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a b s t r a c t 

Background and objective: Performing patient-specific, pre-operative cochlea CT-based measurements 

could be helpful to positively affect the outcome of cochlear surgery in terms of intracochlear trauma 

and loss of residual hearing. Therefore, we propose a method to automatically segment and measure the 

human cochlea in clinical ultra-high-resolution (UHR) CT images, and investigate differences in cochlea 

size for personalized implant planning. 

Methods: 123 temporal bone CT scans were acquired with two UHR-CT scanners, and used to develop 

and validate a deep learning-based system for automated cochlea segmentation and measurement. The 

segmentation algorithm is composed of two major steps (detection and pixel-wise classification) in cas- 

cade, and aims at combining the results of a multi-scale computer-aided detection scheme with a U- 

Net-like architecture for pixelwise classification. The segmentation results were used as an input to the 

measurement algorithm, which provides automatic cochlear measurements (volume, basal diameter, and 

cochlear duct length (CDL)) through the combined use of convolutional neural networks and thinning al- 

gorithms. Automatic segmentation was validated against manual annotation, by the means of Dice simi- 

larity, Boundary-F1 (BF) score, and maximum and average Hausdorff distances, while measurement errors 

were calculated between the automatic results and the corresponding manually obtained ground truth on 

a per-patient basis. Finally, the developed system was used to investigate the differences in cochlea size 

within our patient cohort, to relate the measurement errors to the actual variation in cochlear size across 

different patients. 

Results: Automatic segmentation resulted in a Dice of 0.90 ± 0.03, BF score of 0.95 ± 0.03, and maximum 

and average Hausdorff distance of 3.05 ± 0.39 and 0.32 ± 0.07 against manual annotation. Automatic 

cochlear measurements resulted in errors of 8.4% (volume), 5.5% (CDL), 7.8% (basal diameter). The cochlea 

size varied broadly, ranging between 0.10 and 0.28 ml (volume), 1.3 and 2.5 mm (basal diameter), and 

27.7 and 40.1 mm (CDL). 

Conclusions: The proposed algorithm could successfully segment and analyze the cochlea on UHR-CT im- 

ages, resulting in accurate measurements of cochlear anatomy. Given the wide variation in cochlear size 

found in our patient cohort, it may find application as a pre-operative tool in cochlear implant surgery, 

potentially helping elaborate personalized treatment strategies based on patient-specific, image-based 

anatomical measurements. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

A cochlear implant (CI) is a surgically implanted electronic de-

ice that provides a sense of sound to a patient with severe to

rofound hearing loss. To date, large variability exists in preserva-
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tion of residual hearing and speech understanding abilities after

cochlear implantation [1–2] . Among other factors, a major cause

of residual hearing loss (RHL) is traumatic electrode insertion [3] .

The potential occurrence of intracochlear trauma during electrode

insertion may be related to the fact that most current electrodes

are chosen and inserted independently from each specific patient’s

inner ear anatomy [4] . Since, currently, electrodes have a fixed size

and a standard insertion length, patients with smaller cochlea may

be at higher risk of trauma and, potentially, of a larger RHL. 

If accurate image-based segmentation and measurements of the

cochlea could be performed pre-operatively, this could potentially

allow for the adaptation of size, shape and depth of insertion of

the CI electrode to each single patient, possibly improving the sur-

gical outcome by reducing risk of intracochlear trauma and RHL. 

In medical images, simple measurements of regular anatomical

parts are usually performed manually. However, for highly complex

and irregular structures (such as the human cochlea), dedicated

computerized methods are needed to first segment the structure of

interest, and then provide automatic measurements which would

otherwise be challenging (if not impossible) to perform by human

readers. 

To address the goal of segmenting and measuring the human

cochlea, previous studies proposed semiautomatic segmentation

methods [5] that require a high degree of human interaction to

separate the cochlea from the connected internal auditory canal

and vestibular structures. Other studies aimed at using segmen-

tation frameworks based on anatomical information of the inner

ear, obtained a priori using mathematical modeling or some high-

resolution, high-dose cadaver scans [6–11] . 

These previously developed methods reported high segmenta-

tion performance, thanks to their considerable computational and

mathematical complexity. However, most methods were developed

based on micro-CT scans of a few cadaveric human cochleae, which

were used as constraints and as a priori information to guide the

segmentation model. The extrapolation of information from small

datasets could potentially limit the application of such methods in

the clinical realm, and potentially account for limited inter-patient

variability and validation. 

With the advancements in medical imaging technology and

analysis algorithms, new solutions can be investigated, thanks both

to the improved spatial resolution of the most recently developed

CT scanners, and by replacing traditional model-based segmenta-

tion with new deep learning approaches. 

From the imaging side, advances in computed tomography tech-

nology have been proposed over the past few years, with wider

detectors being introduced [12] , novel electronics with lower noise

being designed [13] and, more recently, smaller detector elements

being developed [14] . In this respect, ultra-high-resolution (UHR)

CT (Aquilion Proteus and Precision, Canon Medical Systems Cor-

poration) was brought to market, with a detector element size of

0.25 mm at isocenter, and with an MTF twice as high as that of

current-generation multi-detector CT systems [15] . 

From the image analysis perspective, deep learning has be-

come one of the major methodologies used for analyzing medical

images, including image segmentation. When a sufficiently large

training set is available, deep learning demonstrated high perfor-

mance in the segmentation of structures with large inter-patient

anatomical variability [16–17] , with limited programming effort,

given the ability of learning the segmentation task directly and au-

tomatically from the images, i.e. without user-selectable parame-

ters to be tuned in a testing phase. 

Among deep learning algorithms, convolutional neural net-

works (CNNs) have repeatedly demonstrated their high perfor-

mance in many computer vision tasks [18–23] , often outperform-

ing traditional methods based on deterministic or handcrafted

approaches [24] . However, they carry the drawback of the dataset
ize, which has to be large enough for the network to learn

ufficient patterns in the input images to correctly replicate them

n an independent testing phase [25] . This can be a critical issue in

omographic, high-resolution cochlea imaging, where the dataset

izes are usually limited and, therefore, can potentially limit the

pplication of state-of-the-art Artificial Intelligence techniques. 

To address this issue, in this study we developed and validated

 deep learning system for cochlea segmentation and measure-

ents that takes advantage of both extensive data augmentation,

nd a modular structure that localizes the segmentation task in

mall image regions around the cochlea, allowing to achieve good

erformance using a small training set. After validation, the devel-

ped system was used on clinical ultra-high-resolution (UHR) CT

atient images for cochlear measurement extraction, to investigate

he differences in cochlea size within a large patient cohort and

elate the measurement errors to the actual variation in cochlear

ize across different patients. 

. Materials and methods 

The proposed approach is composed of two main blocks: one

or cochlea segmentation, followed by one for cochlea measure-

ents. The cochlea segmentation block combines a computer-

ided detection system based on multiscale residual CNNs with

n encoder-decoder network for pixel-wise classification. The for-

er aims at localizing the cochlea on the input temporal bone

T scans, to reduce the search space of the subsequent pixel-wise

lassification model, while the latter is aimed at providing auto-

atic cochlea segmentation. The models were trained on 2D image

atches extracted with a sliding-window-based approach from the

ochlea scans of the training set (as explained in Sections 2.C and

.D ), and then applied in a region-based fashion on the full test set

cans (as described in Section 2.E ). After segmentation, the cochlea

easurement block provides automatic measurements from the

egmented cochlea by using a combination of CNNs and morpho-

ogical thinning algorithms. All main steps of the proposed method

re reported in Fig. 1 . 

All steps of the pipeline, along with data collection and prepa-

ation, are described in the following sections. Finally, patient-

ased cochlear size measurements are performed using the pro-

osed approach on all scans of the dataset, and are analyzed to

nvestigate the differences in cochlea size within our patient co-

ort. 

.A. Image acquisition 

123 UHR-CT temporal bone scans were acquired and used

o develop our algorithm. Images were acquired with one of

wo UHR-CT scanners (Aquilion Proteus and Precision, Canon

edical Systems, Otawara, Japan), both composed of a 160

ulti-row detector, with an effective detector element size of

.25 mm × 0.25 mm at the isocenter, 1792 detector channels,

nd a nominal focal spot of 0.4 mm × 0.5 mm (Precision) and

.6 mm × 0.6 mm (Proteus) [26] . For this study, helical acquisi-

ions were acquired using tube voltages of 140 kVp (Precision) and

35 kVp (Proteus), exposure time of 1.5 s, and tube currents of

00 mA (Precision) and 80 mA (Proteus), with a gantry rotation

ime of up to 0.35 s, and a pitch factor 0.569. The CTDI vol was ap-

roximately 31 mGy, measured with a 16 cm phantom (140 kVp,

50 mAs). 

CT scans were performed by a trained radiographer over a

ross-section of the patient head of approximately 4 cm (includ-

ng the whole inner ear anatomy). That is, only a 4 cm-thick cross-

ection of the patient head was imaged (along the craniocaudal di-

ection), so as to reduce the exposure by avoiding to deliver radia-

ion dose in other regions of the patient head. 
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Fig. 1. Main steps of the proposed cochlea segmentation and analysis approach. The input scans are first processed by a detection module to localize the cochlea, and by a 

pixel-wise classification module for segmentation. The detection module aims at reducing the search space of the pixel-wise classification module, serving as pre-processing 

to speed up the algorithm and for false positive reduction. Both modules were trained on an image patch-basis, to increase the training set size by obtaining multiple 

examples from each scan. The segmented cochlear structure then undergoes a final module to extract patient-based anatomical measurements through the combination of 

deep learning and thinning algorithms. Deep learning was adopted in each step for its ability of learning directly from the input data, and provide automatic results without 

user-selectable parameters to be tuned in a testing phase. 

Fig. 2. Example of a temporal bone scan (axial view) showing the cochlear basal turn. Crosshairs are aligned parallel and perpendicular to the long axis of the cochlear basal 

turn. 
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The scans were then reconstructed using filtered back pro-

ection with the reconstruction kernel FC81 (a high-resolution

one kernel) along image planes parallel to the cochlear basal

urn (oblique multi-plane reconstruction), with a matrix size of

024 × 1024 and a slice thickness of 0.25 mm. An example of

he cochlear basal turn in the axial view is shown in Fig. 2 . The

n-plane reconstructed voxel size was 0.045 mm for the Proteus

canner, and 0.05 mm for the Precision scanner. The reconstructed,

n-plane voxel size was set automatically by the system, based on

he reconstruction mode. 
The dataset was collected within a prospective, cross-sectional

tudy conducted between December 2016 and January 2018 at our

nstitution, and approved by the local and regional medical ethics

ommittee Arnhem-Nijmegen (METC; NL510071.091.14). 

All participants of the study (average age: 64 ± 12 years for

ales ( n = 59), and 61 ± 14 years for females ( n = 64)) agreed to

articipate and signed informed consent. Adult patients that had

ndergone CI surgery between January 2010 and July 2016, after

eing diagnosed with post-lingual hearing loss onset (defined as

n onset of severe-to-profound deafness after the age of 5 years),
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were eligible for this study. The inclusion criteria were patients

who could provide written informed consent, and with at least one

year of experience with CI after surgery. Exclusion criteria were (i)

cognitive dysfunction, and (ii) congenital or acquired anomalies of

vestibulo-cochlear system. 

For all patients, the cochlear structure on the image was manu-

ally annotated, and used to develop and validate our algorithms.

Manual annotation was performed slice-by-slice in the recon-

structed images using the ImageJ (LOCI, University of Wisconsin,

NIH) polyline toolbox by a medical image analysis scientist with

3 years of experience in analysis and segmentation of CT images,

under the supervision of a cochlear implant surgeon and a board-

certified head-and-neck radiologist. 

2.B. Data preparation and augmentation 

Of the acquired scans, 40 were used to train our models, 8 for

validation, while the remaining 75 were kept into an independent

test set. Extensive data augmentation was performed on the train-

ing scans, in order to maximize the performance by reducing risk

of overfitting while keeping most scans for final testing. 

Both developed models (detection and pixel-wise classification)

were trained on a patch basis. Patches were collected through a

sliding window approach from each scan (and respective manual

annotation) within a volume of 512 × 512 × 50 voxels (approxi-

mately corresponding to 2.5 × 2.5 × 1.25 cm) including the whole

cochlear anatomy. For each cochlea scan, patches were collected in

two dimensions on a slice-basis. The allowed overlay of contigu-

ous patches was kept high (stride 10 voxels) to increase the dataset

size, and the process was repeated for three different squared win-

dow sizes: 150, 100, and 70 voxel side. This multi-scale patch ex-

traction was performed to capture the image information at dif-

ferent dimensions, approximately spanning from the full length of

the cochlea, to the size of smaller details such as the different

cochlea turns and the cochlear apex. Additional data augmenta-

tion was then performed on all extracted patches through four ro-

tations ( −20 °, −10 °, 10 °, 20 °) and vertical mirroring. These aug-

mentation methods (and their respective parameter values) were

chosen to simulate potential realistic variations in image acquisi-

tion, while avoiding generating training examples that are too dif-

ferent from real cases. In fact, with the imaging protocol adopted,

the cochlea is always imaged at approximately the same in-plane

angular orientation for all patients, justifying the use of a limited

angular range (between −20 ° and 20 °) to generate new, realistic

cases. 

As a result, the number of collected patches was 326,940

(150 × 150 window), 556,600 (100 × 100 window), and 904,120

(70 × 70 window). Some examples are shown in Fig. 3 . 

2.C. Cochlea detection model 

Before segmentation, a detection model was implemented to lo-

calize the cochlear structure within the CT scan. This model out-

puts a probability map of the same size as the input image, with

values close to 1 in those image locations where the cochlea is

more likely to be present. As a detection task, it was trained with

pairs of examples composed by the input image patch, and a dis-

crete label indicating whether that patch contained cochlea voxels

(1) or not (0). A training patch was assigned a label of 1 if at least a

given percentage of the respective manually annotated region was

composed of cochlea voxels. Given that, for a detection task, big-

ger field of views are more sensitive, but less specific, we set these

percentages to 10%, 20%, and 25% for the 150, 100, and 70-voxel

patches, respectively. 

The model is composed of three residual CNNs [27–28] , trained

separately for the three image patch sizes, with blocks of 3 × 3
onvolutional kernels plus batch normalization. The number of fil-

ers increases with the network depth (as shown in Fig. 4 ), and

ropout regularization [29] (probability 0.5) was used before the

ully connected layer for regularization. All the weights of the net-

ork were normally initialized [30] , and biases set to zero. Train-

ng was performed on mini-batches [31] of 64 elements using gra-

ient descent with a momentum of 0.9 and a weight decay of

0 −4 . The starting learning rate was set to 0.01, and decayed expo-

entially every 10 epochs (over a maximum of 60 epochs). During

raining, accuracy was calculated on the validation set to prevent

verfitting, and the loss function used was binary cross-entropy: 

oss = −[ y log ( p ) + ( 1 − y ) log ( 1 − p ) ] (1)

here y is the ground truth label, and p the predicted detection

robability. 

In a testing phase, all image patches are collected from the

T scan using a sliding-window approach (10 voxels stride); the

odel performs the detection task for the three image patches

eparately, and then provides a final probability map by averaging

he three outputs ( Fig. 5 ). This results in a multi-scale probability

ap that evaluates the image information in a high-to-low level

ashion. High-level information is restricted by the two CNNs with

maller patches, allowing to keep the sensitivity high (large patch)

hile devoting the specificity to the CNNs with smaller receptive

elds. 

.D. Cochlea pixel-wise classification model 

A second model was developed for cochlea segmentation

hrough pixel-wise classification. For this, a U-net-like architec-

ure [32–34] composed of an encoder-decoder structure was im-

lemented. This model learns the segmentation task in a super-

ised manner, by performing a pixel-wise mapping between the

riginal image and the manually annotated mask. 

It is composed of an encoder-decoder structure as shown in

ig. 6 ; the encoder part vectorizes the input bidimensional feature

pace via 3 × 3 convolutions and max pooling [35] operations (ker-

el size 2 × 2, stride equal to 2 voxels), while the decoder part

ecovers the information via 2 × 2 nearest-neighbour up-sampling

ollowed by two 3 × 3 convolutional kernels. The outputs of the

onvolutional blocks from the encoding architecture are concate-

ated with each corresponding decoding step, leading to a high

etail preservation of the original input image. In the last layer,

 1 × 1 convolution followed by a sigmoid activation function out-

uts the segmentation result in the form of a pixel-wise probabil-

ty. 

The network was trained on the largest image patches

150 ×150 voxels) using mini-batches of 4 examples and the Adam

adaptive moment estimation) optimization method [36] , an algo-

ithm that adapts the learning rate for each network weight by us-

ng first and second moments of the gradient. The initial learning

ate was set to 10 −3 , with an exponential decay every 10 epochs

over a maximum of 50 epochs). The energy function was com-

uted by a pixel-wise softmax ( Eq. (2) ) over the final feature map

ombined with the cross-entropy loss function ( Eq. (3) ): 

p i ( x ) = 

e x i ∑ 2 
j=1 e 

x j 
(2)

oss = −
2 ∑ 

i =1 

t i log ( p i ( x ) ) (3)

In Eq. (2) , the non-normalized output of the network is mapped

o a probability distribution over the predicted output class, where

he network output is encoded by the activation values x i of each

ixel i , resulting in the pixelwise network prediction p ( x ). 
i 
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Fig. 3. Examples of training image patches for the proposed deep learning system. The patches were extracted through a sliding window approach, with the window size 

varying for three different sizes (150, 100, and 70 voxel side). The patches were extracted on a 2D-basis from each slice of the reconstructed cochlea scan, resulting in 

approximately the same number of patches extracted from each scan. 

Fig. 4. Residual network architecture used for the cochlea detection model. 
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In Eq. (3) , the learning of the network is performed by penal-

zing (i.e. increasing) the loss in case of wrong predictions (com-

ared to the ground truth labels t i ). 

As for the detection model, accuracy during training was calcu-

ated on the validation set to prevent overfitting. 

.E. Main algorithm for cochlea segmentation 

The whole algorithm for cochlea detection and segmentation

 Fig. 7. a) combines the two previously described models (detection

nd pixel-wise classification). 

The algorithm requires a single starting seed point to be de-

ned at any location within the part of the image occupied by

he cochlear volume. Given that the cochlea (or part of it) is al-

ays located approximately in the central area of each scan, this

oint was selected as the central pixel of each image. After this

nitialization, a square window (150 × 150 voxels) is generated

round the seed, and processed by the detection model. A prob-

bility score is assigned to the window, with a probability higher

han 0.5 associated with a positively predicted outcome. Then, an

-connected macro-region is grown starting from the seed point,

ith the macro-region containing 8 squared regions obtained by

adially translating the first window along 8 different directions

0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °), with a stride of 10 vox-

ls. Translations of 45 °, 135 °, 225 °, 315 ° were obtained by moving

he region of interest by ±10 voxels in each direction in the (x,y)

lane. These regions, translated diagonally, in addition to those
ranslated by 0 °, 90 °, 180 °, and 270 °, were included to increase the

lgorithm sensitivity in this first step. 

Each region is processed by the detection model, and the out-

ut probability of overlaying region parts is averaged. The process

s iterated from each new positively predicted region, resulting in

he macro-region to grow and cover the whole cochlear structure,

nd stops when no further areas fulfilling the detection criterion

probability ≥0.5) are found. The process is repeated for contigu-

us slices (always starting from the same seed point location) until

ositive regions are found, resulting in a 3D local probability map

hich displays the probability of voxels being cochlea. 

The same process is then applied for the other two window

izes (100 and 70 voxels side), and a final map is generated by

veraging the three outputs. 

After this step, the pixel-wise classification model is applied in

he same manner as for the detection model (for partially overlay-

ng regions, logical or operation is applied), and the result is then

ultiplied on a voxel-by-voxel level with the final probability map

erived from the detection model. Voxels are then rounded to ob-

ain the final segmentation. 

.F. Algorithm for automatic cochlea measurements 

After segmentation, the extracted cochlear structure undergoes

n automatic analysis ( Fig. 7. b) to compute three different mea-

urements: volume, cochlear duct length (CDL), and basal diameter

f the cochlear basal turn. Cochlear volume is automatically mea-
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Fig. 5. (top) Schematic representation of the detection algorithm, which outputs a final probability map by averaging the results of the three CNNs (window size 150, 100, 

and 70 voxel side, stride equal to 10 voxels); (bottom) two examples of automatic cochlea detection showing all generated probability maps (b, g: 150 × 150 window; c, h: 

100 × 100 window; d, i: 70 × 70 window; e, j: final map). The two examples show how the cochlea detection task can benefit from the proposed multi-scale approach. 

Especially, the second example shows how false positives (i.e. the connected auditory canal incorrectly detected by the 70 voxel-side CNN, panel (i)) are reduced and 

corrected in the final probability mask (panel (j)). 

Fig. 6. Encoder-decoder network used in the pixel-wise classification model. 
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Fig. 7. Schemes for the (a) segmentation and (b) analysis algorithm. 

s  

s  

e  

t  

l  

b  

t  

a  

a  

e  

p  

p  

e  

r  

T  

o  

a  

s  

w  

a

2

 

s  

m  

 

 

 

 

 

 

 

 

 

u  

f  

t  

m

 

a  

t

ured by counting the number of cochlea voxels identified by the

egmentation. The CDL was calculated from a previously proposed

quation, which reliably estimates the distance from the middle of

he round window to the helicotrema starting from the cochlear

ength [37] , obtained as the longest dimension of the 3D bounding

ox enclosing the segmented cochlea. To automatically measure

he basal diameter, the centerline was extracted from the 2D im-

ge slice containing the largest amount of cochlea voxels through

 well-established iterative thinning algorithm [38] , and the diam-

ter was calculated as twice the distance between the basal end-

oint of the centerline and the outer cochlear wall. The basal end-

oint was automatically identified and distinguished from the apex

ndpoint through an additional CNN, which was simply trained to

ecognize the inner ear laterality given an input CT image slice.

he CNN has the same architecture and hyperparameters as the

nes used for the detection model, and was trained on 1163 ex-

mples (427 left, 536 right cochleae), where each example was a

ingle CT slice displaying the full inner ear anatomy. The network

as then tested on an additional 200 slices (100 left, 100 right)

nd achieved 100% accuracy. 

.G. Algorithm performance evaluation 

The proposed pipeline was tested on 75 cochlea scans. The re-

ults of automatic cochlea segmentation were compared with the

anually annotated scans using the four following metrics [39–41] .

• Dice similarity, which measures the intersection between the

two samples A and B over their union, ranging between 0 (no
overlap) and 1 (perfect overlap) 

Dice = 

2 · | A ∩ B | 
| A | + | B | (4) 

• Boundary F1 (BF) score: defined as the harmonic mean of the

precision (P) and sensitivity (S), it measures how close the

boundary of the segmented object matches the ground truth

contour 

BF score = 2 · P · S 

P + S 
(5) 

• Hausdorff distance, which calculates the highest distance (d)

between the contours of the two compared samples (the lower

is the value, the better is the segmentation result) 

HD = max 

{
ma x a ∈ A mi n b∈ B [ d ( a, b ) ] , 
ma x b∈ B mi n a ∈ A [ d ( a, b ) ] 

}
(6) 

• Averaged Hausdorff distance, which replaces the maximum op- 

erator in previous equation by averaging all distances, resulting

in a more robust metric less sensitive to outliers. 

For the automatic cochlea measurements, basal diameter, vol-

me, and CDL were validated against the same measurements per-

ormed on the manually annotated ground truth scans. All ground

ruth measurements were compared with the automatic measure-

ents on a per patient basis. 

After validation, automatic measurements were extracted from

ll patient scans, to investigate the differences in cochlea size in

he full cohort. 
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Fig. 8. Examples of original cochlea image slices (a-f, m-r), and respective segmentation results (g-l, s-x). The algorithm could correctly avoid the other structures connected 

to the cochlea, especially the vestibular system (t) and the external auditory canal (s, t, u). Images in panels (a), (c)–(f), (r) were acquired with the Precision UHR-CT scanner, 

while images in panels (b), (m)–(q) were acquired by the Proteus UHR-CT scanner. 

Table 1 

Results of automatic cochlea segmentation, compared to ground truth manual annotation. 

Dice BF-Score Max Hausdorff Distance (voxel) Average Hausdorff Distance (voxel) 

Mean 0.90 0.95 3.05 0.32 

Maximum 0.99 0.99 4.03 0.52 

Minimum 0.87 0.92 1.62 0.11 

Median 0.89 0.94 3.10 0.33 

Standard deviation 0.03 0.02 0.39 0.07 

Table 2 

Errors between automatic and manual cochlear measurements. 

Volume Error [ml] Basal Diameter Error [mm] CDL Error [mm] 

Mean 0.013 0.134 1.693 

Maximum 0.036 0.429 4.182 

Minimum 0.0004 0 0.007 

Median 0.011 0.115 1.657 

Standard deviation 0.008 0.100 1.130 
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3. Results 

Some examples of automatic segmentation are reported in

Fig. 8 . 

The testing of the segmentation algorithm ( Table 1 ) against the

manually annotated ground truth resulted in a Dice of 0.90 ± 0.03,

BF score of 0.95 ± 0.03, Hausdorff distance of 3.05 ± 0.39 voxels,

and averaged Hausdorff distance of 0.32 ± 0.07 voxels. 

Automatic measurements ( Table 2 ) resulted in absolute errors

of 0.01 ml ± 0.008 ml (8.4%, volume), 1.69 mm ± 1.1 mm (5.5%,

CDL), and 0.13 mm ± 0.10 mm (7.8%, basal diameter). 

c

The size of the cochlea varied broadly among the patients in

ur dataset, ranging between 0.10 and 0.28 ml (volume), 1.3 and

.5 mm (basal diameter), and 27.7 and 40.1 mm (CDL) ( Fig. 9 and

able 3 ). 

. Discussion 

In this study, a deep learning-based system capable of segment-

ng and measuring the human cochlea on UHR-CT images was de-

eloped and validated, and used to investigate the differences in

ochlea size in a large patient cohort. 
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Fig. 9. (a) Scheme of the extracted cochlear size measurements; (b)–(d) Histograms of the cochlear measurements for the evaluated patient cohort. 

Table 3 

Mean, maximum, minimum, median and standard deviation values for the cochlea measurements, 

for all patients in our cohort. 

Volume [ml] Basal Diameter [mm] Cochlear Duct Length [mm] 

Mean 0.165 1.879 33.519 

Maximum 0.280 2.531 40.127 

Minimum 0.100 1.299 27.727 

Median 0.161 1.877 33.620 

Standard deviation 0.031 0.184 1.805 

Mean 

Male ( n = 59) 0.171 ± 0.031 1.912 ± 0.184 33.815 ± 1.884 

Female ( n = 64) 0.161 ± 0.030 1.849 ± 0.181 33.246 ± 1.697 
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The proposed system resulted in accurate cochlea segmentation

nd measurements, thanks to an extensive training data augmen-

ation and the combination of different deep learning techniques. 

The region-based, modular approach presented in this work

chieved high performance by overcoming the issue of a lim-

ted dataset size (due to UHR-CT being made available in clinics

nly very recently). In fact, as opposed to full image-based ap-

roaches (that usually require much larger training sets), working

n a multi-scale patch basis allowed to obtain a massive dataset

rom few scans, helping avoid the common issues related to deep

earning and dataset size (such as overfitting and class imbalance)

nd leave the majority of the images for independent testing. 

Incorporating a detection model before the encoder-decoder

etwork allowed to reduce the search space of the segmentation

etwork, decreasing the risk of false positives (examples shown in

ig. 5 ) and the computational time (about 10 min for segment-

ng and analyzing a full cochlea on a 2.7 GHz CPU, 8GB RAM

orkstation). Furthermore, the multi-scale approach for cochlea

etection helped keep the specificity high, by localizing the seg-

entation only around cochlea regions, and therefore by avoid-

ng anatomical parts which may be fully connected to the cochlea

nd that present the same intensity, such as the internal auditory

anal, blood vessels or the vestibular system ( Fig. 8 ), without los-

ng in sensitivity thanks to the averaging process of different win-

ow sizes. Finally, restricting the segmentation only around regions

howing the object of interest helped reduce the feature space

rocessed by the subsequently applied U-Net, making the training
rocess of the pixel-wise classification model easier and less prone

o overfitting as opposed to working on a full image-basis. 

The segmentation algorithm resulted in an average error of 10%

Dice), and the automatic measurements resulted in the highest er-

or for the volume measurement (8%). Although these errors could

imit the accuracy of our methods when measuring the human

ochlea, their impact is implicitly lowered by the large variability

n cochlea size across different patients highlighted by our results.

his strengthens the reliability of the proposed approach in detect-

ng the differences in cochlea size among different patients, hold-

ng the potential of being incorporated, in future and after addi-

ional extensive validation, into the cochlear imaging pipeline as a

ecision-making tool for cochlear implant surgery. 

The main limitation of the proposed methods is the difficulty

o objectively validate the measurements extracted from the seg-

ented cochlea. For all comparisons, we considered manual an-

otation and measurements as the ground truth, due to the spar-

ity (or unavailability) of other validation methods. A more accu-

ate approach could be performed using measurements with high-

esolution, high-dose micro-CT scans acquired from cadavers, and

omparing these results with the ones extracted from the same

ochlea acquired in a clinical setting. However, a limited number

f cadaver images is available, which would limit the validation

rocess to too few cases. Furthermore, it would still be a com-

letely image-based validation process, therefore potentially biased

y specific image characteristics. This could be solved if the mea-

urements were physically performed on cochlea samples, but this
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approach carries the additional limitations of a very low number

of available specimens, along with the difficulty to accurately drill

the surrounding temporal bone for sample preparation. 

Prior to moving to personalized cochlear implant modeling,

several technical issues need to be overcome. Specifically, before

implementing the proposed measurement approach on a clinical

routine-basis, prospective clinical trials need to be performed to

investigate whether the size of the cochlea correlates with the sur-

gical and clinical outcome of cochlear implantation, currently per-

formed with fixed-size electrodes. Especially, correlation between

cochlear size and post-operative loss of residual hearing should

be investigated, to test the hypothesis that smaller cochleae could

be at higher risk of traumatic electrode insertion which, in turn,

would lead to a higher loss residual hearing. Furthermore, since

UHR-CT is not yet commonly used in clinical practice, the pos-

sibility of obtaining similar cochlear measurement performance

with conventional CT should be investigated. While previous stud-

ies showed encouraging results in cochlear segmentation obtained

from conventional CT [6–8] , much larger datasets are needed for

testing. Since such datasets are currently unavailable, we can only

hypothesize that UHR-CT helps reduce measurement errors com-

pared to conventional CT (given the small size of the human

cochlea), and consequently potentially leads to an improved sur-

gical outcome in personalized cochlear implant surgery. Therefore,

while UHR-CT and Artificial Intelligence seem to have promising

applications for personalized surgical planning, future studies are

needed to confirm their effective performance, quantify their ef-

fect on the surgical outcome, and evaluate the potential advantages

over normal resolution CT. 

In addition to this, future work includes the collection of ad-

ditional patient scans to further assess the appropriateness of

our methods, and potentially the development of other computa-

tional strategies to further improve the segmentation performance

(for example, 3D-based methods that take advantage of weakly-

supervised learning to address the issue of annotating a large

dataset). Finally, the extracted cochlea measurements will be re-

lated to the loss of residual hearing after cochlear implant surgery,

to investigate the effect of cochlear size on speech recognition abil-

ities after cochlear implantation. 

5. Conclusions 

The developed computerized system was successfully applied to

extract automatic and accurate cochlear measurements based on

UHR-CT images, thanks to the combination of multiple deep learn-

ing approaches and extensive data augmentation. The system high-

lighted a large variability in cochlea size in a large patient cohort,

suggesting that the proposed approach could therefore potentially

be useful as a pre-operative tool for future personalized cochlear

implant surgery. 
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