]  
Vlv,0 Resting left ventricular volume [ml] 
Vra Right atrial volume [ml] 
Vra,0 Resting right atrial volume [ml] 
Vrv Right ventricular volume [ml] 
Vrv,0 Resting right ventricular volume [ml] 
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Figure Captions List 

 

Fig. 1 Panel [a] shows the electrical analogue of the cardiovascular system. RAT, 

RTT and RBT (CAT, CTT and CBT) represent the aortic, thoracic and abdominal 

tract resistance (compliance), respectively. LAT, LTT and LBT are aortic, 

thoracic and abdominal tract inertance, respectively. Ras is the variable 

peripheral arterial resistance.  CVS (RVS1 and RVS2) reproduces the systemic 

venous compliance (variable resistances). RPAM, RPAS, CPAM, CPAS, LPAM and 

LPAS are the main and small pulmonary resistances, compliances and 

inertances, respectively. RPAR and RPC are the pulmonary arteriole and 

capillary resistances. Panel [b] and [c] show the left and right heart with 

the valves between the atria end the ventricle and between the left 

(right) ventricle and the aorta (pulmonary artery). Each valve is modeled 

using a diode and a resistance [4-6, 15]. In panels [a], [b], and [c] Pt 

represents the mean intrathoracic pressure. Panel [d] shows the 

electrical analogue of the LVAD. The inlet (outlet) pump cannula is 

modeled with resistance, inertance and compliance elements. QVPI (QVPO) 

is the inlet (outlet) LVAD cannula flow. QVAD represents the LVAD flow. 

Pas (Plv) is the systemic arterial (left ventricular) pressure.  

Fig. 2 Left ventricular P-V plane. SV is the stroke volume; EDV (ESV) is the end-

diastolic (end-systolic) ventricular volume; Pes (Ped) is the end-systolic 

(end-diastolic) ventricular pressure; ESPVR (EDPVR) is the end-systolic 
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(end-diastolic) pressure volume relationship; Ea (Ees) is the arterial 

(ventricular) elastance; V0 is the zero pressure filling volume; EW, PE and 

PVA are the external work, the potential energy and the pressure volume 

area respectively [19-22]. 

Fig. 3 Percent variation from admission patient conditions of the left 

ventricular external work. Upper panel shows EW percent variation when 

LVAD (at 6000 rpm) was applied without and with Milrinone 

administration on patients #1, #2 and #3. In the lower panel the 

simulation results are obtained when INCOR pump was applied at 6000 

rpm (patient #4) and in conjunction with the drug injection (patients #4 

and #5). Simulations with pump rotational speed fixed at 8900 and 10000 

rpm in conjunction and without Milrinone administration, were 

performed for all three patients. 

Fig. 4 Percent variation from admission patient conditions of the right 

ventricular external work. Upper panel shows EW percent variation when 

LVAD (at 6000 rpm) was applied without and with Milrinone 

administration on patients #1, #2 and #3. In the lower panel the 

simulation results are obtained when INCOR pump was applied at 6000 

rpm (patient #4) and in conjunction with the drug injection (patients #4 

and #5). Simulations with pump rotational speed fixed at 8900 and 10000 

rpm in conjunction and without Milrinone administration, were 
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performed for all three patients. 

Fig. 5 Percent variation from admission patient conditions of the left 

ventricular PVA. Both panels show simulation results obtained as 

described in Fig.2. 

Fig. 6 Percent variation respect to admission patient conditions of the right 

ventricular PVA. Both panels show simulation results obtained as 

described in Fig.3. 

Fig. 7 Comparison between measured and simulated left ventricular ejection 

fraction. 
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Table Caption List 
 

Table 1 List of symbols used in Eqs. (1) and (2) 

Table 2 List of symbols used in Eq. (3) and parameter values assigned during the 

simulations performed with CARDIOSIM© 

Table 3 Hemodynamic data measured on the six patients 

Table 4 Simulation results regarding the reproduction of hemodynamic 

parameter measured on the six patients, reported in Table 3 

Table 5 Effects induced on hemodynamic parameters by the simultaneous LVAD 

assistance and Milrinone administration in patients #4, #5 and #6. 

  

 
 


