
Integration of Convolutional Neural Networks for
Pulmonary Nodule Malignancy Assessment in a Lung

Cancer Classification Pipeline

Ilaria Bonavitaa,1, Xavier Rafael-Paloua,b,1,∗, Mario Ceresab,, Gemma Piellab,,
Vicent Ribasa,, Miguel A. González Ballesterb,c,
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Abstract

Background and Objective: The early identification of malignant pulmonary

nodules is critical for a better lung cancer prognosis and a less invasive chemo

or radio therapies. Nodule malignancy assessment done by radiologists is ex-

tremely useful for planning a preventive intervention but is, unfortunately, a

complex, time-consuming and error-prone task. This explains the lack of large

datasets containing radiologists malignancy characterization of nodules; Meth-

ods: In this article, we propose to assess nodule malignancy through 3D convo-

lutional neural networks and to integrate it in an automated end-to-end existing

pipeline of lung cancer detection. For training and testing purposes we used in-

dependent subsets of the LIDC dataset; Results: Adding the probabilities of

nodules malignity in a baseline lung cancer pipeline improved its F1-weighted

score by 14.7 %, whereas integrating the malignancy model itself using transfer

learning outperformed the baseline prediction by 11.8 % of F1-weighted score;

Conclusions: Despite the limited size of the lung cancer datasets, integrating

predictive models of nodule malignancy improves prediction of lung cancer.

Keywords: Lung cancer, nodule malignancy, deep learning, machine learning
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1. Introduction

Lung cancer is the uncontrolled growth of abnormal cells in one or both

lungs. These abnormal cells can form tumors and interfere with the normal

functioning of the lung, which provides oxygen to the body via the blood.

Although the 5-year survival for lung cancer has improved over the last fifty

years, it is still one of the most common cancers, accounting for over 225,000

cases, 150,000 deaths, and $12 billion in health care costs yearly in the U.S. [1].

It is also one of the deadliest cancers; only 17% of people in the U.S. diagnosed

with lung cancer survive five years after the diagnosis, and the survival rate is

even lower in developing countries.

Early detection of lung cancer significantly improves the chances of patient

survival. However, in most cases, a patient is unaware that she/he has a pul-

monary nodule until a chest X-ray or a low-dose computed tomography (CT)

scan of the lungs is performed. For this reason, early stage detection of benign

and malignant pulmonary nodules plays an important role in clinical diagnosis.

Today, the gold standard for lung cancer detection consists in routinely tak-

ing a CT scan, and detecting nodules (i.e. small and approximately spherical

masses) in it. Once lung nodules are detected, radiologists perform size mea-

surements to assess malignancy. To support them in this task, several guidelines

like LungRADs [2] and Fleischner [3] have been proposed. These guidelines are

a compilation of well documented cases and a set of rule-based recommenda-

tions from the clinical experience designed to help clinicians to discern among

pulmonary nodules, normal tissues and artifacts, as well as to determine the

inherent malignancy of the nodules. However, they are constrained to a limited

number of visual parameters (e.g. size, morphology, texture and location of the

nodules) and to a fixed range of values.

Low-dose CT is an effective method for radiologists to early identify lung

cancer [4], although it presents several limitations. First, radiologists need to

process large volumes of CT slices, usually with a low signal-to-noise ratio,

which causes erroneous classifications of regions with weak or irregular contours.
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In addition, lung cancer diagnosis through CT is often subjective and highly

affected by observer’s experience, fatigue and emotional state [5], which can

lead to inconsistent results from the same radiologist at different times or from

different radiologists examining the same CT image.

Emulating the decision process of radiologists to determine malignancy of a

nodule would be an extremely useful tool to help physicians plan future inter-

ventions for patients. Several approaches can be found in the literature relying

on artificial intelligence and computer vision techniques. Conventional solu-

tions (e.g. [6, 7]) propose engineering handcrafted features extracted directly

from the CT image to build standard machine learning classifiers. This ap-

proach achieves satisfactory results when nodule candidates are well-defined,

but shows some shortcomings when the nodules present complex and different

sizes, shapes and context. An alternative recent solution to this problem is the

use of deep convolutional neural networks (e.g. [8, 9]) that are able to learn

automatically inherent representations directly from the raw images.

In this work, we use 3D deep convolutional neural networks to build accurate

malignancy classifiers using annotations made by radiologists on pulmonary

nodules. The main contribution of this paper with respect to previous works is

two-fold. First, we provide a framework to allow integrating nodule malignancy

classifiers, built at nodule level, into a pipeline that does not take into account

malignancy information, but predicts lung cancer at the patient level. To this

aim, three different types of integration were designed: using the predicted

classes, the probabilities or the models themselves. Secondly, we quantified

the contribution of the nodule malignancy classifiers for lung cancer prediction.

For this objective we evaluated the three different types of integration and we

compared their performances with that of a baseline lung cancer pipeline.

The paper is organized as follows: in the next section we review the existing

related work on nodule malignancy and cancer classification. Then we present

the methods and materials used. Finally we provide the results and a thorough

discussion on the main outcomes presented in the article.
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2. Related Works

In the past years numerous works have addressed the problem of classifying

the malignancy of pulmonary nodules in CT scans; some of these works use as

features only radiologists annotations of the nodules and perform classification

for example with rule-based [6] and statistical learning [10] methods or by build-

ing a machine learning classifier [7] or classifiers ensemble [11, 12].

In other works, in addition or as alternative to radiologist annotations, shape-

based, margin-based, and texture-based features [13] or 3D features of the nod-

ules [14] are computed directly from the image with classical image analysis

techniques.

In more recent years, it has been shown that deep learning techniques can out-

perform standard techniques in discriminating benign from malignant nodules

(e.g. [9, 15, 16]). In [17] a deep belief network is used to extract from nodules

features that are fed to a convolutional neural network aimed at classifying the

nodule malignancy. In [18] deep features are extracted from an autoencoder. In

[8] high malignancy classification accuracy is achieved by using a convolutional

neural network and radiological quantitative features.

Despite the abundance of papers focusing on classification of nodule ma-

lignancy and on nodules detection in CT scans, little effort has been put in

providing a systematic analysis of the effects of combining both to answer the

question of whether predicting malignancy at a nodule level is beneficial for can-

cer prediction at patient level. To the best of our knowledge, [19] is the closest

work to ours that tackles this question. However, the focus of [19] is limited to

the transferability of deep features of nodules to the cancer prediction task and

the input data are exactly located nodules. Our aim is, instead, to provide and

evaluate different types of nodule malignancy integration within an end-to-end

cancer detection pipeline that takes as input raw CT scans.
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3. Materials and Methods

3.1. The Data

3.1.1. LIDC and LUNA16 datasets

The LIDC [20] is the largest publicly available reference database for lung

nodules. It contains a total of 1018 CT scans each of which associated with a

file containing annotations from four experienced thoracic radiologists. The an-

notations are the result of a two-phase reading process in which the radiologists

were asked to mark suspicious lesions and to provide additional characterization

of lesions of diameter larger or equal to 3 mm marked as nodule [21].

In this work we use an updated version of the LIDC dataset provided in the

LUNA16 challenge [22], which includes only scans with at least one lesion of

size >= 3 mm marked as nodule by at least three of the four radiologists. The

LUNA16 dataset consists of 888 CT scans comprising a total of 1186 nodules.

Annotations with coordinates of each nodule in the three spatial axes inferred

from the original LIDC annotations are also provided.

We obtained the malignancy outcome of our classifiers from the annotation files

in the LIDC database as they provide, among other characteristics, the subjec-

tive assessment of each radiologist of the likelihood of malignancy of the nodule.

The admitted malignancy scores are discrete values ranging from 1 (highly un-

likely for cancer) to 5 (highly suspicious for cancer). Since for each nodule

included in LUNA16 we have the assessment of three or four radiologists, in

order to obtain a unique label we averaged their scores.

3.1.2. TCIA Diagnosis Data

For 130 cases the LIDC dataset provides diagnostic data at patient level

obtained from biopsy, surgical resection, progression or reviewing of the radio-

logical images showing nodules stable after two years [23].

We retained this small dataset from the data used for building the malignancy

classifiers, and we used it for training and testing the baseline and integrated

lung cancer classifiers.
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3.2. Method

3.2.1. The Malignancy Classifiers

We describe here the approach used to build the nodule malignancy classi-

fiers that will be integrated in the cancer prediction pipeline.

The input data to train the malignancy classifier consists of 3D cubes measuring

(32, 32, 32) mm centered in the centroid of the nodule computed from the coor-

dinates in the LUNA16 annotation file. Note that each CT scan (i.e. subject)

can contain more than one nodule; hence, to avoid any data leakage we assigned

all the nodules belonging to a subject to only one of the training, validation or

test sets. Additionally, we performed clipping (using a filter of [-1000, 400] HU)

and normalization of the cubes.

The malignancy score of each nodule was obtained from the original XML an-

notations using a parser provided by the second place winner of the DSB Kaggle

competition [24] and averaging the radiologist scores as described in 3.1.1.

Given the binary nature of the final cancer prediction we want to provide, we

decided to remove nodules of ambiguous or intermediate malignancy from our

experimental dataset. A Principal Component Analysis performed on some of

the most relevant features annotated by radiologists showed that nodules of ma-

lignancy 1, 2 and 3 have similar feature distributions differently from those of

malignancy 4 and 5 (Figure 1 b). Additionally, nodules of class 3 present higher

variance, and form a less well defined cluster in the principal components space

(Figure 1 a). We decided therefore to remove them from our analysis. We

hence opted for training and validating our classifiers on: Dataset 145, in which

we selected only nodules labelled as 1, 4 or 5 and Dataset 1&245, in which we

selected nodules of malignancy 4 and 5 and we merged in one single category

(renamed 1&2) nodules labelled as 1 and 2. Both datasets were split in training

(60%) and validation (40%) sets in a stratified fashion. As stated above, the

test set for both the malignancy classifiers and the cancer pipeline consists of

the TCIA data. However, only CTs containing at least one nodule with label

1, 4 or 5 (Test 145) or 1,2,4 or 5 (Test 1&245) were selected. Sample sets size
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(a) (b)

Figure 1: PCA analysis and boxplot of radiologists annotated features per malignancy class.

and labels distribution are presented in Table 1.

Dataset N subjects
N nodules

1(&2) 4 5 total

Dataset 145 247 72 213 48 333

Dataset 1&245 351 287 213 48 548

Test 145 65 15 65 9 89

Test 1&245 82 59 65 9 133

Table 1: Dataset used for building and testing the malignancy classifier.

The 3D nodule-cubes and corresponding malignancy labels are fed to a ma-

chine learning multi-class classifier. The model is based on a deep learning

convolutional neural network (CNN). We tested two different networks: a 3D

CNN with 3 convolutional layers, each followed by a 3D Max-Pooling layer and

with a final dropout layer (shallowCNN), and a similar 3D CNN (deeperCNN)

to which a dropout and a batch normalization layers were added for each con-

volutional layer.

We trained the model weights with a batch training approach for 150 epochs

and adopting early stopping with Adam optimizer [25] for regularization. We
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Figure 2: Architecture of the two CNN networks used for the malignancy classifiers.

set the learning to 0.001 and we chose categorical cross-entropy as loss function.

Moreover, given the small size of our dataset, we used data augmentation on

the training set (90 degrees of rotation, 0.02 of shear, zoom range of 0.1, shift

of 0.05 and horizontal and vertical flip).

Different training and validation batch sizes together with other input parameter

combinations have been tested. A detailed description of the network architec-

tures is presented in Figure 2.

The combination of the two network architectures and of the two datasets led to

the creation of four malignancy classifiers: shallowCNN 145, shallowCNN 1&245,

deeperCNN 145, deeperCNN 1&245.

Performances of the four classifiers are presented in results section whereas the

integration of the classifiers and the evaluation in the cancer prediction pipeline

is described below.

3.2.2. The lung cancer pipeline

With the intention of setting a baseline method, we developed a two-stage

lung cancer pipeline that did not take into account any information regarding

nodule malignancy. We refer to this pipeline as our baseline method.
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1. Nodule detection

To build the automatic nodule detection stage, we used the LUNA16

dataset (reserving 10% for testing purposes) since it contains, for each

CT, location and diameter of the nodules. The first process performed

was re-sampling each CT to an isotropic resolution (1, 1, 1) mm in order

to reduce the variance given by the different pixel size/coarseness (e.g. the

distance between slices) of the scans.

Secondly, we performed a segmentation of the lungs from the re-sampled

CTs, with the intention of reducing the analysis to the area of interest.

For this task, we relied on a method proposed by the most cited kernel of

the Data Science Bowl Kaggle competition [26]. This method consists in

applying a threshold (i.e. -320 HU) to separate the air from the tissues.

Then, it uses connected components to separate the lung air from outside,

and finally it applies a morphological dilation to fill the existing gaps in

the lung tissue.

To detect nodule candidates in a CT, we used a 3D blob detector based

on the Difference of Gaussian method [27]. This technique tries to detect

nodules by retrieving those parts of the image that differ in properties,

such as brightness or grey-level, compared to surrounding regions. One

advantage of this method is its intuitive parameterization. In particular,

we needed to tune 5 parameters: the minimum and maximum diameter

of the region to look for (i.e. the minimum and maximum Gaussian stan-

dard deviations), the steps (i.e. the number of standard deviations to try

between the defined ranges), a similarity threshold and the overlap score

used for pruning closely located regions of interest. The configuration

selected for this method was 5 mm and 60 mm as minimum and maxi-

mum nodule diameters, 5 steps, a threshold of 0.15 and 0.9 of overlapping.

More details on the evaluation results of this method are available in the

supplementary material.

As this candidate detection method tends to be optimistic (i.e. to accept

several candidates similar in shape and texture to nodules), we imple-
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mented a classifier aimed at reducing the rate of false positive candidates.

We chose to solve this task with a 3D CNN and, after empirical tests with

different network architectures, we opted for the ResNet-50 [28]. To train

this network, we used the same training set used for building the nodule

detection method, along with a list of candidate node locations, provided

by the LUNA16 challenge. Inputs of the network were volumes of (32, 32,

32) mm extracted from the nodule candidate positions. We used 0.0001 as

initial learning rate, Adam optimization and binary cross-entropy for the

loss function. Additionally, to improve the generalization ability of the

network, in the training phase we used data augmentation of the positive

class by a factor of 1:240. In particular, we applied 90 degree of rotation,

0.2 of shear, zoom range of 0.1, up and downs shifts of 0.5 and horizontal

and vertical flips. The network reached its best performance in training

phase after 6 epochs with a batch size of 32. Further details regarding the

evaluation of this method are also available in the supplementary material.

2. Cancer classification

The following stage of the pipeline consisted in building a lung cancer clas-

sifier, fed with the detected nodules, in order to predict cancer probability

for each patient. For this purpose, we used the TCIA dataset that provides

only patient labels (cancer or non-cancer). Given the lack of nodule labels,

one of the main difficulties we had to face in building the classifier was to

establish a nodules-patient labels relationship. We created a ground truth

for the detected nodules from the ground truth of the patients by labelling

all the nodules detected in a CT as 0/1 depending on the presence (1) or

absence (0) of cancer in the patient scan. For example, if three nodules

were detected by the pipeline in a CT scan of a patient with cancer, all the

nodules were labelled as cancerous. Thus, we constructed a lung cancer

classifier that predicts the probability of cancer of every nodule in a CT.

Then, since we were interested to report cancer predictions at the patient

level, we reported as cancer probability of the patient the predicted cancer

probability of his/her most cancerous nodule (i.e. the highest among the
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predicted cancer probabilities of all his/her nodules).

Additionally, in the classification we included the main features provided

by the 3D blob detector. In total we selected three main features (radius,

power and relative z position) referring respectively to size, intensity and

location of the nodules. Although further image descriptors could be en-

visaged, we limited our choice to those three not only to highlight the

contribution of the nodule malignancy knowledge but also to approximate

as closely as possible the features recommended in the current radiologist

guidelines to focus on when screening nodules in a CT scan.

Several classification algorithms were used to train the classifiers, each

accounting for a different classification strategy (i.e. linear, non-linear,

distance-based, and tree-based). Moreover, different hyper-parameters

were defined for each algorithm (Table S5 of the supplementary material).

In order to determine the best classification model, we used a grid-search

5-fold cross-validation, a technique suitable for our sample size range [29].

3.2.3. The Nodule Malignancy Integration

In order to assess the effects of the automatic nodule malignancy classifi-

cation (section 3.2.1) for lung cancer prediction, we proposed three different

methods to integrate the nodule malignancy models in the lung cancer pipeline:

integration of predicted classes, integration of probabilities or integration of the

models themselves (Figure 3).

1. Class integration

The integration method using classes consisted in creating a new cate-

gorical feature containing the label predicted by the nodule malignancy

classifiers. Thus, this feature was 0, 1 or 2 depending on whether the

malignancy classifier predicted malignancy level of 1 ( or 1&2 for shal-

lowCNN 1&245 and deeperCNN 1&245 classifiers), 4, 5 respectively. To

build the lung cancer classifier, we then concatenated this feature to the

three basic features defined in 3.2.2 (cancer classification), namely, radius,
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Figure 3: Pipeline proposed for lung cancer classification.

power and z-position.

2. Probability integration

The second integration method consisted in creating three new features,

each containing the predicted probability of the nodule to be of malignancy

level 1 ( or 1&2for shallowCNN 1&245 and deeperCNN 1&245 classifiers),

level 4 or level 5. To build the lung cancer classifier, we then concatenated

these three features to the three basic features.

3. Model integration

The third integration method aimed to directly use the nodule malignancy

models for the task of lung cancer prediction. Several techniques can be

envisaged for this type of integration. We proposed using transfer learning

[30] since both problems have the same type of input data (CT scans)

and a similar objective (identifying malignancy). To perform transfer
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learning, all the weights of the layers of the 3D malignancy networks were

frozen, the last softmax layer was removed and replaced by a dense network

(several configuration parameters of this network are presented in the

supplementary material) and a final sigmoid layer. The first layer of the

dense network was combined with the three basic features defined for the

lung cancer classifier of the pipeline. The last layer of the final network

outputs a value between 0 and 1 that represents the probability of lung

cancer.

For tuning and evaluating the classifiers, independently of the integration

method used, we applied grid-search and 5-fold cross-validation as we did for

building the cancer classifier of the pipeline.

4. Results

4.1. Malignancy Classification Results

We present here the results of the nodule malignancy classifiers. Although

nodule classification is not the focus of our work, it is important to determine

that these classifiers are able to extract useful information from the CTs before

integrating them in the cancer pipeline. In Table 2 we summarize the weighted

average performance metrics and the macro averaged F1-score on the test set of

the four classifiers. The models shallowCNN 145 and deeperCNN 145 achieved

best performances with batch size of 32 in training and validation, while for

shallowCNN 1&245 and shallowCNN 1&245 batch size of 32 and 16 respectively

in training and validation were selected. In all the experiments we augmented

each nodule in the training set by a factor between 10 and 25, augmenting more

nodules of malignancy 5 given their lower representation in the dataset.

Overall, the more shallow architectures slightly outperformed the deeper

ones; nevertheless, all the classifiers achieved weighted F1-score above 0.75 with

the best one (shallowCNN 1&245) achieving 0.83. These results indicate that

the nodule deep features extracted by the CNN are good predictors of nodule

malignancy.
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Table 2: Results of nodule malignancy classification on test set (at nodule level).

Classifier Precision Recall F1-score F1-macro Support

shallowCNN 145 0.83 0.81 0.82 0.68 89

deeperCNN 145 0.80 0.73 0.76 0.63 89

shallowCNN 1&245 0.83 0.83 0.83 0.67 133

deeperCNN 1&245 0.82 0.80 0.81 0.66 133

4.1.1. Consistency between nodule-level malignancy predictions and patient-level

diagnostic ground truth

To validate our hypothesis that the integration of a nodule malignancy clas-

sifier in a cancer detection pipeline can improve the predictions, we evaluated

the consistency between the diagnosed cancer status of a patient and the pre-

dicted malignancy of his/her nodules. To do so, we inferred the cancer label of

each patient from the malignancy labels of his/her nodules: if the CT scan of

the patient contains at least one nodule with predicted malignancy 4 or 5, then

the patient is positive to cancer, otherwise (i.e. all the nodules in the CT are

benign) the patient is negative to cancer. Given this rule, we obtained cancer

predictions at patient level in the cases where the predictions of nodule malig-

nancy come from: 1) the radiologists, 2) the four malignancy classifiers. Perfor-

mance metrics of these rule-based predictions are evaluated in the Test 145 and

Test 1&245 sets (as they are the only provided with truth cancer labels) and are

reported in Table 3. It is worth noticing that both radiologist and CNN clas-

sifiers achieved comparably high, although not perfect, predictions (in Test 145

the best F1-score was 0.92 achieved by radiologists and deeperCNN 145 while in

Test 1&245 the best F1-score was 0.85 achieved by shallowCNN 1&45 followed

by 0.84 obtained from the radiologists prediction).

4.2. Lung cancer results

The pipeline described in section 3.2.2 was applied on the diagnosed TCIA

dataset. From the 130 cases, we obtained that 100 (76.9%) were predicted with
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Table 3: Cancer prediction at patient level from nodule malignancy.

Dataset Prediction source Precision Recall F1-score Support

Test 145 radiologist 0.89 0.94 0.92 65

Test 145 shallowCNN 145 0.86 0.96 0.91 65

Test 145 deeperCNN 145 0.88 0.96 0.92 65

Test 1&245 radiologist 0.89 0.79 0.84 82

Test 1&245 shallowCNN 1&245 0.87 0.84 0.85 82

Test 1&245 deeperCNN 1&245 0.83 0.78 0.80 82

potential lung nodules, 11 cases (8.4%) were correctly predicted without any

cancerous nodule and 19 cases (14.1%) were false negatives as they had some

missing cancerous nodules.

On the 100 CT cases with detected nodules (227 nodules), we ran the can-

cer classification stage of the pipeline. The data was imbalanced with a non-

cancer/cancer class ratio of 1:3.61. This ratio was respected during the random

partitioning of the data in training and test datasets. In total, for training

we had 75 cases (21 non-cancer, 54 cancer) with 220 nodules (48 non-cancer,

172 cancer). In contrast, for testing we had 25 cases (6 non-cancer, 19 cancer)

with 57 nodules (12 non-cancer, 45 cancer). Figure 4 shows the distribution of

nodules by patient and the box-plot of nodules for cancer and non-cancer CTs.

Figure 4: Data distribution for lung cancer classification.
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The results of evaluating the different malignancy integration pipelines for

lung cancer prediction are summarized in Table 4. This table shows the weighted

precision, recall and F1-scores for cross-validation, test at the nodule level and

test at the patient patient level. The baseline method achieved 0.65 +/- 0.021

of weighted F1 in cross-validation, whereas 0.55 in test at the nodule level and

0.593 in test at the patient level. The pipeline with malignancy probabilities

integration method achieved the best results with 0.709 of weighted F1 in test

at the nodule level and 0.74 of F1-weighted score in test at the patient level.

Figure 5 shows a bar-plot with the accuracy and the weighted F1-scores

achieved by the different integration pipelines. The dashed lines represent the

baseline classification performances. On the right, we show a precision-recall

curve of the different lung cancer pipelines. This curve is especially appropriate

when the classes are imbalanced as it shows the trade-off between precision and

recall for different thresholds [31].

Table 4: Cross-validation and test (ND: nodule level, PT: patient level) results for the lung

cancer pipelines.

Metric
Baseline

Pipeline

Malignancy Integrated

Pipelines

Class Probabilty Model

CV

prec 0.627+/-0.03 0.737+/-0.01 0.766+/-0.02 0.715+/-0.06

rec 0.711+/-0.05 0.587+/-0.03 0.732+/-0.03 0.712+/-0.05

F1 0.650+/-0.02 0.623+/-0.02 0.743+/-0.02 0.712+/-0.05

Test (ND)

prec 0.615 0.685 0.692 0.703

rec 0.509 0.491 0.737 0.684

F1 0.55 0.536 0.709 0.693

Test (PT) prec 0.553 0.66 0.842 0.704

rec 0.64 0.64 0.8 0.72

F1 0.593 0.64 0.74 0.711
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Figure 5: Performance comparison of the lung cancer pipelines.

5. Discussion

One of the most critical tasks that radiologists have to perform when exam-

ining lung CTs is to identify nodules from normal lung tissue. Highly malignant

nodules are usually candidates of being lung cancer, therefore radiologists should

precisely quantify the malignancy of the pulmonary nodules before planning ex-

pensive and sometimes traumatic clinical interventions.

Measuring nodule malignancy is a complex and tiresome process with signif-

icant levels of intra- and inter-observer variability. Several tools relaying on im-

age processing and conventional machine learning techniques or, more recently,

deep convolutional neural networks have been proposed to support radiologists

in this task. However, to the best of our knowledge, very few of them ( e.g.

[19]), independently of the technique selected, use nodule malignancy for the

classification of lung cancer. With the intention of providing a realistic eval-

uation of the importance of nodule malignancy for the automatic lung cancer

classification, in this work we have provided a framework with different methods

to integrate nodule malignancy in a cancer detection pipeline.

To this aim, we created several nodule malignancy classifiers using 3D con-

volutional neural networks. To build these classifiers, beforehand, we knew

the level of malignancy, the position and the size of the nodules to classify.
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The best nodule malignancy classifier (shallowCNN 1&245) achieved a relevant

performance 0.83 of weighted F1-score when classifying the malignancy of the

nodules in an independent test set.

The expected usefulness of these classifiers to the task of lung cancer predic-

tion was validated by deriving a cancer classification from the nodule malignancy

prediction on the TCIA diagnosed dataset. The best malignancy classifier (deep-

erCNN 145) achieved a performance of 0.92 of weighted F1 score, comparable

to the performance using the malignancy annotations given by the radiologists.

However, it is worth noting that the evaluation was performed knowing a priori

the location of the nodules and that the nodules annotated with a label 3 were

removed due to their ambiguous malignancy.

To have a more realistic evaluation, we first created a baseline pipeline com-

prising a nodule detection and a cancer classification that uses a very simple

set of descriptors (such as the radius, intensity and location of the candidates).

We limited the number of features to this basic set to reasonably emulate the

features recommended in the current radiologist guidelines. Also, since our pri-

mary objective was not to offer high cancer classification performance but to

quantify the importance of nodule malignancy for lung cancer, reducing the

number of features allowed us to decrease the training time and thus increase

the number of experiments.

Eventually, to assess the effects of automatic nodule malignancy classifica-

tion for lung cancer prediction, we provided three different ways to integrate

the nodule malignancy classifiers into a lung cancer pipeline. The first ap-

proach aimed to use only the predicted classes as a new feature to add into the

basic set of features of the baseline pipeline. The second approach consisted

in creating three new features, representing the nodule malignancy probability

distribution, and adding them to the features of the baseline. Finally, the last

integration method consisted in using directly the malignancy model for lung

cancer classification. In particular, we used a transfer learning technique which

consisted on freezing the weights of the malignancy classifiers, removing the last

layer and replacing it by new dense layers.
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In total three new pipelines were created by applying the different integration

techniques within the baseline pipeline. The three pipelines and the baseline

were trained using the TCIA dataset and evaluated using grid-search with a

5-fold cross-validation.

Results show that the best pipeline with integrated nodule malignancy out-

performs up to a 15.9% and 14.7% of weighted F1 score in comparison with the

baseline at the nodule and patient level. The best pipeline was using the malig-

nancy probabilities and it achieved a difference of 2.9% of weighted F1 score at

the patient level with respect to the second best integration pipeline, the ma-

lignancy model integration. This result may appear surprising since the model

integration adds to the classifier more features and hence more information.

However, this extra information comes at the cost of an increased dimension-

ality of the problem, suggesting that this transfer learning approach may be

better suited when a larger dataset would be available. Alternatively, a further

fine tuning (e.g. unfreezing or removing more layers) of the transfer learning

proposed can be envisaged. Nevertheless, the model integration pipeline signif-

icantly outperformed the baseline by 11.8% of weighted F1 score at the patient

level. In contrast, malignancy class integration did not significantly improve the

lung cancer classification performance of the baseline. The poorer performance

of the class compared to the other integration methods was expected, since the

information was compressed in a single categorical feature not able to capture

the complexity of the problem.

The findings of our study suggest that systematically integrating the as-

sessment of nodule malignancy in an automated cancer detection system may

improve significantly the ability of the system to identify cancer in lung scans.

Emulating the malignancy assessment with powerful techniques such as deep

learning, able to extract complex information directly from raw data, can re-

lieve the difficulties and costs of a manual assessment. However, we believe that

the lack of larger datasets with manual malignancy annotations and diagnos-

tic cancer labels constitues the main limitation of our study. If in the future

datasets of this kind become available, our pipeline will highly benefit from the
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additional amount of information, which will likely result in more accurate pre-

dictions. Better predictions will eventually: reduce the need for time-consuming

manual annotations and feature engineering approaches, provide a reliable sup-

port to radiologists and automatize to a greater extent cancer detection pipelines

adopted in clinical applications.

Our work is, to the best of our knowledge, the first attempt to build this

nodule-malignancy/patient-cancer integrated framework. Despite the encourag-

ing results, several improvements can be envisaged to extend this approach. For

instance, creating an ensemble of all the malignancy classifiers rather than using

them individually could enhance the classification performance. Furthermore,

nodule malignancy could be also used for filtering nodule candidates detected

by the cancer pipeline. Thus, rather than using all the detected nodules, we

could use only the most malignant ones as input for the lung cancer classifier.

6. Conclusions

In this study we have proved that it is feasible to build highly accurate

malignancy classifiers relying on deep learning techniques to predict nodule ma-

lignancy. We have validated that they are also good predictors of lung cancer

at the patient level when having the location of nodules beforehand. In or-

der to provide a more realistic evaluation of nodule malignancy for lung cancer

classification, we finally proposed a novel framework to quantify and assess nod-

ule malignancy for lung cancer given only CTs and labels at the patient level.

The experimental findings of our study suggest that systematically integrating

the assessment of nodule malignancy in an automated cancer detection system

improves up to 14.7% of F1-score the ability of the system to identify can-

cer in lung scans. The encouraging results presented are, to the best of our

knowledge, the first attempt to build this nodule-malignancy/patient-cancer in-

tegrated framework to quantify nodule malignancy for future research in lung

cancer classification.
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Supplementary material

S1. The lung cancer pipeline

Here we present the results of the first stage of the lung cancer pipeline.

Those were obtained using an independent testset (10% of the data) of the

LUNA16 dataset.

S1.1. Nodules detection

Tables S1 and S2 show the description and results of three different config-

urations tested for the nodule detection part of the lung cancer pipeline.

Option 1 Option 2 Option 3
Minimum radius 10 5 5
Maximum radius 40 30 60
Steps 10 10 5
Threshold 0.2 0.15 0.15
Overlap 0.9 0.7 0.9

Table S1: Configurations of the Difference of Gaussian method for lung nodules detection.

Preprint submitted to Journal of Computer Methods and Programs in Biomedicine

ar
X

iv
:1

91
2.

08
67

9v
1 

 [
ee

ss
.I

V
] 

 1
8 

D
ec

 2
01

9



DoG configurations
Option 1 Option 2 Option 3

Total detected nodules 21 29 73
Total detected candidates 1142 7130 76631

Min,Max,Mean,Std radius
of detected nodules (real)

3.51
12.14
8.03
2.33

2.8
12.14
6.82
2.74

1.7
12.14
4.69
2.65

Min,Max,Mean,Std radius
of detected nodules (predicted)

5.0
12.6
8.6
2.31

3.05
12.29
7.33
2.74

2.5
8.66
4.41
2.35

Min,Max,Mean,Std intensity
of detected nodules (pred)

0.21
0.45
0.31
0.07

0.16
0.57
0.32
0.13

0.15
1.31
0.46
0.3

Total missing nodules 84 76 32

Min,Max,Mean,Std radius
of missing nodules (real)

1.64
8.36
3.2
1.16

1.64
8.36
3.15
1.25

1.64
6.28
2.97
1.12

Table S2: Results from three different configurations of the Difference of Gaussian method for
lung nodules detection. The total number of nodules in the test set was 105.

S1.2. False Positive Reduction

Tables S3, S4 and Figure S1 present the results achieved by the 3D ResNet

deep convolutional network used for the false positive reduction task.

Predicted

Real
False
(0)

True
(1)

Candidate (0) 75726 54
Nodule (1) 58 86

Table S3: Confusion matrix results for the 3D ResNet network.

Precision Recall F1-score Support
Candidate (0) 1.00 1.00 1.00 75780
Nodule (1) 0.61 0.60 0.61 144

Table S4: Classification results for the 3D ResNet network.
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Figure S1: FROC curve achieved in testing for the 3D ResNet network.

S1.3. Cancer classification

In this section we describe the pipeline parameters (Table S5) used for train-

ing the machine learning classifiers as well as the parameters used for the dense

fully connected network (Table S6) for lung cancer prediction.
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Table S5: Pipeline parameters tested using grid-search and 5-fold CV.

Algorithm Options

k-NN
n neighbors = [1,3,5,7,9,11]
weights = [’uniform’, ’distance’]

LR
C = [0.001,0.01,0.1,0.5,1,3]
class weight = [’balanced’]
penalty = [’l1’, ’l2’]

RF

n estimators = [100,150,200,250,500,750]
criterion = [’entropy’,’gini’]
max depth = [’None’,2,4,6]
class weight = [’balanced’]

SVM

C = [0.001,0.01,0.1,0.5,1,3]
gamma = [0.005,0.01, 0.05,0.1,1,3]
kernel = [’radial’,’poly’]
degree = [3,5,7,9]
class weight = [’balanced’]

Table S6: Parameters for training the dense network.

Method Options

Hidden-Layers
(size/4),(size/3),
(size/2),(size)

Alpha 1e-5,1e-3,1e-2,1,3,10
Activation ’relu’, ’sigmoid’
Solver ’lbfgs’
Max iter 200
Tol 1e-4

(*) The value of ’size’ is the output of the N-1 layer of the nodule malignancy
model together with the 3 features of the lung cancer baseline pipeline.
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