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Abstract: Background and Objective: A fusion of multi-slice computed tomography (MSCT) 

and single photon emission computed tomography (SPECT) represents a powerful tool for 

chronic obstructive pulmonary disease (COPD) analysis. In this paper, a novel and high-

performance MSCT/SPECT non-rigid registration algorithm is proposed to accurately map the 

lung lobe information onto the functional imaging. Such a fusion can then be used to guide lung 

volume reduction surgery. Methods: The multi-modality fusion method proposed here is 

developed by a multi-channel technique which performs registration from MSCT scan to 

ventilation and perfusion SPECT scans simultaneously. Furthermore, a novel parameter-

reduced function is also proposed to avoid the adjustment of the weighting parameter and to 

achieve a better performance in comparison with the literature. Results: A lung imaging dataset 

from a hospital and a synthetic dataset created by software are employed to validate single- and 

multi-modality registration results. Our method is demonstrated to achieve the improvements 

in terms of registration accuracy and stability by up to 23% and 54% respectively. Our multi-

channel technique proposed here is also proved to obtain improved registration accuracy in 

comparison with single-channel method. Conclusions: The fusion of lung lobes onto SPECT 

imaging is achievable by accurate MSCT/SPECT alignment. It can also be used to perform 

lobar lung activity analysis for COPD diagnosis and treatment. 

Key words: Multi-modality image fusion, Parameter-reduced method, Statistical modelling, 

Non-rigid registration 
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1. Introduction  

1.1 Background 

Chronic obstructive pulmonary disease (COPD) is a significant global cause of morbidity and 

mortality that presents a serious health care burden. One possible course of treatment for severe 

COPD is lung volume reduction surgery (LVRS), which involves removing some parts of the 

lung that are most affected by the disease. This treatment increases the volume of the remaining 

lung lobes to improve breathing in COPD patients. In order for this procedure to be effective, 

it is necessary to know precisely which parts of the lung have been most affected by the disease 

and therefore which are the best candidates for removal. Multi-slice computed tomography 

(MSCT) provides three-dimensional imaging of lung structure to allow the identification of the 

lung lobes. Single photon emission computed tomography (SPECT) allows lung activity to be 

measured using nuclear medicine imaging and makes it possible to identify regions of the lung 

that are not functioning as they should. The combination of the structural information from 

MSCT with the functional information from SPECT therefore represents a powerful tool to 

address the concerns of diseased lobe recognition. As the fusion from these two modalities can 

be performed directly on both MSCT and SPECT imaging, CT/SPECT registration has received 

a lot of attention in the past few years. 

1.2 Previous Work 

The method proposed in [1] intends to facilitate the registration by converting SPECT slices 

into CT-like images using scatter window. For the case that the isotope in the adjacent objects 

is more straightforward to detect, the method reported in [2] performs registration for tumors 

based on the spine SPECT imaging. Similar methods are studied in [3] and [4] as well. In 

addition, intensity uncertainty quantification is used to represent each voxel in [5]. Since the 

voxel mapping is independent of intensity, it overcomes the shortcoming that fluid-like 

registration methods are not applicable to multi-modality image registration. Recently, a series 

of sophisticated local descriptors based on the features and textures have been studied in [6] 

and [7]. Euclidian and Riemannian distances are employed to measure the correspondence 
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similarity respectively. Mutual information (MI) is demonstrated to be the best criterion for 

multi-modality image registration [8]. MI is widely used in medical image registration [2] [9]. 

Weighted mutual information established by normalized pointwise MI and prior knowledge is 

investigated in [10] to develop the registration accuracy and stability. Furthermore, structural 

feature-aided methods based on MI are proposed in [11] and [12] to improve registration 

performance. 

Since the target image (i.e. SPECT) is usually deteriorated by artefacts and outliers (e.g. images 

depicted with the presence of tumors or lesion tissue can be considered as outliers) [13], the 

main challenge on the MSCT/SPECT registration is to prevent the excessive deformation of 

source image (i.e. MSCT). Prior knowledge-based methods are therefore studied to address the 

concern. Motion models in respiratory imaging are studied in [14] and [15], which can be used 

to guide the deformation during registration. However, the respiratory motion model requires a 

certain number of high-resolution scans within one breathing cycle and manual feature label on 

CT scans. Statistical deformation model (SDM) is firstly proposed in [16] and then developed 

to solve specific medical imaging problems [17]. In order to exploit the potential information 

of prior images, a technique was proposed in [18], termed as semi-supervised method. In the 

training process, the initial atlas built by supervised registration is used to guide the 

unsupervised registration and then combined with new atlas for SDM. In contrast, the implicit 

representation of prior knowledge is investigated in [19]. The prior shapes represented by level-

set concentrate on the delineation of lung region and considerably reduces manual labor and 

computational cost.  

1.3 Problems in SDM-based Work 

The deformation 𝒖 is normally represented by a three-component vector (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) along the 

directions of X, Y and Z axes. In the interest of capturing statistical information about 

deformation 𝒖, the statistical term 𝑆(𝒖) derived from prior knowledge is added into the cost 

function 𝐸(𝒖), together with the similarity metric 𝐷(𝒖) and smoothing term 𝑅(𝒖) [19]. The 

conventional cost function is written as 
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 𝐸(𝒖)  = (1 − 𝛼)𝐷(𝒖) + 𝛼[(1 − 𝛽)𝑅(𝒖) + 𝛽𝑆(𝒖)] (1) 

where 𝛼 is used to adjust the weight of regularized terms in the cost function and 𝛽 is employed 

to balance the penalties given by smoothing and statistical terms.  

In the literature (e.g. see [17] and [19]), the distribution of prior deformations is approximated 

by a multivariate normal distribution: 

 𝑓(𝒖) = 𝑐 ∙ 𝑒𝑥𝑝 (−
1

2
(𝒖 − 𝒖̅)𝑇𝛴𝑐𝑜𝑣

−1(𝒖 − 𝒖̅)) (2) 

where 𝑐 is a constant and 𝛴𝑐𝑜𝑣 is the covariance matrix of prior deformations.  

Since 𝑙𝑛[𝑓(𝑢)] is proportional to −(𝑢 − 𝑢̅)𝑇𝛴𝑐𝑜𝑣
−1(𝑢 − 𝑢̅), the statistical term 𝑆(𝑢), which is 

supposed to have a minimum, is represented in association with (2), i.e.: 

 𝑆(𝒖) = (𝒖 − 𝒖̅)𝑇𝛴𝑐𝑜𝑣
−1(𝒖 − 𝒖̅) (3) 

Nevertheless, two unsolved issues always exist in this well-known framework and similar prior 

knowledge-based algorithms. At first, in order to minimize the cost contribution, 𝑆(𝒖) 

penalizes any displacement 𝒖  that is not in accordance with the mean, 𝒖̅ . However, by 

assuming that the deformations are associated with normal distribution, any deformation within 

three standard deviations of the mean is conventionally acceptable. In addition, the empirically 

determined weighting parameter 𝛽 cannot guarantee that the resulting 𝒖 falls into a reasonable 

range. In previous research, since it is challenging to investigate a proper weighting parameter 

which can rigorously confine the displacement, 𝛽 tends to be assigned roughly according to 

specific circumstances. 

1.4 Research Overview 

As few features can be extracted from SPECT imaging and the landmark correspondence is 

practically unachievable, feature-based methods are inapplicable to the lung MSCT/SPECT 

alignment. In addition, lungs have the highly deformable property and their MSCT and SPECT 

images are captured at a different state of inhalation (i.e. SPECT scans are performed at tidal 

breathing, whilst the optimal parameters for MSCT for the delineation of the various structural 
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features of the lung requires suspended full inhalation). To the best of our knowledge, very few 

articles have been published to tackle the complicated lung MSCT/SPECT registration problem 

with prior knowledge and the problem described in Section 1.3. The motivation of this paper is 

therefore to develop a learning-based registration algorithm capable of capturing prior 

deformation information and achieving high-performance alignment of lung MSCT/SPECT 

imaging with less parameters.  

In this paper, we substantially extend our previous work [20] to complete multi-modality image 

registration. We perform the simulations through lung dataset provided by Southampton 

General Hospital and synthetic phantoms created by 4D extended cardiac-torso (XCAT) and 

radionuclide multimodality dosimetry package (RMDP). The registration results are measured 

by different metrics to demonstrate the superior registration accuracy and stability achieved by 

the algorithm proposed here.  

The contributions of this paper are as follows:  

 Firstly, we propose a multi-channel registration method to improve the performance of 

lung anatomical and functional imaging alignment. Our method conducts a direct 

MSCT/SPECT registration which is independent of aided features and landmarks.  

 Secondly, a novel cost function is proposed here for multi-modality registration. The 

parameter-reduced model avoids the unnecessary adjustment for a weighting parameter. 

 Thirdly, a new statistical representation is presented to properly regularize the 

displacement based on the SDM.  

 Finally, the synthetic imaging data and the ground-truth vector displacement offered 

by 4D XCAT together with RMDP are employed here to validate registration methods. 

This paper is structured as follows: The mathematical derivations of our method proposed here 

are presented in Section 2. The experimental data are pre-processed in Section 3 followed by 

some implementation issues reported in Section 4. The experimental results achieved by our 

method are compared with those of the algorithms related to the classical framework (specified 
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in (1)) in Section 5 with in-depth discussion. Conclusions and future work are finally presented 

in Section 6. 

2. Methodology  

The non-rigid registration method proposed here starts with SDM which is briefly introduced 

in Section 2.1, followed by our cost function proposed in Section 2.2. Here we present 

mathematical derivations for single- and multi-modality image registration. The extended 

multi-channel technique proposed here is also clarified in this section. The metrics for 

validation are stated in Section 2.3. 

2.1 Statistical Deformation Model 

In this paper, the lung shapes as prior knowledge are extracted from various patients (e.g. 

healthy non-smoker, healthy smoker, mild and moderate COPD patients) to train the SDM. As 

the inter-subject information can only provide the global constraint against excessive 

deformations, rather than specific intra-patient voxel-wise regularization, prior lung shapes 

represented by level-sets are employed here for convenience. Although the size of lung varies 

considerably among individuals, the influence made by scale variations can be eliminated by 

employing a registration method which takes scaling transformation into consideration. Here 

we used the method proposed in [21]. It conducts similarity registration which is involved in 

scaling, rotation and translation transformations, to initially register prior shapes. 

The B-spline-based non-rigid registration is then performed to compute the deformations for 

each prior shape. The deformation variability of prior shapes is generalized by principal 

component analysis, i.e.: 

 𝒖𝑚𝑜𝑑𝑒𝑙 = 𝒖̅ + 𝑽𝝀 (4) 

where 𝒖̅ and 𝑽 are the mean displacement and the eigenvectors of SDM respectively. The 

deformation can be represented by a dimension-reduced vector 𝝀, which comprises the values 

of coordinates along eigenvectors. 
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2.2 Parameter-reduced SDM Based Registration 

In this section, the mathematical derivations of the parameter-reduced framework are clarified. 

Our method is intended to solve both single-modality (e.g. CT-CT or SPECT-SPECT) and 

multi-modality (e.g. CT-SPECT) registration problems, which are stated in Section 2.2.1 and 

2.2.2 respectively. SPECT image alignment, which employs MI as a metric, can be performed 

using the framework proposed in Section 2.2.2. Multi-channel technique is stated in Section 

2.2.3 for further improvement in performance. 

2.2.1 Single-modality image alignment 

Sum of squared distance (SSD) is used as the similarity metric, and the distance between two 

images is calculated by 

 𝐷(𝒖) = ∫(𝐼𝑠𝑟𝑐(𝒙 + 𝒖) − 𝐼𝑡𝑎𝑟(𝒙))2𝑑𝒙 (5) 

where  𝐼𝑡𝑎𝑟 and 𝐼𝑠𝑟𝑐 are the target and registered source images respectively. 

Here we replace 𝒖 in (5) with a novel function 𝑆(𝝀) manipulated by SDM to represent the 

regularized displacement. Our proposed statistical term, 𝑆(𝝀), employed in a similarity term is 

presented in (6)-(9). 

 𝐷(𝑆(𝝀)) = ∫ (𝐼𝑠𝑟𝑐(𝒙 + 𝑆(𝝀)) − 𝐼𝑡𝑎𝑟(𝒙))
2

𝑑𝒙 (6) 

where 𝑆(𝝀) is a three-component vector (𝑆(𝜆𝑥), 𝑆(𝜆𝑦), 𝑆(𝜆𝑧)) and represented as: 

 𝑆(𝝀) = 𝒖̅ + ∑ 𝑽 ∙ 𝑆𝑟𝑒𝑔(𝝀𝑖)𝐾
𝑖=1  (7) 

In the above equations, 𝑽  and 𝒖̅  have been computed in (4). Also 𝐾  is the number of 

eigenvectors used for regularization and 

 𝑆𝑟𝑒𝑔(𝝀𝑖)  = 𝐻 (|
𝝀𝑖

3𝝈𝑖
|

2

− 1) ∙ 𝑆𝑖𝑔𝑛(𝝀𝑖) ∙ 3𝝈𝑖 + 𝐻 (1 − |
𝝀𝑖

3𝝈𝑖
|

2

) ∙ 𝝀𝑖 (8) 

where 

 𝝀𝑖 = 𝑽𝑖
𝑇 ∙ (𝒖 − 𝒖̅) (9) 
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Here, T indicates transpose.  𝝈𝑖 (i.e. ( 𝜎𝑥𝑖
, 𝜎𝑦𝑖

, 𝜎𝑧𝑖)) denotes a vector representing the standard 

deviation along X, Y and Z axes. The standard deviation is also considered as the square root 

of the corresponding eigenvalue. Each 𝝀𝑖 (i.e. (𝜆𝑥𝑖
, 𝜆𝑦𝑖

, 𝜆𝑧𝑖)) is regularized to guarantee that all 

the displacements fall into the range of 3𝝈𝑖 (i.e. obeying the Three-sigma Rule of the Gaussian 

distribution). The Heaviside function 𝐻(∙) only penalizes those 𝝀𝑖  which are outside of the 

aforementioned range. The sign function 𝑆𝑖𝑔𝑛(∙)  is employed to retain the sign of each 

regularized 𝝀𝑖. 𝑆𝑟𝑒𝑔(𝜆) with respect to 𝜆 is shown in Fig. 1. 

 

 

Fig. 1. Illustration of 𝑆𝑟𝑒𝑔(𝜆) with respect to 𝜆. 

 

Then, we use (10) to clarify 𝑆(𝝀): 

 𝑆(𝝀) = {
𝒖̅ + ∑ 𝑽𝑖 ∙ 𝑆𝑖𝑔𝑛(𝝀𝑖) ∙ 3𝝈𝑖

𝐾
𝑖=1                   𝑖𝑓   𝝀𝑖 > 3𝝈𝑖 𝑜𝑟 𝝀𝑖 < −3𝝈𝑖 

𝒖̅ + ∑ 𝑽𝑖 ∙ 𝝀𝑖
𝐾
𝑖=1                                                    𝑖𝑓  − 3𝝈𝑖 ≤ 𝝀𝑖 ≤ 3𝝈𝑖

 (10) 

The smoothing term is rewritten in (11), and our cost function proposed here for single-

modality registration is presented in (12). 

 𝑅(𝑆(𝝀)) = ∫|𝛻𝑆(𝝀)|2𝑑𝒙 (11) 

 𝐸𝑠𝑔𝑙(𝝀) = (1 − 𝛼)𝐷(𝑆(𝝀)) + 𝛼𝑅(𝑆(𝝀)) (12) 

The expected 𝝀 can be obtained by minimizing 𝐸𝑠𝑔𝑙(𝝀) through a gradient descent technique: 

 𝝀̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝝀

(𝐸𝑠𝑔𝑙(𝝀)) (13) 

The derivative of 𝐸𝑠𝑔𝑙(𝝀) with respect to 𝝀 is computed by using the chain rule: 
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𝜕𝐸𝑠𝑔𝑙(𝝀)

𝜕𝝀
=

𝜕((1−𝛼)𝐷(𝑆)+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
 (14) 

Nevertheless, the derivative of 𝑆(𝝀) does not exist if 𝐻(∙) or 𝑆𝑖𝑔𝑛(∙) possess singularities. In 

order to regularize 𝐻(∙) and 𝑆𝑖𝑔𝑛(∙), we employ (15) and (16) to represent 𝐻(∙) and 𝑆𝑖𝑔𝑛(∙) 

respectively [22], 

 𝐻(𝑝) =
1

2
(1 +

2

𝜋
𝑡𝑎𝑛−1 𝑝

𝜀
) (15) 

 𝑆𝑖𝑔𝑛(𝑞) =
2

𝜋
𝑡𝑎𝑛−1 𝑞

𝜀
 (16) 

and their derivatives are calculated by 

 𝐻′(𝑝) =
𝜀

𝜋(𝜀2+𝑝2)
 (17) 

 𝑆𝑖𝑔𝑛′(𝑞) =
2𝜀

𝜋(𝜀2+𝑞2)
 (18) 

where 𝜀 is the regularizing parameter.  

Therefore, the derivative of 𝑆(𝝀) is computed as 

 

 
𝜕𝑆(𝝀) 

𝜕𝝀
= ∑ 𝑽𝑖 ∙ (

𝜀

𝜋(𝜀2+𝒑𝑖
2)

∙
2𝝀𝑖

(3𝝈𝑖)2 ∙ 𝑆𝑖𝑔𝑛(𝝀𝑖) ∙ 3𝝈𝑖 + 𝐻(𝒑𝑖) ∙
2𝜀

𝜋(𝜀2+𝝀𝑖
2)

∙ 3𝝈𝑖 +
𝜀

𝜋(𝜀2+(−𝒑𝑖)2)
∙𝑁

𝑖=1

(−
2𝝀𝑖

(3𝝈𝑖)2) ∙ 𝝀𝑖 + 𝐻(−𝒑𝑖))  (19) 

where 

 𝒑𝑖 = |
𝝀𝑖

3𝝈𝑖
|
2

− 1 (20) 

2.2.2 Multi-modality image alignment 

In this section, a new parameter-reduced cost function is proposed for multi-modality image 

alignment. MI is conventionally employed to measure the similarity. Supposing that we use 

𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) to represent the target and registered source images, their MI can be 

calculated as 

 𝑀𝐼 = 𝐻(𝐼𝑡𝑎𝑟 ) + 𝐻(𝐼𝑠𝑟𝑐) − 𝐻(𝐼𝑡𝑎𝑟 , 𝐼𝑠𝑟𝑐) = ∬ 𝑝(𝑎, 𝑏) 𝑙𝑜𝑔
𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
𝑑𝑎 𝑑𝑏 (21) 
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where 𝑎 and 𝑏 are the greyscale values of 𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) respectively. The inverse 

MI is regarded as the similarity term and is denoted as, 

 

 𝐸𝑀𝐼 = − ∬ 𝑝(𝑎, 𝑏) 𝑙𝑜𝑔
𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
𝑑𝑎 𝑑𝑏 (22) 

Here we used gradient descent to investigate the optimal displacement 𝒖 which minimizes 𝐸𝑀𝐼. 

For the MI term, the derivative with respect to 𝒖 is calculated as:  

 

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= − ∬

𝜕𝑝(𝑎,𝑏)

𝜕𝒖
∙ (1 + 𝑙𝑜𝑔

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) 𝑑𝑎 𝑑𝑏 (23) 

In appendix A, the derivation for (23) is presented. The joint probability distribution 𝑝(𝑎, 𝑏) in 

(23) is described here by a function of 𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) using kernel density estimation 

[23] in (24).  

 𝑝(𝑎, 𝑏, 𝒖) =
1

𝑉𝜎𝑡𝑎𝑟𝜎𝑠𝑟𝑐
∫ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) 𝑑𝒙 (24) 

The coefficient 𝑉 is the volume of the image (i.e. the number of total voxels in 𝐼𝑡𝑎𝑟 or 𝐼𝑠𝑟𝑐). 

𝜎𝑡𝑎𝑟  and 𝜎𝑠𝑟𝑐  are the kernel widths of  𝐼𝑡𝑎𝑟  and 𝐼𝑠𝑟𝑐  respectively, which can be computed 

through the modified rule-of-thumb estimator [24]. Here we choose a Gaussian kernel to 

estimate the distribution and the kernel function 𝐾(∙) is denoted as, 

 𝐾(𝐴, 𝐵) =
1

2𝜋
𝑒𝑥𝑝 (−

1

2
(𝐴2 + 𝐵2)) (25) 

The derivative of 𝑝(a, b, 𝐮) with respect to 𝒖 is calculated by (26). 

 
𝜕𝑝(𝑎,𝑏,𝒖)

𝜕𝒖
= 𝐶 ∙ ∫ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) ∙ (−

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
2 ) ∙ (−

𝜕𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜕𝒖
) 𝑑𝒙 (26) 

where 

 𝐶 =
1

𝑉𝜎𝑡𝑎𝑟𝜎𝑠𝑟𝑐
 (27) 

By using (26) into (23), it is straightforward to write the following equation: 
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𝜕𝐸𝑀𝐼(𝒖)

𝜕𝒖
= 𝐶 ∙ ∫ ∬ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) (1 + 𝑙𝑜𝑔

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) 𝑑𝑎 (

𝐼𝑠𝑟𝑐(𝒙+𝒖)−𝑏

𝜎𝑠𝑟𝑐
2 ) 𝑑𝑏 ∙

(
𝜕𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜕𝒖
) 𝑑𝒙  (28) 

Given the original cost function for multi-modality image alignment as: 

 𝐸𝑚𝑢𝑙(𝒖) = (1 − 𝛼)𝐸𝑀𝐼(𝒖) + 𝛼𝑅(𝒖) (29) 

we substitute 𝑆(𝝀) proposed in (7) for 𝒖 in (29) to arrive at (30). 

 𝐸𝑚𝑢𝑙(𝝀) = (1 − 𝛼)𝐸𝑀𝐼(𝑆(𝝀)) + 𝛼𝑅(𝑆(𝝀)) (30) 

The derivative of the cost function with respect to 𝝀 is calculated as 

 

 
𝜕𝐸𝑚𝑢𝑙(𝝀)

𝜕𝝀
=

𝜕((1−𝛼)𝐸𝑀𝐼(𝑆)+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
 (31) 

2.2.3 Multi-channel image alignment 

As different radio-isotopes (Kr-81 for ventilation and Tc-99m for the perfusion) can emit 

gamma-rays at different energies, the signals from each isotope are separated at the receiver. In 

other words, SPECT ventilation (V) and perfusion (Q) can be acquired at the same time by the 

same scanner. V and Q are therefore treated as being aligned automatically. In this section, we 

propose a multi-channel alignment method, which contributes complimentary information in 

the case of impaired V or Q. Alignment is conducted between one down-sampled MSCT scan 

and two SPECT images simultaneously. The multi-channel cost function, 𝐸𝑉𝑄 , derived by 

multivariate MI for three objects (MSCT, V and Q) can be simplified by the addition of two 

independent cost functions, 𝐸𝑉 and 𝐸𝑄: 

 𝐸𝑉𝑄 = (1 − 𝛼)[𝐸𝑉(𝑆(𝝀)) + 𝐸𝑄(𝑆(𝝀))] + 𝛼𝑅(𝑆(𝝀)) (32) 

where 𝐸𝑉 and 𝐸𝑄 denote two MI-based similarity terms for MSCT/V and MSCT/Q alignments 

respectively. The solution for multi-channel method is therefore written in (33): 

 
𝜕𝐸𝑉𝑄

𝜕𝝀
=

𝜕((1−𝛼)[𝐸𝑉(𝑆)+𝐸𝑄(𝑆)]+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
 (33) 
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By employing gradient descent technique for optimization, the optimal 𝝀𝑗 can be obtained by 

iterative computation: 

 𝝀𝑗 = 𝝀𝑗−1 −
𝜕𝐸

𝜕𝝀
∙ 𝛥𝑡 (34) 

where Δ𝑡 is the step length to control the iterative rate for numerical solution. Small values for 

Δ𝑡 rate may lead to slow convergence. On the other hand, large values of Δ𝑡 may cause 

instability (divergence). Here, we have found that  Δ𝑡 = 0.01 leads to desirable results. 

2.3 Evaluation of Registration Accuracy 

In order to evaluate registration accuracy, two methods are introduced in this section. Based on 

the segmentation of the ROI using the method proposed in [25], the registration similarity can 

be measured by the normalized inner product (NIP) between the mask of the target image, 

𝜙𝑡𝑎𝑟(𝒙), and the warped mask of the source image, 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ (𝒙). 

 𝑁𝐼𝑃 = ∫
𝜙𝑡𝑎𝑟(𝒙) 𝜙𝑠𝑟𝑐

̅̅ ̅̅ ̅̅ ̅(𝒙)

‖𝜙𝑡𝑎𝑟(𝒙)‖2‖ 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ ̅(𝒙)‖

2

𝑑𝒙 (35) 

where ‖∙‖2 denotes Euclidian norm. 

The vector displacement (VD) is used to evaluate the performance by the voxel-wise 

displacement [26]. In comparison with the mask metric, VD provides a more precise metric for 

evaluation. Given the ground-truth displacement 𝑻, the mean displacement error (MDE) is 

calculated as: 

 𝑀𝐷𝐸 =
∫‖ 𝑻−𝒖‖2𝑑𝒙

𝑉
 (36) 

In summary, lower MDE and higher NIP indicate superior registration accuracy. 

3. Data Collection 

Experimental data are very important for validating performance of registration methods. Apart 

from the lung dataset provided by Southampton General Hospital used here, an advanced 
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simulation software (4D XCAT) is also employed here to synthesize the intra-patient data and 

provide ground-truth VD for non-rigid registration validation. 

3.1 Phantom Data Processing 

3.1.1 Phantom and VD generation using XCAT 

4D XCAT phantom is developed for high-resolution anatomical imaging and advanced 

simulation of cardiac and respiratory motions, which are close to the scenario of real patients 

[27]. In order to obtain 3D synthetic MSCT and SPECT data for subsequent evaluation, a few 

of time points (i.e. image frames) are pre-selected in a breathing cycle. At each time point, the 

transient 3D images are sampled.  Here, we configure the breathing cycle with 5 seconds, which 

starts from the maximum inhalation. The 3D attenuation and activity phantoms are sampled by 

eight frames within one cycle at even intervals, as shown in Fig.2. The air volume is an 

approximate value of people’s lung capacity for the cycle presentation purpose only. The 

remaining parameters are properly configured by RMDP for phantom generation.  

The VD is generated using another mode of XCAT. Each VD file reports the voxel movements 

from the first frame to one of the remaining frames, which is regarded as the ground-truth 

displacement for later validation. 

 

 

 

Fig. 2. XCAT phantoms are sampled by eight frames within one breathing cycle. 
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3.1.2 Phantom post-processing using RMDP 

The attenuation image created by XCAT is produced by mono-energy (140 keV) photons, 

which is converted to for display by 𝜇 × 1000  numerically, where 𝜇  is the attenuation 

coefficient in 𝑐𝑚−1. Even though the attenuation image is produced based on mono-energy X-

rays, RMDP takes the narrow beam (mono-energy) X-ray and turns them into a realistic 

distribution. Weighted x-ray spectrum sampling at 16 locations (16-140 keV) allows for Beam 

Hardening and realistic Hounsfield Unit calculation [28]. Fanbeam geometry is included to 

simulate truncation artefacts present in the data [29]. Furthermore, as the synthetic MSCT 

images are noise free, we added some noise to the phantom. It is reported in [30] that the actual 

noise characteristics of CT obeys Poisson distribution, where the rate parameter varies with 

different CT scanners. Therefore, we sampled the background regions of the forthcoming 

MSCT dataset obtained from the same CT scanner and calculated the mean of their greyscales 

as the rate parameter. Here, we practically set the Poisson distribution parameter to be 0.0058.  

In this paper, RMDP is used to post-process the 3D emission and transmission data created by 

XCAT [31]. RMDP is originally developed to handle a high- and multi-energy emitter such as 

I-131, which means that RMDP has sufficient tools to deal with a low-energy mono-energetic 

emitter (e.g. Tc-99m) and a medium energy emitter (e.g. Kr-81). In order to optimize the 

SPECT acquisition parameters, the RMDP combining the XCAT and a fast simulation of the 

GE Infinia II gamma camera detector has been developed and validated experimentally [32]. 

Using this tool, the sensitivity and specificity of Tc-99m Ventilation-Perfusion SPECT versus 

planar scans can be evaluated and the optimal SPECT parameters can be determined. 

Furthermore, multiple spherical ‘defects’ are added interactively to the lung perfusion activity 

distributions, simulating Pulmonary Emboli (PE). The size, severity (partial or complete 

obstruction) and position of each PE are controlled by the user to allow user-control, visual 

feedback, of activity concentrations (kBq/cc) in 42 organs and regions. Initial settings follow 

those given by ICRP 53 [33], allowing for user-specified injection and scan times of perfusion 

and ventilation studies. 
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In our work, two necessary simulations were performed to obtain the activity phantoms for 

synthetic V and Q data. The XCAT parameter files were separately configured by RMDP 

according to user-defined simulated scanning parameters, as listed in Table 1. The activity 

phantom created by the XCAT presents a perfect distribution of activity as the activity is 

uniformly distributed in each organ, as shown in Fig. 3(a) and (b). The synthetic SPECT images 

are reconstructed using Filtered Back-Projection (FBP) with a Hanning filter (cut-off 0.9) and 

displayed in Fig. 3(c) and (d). 

Table 1. User-defined simulated scanning parameters for RMDP. 

 Synthetic V Synthetic Q 

Ventilation activity (MBq) 50 0 

Perfusion activity (MBq) 0 200 

Injection time (min) 0 0 

Scan time (min) 10 10 

No. of projections 120 120 

Seconds per view 100 100 

Camera sensitivity (cps/MBq) 120 120 

 

 

 

 

    
a b c d 

 

Fig. 3. Synthetic data created by XCAT and RMDP. 

(a) Raw activity phantom for synthetic SPECT V.  

(b) Raw activity phantom for synthetic SPECT Q.  

(c) Reconstructed synthetic SPECT V image.  

(d) Reconstructed synthetic SPECT Q image. 
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3.2 Experimental Data Pre-processing 

The experimental data including the real medical data and synthetic images need to be pre-

processed before non-rigid registration. The following three steps are applied to synthetic 

images whilst steps 1 and 3 are implemented on the real medical dataset. 

3.2.1 Segmentation and down-sampling 

In order to enhance the performance of image registration, it is necessary to segment the ROI 

initially. Furthermore, the segmented MSCT scans need to be down-sampled to the same 

resolution (128 × 128 × 128) as the SPECT scans. The boundaries of lungs in SPECT imaging 

are very blurred. However, the properties of V and Q imaging make the minority of active 

organs visible (e.g. kidney and trachea in SPECT V and liver in SPECT Q, as shown in Fig. 

3(c) and (d)), which greatly decreases the difficulty of segmentation. 

3.2.2 Artificial defects 

The SPECT V and Q of a patient with moderate COPD may demonstrate photopenic regions, 

corresponding to reduced activity, and hence lower ventilation or perfusion, at the location of 

lesion, as shown in Fig 4(a) and (b). These abnormal SPECT images increase the challenge of 

alignment. In order to effectively validate the performance of various methods in Section 5, we 

employ RMDP to interactively add defects into generated phantoms. The synthetic abnormal 

SPECT V and Q are depicted in Fig. 4(c) and (d).  

 

    
a b c d 

 

Fig. 4. Abnormal SPECT V and Q images. The yellow contours present the boundaries of lungs. The 

photopenic region (pointed by blue arrow) indicates the location of defects. 

(a) Abnormal SPECT V image from a moderate COPD patient.  

(b) Abnormal SPECT Q image from a moderate COPD patient.  

(c) Abnormal SPECT V image synthesized by XCAT phantom.  

(d) Abnormal SPECT Q image synthesized by XCAT phantom.  
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3.2.3 Transform to reference domain 

As stated in Section 2.1, the training process starts with the similarity registration for prior 

shapes. The SDM is trained based on the deformations obtained by non-rigid registration from 

registered shapes to the target shape. Therefore, the SDM can only be applied to the coordinate 

system, in which the unknown images are aligned to the target shape under similarity 

registration. The coordinate system associated with the target shape is referred to as the 

reference domain here. In other words, before any SDM-based registration, unknown target and 

source images, namely the testing images here, are required to be transformed to the reference 

domain [18]. The transformation parameters can be computed by the similarity registration 

from any testing image to the target prior shape. 

4. Implementation Issues 

In order to obtain improved results and accelerate convergence, the multi-resolution technique 

is employed here. The three resolutions applied here are 32 × 32 × 32, 64 × 64 × 64 and 

128 × 128 × 128. The deformations obtained from the lower resolution were up-scaled by 

cubic-spline interpolation and then regarded as the initial deformations for higher-resolution 

computation. Moreover, it is advised to reduce MSCT and SPECT imaging difference in terms 

of histogram by histogram matching.  

In order to compare the results of our proposed method with those of the similar state-of-the-

art algorithms in the literature, the method in [17] is referred here and named as Ref method for 

convenience. The main framework of the Ref method is described to (1), where 𝐷(𝒖)  is 

evaluated by SSD and inverse MI for single- and multi-modality registration measurements 

respectively. Compared with our method proposed here, Ref method considers prior knowledge 

as an additional independent term in the cost function, which requires further investigation and 

manual adjustment for the weighting parameter 𝛽. The shortcomings of parameter increment 

have been reported in Section 1.3. In contrast, the prior term 𝑆(𝝀) is defined as the variable of 

𝐷(𝑆(𝝀)) and 𝑅(𝑆(𝝀)) in our proposed work, which simplifies the calculation and also leads to 

a reasonable and competitive result.  
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For Ref method, since the optimal weighting parameter 𝛽 varies across different scenarios, the 

optimal value is fairly investigated and set for the following experiments. In addition, the 

parameter 𝛼 always presents in both Ref and our proposed methods to balance two terms. The 

optimal 𝛼 slightly vary with different data and a desired balance contributes to high registration 

accuracy. With respective to 𝛼, a large value gives rise to less flexibility whilst a small value 

leads to weak regularized ability.  Here, it is empirically assigned the same value (i.e. 0.5) for 

a fair comparison. 

5. Experimental Results and Discussions 

Here, we employ 21 out of 32 lung shapes to establish SDM whereas the number of 

eigenvectors used for SDM is determined by a ratio of the sum of first 𝐾 largest eigenvalues to 

the sum of all the eigenvalues. Provided that the cumulative ratio reaches up to 0.9-0.98, 𝐾 can 

be regarded as the number of dominant eigenvectors (NoE) for SDM [34]. In our dataset, since 

the cumulative ratios of five eigenvalues along three directions are all above 0.98, it is 

demonstrated that five or more eigenvectors are adequate to model the deformable field. 

5.1 Single-modality Registration Using Lung Shapes  

The experiments are performed over 11 test subjects using a leave-one-out strategy. Before 

registration, one subject is chosen as the target, from which one of the lobes is manually 

removed (i.e. the right lower lobe of the target lung shape is removed, as shown in Fig. 5). Each 

of the remaining 10 source lung shapes is aligned to the defective target shape using Ref and 

the method proposed here. 

In order to conduct numerical comparisons, the removed lobe is added back to the target lung 

shape in the subsequent evaluation. NIP, computed by using (35), is used here to measure 

alignment accuracy. The results with respect to the average NIPs for 11 groups are listed in 

Table 2. It can be observed that the accuracy achieved by the method proposed here is always 

higher than that of the Ref method, which demonstrates that our parameter-reduced method 
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manages to reasonably maintain the lung shape during non-rigid alignment and then obtain 

superior performance. 

 

 

Fig. 5. The right lower lobe (highlighted in red) is removed from the target lung shape (colored in yellow) 

to create a synthetic defective lung shape (shown on the right-hand side).  

 

 

 

Table 2. Average NIP for 11 test groups. 

 
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11 

Ref 0.82 0.82 0.79 0.79 0.81 0.82 0.80 0.80 0.84 0.84 0.83 

Proposed 0.86 0.85 0.85 0.83 0.85 0.85 0.85 0.83 0.88 0.86 0.86 

 

 

Here, we also present three image examples to visually evaluate their accuracies in Fig. 6. The 

background image is depicted by signed distance function for visual convenience. The 

photopenic region at the bottom of the right lung indicates the manually removed lobe, which 

easily causes over-deformation by large gradient. The ref method intends to avoid over-

deformation by increasing the value of optimal 𝛽, which sacrifices the flexibility in deformation 

and leads to fast convergence. In contrast, the framework proposed in our paper not only 

maintains a reasonable lung shape but also achieves higher accuracy in non-rigid registration. 
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a b 

  
c d 

  
e f 

 

Fig. 6. Registration results for the Ref method (left column) and our method (right column). Blue 

contours indicate the ground-truth contours of the lung shape (target shape: subject 1). Blue arrows 

indicate the deformable field in non-rigid registration. Yellow and red contours represent the contours of 

the lung shape before and after registration respectively. (a,b) Source shape: Subject 2. (c,d) Source shape: 

Subject 4. (e,f) Source shape: Subject 8. 

 



 

21 

 

5.2 Multi-modality Registration Using Medical Imaging Data  

In our medical dataset, MSCT scans, a pair of SPECT (V and Q) scans and low-dose CT scans 

are available for each subject. The low-dose CT scans and SPECT images for each patient were 

sequentially acquired by the same equipment on the same visit, where patients were instructed 

to remain still during the scan. In this study, we have therefore assumed that low-dose CT lung 

masks segmented manually by clinical experts are an approximate for the ground-truth masks 

of the corresponding SPECT V and Q images. The ground-truth lung mask of MSCT is 

segmented by Apollo (Vida Diagnostics Inc, Iowa, USA). 

In the following experiments, each test subject’s V/Q is set as the target, to which the 11 down-

sampled MSCT scans register individually (i.e. MSCT-V, MSCT-Q, namely single-channel 

registration) and simultaneously (i.e. MSCT-V&Q, namely multi-channel technique). The 

experiments are divided in two groups: intra-patient registration (for clinical purpose) and inter-

subject registration (for validation purpose, namely cross-validation), as shown in Fig. 7. The 

total number for V-MSCT, Q-MSCT and V&Q-MSCT alignment experiments is 363. 

 

a 

 

b 

 

Fig. 7. Experimental design with medical imaging data. (a) Diagram of intra-patient registration. (b) 

Diagram of inter-subject registration using Subject 1 as an example.  
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Apart from the Ref method and our method proposed here, NiftyReg presented in [35] is also 

used for comparison. Compared with our method, NiftyReg does not use any prior knowledge, 

with a cost function denoted in (29). In single-channel experiments, NiftyReg is properly 

configured to achieve the best performance. Nevertheless, since NiftyReg cannot perform 

multi-channel registration, it is not applied to multi-channel simulation. 

The intra-patient and inter-subject registration results measured by NIP and average NIP 

respectively are displayed in Fig. 8. The average NIP is calculated using the NIPs obtained from 

the experiments with the same target image. In terms of intra-patient registration, since the 

SDM is employed to constrain the excessive deformation, the Ref and our method apparently 

outperform NiftyReg in single-channel experiments. Compared with the Ref method, the 

algorithm proposed here achieves improved accuracy in both single-channel and multi-channel 

experiments. In terms of the cross-validation, due to a relatively large difference between the 

target and source images, the performances of two learning-based methods slightly decrease 

under the influence of the regularized deformation. Nevertheless, the outstanding average NIPs 

are still obtained by the method proposed here. It is demonstrated that our method manages not 

only to constrain the excessive deformation but also to provide a desired registration solution. 

For a moderate COPD patient, a defective region in the lung imaging is inevitably regarded as 

background by a non-learning method such as NiftyReg, followed by excessive deformations 

in non-rigid registration. A typical intra-patient registration example in coronal view using 

single-channel (MSCT-Q) method is presented in Fig. 9(a), (c) and (e). The Ref and our 

methods manage to constrain the deformations and achieve relatively reasonable results. 

However, as argued in Section 1.3, the Ref method tends to penalize any displacement, and 

thereby sacrifices flexibility. The drawbacks are illustrated by quivers in Fig. 9(c). Certain 

horizontal displacements in the middle part of the right lung can be detected, whereas lesser 

deformations are expected since the target and source images at this location were almost 

aligned in their initial poses.  
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c d 

  
e f 

Fig. 8. Registration results are evaluated by NIP (left column) and average NIP (right column). (a,c) 

Single-channel intra-patient registration results. (b,d) Single-channel inter-subject registration results. 

(e,f) Multi-channel registration results. 
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a b 

  
c d 

  
e f 

Fig. 9. Single-channel registration results for the NiftyReg (Row 1), Ref (Row 2) and proposed (Row 3) 

methods with accuracies 0.805, 0.818 and 0.835 against the initial 0.810. Blue contours indicate the 

ground-truth boundaries of the lung region in the SPECT scan (target). Blue arrows indicate the 

deformable field in non-rigid registration. (a,c,e) Coronal view: yellow and red contours represent the 

boundaries of the lung region in an MSCT scan (source) before and after deformation respectively. (b,d,f) 

Sagittal view: yellow and red contours represent the boundaries of the lung region before deformation 

and the lung lobes after deformation respectively.  
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The deformations are then used to map the lobes segmented from the MSCT scans onto the 

SPECT imaging. The fusion results are depicted in Fig. 9(b), (d) and (f) for NiftyReg, Ref and 

our method respectively. Through visual inspection, it is straightforward to observe the 

excessive deformation caused by NiftyReg and the unreasonable displacement caused by the 

Ref method. The advantages of the method proposed here are once again demonstrated by lobar 

lung fusion. 

The numerical results for all tests are summarized by the average NIPs and standard deviations 

in  

Table 3. Compared with Ref, the method proposed here provides more flexibility in non-rigid 

registration, which contributes to the improvement of cross-validation accuracy by up to 4.1% 

and 1.9%  for the single-channel and multi-channel techniques. Due to the more rigorous 

threshold to constrain the displacement, the alignment stability of our multi-channel method is 

enhanced by up to 28%. What is more important is that the multi-channel techniques using Ref 

and our algorithms are able to obtain improved alignment accuracies in comparison with either 

V/CT or Q/CT single-channel registration. 

 

Table 3. The average NIP of single-channel and multi-channel registration obtained by different 

methods are presented as mean±standard deviation. 

  NiftyReg Ref Proposed 

Intra-patient 

V/CT 0.809±0.024 0.839±0.027 0.862±0.020 

Q/CT 0.781±0.031 0.839±0.027 0.868±0.019 

V&Q/CT N/A 0.857±0.023 0.870±0.023 

Cross-

validation 

V/CT 0.806±0.022 0.809±0.050 0.835±0.035 

Q/CT 0.762±0.029 0.807±0.054 0.840±0.033 

V&Q/CT N/A 0.825±0.047 0.841±0.034 
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5.3 Multi-modality Registration Using Synthetic Data  

As stated in Section 3.1.1, eight-frame phantoms are sampled in one breathing cycle. The 

MSCT (source image) at the first frame is intended to register the SPECT V and Q (target 

images) at each remaining frame by a multi-channel technique. In order to generate synthetic 

data challenging for registration algorithms, three scenarios are considered here separately. The 

three scenarios are arranged as: 

Scenario1: normal SPECT V and abnormal Q, 

Scenario 2: abnormal SPECT V and normal Q, 

Scenario 3: abnormal SPECT V and abnormal Q.  

We conduct seven aligning experiments for each scenario and evaluate the results with MDE 

and NIP. In this section, Ref and the method proposed here are compared in terms of registration 

accuracy and stability. Three scenarios are illustrated in Fig. 10 with multi-channel registration 

results for visual inspection. Here, we use two synthetic SPECT images together at frame 3 as 

a target. In order to present them simultaneously, we fuse the images from two channels in 

Fig.10 by scaling the greyscale of the sum of two images to [0,1]. This channel fusion is for 

illustration purposes only. Our method demonstrates to be closer to the ground-truth and 

capable of avoiding over-deformation in the scenario with defects. 

The averages of MDE and NIP listed in Fig. 11 numerically demonstrate the superior 

registration performance achieved by the method proposed here in the three experimental 

scenarios as it obtains lower MDE and higher NIP. In terms of MDE, our algorithm decreases 

the average errors by up to 21%, 18% and 15% for scenarios 1, 2 and 3 respectively. The 

standard deviation of NIP demonstrates that the registration stability is improved by up to 39% 

and 54% for scenarios 1 and 3. With the increase of the NoE, the registration stability of our 

method improves accordingly, which is demonstrated by lower standard deviations of MDE 

and NIP. In contrast, the improved stability is rarely achieved by Ref method as this algorithm 

fails to provide an explicit boundary for deformations. The experimental results reveal the flaws 

in previous algorithms that the weighting parameter can neither provide a desirable flexibility 

nor contribute to boundary-finding during non-rigid registration. 
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Fig. 10. Multi-channel registration results for the Ref method (left column) and our method (right 

column). Blue contours indicate the ground-truth boundaries of the lung region in the SPECT scan 

(target). Blue arrows indicate the deformable field in non-rigid registration. Yellow and red contours 

represent the boundaries of the lung region in an MSCT scan (source) before and after deformation 

respectively. For the purpose of illustrations, two target channels are fused as background in each sub-

figure. (a,b) Scenario 1: normal SPECT V and abnormal Q. (c,d) Scenario 2: abnormal SPECT V and 

normal Q. (e,f) Scenario 3: abnormal SPECT V and abnormal Q. 



 

28 

 

 

Fig. 11. Two algorithms with different NoEs are applied to three experimental scenarios. The registration 

results are evaluated with MDE and NIP. 

 

 

In addition, the experimental results with respect to seven different target patterns (sampled at 

Frame 2 to 8) are depicted in Fig. 12. As illustrated in Fig.2, the volumes of lungs at Frame 2 

and 8 are the most similar to that at Frame 1 whilst lungs have the largest deformations at Frame 

5. According to the MDE results shown in Fig. 12, it is straightforward to notice that our method 

proposed here manages to slightly enhance the performance in experiment 1, 2, 6, 7 whereas it 

greatly outperforms Ref method in experiment 4 and 5 (NoE=15 and 10). As the clinical SPECT 

imaging is acquired by tidal breathing, the actual MSCT/SPECT registration is more likely to 

resemble experiment 4 or 5. Therefore, the high performance of our method on large-

deformation alignment indicates desirable results in practical application. Also, the NIP results 

demonstrate that our method outperforms Ref method in all registration cases.   
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Fig. 12. (a,c,e) Registration results evaluated with MDE for different NoEs. (b,d,f) Registration results 

evaluated with NIP for different NoEs. The results are the average of three experimental scenarios. 

 

6. Conclusions and Future Work 

In this paper, a novel non-rigid registration method is proposed for lung MSCT/SPECT imaging 

alignment. Our method concentrates on the lung region and conducts direct registration through 

two MSCT/SPECT channels simultaneously. Furthermore, we also propose a novel parameter-

reduced cost function, which addresses the concerns of investigating the optimal weighting 

parameter for statistical term and therefore provides more flexible displacement and solid 

boundary. The real lung dataset is employed here to train SDM and conduct experiments to 

evaluate the performance of multi-modality image fusion. The XCAT and RMDP are used to 

generate the synthetic imaging data and the ground-truth VD for further validation.  
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The method proposed here and two widely-used non-rigid registration methods are compared 

here by real medical imaging data and synthetic phantoms. The numerical results evaluated by 

NIP and MDE metrics demonstrate that the multi-channel method is able to improve 

registration accuracy and stability in comparison with single-channel framework as it can take 

more relevant information into consideration. Moreover, our proposed parameter-reduced cost 

function is validated to be capable of preventing the excessive deformation in the registration 

involved in defective imaging and able to outperform other similar learning or non-learning-

based methods in terms of registration accuracy and stability. The fusion of lung lobes onto 

SPECT imaging is achievable by accurate MSCT/SPECT alignment. 

In future research, with more intra-patient imaging data incorporated for SDM, the higher 

aligning performance can be achieved. Furthermore, the image fusion achieved here can be 

used to perform lobar lung activity analysis which enables the precise identification of the lung 

regions that are optimal targets for lung resection surgery. 
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Appendix A 

The derivative of 𝐸𝑀𝐼 with respect to 𝒖 is calculated as 

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= − ∬

𝜕

𝜕𝒖
(𝑝(𝑎, 𝑏) 𝑙𝑜𝑔

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) 𝑑𝑎 𝑑𝑏 (A-1) 

As 𝑝(𝑎) is independent of 𝒖, whereas 𝑝(𝑎, 𝑏) and 𝑝(𝑏) are dependent on the deformations 

during registration, (A-1) can be written as:  

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= − ∬ (

𝜕𝑝(𝑎,𝑏)

𝜕𝒖
(1 + 𝑙𝑜𝑔

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) −

𝑝(𝑎,𝑏)

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝒖
) 𝑑𝑎 𝑑𝑏 (A-2) 

Since 

 ∬ (
𝑝(𝑎,𝑏)

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝒖
) 𝑑𝑎 𝑑𝑏 = ∫

∫ 𝑝(𝑎,𝑏)𝑑𝑎

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝒖
𝑑𝑏 =

𝜕 ∫ 𝑝(𝑏)𝑑𝑏

𝜕𝒖
= 0 (A-3) 

(A-2) can be simplified as, 

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= − ∬

𝜕𝑝(𝑎,𝑏)

𝜕𝒖
∙ (1 + 𝑙𝑜𝑔

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) 𝑑𝑎 𝑑𝑏 (A-4) 

which is the same as (23). 
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