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Abstract

Background and Objective: Breast cancer is the most frequent cancer

in women. The Spanish healthcare network established population-based

screening programs in all Autonomous Communities, where mammograms of

asymptomatic women are taken with early diagnosis purposes. Breast density
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assessed from digital mammograms is a biomarker known to be related to a

higher risk to develop breast cancer.

It is thus crucial to provide a reliable method to measure breast density

from mammograms. Furthermore the complete automation of this segmen-

tation process is becoming fundamental as the amount of mammograms in-

creases every day. Important challenges are related with the differences in

images from different devices and the lack of an objective gold standard.

This paper presents a fully automated framework based on deep learn-

ing to estimate the breast density. The framework covers breast detection,

pectoral muscle exclusion, and fibroglandular tissue segmentation.

Methods: A multi-center study, composed of 1785 women whose “for

presentation” mammograms were segmented by two experienced radiologists.

A total of 4992 of the 6680 mammograms were used as training corpus and

the remaining (1688) formed the test corpus. This paper presents a his-

togram normalization step that smoothed the difference between acquisition,

a regression architecture that learned segmentation parameters as intrinsic

image features and a loss function based on the DICE score.

Results: The results obtained indicate that the level of concordance

(DICE score) reached by the two radiologists (0.77) was also achieved by the

automated framework when it was compared to the closest breast segmenta-

tion from the radiologists. For the acquired with the highest quality device,

the DICE score per acquisition device reached 0.84, while the concordance

between radiologists was 0.76.

Conclusions: An automatic breast density estimator based on deep

learning exhibits similar performance when compared with two experienced
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radiologists. It suggests that this system could be used to support radiolo-

gists to ease its work.

Keywords:

Breast density, Entirely Convolutional Neural Network (ECNN), Deep

Learning, Dense tissue segmentation, Mammography

1. Background

Mammographic screening is a highly standardized procedure for breast

cancer early detection programs, and the acquired mammograms are inter-

preted by specialized radiologists who batch read up to 50 mammographies

per hour [1]. Full Field Digital Mammography (FFDM) is still one of the

preferred methods for breast cancer screening programs. Technology innova-

tions provide better imaging features that promote earlier diagnosis of breast

cancer.

Percent Density (PD) which measures the percentage of fibroglandular

tissue over the total breast, is known to be a marker of breast cancer de-

velopment risk [2, 3]. The American College of Radiology Breast Imaging

Reporting and Data System (BI-RADS) has also reported a breast classi-

fication, based on density, shape, and granularity of the dense tissue [4],

suggesting that not only the total amount but also its distribution matters

[5, 6]. Besides, one of the principal problems in PD assessment is the inter

and intra-observer variability [7–10].

In this sense, an automated tool exhibiting a high agreement with several

radiologists could serve as one of the first steps in standardizing the read of

breast density. Authors of [11] emphasize a human-like automatic tool could
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be used as fully independent second reader of screening mammograms, where

double reading is standard. A second human reader would only arbitrate

discrepancies between the first human reader and the system, halving the

workload for any screening program where double reading is standard.

Coupled with this are the tremendous opportunities and challenges for

research which are brought by healthcare systems [12], in particular, breast

screening programs. To manage and model this huge amount of data, the

paradigm of Deep Learning (DL) has emerged. The abstraction ability of

DL [13] has demonstrated promising results from speech recognition [14,

15], reconstructing brain circuits [16, 17] or predicting the effects of DNA

mutations [18, 19] to medical imaging tasks [20, 21].

One of the most widespread paradigms used in computer vision problems

solved via DL take advantage of Convolutional Neural Networks (CNN) [22].

It is based on the extraction of features that are of higher-order as the images

go through more layers. CNNs are nowadays the state-of-the-art for many

recognition and detection tasks [23–25].

The current work presents a fully automated framework for dense tis-

sue segmentation. It includes breast detection, pectoral muscle exclusion

and dense tissue segmentation. Among the contributions of this work, we

can highlight (1) a preprocessing algorithm dealing with the variability of

mammograms acquired from different devices in the training stage, (2) a

new regression architecture Entirely CNN (ECNN), whose output are two

parameters used as intrinsic segmentation features, improves classical CNN

network (3) a loss function which maximizes the DICE score [26] by continu-

ously rebuilding a probabilistic dense tissue mask, and finally, (4) the ability
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to manually modify the segmentation using the DMScan software [27, 28].

2. Methods

2.1. Dataset and participants

A multi-center study covered women from 11 hospitals of the Comunitat

Valenciana which belong to the Spanish breast cancer screening network.

The prior design of the study was a 1:1 case-control to find factors influencing

the development of breast cancer. In this sense, a representation of the whole

PD spectrum is assured.

The current study contains a total of 1785 women with ages from 45 to

70. For each patient who developed cancer, if available, the contralateral

mammogram was taken from the screening visit previous to diagnostic, oth-

erwise, the contralateral mammogram to the one diagnosed with cancer from

the most recent screening visit was selected. Finally, if no previous mammo-

gram existed, then the contralateral mammogram at the diagnostic time was

extracted. Since in Spain “raw” mammograms are not routinely stored, all

the mammograms are of the type “for presentation”.

In 10 of the 11 facilities, the cranio-caudal (CC) and medio lateral-oblique

(MLO) views were recruited for each woman, meanwhile, the other facility

only collected the CC view. A brief summary of data from the different

mammography facilities can be found in Table 1.
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Id Unit Mammography device Number of women
Number of mammograms

(Number of reads)

01 Castellón FUJIFILM 191 382(764)

02 Fuente de San Luis FUJIFILM 190 380(760)

04 Alcoi IMS s.r.l. / Giotto IRE (*) 66 132(264)

05 Xàtiva FUJIFILM 159 318(636)

07 Requena HOLOGIC / Giotto IRE (*) 28 56(112)

10 Elda SIEMENS / Giotto IRE (*) 311 622(1244)

11 Elche FUJIFILM 278 556(1112)

13 Orihuela FUJIFILM 117 234(468)

18 Denia IMS s.r.l. / Giotto IRE(*) 38 76(152)

20 Serreŕıa (**) 177 354(708)

99 Burjassot Senographe 2000D 230 230(460)

Total 1785 3340(6680)

Table 1: Screening units, their mammography devices and the number of women and

mammograms per device. (*) Implies the use of a new device [Gioto IRE] since 2015. (**)

The device is not known.

Mammograms were analyzed by two experienced radiologists using DM-

Scan [27, 28]. This software provides assisted semiautomatic tools to segment

the breast and the fibroglandular tissue and to exclude undesired regions such

as pectoral muscle or armpit.

2.2. Breast segmentation framework

The segmentation pipeline is composed of a first step covering breast

detection and pectoral muscle exclusion, a second step to normalize the his-

togram variability between acquisition devices, and then, the dense tissue

parametric segmentation is carried out using a deep learning model that was

trained using an ad-hoc loss function. Details on each of the aforementioned

steps are given below.
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2.2.1. Background and breast detection

We have used a heuristic, iterative algorithm based on connected com-

ponents to obtain the gray level threshold that distinguishes breast from

background. Even though there exist some issues concerning the use of con-

nected components labeling on binary images [29], homogeneous breast shape

makes this kind of algorithms suitable to be used for breast segmentation and

exhibits perfect breast detection.

The first step of our approach is to assess the histogram of the image.

Based on the premise that the most frequent pixel value has to belong to the

background, a range of possible breast thresholds is defined.

Then, this range of thresholds is covered until only two homogeneous

components are detected. The first step is to assure that the breast is left-

oriented and to binarize the image using the first possible threshold, then

apply the connected component labeling method. We chose the Scan plus

Array-based Union-Find (SAUF) algorithm [30]. Finally, if only two compo-

nents are obtained, the threshold is set if not, it is continued covering the

range of thresholds.

2.2.2. Armpit and pectoral muscle exclusion

Several approaches have been proposed in the literature for armpit and

pectoral muscle recognition and exclusion. The authors of [31] proposed a

method based on homogeneous contours; the work presented in [32] proposed

a combination of image processing, genetic algorithm, morphological selec-

tion, and polynomial curve fitting. The approach explained in [33] combines

fractional differential enhancement methods with iterative thresholding algo-

rithms meanwhile the authors of [34] propose the use of the outputs of three
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existing algorithms (region growing, thresholding and k -means clustering) as

the input of a machine learning-based computer-aided decision system.

The common key observed in all the aforementioned studies is the knowl-

edge that pectoral muscle appears in a triangle of one of the top corners of

the image. Based on this premise, we have defined a robust procedure to

exclude pectoral muscles founded on negative gradient changes.

After assuring the image is left-oriented, we applied a Gaussian filter

and a 50-pixel moving average to smooth edges and remove spurious isolated

brightness pixels. As the muscle is a well contrasted border, it tends to be the

last remaining after the smoothing process. We iteratively built a polygon

that encloses the exclusion area by selecting the pixel with the lowest gradient

every 50 rows until the column of the selected pixel was enough close to the

left image border. Finally, the vertex that closed the polygon was the first

pixel from the top left corner.

2.2.3. Normalizing variability between acquisition devices

The pixel size, grey-scale bit resolution, signal to noise ratio or detec-

tive quantum efficiency are important concepts related to image quality [35].

The different mammogram acquisition devices show a huge variability in the

quality of mammograms. The first experiments carried out produced dif-

ferent performance results depending on the mammography facility. These

results influenced the variability assessment among different devices and how

it can negatively impact the training of a machine learning model. We evalu-

ated the differences among the histograms of mammograms over the different

mammography facilities by applying the framework proposed by Sáez et al.

[36, 37] at image level and checking that well-differentiated mammography
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facility-clusters appeared as can be seen in Figure 1a, where the images from

medical centers using different devices were extracted.

Figure 1: a. Differences among the histograms of the mammograms of the facilities with

different acquisition devices. Well-differentiated clusters demonstrated the dissimilarity

between acquisition devices. b. Example of histogram transformation using one mammo-

gram from each of the different mammography facilities.

Mammogram features like resolution or signal to noise ratio depend on the

electronic components of acquisition devices and produce a specific signature
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visible on the image histogram. In this work, we propose a way to standardize

them, which leads to better performance when a model using the images of

the whole set of the mammography facilities is trained, avoiding the need of

a specific model for each acquisition device.

The preprocessing steps proposed are the following, and the comparison

of two histograms from two different acquisition devices can be found in

Figure 1b):

1. Normalize the pixel values of the image between [0, 1].

2. Shift histogram to set the minimum breast tissue pixel to 0.

3. Normalize again the pixel values between [0, 1].

4. Standardize the breast pixel values to a normal distribution Z ∼ N(0, 1).

5. Adjust the pixel values so that the mode is 0.

6. Under the assumption that most typical percent density values are

below 30% (above 70th percentile) and values under the 30th percentile

only belong to fatty tissue, apply a linear stretching from percentile 30

to −1 and from percentile 70 to 1.

7. Apply once more a normalization to ensure inputs for the Deep Neural

Network are between [0, 1].

2.2.4. Dense tissue segmentation with Entirely Convolutional Neural Net-

work (ECNN)

Recent works address dense tissue segmentation from different points of

view. Authors of [38] used a fractal inspired approach and a multiresolution

stack representation to extract 3D histogram features, which were used to

apply k-means [39] to classify each pixel as fatty, semi-fatty, semi-dense or

dense.

10



Another interesting approach is that proposed in [20], in which an unsu-

pervised step to extract features, based on a sparse autoencoder, is followed

by a supervised classifier which tried to classify each pixel as pectoral muscle,

fatty or dense tissue. Close to this approach is the one of [40] that uses 4

fully convolutional networks, two to segment breast tissue on CC and MLO

views and the other two to segment the dense tissue on those same views.

Since an accurate and objective gold standard does not exist for the seg-

mentation task, the ground-truth of the model to be trained is the segmen-

tation provided by two experienced radiologists who used a semi-atuomatic

segmentation tool. Usually, these tools are based on the selection of two

thresholds thB and thF to segment, respectively, the breast and the fibrog-

landular tissue. In our study we have used DMScan, a semi-automatic tool

that provides a more accurate segmentation using a third parameter α ex-

plained below. Therefore, this tool interactively rebuilds a dense tissue mask

using the values of three parameters.

• The breast region threshold (thB). Pixels with values higher than thB

are considered to belong to the breast.

• The brightness corrector α. The X-ray attenuation depends on the

thickness of the breast. The thicker the tissue irradiated, the greater

the attenuation and, consequently, the brighter the image [27]. The

first parameter is related to a brightness correction coefficient kij by

which each pixel is multiplied. The user-defined parameter α ∈ [0, 1]

updates the kij according to Equation 1 where dij is the horizontal

distance of the pixel (i, j) to the image border or the pectoral muscle.
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It compensates the variation of thickness along the breast.

kij = α + 2(1− α)dij (1)

• The fibroglandular tissue threshold (thF ). Pixels with values higher

than thF are considered to belong to the dense tissue.

We propose an architecture in which convolutions were employed to ex-

tract the features needed to replicate the DMScan segmentation as image-

intrinsic features: α and thF . A similar architecture could be applicable to

meet the requirements of other semi-automatic threshold-based tools. From

now on, we will refer to this architecture as Entirely Convolutional Neural

Network (ECNN). It was designed to work with 256 × 256 px sized im-

ages. The proposed architecture and its convolutional layers configuration

are shown in Figure 2.

Besides, the activation function for the layers was the Leaky Rectified

Linear Unit (ReLU), with exception of the last layer which was set to sigmoid

function to ensure output was [0, 1]-bounded. The activation functions are

presented in Equation 2.

ReLU(x) =


x ifx > 0

0.2x otherwise

sigmoid(x) = 1
1+e−x

(2)
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Figure 2: Entirely Convolutional Neural Network (ECNN) architecture. The

kernel and the strides size for each layer are shown, padding was added to the first convo-

lution to preserve information on the borders. Only convolutions are used to extract the

features (α and thF ) needed to segment the dense tissue.

2.2.5. Continuous parameter-based DICE loss function

To measure the performance of our model, we chose the widespread

used Sørensen-Dice Similarity Coefficient [26] which measures how much two

masks M1 and M2 overlap according to equation 3.

DICE(M1,M2) =
2|M1 ∩M2|
|M1|+ |M2|

(3)

The use of mean squared error is not monotonically related to the DICE

score, leading to an erratic convergence on the learning stage. Furthermore,

DICE is the function we want to maximize as it measures the agreement
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between binary masks. Maximizing DICE is equivalent to minimizing 1−

DICE. Given two masks M1 and M2, a DICE of 2
3

= 0.66 means that the

number of pixels belonging to M1 and M2 is equal to the number of pixels

that only belong to one of them. A DICE score of 0.8 implies that the number

of pixels belonging to only one of the masks half the number of pixels that

belong to both masks.

This was the reason to develop our metric based on DICE to be used

as a loss function in the training stage. The underlying key is to build a

map of probabilities in which each element represents the probability of the

corresponding pixel belonging to dense tissue and, then, apply the DICE

score between estimated mask and the dense tissue mask provided by the

radiologists (ground truth). The metric can be represented according to

Equation 4:

R[0,1]
256×256 × R[0,1] R[0,1]

256×256 × R[0,1] R[0,1]
256×256 × R{0,1}256×256 R[0,1]

fil
(

(mij), α̂
) (

[α̂ + 2(1− α̂)dij]mij

)

logistic
(

(mij), ˆthF

) (
1

e−(40[mij− ˆthF ])

)

loss
(

(mij), (nij)
)

2
∑
mijnij∑

mij+
∑
nij

fil logistic loss

(4)

Where mij ∈ R[0,1]
256×256 is the mammography resized to 256 × 256 and

nij ∈ R{0,1}256×256 is the dense tissue mask provided by an specialist. It is worth

to mention that in fil(.), dij is the one defined in Section 2.2.4. The logistic

function logistic(.) was applied instead of a step function to maintain the

continuity, and 40 was used as a slope factor to assure a quick transition
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between 0 and 1.

Finally, the loss function, which from now on will be referred to as Con-

tinuous based Parameters DICE loss score (CPDICE) is defined according

to Equation 5:

CPDICE
(
(mij), α̂, ˆthF , (nij)

)
= 1− 2

∑(
1 + e−40([α̂+2(1−α̂)dij ]mij− ˆthF )

)−1
nij∑(

1 + e−40([α̂+2(1−α̂)dij ]mij− ˆthF )
)−1

+
∑
nij

(5)

The corpus, consisting of a total of 3340 mammograms and segmented us-

ing DMScan by two radiologists (6680 reads), was randomly stratified taking

75% (4992 segmentations) as training set, from which 10% of the segmen-

tations were extracted with validation purposes (validation set), and the

remaining 25% (1688 segmentations) as test set. Both mammogram reads of

the same image were always included in the same set. The maximum number

of epochs was fixed to 500, the optimizer for the training stage was the Adam

algorithm [41], and finally, the learning rate was set to 0.001.

2.2.6. Dense tissue segmentation example

Three examples of ECNN segmentation of test images using the steps

previously described can be found in Figure 3. The segmentation is compared

to those proposed by the two radiologists. The mammograms were recruited

using different acquisition devices. The last example shows the emergence

of the abdomen that is still not covered by our pipeline and may negatively

influence performance results.
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R1 segmentation

R1 segmentation R2 segmentation

R2 segmentation

ECNN segmentation

ECNN segmentation

A) IMAGE FROM DEVICE 01

B) IMAGE FROM DEVICE 18

ECNN segmentation R1 segmentation R2 segmentation
C) IMAGE WITH ABDOMEN 

Figure 3: ECNN segmentation compared to radiologists segmentations on dif-

ferent devices. a. Segmentation of a mammogram acquired using the device of mam-

mography facility 01. b. Segmentation of a mammogram acquired using the device of

mammography facility 18. c. A mammogram from mammography facility 11 where ab-

domen tissue is found. Medio-lateral oblique mammograms were selected so the exclusion

of the pectoral muscle could be seen, however, the abdomen is not excluded.
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3. Results

As previously mentioned, our model was configured to be trained at most

500 epochs. The lowest loss error obtained was around epoch 400 and the final

selected model was then obtained after this number of training iterations.

The lack of a real gold-standard, along with the inter-reader variability

[11, 42] motivated us to train our ECNN using segmentations of more than

one radiologist as explained before. This decision was made because we

did not want a model behaving like a specific specialist, but we wanted a

model that could obtain a level of agreement with any of the specialists

comparable to the agreement among them. It is important to note that the

segmentation of each radiologist is considered as an independent element.

In this sense, if the model gets a perfect segmentation for a mammogram

compared to a specific radiologist (R1 for instance), the segmentation of the

same mammogram gives a difference concerning the other radiologist (R2)

of exactly the difference between R1 and R2. This implies the existence

of an unavoidable intrinsic error which has an impact on the performance

of the model. It is also worth to mention that radiologists segmentations

were labeled using DMScan, which provides an interactive tool to exclude

the armpit and pectoral muscle. As can be seen in Figure 3, the approach

implemented in the current study does not manage, for example, the presence

of the abdomen tissue at the bottom of the image. This may also lead to an

additional increase of the errors reported in this study.
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3.1. ECNN as an alternative architecture to standard CNN

As previously mentioned, one of the requirements of the present study is

to learn the same parameters that the radiologist has access to. The use of

approaches where each pixel or each local region could be freely assigned as

dense or not dense was discarded due to the interest in comparing our results

with those obtained using widely used threshold-based semi-automatic tools.

Then, to measure the performance of the proposed architecture -ECNN-

we trained a fully connected convolutional neural network (CNN) to estimate

the desired parameters. A typical architecture for similar tasks [43] composed

of a convolutional part followed by a three dense layers (see Table 2 for

architecture details) provided the intended parameter estimation. It was

trained using the CPDICE as a loss function with a learning rate of 0.001.

Layer number Type layer Filters/Neurons Kernel size Strides Padding Activation function

1 Convolutional 32 3× 3 1× 1 same Leaky ReLu

2 Convolutional 64 3× 3 1× 1 valid Leaky ReLu

3 Maxpooling - 2× 2 2× 2 valid -

4 Convolutional 64 3× 3 1× 1 valid Leaky ReLu

5 Convolutional 64 3× 3 1× 1 valid Leaky ReLu

6 Maxpooling - 2× 2 2× 2 valid -

7 Dense 512 - - - Leaky ReLu

8 Dense 512 - - - Leaky ReLu

9 Dense 2 - - - Sigmoid

Table 2: The details of CNN layers implementation. The first six layers extract image

features (convolution stage) and the last three layers play the role of the regressor.

The results per mammography facility compared to those obtained with

the ECNN are presented in Table 3.

18



ECNN CNN R1 vs R2

mammography facility DICE CI DICE CI DICE CI

01 0.81 [0.78, 0.84] 0.79 [0.76, 0.83] 0.79 [0.76, 0.83]

02 0.83 [0.79, 0.86] 0.79 [0.75, 0.83] 0.79 [0.76, 0.82]

04 0.57 [0.50, 0.65] 0.60 [0.53, 0.68] 0.75 [0.69, 0.81]

05 0.84 [0.81, 0.87] 0.83 [0.80, 0.86] 0.65 [0.61, 0.68]

07 0.85 [0.77, 0.94] 0.81 [0.69, 0.92] 0.88 [0.81, 0.96]

10 0.68 [0.65, 0.72] 0.71 [0.67, 0.75] 0.77 [0.75, 0.80]

11 0.87 [0.85, 0.88] 0.83 [0.81, 0.85] 0.82 [0.80, 0.84]

13 0.86 [0.83, 0.89] 0.83 [0.80, 0.87] 0.78 [0.75, 0.82]

18 0.51 [0.40, 0.64] 0.56 [0.46, 0.66] 0.74 [0.68, 0.79]

20 0.61 [0.55, 0.67] 0.62 [0.57, 0.67] 0.78 [0.75, 0.81]

99 0.78 [0.73, 0.83] 0.75 [0.69, 0.81] 0.79 [0.76, 0.82]

Total 0.77 [0.75, 0.78] 0.76 [0.74, 0.77] 0.77 [0.75, 0.78]

Table 3: ECNN results compared to conventional convolutional architecture. CI refers

to 95% confidence interval. ECNN outperforms in many of the devices the agreement

between R1 and R2. CNN got better scores on some mammography facilities in which the

quality of the mammogram is lower. The DICE scores for the DL models represent the

DICE scores to the closer radiologist segmentation.

The conventional convolutional architecture only got significantly better

results on mammography facilities 04 and 18. These mammography facil-

ities correspond to the device with the lowest gray-level resolution. The

DICE scores in these facilities show also poor agreement between radiolo-

gists. Although the best performance of ECNN compared to CNN only can

be considered statistically significant for device 11, this approach provided,

at least, a similar performance, and it is also faster, more interpretable, and

has a lower computational load.
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3.2. ECNN improvement in function with training epochs

Figure 4 shows the model assessment of test images at different epochs

(10, 50, 100, 200, 220, 400 and 460) to make clear the achieved balance

at different mammography facilities. Averaged-score of validation set also

reported its best punctuation at epoch 400 when the validation set score

monitored during the training stage.

According to these results, there exist mammography facilities in which

the proposed model performance is significantly worse than the obtained in

others. It is related to the acquisition device, the quality of acquired images,

and probably the unbalanced number of images among different devices.

Figure 4: DICE score per mammography facility at different epochs in the test

set. The first epochs already get acceptable results for images in which the quality is

high. As training iterations increase, accuracy increases in these devices and the model is

also able to improve its accuracy for the facilities in which their acquisition device image

quality is worse. Finally, epoch 400 gets the best averaged score and the model is selected

at this point.

It should be noted that devices of mammography facilities 1, 2, 5, 11, and

13 come from the same manufacturer and the sum of images in these mam-
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mography facilities exceeds by far images coming from other manufacturers.

It may influence the good performance at early epochs on images of these

mammography facilities. The model seems to improve its results on images

from other devices when the local maxima are near to be reached in these

mammography facilities which share the same device (the most represented

in the corpus).

3.3. ECNN segmentation compared with two radiologists

A brief comparison of the obtained DICE scores can be found in Table 4.

These results demonstrate a good agreement level of ECNN with segmen-

tations provided by experienced radiologists. As can be seen in Table 1, the

mammography facilities with a FUJIFILM device (mammography facilities

01, 02, 05, 11, and 13) are those that present better results in Table 4. Those

mammography facilities presenting lower levels of agreement for the ECNN

are also the least populated. This situation makes us suspect that training

the model using a balanced number of images per device could increase the

reported scores. This probable increment in the performance would be always

bounded by the lower gray-level resolution observed in these devices. It also

leads to a lower agreement between specialists, with exception of the mam-

mography facility 05 (FUJIFILM acquisition device) where DICE between

radiologists is surprisingly low.
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Medical
test size

ECNN
R1 vs R2

# ECNN closer # ECNN closer # ECNN closer

facility vs closer to R1 than R2 to R2 than R1 to R1 or R2

01 96 0.81 0.79 52 35 58

02 96 0.83 0.79 51 43 63

04 34 0.58 0.75 7 3 8

05 80 0.84 0.65 64 63 76

07 14 0.85 0.88 3 5 6

10 156 0.68 0.77 42 57 65

11 140 0.87 0.82 63 85 100

13 60 0.86 0.78 30 43 49

18 20 0.51 0.74 2 4 6

20 90 0.61 0.78 15 19 27

99 58 0.78 0.79 19 25 35

Total 844 0.77 0.77 348 382 493

Table 4: ECNN segmentation DICE scores in function with acquisition devices. Test size

column is the number of mammograms available in the test set for each mammography

facility. The third column refers to DICE score when ECNN is considered as other radi-

ologist. Fourth column is the DICE score between radiologists. The last three columns

show the number of segmentations in which ECNN-R1 are closer than R1-R2, ECNN-R2

are closer than R1-R2 and ECNN-[R1 or R2] is closer than R1-R2.

ECNN outperforms in many devices when compared to the agreement

between radiologists and still obtains better results in some devices when

it is considered as an specialist. It highlights that almost 60% of ECNN

segmentation masks (493 out of 844) are closer to one of the radiologists

than the radiologists to each other. This percentage is increased in facilities

with FUJIFILM devices. This suggests that ECNN could be considered as

an independent reader, but a validation considering the segmentations from

other radiologists is needed.
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3.4. Histogram normalization importance

Figure 5 shows how image preprocessing increases the performance of our

ECNN.

Figure 5: Comparison of ECNN segmentation using and not using a prepro-

cessing step. It is observed that results using the proposed histogram normalization

outperforms those obtained without any preprocess

The substantial increment in the performance of our model, when a pre-

processing step is carried out, captures how variability among acquisition

devices impacts in the mammogram analysis. These results support the

need for standardization of gray-level values from different sources before

modeling problems using mammograms.

3.5. Specific segmentation model per acquisition device

Having images from different devices could act as a confounder for the

models, so the next step was to check if the performance of percent density
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estimation improved when a specific model is trained for each mammogra-

phy facility. In this sense, two models using the train images only from one

mammography facility were trained. One of the models was trained using

mammograms from the mammography facility 01 and the other using those

from the mammography facility 18. The performance results over the same

samples (test corpus from devices 01 and 18) are shown in Table 5. They

suggest that using a generic model does not imply a substantial loss of per-

formance compared to a specific model.

Medical
test size

ECNN
R1 vs R2

# ECNN closer # ECNN closer # ECNN closer

Center vs closer to R1 than R2 to R2 than R1 to R1 or R2

01 96 0.82(0.81) 0.79 41(52) 44(35) 59(58)

18 20 0.58(0.51) 0.74 4(2) 2(4) 5(6)

Table 5: Specialized models segmentation DICE scores in function with acquisition de-

vices. Test size column is the number of mammograms available in the test set for each

mammography facility. The third column refers to DICE score when ECNN is considered

as other radiologist. Fourth column is the DICE score between radiologists. The last three

columns show the number of segmentations in which ECNN-R1 are closer than R1-R2,

ECNN-R2 are closer than R1-R2 and ECNN-[R1 or R2] is closer than R1-R2. Values in

parentheses are the results for the global model.

The specialized model for mammography facility 18 obtained better re-

sults when compared to the global model but, still, poor concordance is

maintained probably due to the lack of training images and/or the poor

quality of them.
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4. Discussion

According to [11, 44, 45], one of the important tasks for computer-aided

diagnosis systems is to provide an accurate and reproducible assessment of

mammographic breast density. We consider that our multi-center study

demonstrates a good performance of breast density assessment using ECNN,

and constitutes a first step in the standardization of how mammographic

breast density is assessed. Globally, the score obtained by the proposed

framework is comparable, in terms of concordance, to the score obtained by

two radiologists.

Typical convolution usage covers pixel-level classification tasks, using con-

volutional autoencoder architectures [46, 47], or pattern recognition based

classification tasks, using fully connected convolutional neural networks [48,

49], or Deep Residual Learning for BI-RADS breast density categories clas-

sification [50]. Since our output was continuous, approaches intended to

pixel-level classification were discarded. A fully convolutional neural net-

work to estimate the threshold segmentation-based parameters (CNN) was

overcome by the architecture in which the desired paramenters are directly

extracted as features of the image (ECNN). The performance of the ECNN

is better than the obtained by CNN, however this architecture obtain signifi-

cant better performance for two over the eleven facilities (04 and 18). These

mammography facilities have the same acquisition device model and it is also

the less represented one in the sample. We expect that increasing the number

of images from devices of this model may improve the segmentation results.

It is also worth to mention that automatic segmentation applied to the most

represented device (FUJIFILM in facilities 01, 02, 05, 11, and 13) were closer
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to one of the radiologists than each radiologist to the other 73% times (346

out of 472), implying a significant DICE score improvement, outperforming

the radiologists concordance.

The main contributions of the present paper can be summarized as:

1. An intuitive preprocess protocol standardizes the histograms of breasts

by centering the mode and stretching the tails of the histograms. It al-

lows to extend the range in which the fibroglandular threshold is found.

This step reduced the impact of using different acquisition devices.

2. A convolution-based architecture trained to learn the two desired pa-

rameters used by radiologists to segment the image. The results pro-

vided by this approach obtained slightly better results compared to

state-of-the-art algorithms with lower computing workload.

3. An ad hoc, continuous, and differentiable loss function which rebuilds

the intended mask from the estimated parameters and assesses the

DICE score against the “training ground truth”.

4. The approach followed makes easy that a radiologists perform a fine-

tuning of the results by interactively modifying the segmentation pa-

rameters using a tool such as DMScan.

4.1. Limitations and future research

While the parameter based approach was justified to make it compatible

with threshold-based semi-automatic tools, exploring other, supervised or

unsupervised, mask-based approaches is planned. Supervised mask based

approaches could deal with the suboptimal results obtained in some devices

and unsupervised approaches would let us complement the models using large

databases without the need of human effort.
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A second limitation is the pectoral muscle exclusion algorithm. The so-

lution adopted in the present work, although robust, could be improved by

taking into account other approaches mentioned in Section 2.2.2.

Finally, the use of “for presentation” mammograms instead of “raw” im-

ages may be the reason for some of the differences among acquisition devices.

It is also desirable to check if “Raw” mammograms would avoid the prepro-

cessing step.

5. Conclusion

Nowadays, with the explosion of complex models that can identify fea-

tures and patterns which are undetectable to the human eye, having a large

amount of labeled mammograms is highly necessary for basic and clinical

research. In this sense, the availability of a tool that provides automatic

segmentation of dense tissue on processed digital mammographies with a

high level of concordance with the segmentation of experienced radiologists

is desirable.

The work presented in this paper provides an automatic framework based

on deep learning which detects the breast, excludes the pectoral muscle, and

finally performs a dense tissue segmentation. Our approach is based on

the estimation of two segmentation parameters which are learned as image

level features. A preprocess step alleviates the influence of the variabil-

ity among mammograms from different sources and improved the algorithm

performance.

The concordance scores (DICE) of the proposed framework are close to

the agreement achieved between two radiologists in a multi-center (and multi-
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device) study. Images from those devices with the highest gray-level res-

olution provide concordance results even better than those raised by two

experienced specialists, suggesting that our model could be used as a fully

independent reader. As a final contribution, if the radiologist does not agree

with the segmentation proposal, it may easily fine-tuned using a software

tool, DMScan, built in our laboratory and freely available for research pur-

poses.
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