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Acute and sub-acute stroke lesion segmentation from multimodal MRI
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Abstract

Background and objective. Acute stroke lesion segmentation tasks are of great clinical interest as they can help

doctors make better informed time-critical treatment decisions. Magnetic resonance imaging (MRI) is time demanding

but can provide images that are considered the gold standard for diagnosis. Automated stroke lesion segmentation can

provide with an estimate of the location and volume of the lesioned tissue, which can help in the clinical practice to

better assess and evaluate the risks of each treatment.

Methods. We propose a deep learning methodology for acute and sub-acute stroke lesion segmentation using

multimodal MR imaging. We pre-process the data to facilitate learning features based on the symmetry of brain

hemispheres. The issue of class imbalance is tackled using small patches with a balanced training patch sampling

strategy and a dynamically weighted loss function. Moreover, a combination of whole patch predictions, using a U-

Net based CNN architecture, and high degree of overlapping patches reduces the need for additional post-processing.

Results. The proposed method is evaluated using two public datasets from the 2015 Ischemic Stroke Lesion

Segmentation challenge (ISLES 2015). These involve the tasks of sub-acute stroke lesion segmentation (SISS) and

acute stroke penumbra estimation (SPES) from multiple diffusion, perfusion and anatomical MRI modalities. The

performance is compared against state-of-the-art methods with a blind online testing set evaluation on each of the

challenges. At the time of submitting this manuscript, our approach is the first method in the online rankings for

the SISS (DSC=0.59 ± 0.31) and SPES sub-tasks (DSC=0.84 ± 0.10). When compared with the rest of submitted

strategies, we achieve top rank performance with a lower Hausdorff distance.

Conclusions. Better segmentation results are obtained by leveraging the anatomy and pathophysiology of acute

stroke lesions and using a combined approach to minimize the effects of class imbalance. The same training pro-

cedure is used for both tasks, showing the proposed methodology can generalize well enough to deal with dif-

ferent unrelated tasks and imaging modalities without hyper-parameter tuning. In order to promote the repro-

ducibility of our results, a public version of the proposed method has been released to the scientific community at

https://github.com/NIC-VICOROB/stroke-mri-segmentation.

Keywords: Brain, MRI, ischemic stroke, automatic lesion segmentation, convolutional neural networks, deep

learning

1. Introduction

Stroke is a medical condition by which an abnormal

blood flow in the brain causes the death of cerebral tis-

sue. Stroke is the third cause of morbidity worldwide,

after myocardial infarction and cancer, and the most

prevalent cause of acquired disability [1]. The affected

tissue in the acute phase can be divided into three con-

centric regions depending on the potential for recovery,
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also referred as salvageability: core, penumbra and be-

nign oligemia [2]. The core, located at the center, is

formed by irreversibly damaged tissue from a fatally

low blood supply. The penumbra, located around the

core, represents tissue at risk but that can still be re-

covered if blood flow is quickly restored. Finally, the

benign oligemia is the outer most ring whose vascular-

ity has been altered but is not at risk of damage. Once

the symptoms of stroke have been identified, a shorter

time to treatment is highly correlated with a positive

outcome [3]. Mechanical thrombectomy is a strongly

recommended option for eligible patients [4]. However,
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this surgery is not free of risks. An overall complication

rate of 15.3% was observed in a year long study [5]. In

the treatment decision context, an estimate of the sal-

vageable tissue can aid physicians take more informed

treatment decisions.

The Ischemic Stroke Lesion Segmentation (ISLES)

challenge started in 2015 to provide a platform for fair

and direct comparison of automated methods. It in-

cluded two sub-tasks, the sub-acute ischemic stroke le-

sion segmentation (SISS) and the acute stroke penum-

bra estimation (SPES). The following ISLES 2016 and

2017 editions changed its focus from lesion segmenta-

tion to chronic lesion outcome prediction from MRI. In

the 2015 ISLES workshop results, the top three methods

in the SPES sub-task all used Random Decision Forests

(RDFs) [6] using hand-crafted features [7, 8, 9]. RDFs

were typically used in methods for stroke lesion seg-

mentation due to their excellent generalization proper-

ties, which make them well suited for difficult tasks with

few training samples [10]. Recent advances on convo-

lutional neural networks (CNNs) [11] have achieved su-

perior results and are currently replacing RDFs in most

state-of-the-art methods. In contrast with RDFs, CNNs

enable the joint learning of optimal features and clas-

sification criteria at training time for the specific task.

However, these kind of networks are still restricted by

the architectural design, the amount and quality of avail-

able data and the training procedure. Recently, advances

in regularization techniques and data imbalance han-

dling allow for increased CNN generalization perfor-

mance in brain lesion segmentation that rivals that of

RDFs. The best method in the SISS sub-task of the

2015 ISLES workshop employed a deep learning strat-

egy consisting of a dual path encoder network with a

conditional random field (CRF) post-processing [12].

More recently, Zhang et al [13] achieved comparable

results by using a similar CNN trained with a deep su-

pervision technique and a multi-scale loss function. De-

spite the good results of these kind of networks, the U-

Net architecture [14], an encoder-decoder network, is

replacing other state-of-the-art architectures for stroke

lesion segmentation. This is clearly seen in the submis-

sions for the ISLES 2017 challenge, where 10 out of the

14 participating methods, including the top three, used

CNNs based on the U-Net architecture [15].

In this work, we present a deep learning approach

for acute and sub-acute stroke lesion segmentation from

multimodal MRI images. We use a 3D asymmetric

encoder-decoder network based on the U-Net architec-

ture with global and local residual connections. Within

our approach, the class imbalance issue is alleviated

with the use of small patches with balanced training

patch sampling strategies and a dynamically weighted

loss function. Additionally, we pre-process the pro-

vided images to facilitate using the symmetry property

of brain hemispheres. The methodology is evaluated

by cross-validation with the training images and with a

blind online testing set evaluation against other state-of-

the-art methods. The proposed approach demonstrates

state of the art performance by ranking first in the testing

leaderboard of both challenges [16] without any dataset

specific tuning.

2. Data

For evaluation of the proposed methodology we use

the public datasets provided for the two sub-tasks of

the 2015 ISLES challenge [17]. They both encompass

stroke lesion segmentation tasks from MRI imaging but

using different imaging modalities and acquisition time

since onset.

2.1. SISS dataset

For the sub-acute ischemic stroke segmentation

(SISS) sub-task, a dataset was provided with 28 training

and 36 testing cases acquired in the first week after on-

set. For each case, 4 co-registered multimodal images

were provided including anatomical (T1, T2, FLAIR)

and diffusion (DWI) MRI. The images were acquired as

3D volumes of 230×230×153dimensions at 1×1×1 mm

spacing. All four MRI modalities were used for evalua-

tion of the proposed approach. For the training images,

the provided gold standard, the whole lesion extent, was

manually segmented by an experienced medical doctor.

2.2. SPES dataset

The acute stroke penumbra estimation sub-task

(SPES) included 30 training and 20 testing cases ac-

quired in the first day after onset. For each case, 7 co-

registered modalities were provided including anatom-

ical (T1 contrast, T2), diffusion (DWI) and perfusion

(CBF, CBV, TTP, Tmax) MRI. The images were ac-

quired as 3D volumes of 96 × 110 × 71 dimensions

at 2 × 2 × 2 mm spacing. All seven MRI modalities

were used for evaluation of the proposed approach. For

the training images, the gold standard segmentation, the

penumbra label, was obtained as the mismatch between

whole lesion extent and the core delineated in perfusion

and diffusion images respectively.
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3. Methodology

We propose a 3D patch based deep learning method

using an asymmetrical residual CNN based on the U-

Net architecture [14]. Within our approach, the class

imbalance issue is addressed with a combination of

techniques including the use of small patches (24×24×

16) and a weighted loss function. We also regularize the

training procedure with dropout [18], data augmentation

and early stopping. For image segmentation, the use of

whole patch predictions with a high degree of overlap

minimizes the need for additional post-processing. In

the following, we briefly describe the main components

and implementation details of our methodology.

3.1. Data pre-processing

The given images are first pre-processed with a sym-

metric modality augmentation to allow learning of fea-

tures based on the symmetry of brain hemispheres de-

spite the small receptive field of the used patches. Ex-

plicit symmetry information was already shown to im-

prove results for chronic stroke lesion segmentation

[19]. In our case, instead of using one patch per hemi-

sphere in a multi-path network we use a single joint

patch with a single-path network. In practice, we aug-

ment the provided modality images with symmetric ver-

sions that swap the left and right hemispheres. We

first flip one of the images along the mid-sagittal axis

and then we apply FSL FLIRT [20] to perform a lin-

ear registration between the original and flipped image.

Finally, the rest of modalities are registered using the

same transformation. Figure 1 shows an example of the

resulting symmetrically augmented modalities. These

are then appended to the provided ones, effectively dou-

bling the number of images for each patient. In this

way, a single extracted patch will also include intensity

information from the opposite hemisphere.

3.2. CNN architecture

The used architecture, illustrated in Figure 2, is a 3D

asymmetrical encoder-decoder network based on the U-

Net [14] architecture and its 3D extension, the 3D U-Net

[21]. Additionally, we also use short and long resid-

ual connections as used by the 2D uResNet architecture

[22] for chronic stroke in MRI. The asymmetry comes

from the number of parameters found in the encoder and

decoder branches, with 75% and 25% of the parameters

respectively. We use residual blocks with two convolu-

tional layers in the encoder and with a single convolu-

tional for the decoder. It has been shown that the de-

coder’s role is not as critical for segmentation, mainly

upsampling the work of the encoder and fine-tuning the

details [23]. Additionally, instead of the more typical

rectified linear unit (ReLU) [24] we use in our residual

blocks a parametric version, the PReLU non-linearity

[25], as suggested by Paszke et al [23]. We perform

downsampling in each resolution step by concatenating

the result of a max pooling operation and strided con-

volution as proposed by Szegedy et al [26]. This strat-

egy avoids representational bottlenecks while keeping

the number of parameters contained. Finally, upsam-

pling in the decoder branch is performed with the use of

transposed convolutions.

3.3. Class imbalance handling

The class imbalance issue is caused by the typically

smaller extent of the lesion class as compared with the

rest of healthy tissue class. If no deliberate action is

taken, the training set will be composed mostly from ex-

amples of healthy tissue and few from the lesion. This

would induce a biased learning that would harm the seg-

mentation performance. To alleviate this issue, we use

a combination of small patches with a balanced training

patch sampling and a difficulty weighted loss function.

The employed loss function, the Focal loss [27], is a dy-

namically weighted extension of the cross entropy loss

defined as:

FL(pt) = −αt(1 − pt)
γ log(pt) (1)

where pt and αt are the predicted probability and weight

for class t respectively. This function is dynamically

weighted inversely proportional to the prediction confi-

dence, so the network learns less from confident clas-

sifications and more from misclassified examples. In

this way, class imbalance is alleviated as the network

stops learning from the larger amount of healthy exam-

ples while still learning from the less common lesioned

tissue. We use the Focal loss default parameters as sug-

gested by Lin et al [27], with scaling factor γ = 2 and

class weights α0 = 0.25 and α1 = 0.75 for the healthy

and lesion classes respectively.

The use of patches allows using a training sampling

strategy that can undersample the healthy class and

oversample the lesion for a more balanced class rep-

resentation. The employed strategy is an extension of

two recently proposed ones for brain lesions [28] and

chronic stroke [22]. In practice, a goal number of

patches to extract is set per patient, as we aim to have a

balanced patch representation of each case. Then, 50%

of the training patches are extracted centered on vox-

els corresponding to healthy tissue and the other 50%

on lesion. These are sampled at regular spatial steps

3



(a) T1 (b) T2 (c) DWI (d) FLAIR

(e) Sym. T1 (f) Sym. T2 (g) Sym. DWI (h) Sym. FLAIR

Figure 1: Provided and symmetrically augmented modalities from case 2 of the SISS training images.

to ensure that all parts of the brain are equally repre-

sented. The voxels sampled from the lesion class have

a random offset added to increase representation of the

region surrounding the lesion, the benign oligemia. As

suggested by Guerrero et al [22], the offset is limited to

half of the patch size to ensure the originally sampled

voxel remains in the final extracted patch. For patients

with smaller lesions, a combination of several patch ex-

tractions from the same lesion voxel and data augmenta-

tion is done to ensure the number is reached. The same

sampled voxel will actually produce different patches

since lesion voxels have a random offset applied. Fi-

nally, patches are extracted centered on these voxels.

Additionally, for the lesion sampled patches, data aug-

mentation is applied with five anatomically feasible op-

erations including sagittal reflections and 90°, 180° and

270° axial rotations. A diagram summarizing the de-

scribed strategy is depicted in Figure 3.

Despite the balancing effects of the Focal loss and

training patch sampling, the segmentation performance

is still reduced when bigger patch sizes are considered.

Since there are much fewer lesion voxels than healthy

ones, bigger patches tend to include more healthy class

voxels and further worsen class imbalance in the train-

ing set. The employed patch size of 24× 24× 16, deter-

mined empirically, offers the best compromise between

receptive field and worsened imbalance for the consid-

ered datasets.

3.4. Network training

For training the randomly initialized network

weights, we first extract patches to build the training and

validation sets. As stated in Section 3.3, we use patches

of size 24×24×16 sampled with a balanced patch sam-

pling strategy. During training, we use the Focal loss

[27] along with the Adadelta optimizer [29], to avoid

costly grid search of a learning rate, with a batch size

of 16 patches. This optimizer requires no manual tun-

ing of parameters and appears robust to noisy gradient

information, different model architecture choices, vari-

ous data modalities and selection of hyper-parameters.

Moreover, to prevent overfitting we use the early stop-

ping technique by monitoring the performance on a

validation set at the end of each epoch. In this way,

the training is interrupted when the monitored metric

reaches a local minimum, which means no more gen-

eralizable knowledge is being learned from the training

images. The sum of the L1 loss and error rate on the

validation set is used as the monitored metric with a pa-

tience of 8 epochs.

3.5. Segmentation and post-processing

Once the network weights have been trained, to seg-

ment a new volume patches are first extracted from ev-

ery part of the image and forward passed through the

network. These are sampled uniformly with a regular

extraction step of 4 × 4 × 1 so that all parts of the brain

are predicted. The resulting patch probabilities are then

4



Figure 2: Employed U-Net based architecture using 3D convolutions, 4 resolution steps and 32 base filters. The architecture consists of an

asymmetrical encoder-decoder network using long and short residual connections. For the convolutional layers, Kx×Ky×Kz@[Sx,Sy,Sz] indicates

the kernel and stride dimensions in each axis. The number of channels is indicated above or under each feature map. In the input and output feature

maps, I and N denote the number of image modalities and segmentation classes respectively.

Figure 3: Diagram of the used training patch sampling strategy for acute stroke related tasks that considers the anatomy and pathophysiology of

stroke lesions. The extracted patches are of size 24 × 24 × 16 and include all input modalities.

combined in a common space preserving their original

spatial location to produce the whole volume probabil-

ity map. In our case, the combination is performed per

voxel by averaging the class probabilities of the various

patches. Furthermore, some degree of overlap between

the extracted patches is used since the extraction step is

smaller than the patch size. Therefore, the same voxel

is labeled seen in different neighborhoods and the re-

sulting class probabilities are averaged. This technique

reduces the need for post-processing steps as it provides

coherently spatial labels without block artifacts.

Finally, the probability maps are binarized by thresh-

olding the lesion class probabilities and then perform-

ing a connected component filtering by lesion volume.

The variable threshold Th can compensate over/under

confident networks while the minimum lesion size S min,

measured in number of voxels, takes advantage of le-

sion priors to minimise false positives. In practice, the

probability maps are binarised using the same threshold

and minimum lesion size for each evaluation. These are

found through grid search after all networks have been

trained to offer the best compromise between the desired

evaluation metrics.

3.6. Implementation details

The proposed method has been implemented with

Python, using the Torch scientific computing framework

[30]. All experiments have been run on a GNU/Linux

machine running Ubuntu 18.04 with 64GB of RAM

memory and an Intel® CoreTM i7-7800X CPU. The

network training and testing has been done with an

NVIDIA TITAN X GPU (NVIDIA corp, United States)

with 12GB G5X memory.

4. Evaluation and results

We perform a quantitative and qualitative evaluation

with both a cross-validation experiment and a blind ex-
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ternal evaluation using the challenge web platform. The

metrics used in the quantitative evaluations will be the

ones provided by the online platform. These include

the Dice similarity coefficient (DSC) [31], sensitivity,

positive predictive value (PPV) and Hausdorff distance

(HD). The DSC measures the relative overlap of the seg-

mentation with the ground truth and is used as a measure

of segmentation performance. The sensitivity and PPV

measure different properties relative to the lesion class

segmentation. On the one hand, the sensitivity evaluates

the percentage of gold standard lesion correctly labeled

as such. On the other hand, the PPV measures the frac-

tion of lesion class predictions that are correct. Finally,

the Hausdorff distance can be intuitively seen as a mea-

sure of the largest border error between the segmenta-

tion and ground truth.

4.1. Cross-validation experiment with training images

The purpose of the cross-validation experiment is to

quantitatively asses the main introduced improvements

of the proposed methodology against a Baseline ap-

proach without them. For the Baseline approach, we use

the proposed methodology without the class imbalance

handling nor the data pre-processing step. Instead we

use the crossentropy loss and training patch sampling as

described in [28], using 24 × 24 × 16 patches without

any addition of a random offset. We then evaluate the

effects of a Balanced approach that only uses the class

imbalance handling described in Section 3.3, without

performing symmetric modality augmentation. Finally,

the Proposed approach also adds the data pre-processing

step to implement the complete proposed methodology.

Each evaluation is performed in 4 folds, adjusting the

number of cases per fold accordingly, with the same

training procedure for both the SISS and SPES datasets.

To build the patch training set for each fold, 10 000

patches per case are extracted from the training im-

ages summing approximately 260 000 patches in total.

Once the networks from each fold have been trained

and the probability maps generated for all training im-

ages, the post-processing parameters Th and S min are

found through grid search to optimize the desired met-

rics across all folds. We consider the range of thresholds

Th from 0.1 to 0.9 and minimum lesion size S min from

10 to 1000 voxels. More specifically, we choose the

parameter combination that jointly maximizes the aver-

age DSC and HD, the two metrics used to determine the

2015 ISLES workshop results. In practice, a combined

score is computed as:

Score =

DSC ∗

(

1 −
HD

HDmax

)

DSC +

(

1 −
HD

HDmax

) (2)

where HDmax, set to 200 voxels, is used to normalize the

HD metric to the range between 0 and 1.

4.1.1. SISS sub-task results

The evaluation metrics of the cross-validation exper-

iment using the SISS dataset can be found in Table 1.

With respect to the Baseline, the Balanced approach sig-

nificantly improves the Hausdorff distance (p < 0.01)

with marginal improvements in other metrics. When the

symmetrically augmented modalities are further consid-

ered, the Proposed approach achieves significantly bet-

ter DSC, PPV and HD (p < 0.02) as compared with the

Baseline. However, despite the improvement in evalu-

ation metrics, the Proposed approach needs a more re-

strictive minimum lesion size of 200 voxels to maximize

the score as compared with the Baseline, which only fil-

tered lesions smaller than 50 voxels.

Representative examples of the qualitative results

from the proposed method can be found in Figure 4.

Cases 9 and 15 represent the overall results of the pro-

posed methodology, correctly detecting the lesions in

most cases with an outline that approximates the pro-

vided gold standard. Among the observed limitations

are inaccurate borders and over/under segmentation of

certain regions. For instance, in case 5 the lesion was

undersegmented due to a heterogeneous appearance of

the gold standard lesion while in case 13 two false pos-

itive lesions are detected due to the previous existence

of chronic stroke lesions with a similar appearance.

4.1.2. SPES sub-task results

The evaluation metrics of the cross-validation exper-

iment using the SPES dataset can be found in Table 1.

The class imbalance handling used in the Balanced ap-

proach significantly improves the sensitivity (p < 0.01)

while providing marginal increase on the rest except the

Hausdorff distance. When both improvements are si-

multaneously considered in the Proposed approach, it

achieves a significantly better DSC and sensitivity (p <

0.01) than the Baseline. Additionally, the augmented

modalities reduce the minimum lesion size S min from

500 to a less restrictive 200 voxels.

Figure 5 shows qualitative results of four representa-

tive segmentation examples from the proposed method.
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Table 1: Cross-validation experiment evaluation metrics on the SISS and SPES sub-tasks. The post-processing parameters Th and S min are found

through grid search to maximize the score defined in Equation 1.

Approach Th S min DSC PPV Sensitivity HD

SISS sub-task

Baseline 0.4 50 0.64 ± 0.22 0.69 ± 0.27 0.68 ± 0.21 43.7 ± 32.6

Balanced 0.4 200 0.67 ± 0.21 0.73 ± 0.22 0.69 ± 0.23 30.9 ± 28.9

Proposed 0.5 200 0.71 ± 0.19 0.78 ± 0.20 0.67 ± 0.22 29.5 ± 29.5

SPES sub-task

Baseline 0.6 500 0.80 ± 0.17 0.82 ± 0.21 0.82 ± 0.19 11.1 ± 6.9

Balanced 0.4 500 0.82 ± 0.15 0.84 ± 0.14 0.85 ± 0.17 12.4 ± 7.6

Proposed 0.5 200 0.82 ± 0.16 0.85 ± 0.13 0.85 ± 0.17 11.2 ± 7.3

In general, the majority of the lesion is correctly seg-

mented with minor border and small hole inaccuracies

as seen in cases 11 and 26. Other less typical errors in-

clude under or oversegmentation of the lesion, as seen

in case 2 where false positives are found on the upper

part of the lesion. In the example of case 15, the le-

sion is undersegmented due to a confounding unusual

appearance of some parts.

4.2. Blind challenge evaluation

To compare the proposed methodology against other

state-of-the-art methods for acute stroke we submit our

final approach for blind external evaluation in the ISLES

2015 challenge framework. The web platform used to

hold the 2015 ISLES workshop [16] remains open for

later submission and maintains an ongoing challenge

leaderboard where the average testing set results are

publicly displayed. Since the gold standard is hidden for

the testing images, a fair and direct method comparison

is possible. For evaluation in the challenge framework

of ISLES 2015, we use the four networks trained for the

Proposed approach during the cross-validation experi-

ment, one from each fold, and average their outputs to

produce a single testing patch prediction. The testing

images are then segmented as described in Section 3.5

using the Th and S min set in the cross-validation exper-

iment. In this way, the challenge results are produced

with the same networks trained in the cross-validation

experiment.

4.2.1. Challenge results

Tables 2 and 3 shows the top five entries as ranked by

DSC of the ongoing testing leaderboard results for the

SISS and SPES sub-tasks respectively. The proposed

methodology achieves state-of-the-art performance in

both sub-tasks, ranking first out of 74 entries in the

SISS leaderboard and first out of 41 entries in the SPES

leaderboard. As compared with the next best entries,

we achieve similar or higher DSC with a 12% and 28%

lower Haussdorf distance in the SISS and SPES sub-

tasks respectively. Additionally, in the SPES dataset we

also obtain an 8% higher sensitivity.

5. Discussion

We have performed both qualitative and quantitative

evaluations of the proposed methodology in two differ-

ent tasks without any dataset specific tuning of training

hyper-parameters. The methodology has been shown to

perform equally well for the acute or sub-acute stages

and with different combinations of MRI modalities. The

results are improved with respect to the Baseline thanks

to the combined approach to alleviate data imbalance

and also through the explicit learning of features based

on the brain symmetry. Additionally, the method is fast

in inference, taking under 3 minutes to pre-process and

predict a new image.

The proposed methodology demonstrates state-of-

the-art performance ranking 1st by average DSC while

having a smaller HD as compared with the next best

method in both challenges. Moreover, we are the first

U-Net based approach in the online testing leaderboard

to outperform the best 2015 ISLES workshop entries.

In the SISS sub-task, we obtain a similar DSC but with

lower HD than the next best method. In contrast with

the approach by Kamnitsas et al [12], we can avoid the

use of the additional post-processing step with condi-

tional random fields that needs several image dependent

configurable parameters. In our case, the use of a U-

Net based architecture that provides whole patch predic-

tions allows performing highly overlapped segmenta-

tions without a large increase of inference time or intro-

ducing additional configurable parameters. In the SPES

sub-task, we obtain a higher sensitivity with a lower HD

as compared with the next best method by McKinley

et al [8] that used a random decision forest classifier
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(a) Case 5 (b) Case 9 (c) Case 13 (d) Case 15

Figure 4: Output segmentation masks of representative cases from the training images of ISLES 2015 SISS dataset. On all images, true positives

are denoted in green, false positives in red and false negatives in blue.

Table 2: Top 5 out of 74 entries of the ongoing SISS testing leaderboard [16] as ranked by average DSC.

Rank User DSC PPV Sensitivity HD

1 clera2 (ours) 0.59 ± 0.31 0.65 ± 0.35 0.60 ± 0.30 34.7 ± 28.9

2 kamnk1 [12] 0.59 ± 0.31 0.68 ± 0.33 0.60 ± 0.27 39.6 ± 30.7

3 zhanr6 [13] 0.58 ± 0.31 0.60 ± 0.33 0.68 ± 0.24 38.9 ± 35.3

4 lianl1 0.57 ± 0.29 0.58 ± 0.30 0.64 ± 0.29 43.0 ± 30.5

5 saliz1 0.57 ± 0.31 0.54 ± 0.31 0.67 ± 0.29 41.1 ± 36.7

with several hand-crafted features over 3 × 3 × 3 and

5×5×5 neighbourhoods including local texture features,

mean intensity, skewness, etc. By using a deep learning

based method, the feature representation is learned at

training time without having to rely on manually testing

and finding the most appropriate ones for each specific

task. Despite the good relative performance, the qual-

itative results show that the proposed methodology is

still limited by inaccurate borders, missing lesion parts

and other confounding factors. Furthermore, while the

found minimum lesion size maximize the desired met-

rics along all training images they might still filter out

some small lesions at testing time.

6. Conclusions

In this work, we have presented a methodology that

achieves state-of-the-art performance in two different

stroke lesion segmentation tasks. To the best of our

knowledge, the proposed methodology is the first to ob-

tain competitive results in both the ISLES 2015 SISS

and SPES sub-tasks with the same approach. We have

achieved these results by doing both regularization of

the training procedure and providing additional mean-

ingful information for lesion segmentation. Useful fea-

tures using the brain symmetry could not be learned as

the employed patch size is too small to include both

hemispheres. The proposed symmetric modality aug-

mentation facilitates using the similarity between hemi-

spheres to improve lesion localization without using

larger patches that would worsen class imbalance. The

8



(a) Case 2 (b) Case 11 (c) Case 15 (d) Case 26

Figure 5: Output segmentation masks of representative cases from the training images of ISLES 2015 SPES dataset. On all images, true positives

are denoted in green, false positives in red and false negatives in blue.

Table 3: Top 5 entries out of 41 of the ongoing SPES testing leaderboard [16] as ranked by average DSC.

Rank User DSC PPV Sensitivity HD

1 clera2 (ours) 0.84 ± 0.10 0.82 ± 0.15 0.89 ± 0.06 20.7 ± 13.9

2 mckir1 [8] 0.82 ± 0.08 0.83 ± 0.10 0.82 ± 0.14 29.0 ± 16.3

3 cheng5 0.81 ± 0.11 0.81 ± 0.12 0.81 ± 0.14 22.7 ± 12.6

4 maieo1 [7] 0.81 ± 0.09 0.84 ± 0.08 0.80 ± 0.14 23.6 ± 13.0

5 ghosp1 0.80 ± 0.11 0.80 ± 0.15 0.83 ± 0.11 57.1 ± 25.4

use of additional informative modalities can be general-

ized with different augmentation techniques to facilitate

the learning of more discriminative and meaningful fea-

tures for the task at hand. Moreover, we have shown

the big influence class imbalance can have in reducing

distant outliers and false positives that provide a lower

Hausdorff distance at testing time. By using a combined

approach we achieve a less biased segmentation with a

better balance between sensitivity and specificity. In the

clinical setting, deep learning based methods can addi-

tionally benefit from related techniques such as transfer

learning to learn an unrelated task with a lack of train-

ing examples [32] or to perform domain adaptation with

few images [33]. The proposed methodology is made

publicly available for the scientific community [34].

Acknowledgements

Jose Bernal holds an FI-DGR2017 grant from

the Catalan Government with reference number

2017FI B00476. This work has been partially sup-

ported by Retos de Investigación TIN2015-73563-JIN

and DPI2017-86696-R from the Ministerio de Ciencia,

Innovación y Universidades. The authors gratefully ac-

knowledge the support of the NVIDIA Corporation with

their donation of the TITAN X GPU used in this re-

search.

References

[1] J. Redon, M. H. Olsen, R. S. Cooper, O. Zurriaga, M. A.

Martinez-Beneito, S. Laurent, R. Cifkova, A. Coca, and G. Man-

cia. Stroke mortality and trends from 1990 to 2006 in 39 coun-

tries from Europe and Central Asia: implications for control of

9



high blood pressure. European Heart Journal, 32(11):1424–

1431, 2011. doi: 10.1093/eurheartj/ehr045.
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