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Abstract

Background and Objective: One of the main steps in the planning of

radiotherapy (RT) is the segmentation of organs at risk (OARs) in Computed

Tomography (CT). The esophagus is one of the most difficult OARs to segment.

The boundaries between the esophagus and other surrounding tissues are not

well-defined, and it is presented in several slices of the CT. Thus, manually

segment the esophagus requires a lot of experience and takes time. This difficulty

in manual segmentation combined with fatigue due to the number of slices to

segment can cause human errors. To address these challenges, computational

solutions for analyzing medical images and proposing automated segmentation

have been developed and explored in recent years. In this work, we propose

a fully automatic method for esophagus segmentation for better planning of

radiotherapy in CT.

Methods: The proposed method is a fully automated segmentation

of the esophagus, consisting of 5 main steps: (a) image acquisition; (b)

VOI segmentation; (c) preprocessing; (d) esophagus segmentation; and (e)

segmentation refinement.

Results: The method was applied in a database of 36 CT acquired from

3 different institutes. It achieved the best results in literature so far: Dice
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coefficient value of 82.15%, Jaccard Index of 70.21%, accuracy of 99.69%,

sensitivity of 90.61%, specificity of 99.76%, and Hausdorff Distance of 6.1030

mm.

Conclusions: With the achieved results, we were able to show how

promising the method is, and that applying it in large medical centers, where

esophagus segmentation is still an arduous and challenging task, can be of great

help to the specialists.

Keywords: Convolutional neural networks, Computed tomography,

Esophagus segmentation, Organs at Risk, Radiotherapy.

1. Introduction

Radiotherapy (RT) is a treatment used in about 50% of cancer cases.

Because of its efficacy and availability, RT is a widely used treatment, especially

when surgery and chemotherapy introduce high risk to the patient’s life. About

40% of cured cancer patients have RT as part of their overall treatment [1].

Depending on the type of tumor and the stage of cancer, RT may be the solution

to cure it [2–4].

Over the years, more and more studies about radiation therapy have emerged

not only for addressing the treatment but also its toxic radiation effects on

patients [5, 6]. However, when the RT is performed by a group of professionals

aided by computational frameworks, it is possible to reduce these unwanted

effects [4, 7, 8]. Reduce them, of course, is very important since there is no point

in treating a patient’s disease while applying toxic effects on healthy tissues.

Protecting the healthy tissues surrounding the lesions is necessary to

eradicate them. These tissues comprise various organs, depending on where

the tumor is located. The tissues of healthy organs that need to be protected

in the radiotherapy are called as Organs at Risk [9, 10].

A three-dimensional model of the patient’s body is generated in the RT

planning phase, typically with the use of a computed tomography (CT), known

as radiotherapy planning CT. In this stage, there is the segmentation of
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tumors and OARs. This process is usually done with the support of medical

software. The most used is the Varian Eclipse Treatment Planning System [11].

This software presents a Smart Segmentation module that provides an initial

segmentation of the organs chosen by the specialist. However, the specialist

needs to validate this segmentation slice by slice and, if necessary, adjust the

segmentation boundaries.

An extremely important OAR is the esophagus. According to Fechter et al.

[12] the esophagus is an important organ and is very difficult to segment. In

some slices of the volume, even seasoned specialists have difficulty in defining

its boundaries reliably, and they can easily be confused with other structures.

In addition, the interpretation of CT slices is very repetitive. These issues

make the whole process time-consuming, error-prone, and highly dependable

to the variability between observers. Nevertheless, the esophagus is one of the

most important OARs in RT due to its radiosensitive mucosa, so a precise

segmentation is indispensable. Thus, there is a vital need for automated,

reproducible, and consistent approaches for segmenting the esophagus in RT.

Hence, for preparing the CT for radiotherapy, this work proposes an

automatic approach to segment the esophagus automatically. The proposed

research aims to give a second opinion to the specialist and to assist him in this

process.

The method is composed of five steps. Firstly, the materials used by the

method are described. Secondly, an initial segmentation is performed, which

will generate a volume of interest (VOI) in the planning CT, extracting just

a small region containing the esophagus. Third, the VOI is preprocessed to

highlight the structures of the esophagus. Fourth, a novel convolutional neural

network (CNN) is applied to automatically segment the esophagus. Finally,

refinement techniques are performed to generate the final segmentation.

By creating this method, we believe we have achieved the following

contributions:
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1. An automatic and robust method composed of techniques existent in

the literature and new techniques, achieving results superior to those

published so far for esophagus segmentation in CT.

2. An automatic pre-processing technique that is capable of reducing the

volume in a standardized size region containing the esophagus and

enhancing its boundaries for better segmentation.

3. A post-processing technique to reduce false-positive and improve the

segmentation boundaries.

Thus, we believe that if this method is applied in large medical centers,

it can be an important ally for the specialist in the segmentation task of the

esophagus.

In addition to this section, the paper presents five more sections. First,

the Section 2 presents the related works and explains the advantages of the

proposed method over them. In the Section 3, it is detailed the materials and the

proposed method for esophagus segmentation. The results achieved by applying

the method on the materials are presented in Section 4. In the Section 5, it

is discussed the results and presented an overview of the proposed method,

highlighting its advances and limitations. Conclusion and future works are

presented in Section 6.

2. Related works

Studies about esophagus segmentation can be found in the literature in

several types of images [13–17]. Also, several approaches propose esophagus

segmentation in a semi-automatic fashion. Most authors report that it is difficult

to distinguish the esophagus on CT, even for specialists. This happens because

of its ill-defined contrast and boundary in CT, turning the segmentation an

arduous task. Furthermore, due to its presence in many slices of the volume, the

manual segmentation also becomes an exhaustive process. Following, the main

works regarding the segmentation of the esophagus in CT will be presented.
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In Feulner et al. [13], a probabilistic method for esophagus segmentation is

proposed. According to the authors, the method consists of some steps. First,

a detector trained to learn a discrimination model of appearance is combined

with an explicit model of the distribution of respiratory and esophageal air.

In the next step, prior knowledge of the previous step is incorporated using a

Markov chain model. Then, a ”detect and connect” approach is used to obtain

the maximum posterior estimate of the approximate shape of the esophagus

from the hypotheses about its contour in axial slices. Finally, the surface

resulted from this approach is deformed in a non-rigid manner to better adjust

to the limits of the organ. The authors’ experiments are performed on a private

database composed of 144 CTs and achieved a Dice coefficient value of 74%. It

is important to note that this method is highly dependent on descriptive models

and prior knowledge. Yet, a non-rigid record is necessary, causing deformities

in the initial esophageal structure.

The work proposed by Grosgeorge et al. [14] highlights the difficulty in

the esophagus segmentation task, since its boundary is not well-defined and

has low CT contrast. According to the authors, their method for esophagus

segmentation is original. This method achieves its results using a skeleton-

shaped model to guide segmentation. Besides, it consists of two steps: a

3D segmentation using a graph cut technique with skeletonization techniques,

followed by a 2D propagation. The work is applied to a database composed of

six patients and presents a Dice coefficient value equal to 61%. Although it is

an automatic method, it depends on the creation of a skeleton model based on

the specialist marking.

The work by Larsson et al. [15] proposes a method for the automatic

segmentation of various abdominal organs on CT. The first step locates the

organs using an atlas model. To define the atlas, the authors use image

registration. Next, each voxel is classified by two convolutional neural networks.

The authors disregard structures based on a threshold and keep only connected

regions. Their experiments are applied in a database of 30 patients, achieving

a Dice coefficient value of 66.2% for esophagus segmentation. It is worth
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mentioning that the work uses the atlas as an initial segmentation, defining the

probability of a voxel being a specific organ based on the atlas values. Then, a

convolutional neural network decides whether these voxels are the target organ

or not. In this type of approach, in addition to not classifying the entire volume,

the classification of voxels is completely dependent on the atlas.

Once again, the difficulty in esophagus segmentation is highlighted by Trullo

et al. [18]. The authors explain how crucial the segmentation of this organ is

for RT. However, they also emphasize that in a recent literature review, there

are no contributions to esophagus segmentation [19]. According to the authors,

their work presented a fully automatic method consisting of only two steps.

In the first one, a convolutional neural network estimates the location of the

esophagus (this network was previously published by the same authors in other

paper, and presented a Dice of 66% for esophagus segmentation [16]). Then, in

the second step, the region estimated in the first step is cropped, and the same

network is applied again to it. The method was tested on 30 CTs and presented

a Dice coefficient value of 72%. Like most works, this highlights the need for

a crop in the esophagus location. This operation is necessary, as the authors

themselves point out, because the first network is not able to correctly segment

the esophagus, so the crop reduces the scope of the problem for the second

network execution. However, when observing the fact that the first network

may ignore the location of the esophagus, or mark it in the wrong region, the

second network will also not be able to segment it.

One of the most recent works that deal with the segmentation of the

esophagus as Organ at Risk (OAR) is proposed in Fechter et al. [12]. The

authors highlight the difficulty in esophagus segmentation even by a specialist,

being a task that costs time and is prone to human errors. Their method applies

a CNN to generate a probabilistic model that serves as input for an active

contour model (ACM). Then, both CNN and ACM outputs are applied to a

random walker algorithm based on the Hounsfield Units (HU) of the volumes.

The method executes on a database composed of 50 patients, reaching a Dice

coefficient result of 76%. Although a CNN is part of steps, the final segmentation
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depends on the Hounsfield scale of the image. This makes the model susceptible

to errors when there is a sudden change in HU, especially in cases where the

CT acquisition process is not well defined.

In Dong et al. [17], a method for the segmentation of OARs in planning

CT is proposed. Their method combines an adversarial network with a fully

convolutional network (FCN) to achieve the results. More specifically, as the

esophagus comprises only a small region of the CT exam, the method crops the

volume based on the location of the lungs. The authors assume the esophagus is

located in the centroid of the slice with the largest lung area. Since this specific

slice is necessary to crop the volume, the network firstly segments the lungs, and

after the crop, it segments the esophagus. The authors present their experiments

in a database of 36 patients. However, only 35 were used to develop the

method. The results are measured using the leave-one-out technique, averaging

the results of the 35 executions. Among the other OARs, the esophagus has

a Dice coefficient value of 75%, sensitivity of 73%, and specificity of 99%.

Although the work is very promising, it relies on a precise segmentation of

the lung for the extraction of the volume of interest where the esophagus may

be.

The work proposed by Chen et al. [20] performed a semantic segmentation of

the esophagus using a U-Net. Their database contains 15 CTs totalizing more

than two thousand slices. Although the segmentation is 2D, the resulting masks

are stacked to create a 3D one. The result found is an average Dice value of

79%. Despite being a recent work and using a well-known network, it is only

applied to 15 exams.

In turn, Feng et al. [21]’s work presents a segmentation method using deep

learning approaches for various organs. The method uses a crop for each organ

based on its previous location. In the end, the segmentations of each organ are

joined to generate the final multi-organ segmentation. The method is trained

and tested on a database composed of 36 CTs. For the esophagus, the method

can reach an average Dice value of 72%. In this work, it is observed the

importance of the volume crops so that the segmentations are more accurate.
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However, the method has a low Dice value compared to other studies in the

literature.

As can be seen in the literature, most studies highlight three very important

facts when it comes to esophagus segmentation. First, it is an organ that is

very difficult to segment, even for specialists, and there is no clear distinction

between the contrast of the esophagus boundary with the other organs in most

slices. Second, many papers show the need to segment this OAR as an important

step in the treatment by RT, so there is a lot of interest in automatic methods.

Finally, the works often do some localization of the esophagus based either on

probabilistic models, on atlases or other organ’s location to reduce the region

of interest (crop).

Thus, based on the importance of the segmentation of this organ and

the need for more robust methods, this work proposes an automatic method

for esophagus segmentation. The method takes into account the problems

highlighted in the literature, presenting an effective way to locate the esophagus

through image registration followed by a crop in the volume of interest using

atlases. Then, when observing the need to enhance the esophagus contrast

and boundaries against other CT structures, a pre-processing technique for

enhancing the structures is proposed. Next, these images are applied to an FCN

architecture, showing promising results. Finally, a postprocessing technique is

used to keep only the largest connected object within the volume.

3. Materials and method

For the segmentation of the esophagus in planning CT, a 5-step method

is proposed. The first one is the image acquisition step (Figure 1(a)). The

database used in this work is a database for the segmentation of OARs in CT.

Esophagus, as many other studies report, is one of the most challenging OARs

to segment. Even specialists find it difficult to confidently define the boundaries

of the esophagus on CT since its texture is easily confused with other structures

around it.
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In the second step, volume of interest (VOI) segmentation (Figure 1(b)), the

spatial information of an esophagus atlas is used to make a three-dimensional

crop in the volume. Then, in the third step, a pre-processing is done to enhance

the structures of the esophagus (Figure 1(c)). After the previous steps, in the

fourth step (Figure 1(d)), the VOI slices are processed to create the esophagus

segmentation. For that, a U-Net with residual blocks use the VOI slices as input

and creates a model to suggest an initial segmentation. Finally, a refinement

technique is applied to it, resulting in a better-delineated segmentation, i.e., the

final segmentation (Figure 1(e)). In the next sections, the details of each step

will be explained. Figure 1 describes the steps of the method

3.1. Image acquisition

The image database of planning CT used in this work is the database of

the AAPM Thoracic Auto-segmentation challenge. The main objective of this

challenge is to encourage participants to create algorithms for the segmentation

of OARs in CT acquired from patients who will undergo radiotherapy. An

example of a volume slice is shown in Figure 2.

The challenge database consists of 36 patients from 3 different institutes (12

patient volumes for each institute). The database also provides the markings

of the OARs in files called Radiotherapy Structure Set (RT-STRUCT). Each

volume has its respective RT-STRUCT file and each file contains markings

of 5 organs (left lung, right lung, heart, esophagus, and spinal cord). The

information and results for this challenge are provided in Yang et al. [22].

In addition to the database being composed of volumes from three institutes

following different acquisition protocols, another issue is the number of slices

of each volume that can range from 134 to 288. This information shows how

diverse the database is. Examples of volumes from the 3 institutes are shown

in Figure 3.

To make visualization better, and to demonstrate exams in three dimensions,

we rotated the image to reflect the entire patient. This can be seen in

Figure 3(d), Figura 3(e), and Figura 3(f).
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Figure 1: Flowchart of the esophagus method. (a) image acquisition (CT exam rotated for

better visualization); (b) VOI segmentation; (c) pre-processing; (d) esophagus segmentation;

and (e) segmentation refinement

3.2. VOI segmentation

As already mentioned in Section 2, the esophagus is one of the most

problematic organs for segmentation in CT. In addition to these image-related

problems, there are still other ones related to the anatomical structure of

10



Figure 2: Image acquisition: lungs (purple), heart (green), esophagus (yellow on top) and

spinal cord (yellow on the bottom).

the esophagus. For example, the esophagus is a small organ, so it occupies

a few slices in the planning CT. For this reason, once again the literature

shows the importance of delimiting a region of interest as an initial step in

the segmentation process [13, 15, 17, 18].

To address the problems of the diversity of the database, difficulties in

defining the esophagus structure, and the definition of a small region of interest

containing it, a step of VOI segmentation is proposed. This step consists of

three substeps, which are the registration of volumes, generation of the atlas,

and crop in the esophagus region.

3.2.1. Volume registration

As presented in Section 3.1, the database is very diverse, with exams from

3 different institutes. Still, the number of slices varies. Also, some volumes
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Figure 3: Image acquisition: (a) slice of institute 1; (b) slice of institute 2; (c) slice of institute

3; (d) volume of institute 1; (e) volume of institute 2; and (f) volume of the institute 3.

(like those from institute 3) present slices up to the head region and others do

not. One way to standardize the number of slices is by using the registration

technique [23, 24].

So, the registration was applied to align all the volumes. One volume

was selected as fixed volume and the others were aligned to it. The resulting

transformation from the registration was also applied to their respective masks

in order to align them too.

In this work, the rigid registration [25] was applied to the entire database,

taking as a fixed volume the one with the fewest slices. This criterion was

adopted since approximating the slices of a volume with few slices to one with

many slices would generate too many estimated voxels that may not be accurate,

since some interpolation would be necessary to approximate these volumes.
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The image registration was used to align both the patient’s volume and its

corresponding marking volume. An example of a registered volume can be seen

in Figure 4.

Figure 4: Volume registration: (a) fixed volume with 134 slices, (b) moving volume with

279 slices and (c) moving volume registered with 134 slices (CT exam rotated for better

visualization).

With the patient’s volumes and markings aligned, the next step is to generate

the atlas.

3.2.2. Atlas generation

The atlas is a probabilistic volume used to find the probable location of the

esophagus. It is generated by combining the information of the marking volumes

aligned in the previous step. The atlas voxels values are calculated by averaging

the voxels values of all aligned marking volumes. The purpose of the atlas for

the VOI segmentation step is to find the region that contains the esophagus in

all volumes of the database.

Different from the work of Feulner et al. [13], Larsson et al. [15], where

probabilistic and atlas models are proposed to guide OAR segmentation, our

method uses atlas only to assist the next step of volume crop.

The atlas corresponds to the spatial distribution of the voxel values belonging

to an object of interest. For example, there is a database of CT scans of
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several patients, and for each patient the specialist makes a specific marking

considering the anatomical structure of each patient. When generating the atlas

of a specialist’s markings, each element represents the sampling probability of

the voxels belonging to the object [26]. Figure 5 shows an illustration of how

the atlas was generated.

Figure 5: Atlas generation: (a) example of mark volumes and (b) result of atlas generation

It is observed that although the marking of the esophagus in the volumes

is still diversified, they are spatially located in a small portion of the volume.

With this information, it is possible to crop the volume and generate a VOI.

3.2.3. Crop in the esophageal region

From the generation of the atlas, it is possible to obtain spatial information

from the esophagus. Thus, a crop is made in the esophagus region in all

volumes of the database, following the criterion of the largest region found in

the atlas. Thus, all previously registered volumes are now cropped along with

their markings, resulting in a region that comprises the possible location of the

esophagus. An example can be seen in Figure 6.
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Figure 6: Crop in the esophagus region: (a) atlas, in yellow region corresponding to the

volume of the largest object, (b) the patient’s original volumes (CT exam rotated for better

visualization) and the marking (c) segmentation of the patient’s VOI and marking.

Thus, at the end of this step, we have the VOIs of all patients and all

markings. This reduces the scope of working with the entire volume to segment

the esophagus. Still, despite the existence of an imbalance between non-

esophagus voxels, the proportion decreases significantly. The next step is pre-

processing.

3.3. Pre-processing

When looking at the literature (Section 2), we did not find studies concerned

with using any image improvement to highlight the region of the esophagus.

Thus, it is proposed a pre-processing that seeks to enhance the region of the

esophagus to improve the accuracy segmentation.

For the pre-processing step, it is proposed to use the sequence of two filters.

The first filter is bilateral. It seeks to smooth the images while preserving the

edges, through a non-linear combination of close image values. Because the
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distinction between the esophagus and other surrounding tissues is not clear,

this filter helps to highlight the edges of the esophagus [27].

Then, a histogram equalization [28] is used in the images highlighted by the

bilateral filter. By creating an image with equally distributed levels of gray, it

is believed that it further improves the distinction between the esophagus and

other tissues. An example of a VOI slice with the pre-processing step is shown

in Figure 7.

Figure 7: Pre-processing: (a) VOI slice without pre-processing, (b) VOI slice with pre-

processing. The arrow indicates the enhancement of the edges of the esophagus.

So, with VOI defined and pre-processed, the next step is to segment the

esophagus.

3.4. Esophagus segmentation

This step is divided into a few substeps. First, the network input is defined,

then training and testing are performed.

3.4.1. Generating input images

The result of the VOIs segmentation produces two volumes, one from the

patient CT and the other from the marking. The volume of the patient goes

through the pre-processing step, to enhance the internal structures and improve

the representation of the esophagus. A 2D approach was used, that is, the

VOI of each volume was passed slice by slice in the network. However, at the

end of the network segmentation, a 3D volume of the correctly classified slices is

constructed. The 2D segmented slices of each exam were stacked in 3D volumes.

For that, we used the same inter-slice spacing of the original volumes.
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We chose to use the slices instead of the volume because, if we consider

the number of existing volumes (there are only 36), the network would have

few samples in the training phase. As the slices are used, the number of

training/validation and test samples is increased.

The next step is the training of U-Net [29] to create a robust model capable

of segment new volumes. U-Net is a type of deep convolutional neural network.

This network has been used in various medical imaging problems and has

reached the state of the art [30–33]. The network used for this task is a U-

Net with residual blocks, that we called Residual-U-Net. Figure 8 illustrates

the architecture developed to esophagus segmentation.

Figure 8: Residual-U-Net: architecture developed to esophagus segmentation

According to He et al. [34], deep neural networks are hard to train. In

their work, they explicitly reformulate the layers as learning residual functions

regarding the layer inputs, instead of learning unreferenced functions. The

results achieved using residual blocks in CNN are superior to several types of

approaches. Briefly, the residual block approach inserts shortcut connections

between the input and output layers. These shortcut connections simply

perform identity mapping and their outputs are added to the outputs of the

stacked layers.

Observing the effect of residual blocks in common CNNs and the results

achieved using them, we propose to use residual blocks in U-Net. In this way,
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it is believed that the network becomes more robust in the task of esophagus

segmentation. Inserting the input maps to the output of each layer avoids that

the set of pooling operations reduces the necessary information contained in

esophagus voxels that comprises only a small region of the image.

By making this change, our network has become more robust. Since

the esophagus has a very similar tissue to the structures around them, and

corresponds to a small region within the VOI, maintaining its characteristics

throughout the network has produced more significant results with the use of

Residual-U-Net.

3.4.2. Training and testing of Residual-U-Net

In this section, the database is divided into two groups: the first one with the

training input slices and the second one with the test input slices. The training

database consists of slices from patient’s volumes and corresponding slices from

marking’s volumes. In the training phase, a part of the data is separated for

validation. The validation data is used to check the performance of the network

with a set of hyperparameters. If a set of hyperparameters creates a model with

unsatisfactory results, other ones are chosen and the network is trained again.

This process repeats until the performance of the network is good enough. At

the end of the training, the best model is selected. Then, this model is applied

to the test input slices.

The test phase consists of using the model to classify new images, unknown

to the model. To evaluate the test results, the specialist’s marking image is

compared to the segmentation through the application of evaluation metrics.

Thus, they assess whether the model was good enough in segmenting the

esophagus as an OAR.

As it is an OAR that does not have a visually defined boundary in the

planning CTs, another substep is proposed to refine the segmentation.
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3.5. Segmentation refinement

The U-Net output represents the probability of each voxel belonging to the

target class. These probabilities are thresholded, so if they are greater than 0.5,

their pixels are labeled as the target class. In some images, this thresholding

results in more than one region.

It was observed that, although Residual-U-Net presents satisfactory results

when generating the segmentation predicted by the model, it is possible to

identify elements that do not correspond to the esophagus. The most common

scenario is the generation of two or more predicted objects in a slice, usually one

being the esophagus and the other one(s) being smaller unexpected structure(s).

To eliminate these other structures, only the object with the largest area is kept

in slices.

As seen in Figure 9a, many structures that are not esophagus are classified

as false positives (in blue). The step of keeping the largest object can eliminate

these objects (Figure 9b).

To get the largest object, firstly, we use a connected components image filter,

so we find all the objects connected in the volume [28]. Then a label is placed

for each object. Then, we calculate the area of each label. Finally, all labels are

compared and only the one with the most voxels is kept. Some examples can

be seen in Figure 9b.

Another point is that after keeping only the largest object (Figure 9b), it

is noticed that the region predicted as the esophagus is always larger than the

region of the specialist’s marking (green marking in Figure 9). This is due

to the fact highlighted by the majority of authors who proposed methods for

segmenting the esophagus: this organ does not have a noticeable boundary that

separates it from the tissues around it. Besides, the 3 × 3 convolutional filters

applied in the Residual-U-Net convolution steps extract features associated with

the neighborhood so they end up considering a larger region in the esophagus.

The solution to this problem was the application of erosion in the predicted

marking. We use a circle as a structuring element with a radius of 2 × 2, the
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Figure 9: Segmentation refinement: (a) examples of specialist markings in green and result of

Residual U-Net in blue, (b) specialist markings in green and result of getting largest region

in blue, and (c) specialist markings in green and result of erode in blue.

results can be seen in Figure 9c. It was the best parameters that produced

coherent results.

At the end of all steps of esophagus segmentation, the evaluation metrics

were calculated - Dice index [35], Jaccard Index, Hausdorff Distance, sensitivity

(SEN), specificity (SPE) and accuracy (ACC). The results for the method are

presented in the section that follows.

4. Results

The results achieved for esophagus segmentation in CT for radiotherapy

planning, using the proposed method, will be described in this section. Firstly,

we describe the training and test execution environment.

4.1. Training/test environment

The training environment for the VOI Segmentation and Pre-processing

step was a computer with Intel Core i5-7300HQ at 2.50GHz, 8 gigabytes of

DDR3 memory, which has a modest performance. The VOI segmentation
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step, consisting of registration and cropping the esophagus region, lasted

approximately 30 seconds per volume. In turn, the pre-processing step proved

to be more costly, exceeding 1 minute in each volume, mostly because of the

bilateral filter. Keras library with the TensorFlow backend was used to design

and train the U-Net architectures in a machine with two NVIDIA Titan X

graphics cards.

4.2. Image acquisition

As already mentioned in Section 3.1, the database consists of volumes from

3 institutes, with 12 volumes per institute, resulting in 36 volumes. To train

and test this method, the database was divided into 2 datasets: train and test.

This division was done randomly, but guaranteeing the proportion of exams per

institutes in each dataset. Thus, we have 10 exams from each of the 3 institutes

for training, and 2 from each institute for testing.

In addition, after all the steps using the 30 volumes in training and the 6

volume to test, the evaluation metrics are calculated to show the robustness of

the model.

4.3. VOI Segmentation and Preprocessing

In the VOI segmentation step, described in Section 3.2 the training and test

sets were registered. The fixed volume, used for registration of all other volumes,

is the one with the fewest number of slices in the database. For the generation

of the atlas, it was calculated the largest region where the specialist’s markings

are contained, resulting in a VOI size of 128 × 128 × 112 (number of slices).

Thus, all the volumes of the image database were cropped to this VOI size. As

a result of this operation, the previous volumes with a slice size of 512×512 are

replaced for smaller standardized VOI with fewer structures to be analyzed.

Then, all these VOIs went through the preprocessing step, where the bilateral

filter was first applied and followed by histogram equalization. Now, with the

pre-processed database, the next step is the final segmentation.
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4.4. Esophagus segmentation and segmentation refinement

In this step, the U-Net with residual blocks (Residual-U-Net) receives, as

input, the results found in the previous steps. First, as highlighted in Section 3.4,

the training volume slices are presented to the 2D network. This strategy is

adopted to increase the number of sample images in the training phase.

As the VOIs obtained in the pre-processing step have a size of 128×128×112,

the images passed to the network are slices with a size of 128×128. After several

training sessions and hyperparameters tunning, the chosen hyperparameters

were: number of epochs equal to 200, size of batch equal to 3, Adam optimizer

with initial learning rate equal to 0.0001,and 10% of volumes for the validation

set. Again, in the validation set, it is guaranteed the proportion of exams per

institute, that is, 1 exam from each institute.

After training the network, the test volumes are presented to the model, and

the evaluation metrics are calculated. It is worth mentioning that the test set

consists of 2 volumes from each institute. As highlighted in Section 3.4, the

model produces some false positives, which are disregarded, keeping only the

largest object in the slices. Finally, an erosion is applied to reduce the size of

the segmentation, since it always exceeds the size of the specialist’s marking.

To have an overview of each of the steps, and how much improvement is

obtained in each one, the results of Residual-U-Net are presented without pre-

processing, with pre-processing, maintaining the largest object and applying

erosion in the Table 1.

Table 1: Results of esophagus segmentation steps.

Steps Dice(%) SEN(%) SPE(%) ACC(%)

No pre-processing 44,35 100 98,02 98,03

With pre-processing 65,68 100 99,19 99,18

With pre-processing + Largest Object 67,05 99,89 99,22 99,23

With pre-processing + Largest Object + Erosion 82,15 90,61 99,76 99,69

Analyzing the Table 1, the pre-processing step showed a significant

improvement in the results. It is believed that due to the better definition of the
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esophagus boundaries, the segmentation results in Dice increased from 44.35%

to 65.68%, showing the importance of this step. Although the two results are

at 100% sensitivity, the result without pre-processing has a greater number of

false positives, so when analyzing the specificity metric it goes up almost 1%.

Observing the step of keeping only the largest object, improvement is

guaranteed on the Dice coefficient and specificity, i.e., there are fewer false

positives and more precise segmentation. Although there is some loss in the

sensitivity, it is worth remembering that the metrics are calculated using the

number of voxels and more voxels belong to the class of non-esophagus than the

class of esophagus, so any improvement in specificity (correct negative cases)

improves the Dice coefficient.

Finally, when using erosion to reduce the size of the object found in the

slices, there is a significant improvement in the results. The Dice coefficient

value, which was 67% without this technique, rises to 82.15%, and the metrics

of specificity and accuracy increase close to 100 %. It is worth mentioning,

once again, that the non-esophagus voxels are the majority in the images, so

improvements towards this class also benefit the Dice coefficient.

When observing the sensitivity metric with the complete method, it shows a

decrease of 10%, contrary to what happens with specificity. This is because there

are fewer esophagus voxels in the slices, so any error in this class compromises

the sensitivity metric. However, looking at Section 3.4, the results without the

erosion step end up classifying a very large area as esophagus class, which despite

correctly classifying the esophagus voxels, is of little use because it incorrectly

classifies several voxels around it.

To validate the results found by the method concerning the edge surfaces

of the specialist marking, the metrics of Hausdorff Distance [36] and Jaccard

Index [37] are calculated. In short, Hausdorff Distance is the longest of all

distances from one point in one set to the nearest point in the other set. Jaccard

Index compares members for two sets to see which members are shared and

which are distinct. Table 2, presents the results of the average of these metrics

together with the Dice.
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Table 2: Results of esophagus segmentation of boundary distance metrics.

Metrics Dice(%) Jaccard(%) Hausdorff Distance(mm)

Proposed Method 82,15 70.21 6.1030

Thus, based on the Dice metric, which shows how close the prediction is

to the specialist’s marking, it is believed that the method for segmenting the

esophagus is promising. It is believed that this method could be used in large

centers and provide fundamental help in the treatment of radiotherapy.

4.5. Case studies

In this section, some case studies are presented. Each case will show a volume

from one of the 3 institutes. In addition, the results achieved by the method in

each of these cases are discussed.

4.5.1. Case study - Institute 1

The first case study is a patient from Institute 1 of the database. In this

case, it can be seen how robust the segmentation method of the esophagus was.

Figure 10 shows several VOI slices of the same patient segmented by the method.

Figure 10 shows how similar are the segmentation achieved by the proposed

method and the specialist marking. The method was able to segment a region

very similar to the specialist marking, generating a minimum of false positives.

However, it can be seen that there was a loss of the esophagus in one of the slices.

This loss, despite only one slice, negatively affects the value of the metrics,

especially the Dice. Still, in the slices containing no esophagus voxels, the

method did not segment more regions.

Even using a 2D network, a three-dimensional visualization of the results

is presented, both as a means of evaluation and for better visualization of the

specialist. As explained in Section 3.4, the 2D segmented slices of each exam

were stacked in 3D volumes. For that, we used the same inter-slice spacing of

the original volumes. This view can be seen in Figure 11.
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Figure 10: Case study - Institute 1. In green the specialist marking and in red the segmentation

predicted by the method.

Figure 11: Case study - Institute 1. (a) volume predicted by the method and (b) volume of

the specialist’s marking.

Analyzing the Figures 10 and 11, the loss of only one slice did not compromise

the three-dimensional visualization of the esophagus segmentation. When

comparing it with the specialist’s marking, the results prove to be robust and

accurate.
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4.5.2. Case study - Institute 2

Analogous to the first case study, it shows the results of a volume from the

Institute 2 of the test database. Again, the method was considered robust in

the task of segmenting the esophagus. Figure 12 shows an image of the result

of the esophagus segmentation.

Figure 12: Case study - Institute 2. In green the specialist mark and in red the segmentation

predicted by the method.

Once again, the efficiency of the method is shown. Note that in this case

there was a loss of two slices marked by the specialist. However, when analyzing

the volume as a whole, 112 slices were subjected to segmentation, and only two

were lost. Besides, no segmented regions were generated on slices that had no

specialist markings. Thus, it is shown how reliable the proposed method is in

segmenting the esophagus in planning CT.
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As in the case study of Institute 1, a 3D visualization of the result achieved

in the volume of Institute 2 is presented. Figure 13 displays a 3D view of the

result.

Figure 13: Case study - Institute 2. (a) volume predicted by the method and (b) volume of

the specialist’s marking.

As in the first case study, there is a high similarity between the specialist

marking and the segmentation predicted by the method. This three-dimensional

visualization shows a macro view and, consequently, a global analysis of the

method result. It is believed that the loss of a few slices, although problematic,

does not invalidate the segmentation in a 3D view.

4.5.3. Case study - Institute 3

Finally, a case study of a patient from Institute 3 is shown. Analogous to

previous cases, Figure 14 shows the segmentation achieved by the method and

the specialist’s marking.

Again, there was a loss of the esophagus in one slice. However, as already

mentioned, the volume has 112 slices. Considering that the other slices were

segmented correctly, the method demonstrates to be very efficient in esophagus

segmentation.

Analogous to the previous test cases, this also generates a three-dimensional

visualization of the method’s result compared to the specialist’s marking. This

view is shown in Figure 15.
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Figure 14: Case study - Institute 3. In green the specialist mark and in red the segmentation

predicted by the method.

Figure 15: Case study - Institute 3. (a) volume predicted by the method and (b) volume of

the specialist’s marking.

Again, it is possible to observe an excellent three-dimensional segmentation

when compared to the specialist’s marking.
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4.6. Comparison with related works

The literature provides many approaches for segmenting the esophagus on

CT, either as OAR or not. Most authors report the difficulty in distinguishing

the esophagus on CT, even when it is done by specialists. It is noteworthy

that, because there is no well-defined contrast of this organ in CT, segmenting

it has become an arduous task, and consequently, an exhaustive process when

performed manually.

In Feulner et al. [13], a probabilistic method for esophagus segmentation

is proposed. According to the authors, the method consists of multi-stages.

The authors’ experiments are performed on a private database with 144 CT

and achieved a Dice result of 74%. It is observed that this method is

highly dependent on descriptive models and prior knowledge. Yet, non-rigid

registration is necessary, causing deformities in the initial esophagus structure.

One of the main negative points of the work is the use of deformable registration

that ends up modifying the individual anatomical structure of each patient.

Besides, segmentation is guided by a probabilistic model. In our work, despite

the use of the registration, it is a rigid one and the atlas is only used for the

generation of a VOI that will later be presented to Residual-U-Net.

The work proposed by Grosgeorge et al. [14], proposes a method for

esophagus segmentation. The method achieves its results using a skeleton-

shaped model to guide the segmentation. The method consists of two stages:

a 3D segmentation using a graph cut technique, followed by a 2D propagation.

This method is applied to a database with 6 patients and presents a Dice equal to

61%. Although the method is said to be automatic, it depends on the creation

of a skeleton model based on specialist marking. The method also uses only

image processing techniques without applying machine learning classification.

Our work uses a very diversified database with a total of 36 patients. Moreover,

our work reaches a Dice of 82%.

The work by Larsson et al. [15] proposes a method for the automatic

segmentation of various abdominal organs on CT. Among the segmented organs,

the esophagus segmentation achieves a Dice of 66.2%. However, the authors use
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an atlas to weight the voxels, so that they have a probability of belonging to each

organ classes. In our method, we used the atlas only for VOI segmentation, and

our Residual-U-Net segmentation achieved better results than the mentioned

work.

Once again, the difficulty in segmenting the esophagus is highlighted

by Trullo et al. [18]. The authors also highlight how crucial the segmentation of

this organ is for RT. According to them, the work presented a fully automatic

method. This method consists of only two steps. In the first step, a CNN is

used to estimate the location of the esophagus (this CNN was published in other

papers by the same authors, and presented a Dice of 66% for the esophagus [16]).

So, a crop is made in this location, and the same network is trained to classify

only this small region. The method was tested in 30 CT volumes and presented

a Dice of 72%. Like most works, it proposes to crop the esophagus location.

However, as the authors themselves point out, the first network is not able to

correctly locate the esophagus, so cropping is necessary and then the second

network classifies the esophagus. Because the first network may not find the

location of the esophagus or segment the wrong region, the second network

(which has the same architecture of the first) may not be able to segment it

properly. In our work, for the VOI segmentation, we first used the atlas, then

Residual-U-Net segments the esophagus in the VOI. Thus, our work exceeds the

Dice values of both authors’ works.

One of the most recent works that deal with the segmentation of the

esophagus as OAR is Fechter et al. [12]. The method proposed by the authors

uses a CNN to create a probabilistic model that is used as an input to an active

contour model (ACM). Then, both segmentations achieved by the CNN model

and the one generated by the ACM, are applied to a random walker algorithm

based on the Hounsfield units (HU) of the volumes. The method is applied to

a database composed of 50 volumes, reaching a Dice result of 76%. Although

the method uses CNN as part of its steps, the final segmentation depends on

the HU of the image. This makes the model susceptible to errors when there is

an abrupt change in HU, in cases where the CT acquisition process is not well
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defined. The database used in our work, for example, has different acquisition

protocols. Although this method has the highest Dice value in the literature

until now, our work was capable to surpass it.

In Dong et al. [17], a method for esophagus segmentation in planning CT is

proposed. The authors propose an adversarial network combined with an FCN

to achieve their results. This work presents the results in the same database used

by us. The method is validated by the leave-one-out technique, ensuring that

only one individual is tested at a time, so the training has more samples to be

generated. For the esophagus, the method achieves 75% Dice, 73% sensitivity,

and 99% specificity. The work is very promising, but it relies on a step of

segmentation of the lungs. The lung segmentation is used as a reference for

cropping a VOI comprising the esophagus. Thus, the method is dependent on

a good segmentation of the lungs, which in our case does not interfere. Also,

although this work was carried out in the same database used in our work, the

authors used only 35 volumes, but they do not state the reason for this. Our

method outperforms this work in all evaluation metrics.

The work proposed by Chen et al. [20] performed a deep learning semantic

segmentation to esophagus segmentation. The authors proposed a U-Net and

its done slice by slice. And in the end, a 3D model of the result is created to

assist the specialist. Despite being a robust method, with recent and promising

techniques, the method is applied in 15 CT exams. The results achieved by the

method are 79% [20] of Dice. Our method is applied to a larger database,

composed of 36 patients from 3 institutes, and reaches an average Dice of

82.15%.

Feng et al. [21] also present a multi-organ segmentation method that targets

the esophagus. The method is quite recent and applied to the same database

as our work. This method also uses a U-Net approach for organ segmentation.

However, the Feng et al. [21] method achieves only 72% of Dice for esophagus

segmentation, while our work shows results 10% higher than this one.

Table 3 shows the relationship between these works and the proposed

method.
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Table 3: Comparison with related works.

Works Method Exams Acu Dice

Feulner et al. [13] Probabilistic model 14 — 74%

Grosgeorge et al. [14] Skeleton-shape model 6 — 61%

Larsson et al. [15] Atlases weighted model 30 — 66,2%

Trullo et al. [16] CNN model 30 — 66%

Trullo et al. [18] Two CNN models 30 — 72%

Fechter et al. [12] CNN + ACM 50 — 76%

Dong et al. [17] Adversarial CNN 35 — 75%

Chen et al. [20] U-Net/CNN 15 — 79%

Feng et al. [21] U-Net/CNN 36 — 72%

Proposed Method Atlas-based Residual-U-Net 36 99,69% 82,15%

It can be observed that the literature presents several recent works for the

segmentation of the esophagus. As it is not a trivial task, not even for a

specialist, the highest Dice value found in the literature so far is 79%. All

studies show the need for reducing the scope of the patient’s volume for better

segmentation. This information was valuable when building our method, where

registration techniques and atlases were used to segment the VOI.

It was also possible to observe that none of these works used preprocessing, so

an important step in our method was to find enhancement techniques that could

improve the visualization of the esophagus in the slices. Another important step

is the refinement of the Residual-U-Net segmentation. Since the texture of the

esophagus is very similar to the other organs and tissues, the segmentation was

not accurate enough, so this step was necessary to improve it.

Thus, it is noteworthy that our work presented an automatic method for

esophagus segmentation. It is composed of techniques found in the literature

and novel techniques to achieve better results. Although some databases

used in literature are different from ours, it manages to surpass all the works

presented so far. This demonstrates the feasibility of our method for esophagus

segmentation.
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5. Discussion

Esophagus segmentation is not a trivial task. Developing a method capable

of circumventing all the adversities of this OAR and achieving a good result is

still a challenge. The proposed method for esophagus segmentation proved to

be quite robust and presented a series of advantages:

1. A fully automatic method is presented, which does not require prior

knowledge to conduct segmentation;

2. The step of VOI segmentation proved to be quite pertinent. Since the

esophagus represents a very small portion of the planning CT volume,

proposing a method capable of reducing the scope before applying the

segmentation impacts the final results, as shown in related works;

3. One of the main challenges of the esophagus, already highlighted in all

the related works, is that there is no clear distinction between its tissue

and the tissues around it. Following the literature, it was observed that

most works relied on locating this OAR from spatial information, either

through probabilistic models or scope reduction techniques. Thus, one of

the contributions of the proposed work to this task is the pre-processing

step;

4. The pre-processing step proved to be crucial to achieve better results. The

method achieved an improvement of more than 20% of Dice when using

the sequence of the two pre-processing techniques;

5. The strategy of using slices in the training step of the network also proved

to be effective. A 3D approach would considerably reduce the number of

samples. By using slices, this problem is mitigated;

6. The proposed network for esophagus segmentation was also a crucial step

in achieving good results. It is believed that, since the esophagus comprises

a small region of the VOI, using the residual blocks between the layers

helped to maintain the features, providing better results;
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7. Still, we did not find studies in the literature that use residual blocks in

the U-Net for the esophagus segmentation, once again presenting advances

with the proposed method;

8. Keeping the largest object from the segmentation is also important for

the method. It was observed that several tissues around the esophagus

present similar features compared to it, so the network ends up predicting

some smaller objects other than the esophagus. Therefore, excluding these

objects improves the Dice of the method;

9. It is possible to notice that because the tissue around the esophagus is

very similar to the texture of the esophagus itself, the network leads to

segment a larger region. However, in most cases, there is no loss of the

esophagus, resulting in 100% of sensitivity in some tests. Considering this,

an erosion step was applied, where it was possible to significantly improve

the metrics;

10. The combination of all the techniques employed in this method resulted

in a Dice value of 82.15%, sensitivity of 90.61%, specificity of 99.76%, and

accuracy of 99.69%. This result surpasses the other works presented so

far in the literature;

11. Finally, it is emphasized the problems of the database which, in addition

to being diversified, presents the esophagus structure as an OAR that is

very difficult to segment. Despite all the adversities, the method managed

to reach a state-of-the-art Dice value.

Although the method is very promising, surpassing the works already

published, it still has some limitations:

1. The training step has a segmentation network composed of numerous

hyperparameters. They are adjusted by evaluating the network

performance on the validation dataset, which takes a long time;

2. Another issue is the refinement of segmentation. Although it produces

very expressive Dice results, as the erosion technique reduces the object
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segmented by Residual-U-Net, there is a certain loss in the sensitivity

metric;

3. Finally, there is a great dissimilarity on the data provided by the 3

institutes. Finding a way to standardize their textures could improve

the results.

Thus, it is stated that all these advantages and limitations add important

value to the proposed method for esophagus segmentation. The combination of

the techniques provided promising results, and it is believed that the use of this

method in CAD systems could be of fundamental importance to the specialists

in the segmentation of this OAR.

6. Conclusion

For the esophagus segmentation, we sought to associate the most used

techniques in the literature and propose improvements to generate promising

results. The VOI segmentation step was crucial for the initial results, with which

it was possible to reduce the scope of the volume and thus provide improvements

in the results. The pre-processing step proved to be fundamental, with the

possibility of enhancing the boundaries of the esophagus and, consequently,

passing on valuable information to Residual-U-Net.

The proposed network for esophagus segmentation presented promising

results, especially considering that the esophagus corresponds just a small

region of the VOI. The subsampling layers lead to further reduce the amount

of information. Therefore, combining residual information from the previous

layers brought better results to the method.

Another important point was the refinement step. This step is composed of

2 techniques. The first one keeps the largest object and the second one applies

an erosion to the segmentation. This step was able to address the problem

of similar textures among the esophagus and surrounding tissues. The result

achieved by applying these techniques was a Dice coefficient value of 82.15%. It

is worth mentioning that this is the best Dice coefficient result in the literature.
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Furthermore, this is a very diversified database, which further validates the

effectiveness of the proposed method.

However, as already mentioned, the training step has a segmentation network

composed of various hyperparameters that takes time to tune. Automating this

step could produce even better results. There is a high dissimilarity among the

data provided by the three institutes, so standardize their texture could also

improve the results.

Thus, it stands out that the presented method is quite promising. We believe

that it can be very useful in large radiotherapy centers, where the task of

protecting the esophagus is essential. It should be noted that the esophagus

is an OAR that is extremely sensitive to radiation. Besides, damaging it can

cause several problems. To make things worse, it is an organ that is difficult and

time-consuming to segment, even by the specialist. All those issues are enough

to prove the importance and need of a precise fully-automated segmentation

method, and our method could provide that.
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