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Abstract

Background and Objective: New proposals to improve the regulation of hyp-
nosis in anaesthesia based on the development of advanced control structures
emerge continuously. However, a fair study to analyse the real benefits of
these structures compared to simpler clinically validated PID-based solutions
has not been presented so far. The main objective of this work is to analyse
the performance limitations associated with using a filtered PID controller, as
compared to a high-order controller, represented through a Youla parameter.

Methods: The comparison consists of a two-steps methodology. First,
two robust optimal filtered PID controllers, considering the effect of the
inter-patient variability, are synthesised. A set of 47 validated paediatric
pharmacological models, identified from clinical data, is used to this end.
This model set provides representative inter-patient variability Second, indi-
vidualised filtered PID and Youla controllers are synthesised for each model
in the set. For fairness of comparison, the same performance objective is
optimised for all designs, and the same robustness constraints are consid-
ered. Controller synthesis is performed utilising convex optimisation and
gradient-based methods relying on algebraic differentiation. The worst-case
performance over the patient model set is used for the comparison.

Results: Two robust filtered PID controllers for the entire model set,
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as well as individual-specific PID and Youla controllers, were optimised. All
considered designs resulted in similar frequency response characteristics. The
performance improvement associated with the Youla controllers was not sig-
nificant compared to the individually tuned filtered PID controllers. The
difference in performance between controllers synthesized for the model set
and for individual models was significantly larger than the performance dif-
ference between the individual-specific PID and Youla controllers. The dif-
ferent controllers were evaluated in simulation. Although all of them showed
clinically acceptable results, the robust solutions provided slower responses.

Conclusion: Taking the same clinical and technical considerations into ac-
count for the optimisation of the different controllers, the design of individual-
specific solutions resulted in only marginal differences in performance when
comparing an optimal Youla parameter and its optimal filtered PID counter-
part. The inter-patient variability is much more detrimental to performance
than the limitations imposed by the simple structure of the filtered PID
controller.

Keywords: Depth of hypnosis, PID, Robust optimal control, Youla
controller

1. Introduction

Adequate dosing of anaesthetic drugs is required to avoid awareness,
maintain homeostasis, and reduce postoperative discomfort and recovery
times in the post-anaesthesia care unit [1]. This requires continuous monitor-
ing of the patient’s anaesthetic state, enabling the anaesthesiologist to adapt
drug titration as needed. It is this continuous decision-making process that
has inspired extensive research on closed-loop control systems for anaesthetic
drug dosing.

This work focuses on control of the hypnosis component of general anaes-
thesia, known as the Depth of hypnosis (DoH). We consider a closed-loop
structure where the controller manages the infusion rate of the intravenous
anaesthetic drug propofol to maintain a user-defined DoH setpoint, with the
output of a cortical EEG monitor as measurement signal. The controller
needs to attenuate the effect of the surgical disturbances. Failure to do so
can result in patient awareness.The closed-loop system also needs to be in-
sensitive to high frequency measurement noise typically associated with DoH
monitors. Furthermore, and of high relevance to the design, the controller
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must be robust against patient model uncertainty.
Properly tuned PID controllers have demonstrated adequate robustness,

performance and safety in the clinical setting [2]. The simple structure and
low parameter count are attractive features of the filtered PID controller,
facilitating synthesis, implementation and verification. Different design ap-
proaches have been proposed to tune the proportional-integral-derivative pa-
rameters of the PID controllers [3]. More complex controllers have also been
developed and clinically evaluated [4, 5]. Due to the absence of objective
comparisons between controller structures, it remains unclear whether such
advanced controller types in closed-loop anaesthesia could result in an in-
crease in performance with maintained safety.

The design objectives commonly vary between published designs [6], and
they are not always explicitly stated in works presenting manually tuned
controllers. Variations in the patient cohort, type of surgery, drugs delivered,
and the practical implementation of the controller may bias the comparison
[7]. Furthermore, the sets of patient models used for controller synthesis
vary across research groups, as does the dynamics on which the obtained
controllers are evaluated. While published studies typically investigate the
performance of a particular controller, they provide little insight into whether
this performance is foremost limited by the type of controller or by some other
factors such as the variability in the patient model set used for the synthesis.

The aim of this study is to directly compare the achievable performance
of PID controllers and higher-order LTI structures for the regulation of the
depth of hypnosis in anaesthesia. For this purpose, the same clinical and
technical considerations need to be used for the synthesis of both structures.
We have therefore formulated a robust performance synthesis problem with
a clinically relevant control objective, which can be solved within both the
filtered PID and Youla parameter frameworks. This enables comparison of
achievable performance of a filtered PID controller, with that of an LTI
controller of arbitrary order, for the same (uncertain) model set.

A Youla parameter, constituting an upper bound on performance for an
LTI controller of arbitrary order, is synthesized. While methods for optimis-
ing filtered PID controllers over sets of plant models are considered herein,
there exists no general [8], or in the considered context applicable, method
to design optimal LTI controllers for a set of process dynamics. Therefore,
a two-step comparison was proposed. First, the effect of the inter-patient
variability on the closed-loop performance was studied. The performance
achieved by a robust optimal PID synthesized for a set of patients was com-
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pared with that achieved by individualized optimal PID controllers. Second,
the performance of individualised PID controllers was compared with that
of individual Youla parameters for the models in the considered set.

The contribution of this paper is twofold. In addition to the proposed
method that enables systematic comparison between a filtered PID controller
and an optimal LTI controller for DoH control, our illustrative example shows
that the room for improvement when increasing controller order beyond that
of a filtered PID is marginal when a model set featuring representative inter-
patient variability is considered.

2. Modelling the anaesthetic process

2.1. Patient models

Pharmacokinetic-pharmacodynamic (PKPD) models are used in anaes-
thesia to describe the relationship between the hypnotic drug (propofol) in-
fusion rate, and its effect on a clinical variable (the DoH) [9].

The comparison presented in this work was made using a set P of 47
paediatrics PKPD models [10]. The models were identified from clinical
data and then linearised as described in [11]. The main motivation for using
this set of linearised models is that robust PID controllers, similar to the
ones considered herein, have been designed for it, and extensively validated
both in simulation and clinically [12].

Variability can be directly characterised by the linearised models of the
set P . A more conservative characterisation is provided by the unstructured
additive uncertainty model

P∆(iω) = {P0(iω) + ρ(ω)∆ : ∆ ∈ C, ‖∆‖∞ < 1} , (1)

where P0 is a nominal model, ∆ is any point within the unit disc in the
complex plane, and ρ is the uncertainty radius. The response P∆(iω) was
chosen to frequency-wise minimise ρ(ω), while covering P(iω). This results
in a convex program, enabling efficient computation of P0 and ρ from P , as
described in [13]. Both P and P∆ were considered as descriptions of inter-
patient variability in our study.

Note that these models and uncertainty description focus on uncertainty
resulting from inter-patient variability, being the most challenging uncer-
tainty source from a control synthesis perspective, and relatedly, the one
that has received most research attention. Uncertainty can also arise as a
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consequence of intra-patient variability (e.g. haemodynamics affecting drug
distribution and metabolism) and also as a consequence of limited parameter
identifiability from underlying modelling experiments [14, 15].

2.2. Equipment models

The Bispectral Index (BIS) monitor has been used to measure the DoH
in a majority closed-loop controlled propofol anaesthesia systems [16]. We
instead assume the use of the NeuroSense WAVCNS monitor. It is similar to
the BIS, but comes with the advantage of time-invariant response dynamics
[17]

M(s) =
1

(8s+ 1)2 , (2)

making it more suitable for closed-loop control applications [18].
The monitor dynamics (2) were incorporated in our study through series

connection with the patient model.
Dynamics of modern remote-controlled infusion pumps are essentially

static and linear, with negligible quantisation effects. In addition, bandwidth
and titration precision of these pumps are high, relative to the requirements
imposed on a closed-loop propofol anaesthesia system. Consequently, no
explicit actuator model has been employed.

2.3. Disturbance models

Two main exogenous disturbances were considered in this study. First,
surgical stimuli act as disturbances, increasing the DoH, unless counteracted.
As suggested in [19], they were modelled as steps added to the patient output.
Second, measurement noise was added to the DoH monitor output. A white
noise model, previously identified from data [19], was used.

3. Optimisation-based controller design

3.1. Performance and robustness

Closed-loop DoH control involves two problems: a servo problem, asso-
ciated with the induction of anaesthesia, during which the patient state is
transitioned from aware to a setpoint DoH; a regulator problem, associated
with maintenance of anaesthesia, aimed at disturbance attenuation in the
vicinity of the setpoint. It is good control engineering practice to separate
the two using a two-degree-of-freedom (2DOF) design, as suggested in [20],
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where the regulator problem is first solved by a feedback controller, that is
then augmented with a feedforward controller addressing setpoint tracking.
This work considers the regulator problem.

A block diagram illustrating the closed-loop system is shown in Figure 1.
The control objective is to attenuate the disturbance, d, from the DoH, z.
Considering that sudden large deviations from the setpoint are clinically
worse than more persistent small setpoint deviations, the L2 norm of the
monitored DoH, y, resulting from a disturbance step, d, was minimized.

Controller
Infusion
Pump Patient DOH

monitor

r + e yu z+ +

d n

−

Figure 1: Block diagram of the closed-loop system. The signals are: DoH setpoint, r;
propofol infusion rate, u; DoH, z; measured DoH, y; surgical disturbance, d; measurement
noise, n.

To ensure robustness of the design, H∞ constraints on the sensitivity
function S, and its complement, T = 1 − S, were imposed. Constraining
‖T‖∞ and ‖S‖∞ provides robustness to additive process perturbations and
loop-transfer perturbations [21]. Measurement noise was attenuated by im-
posing an H2 constraint on the transfer function KS from noise, n, to control
signal, u. The noise sensitivity constraint was expressed using the H2, since
the outcome of limiting the H∞ norm depends heavily on for which fre-
quency, with respect to the closed-loop bandwidth, it is attained [22]. The
constraint levels (Ms, Mt and Mks) were chosen to match worst case val-
ues of the constrained functions, evaluated over the considered inter-patient
variability model, with a previously clinically evaluated PID controller in
the loop [12]. These constraints limit maximal magnitudes of sensitivity and
complementary sensitivity, and bound admissible energy transfer from mea-
surement noise to control signal. They do not limit performance more than
required for adequate robustness. In particular, it is easy to devise examples
with other plant dynamics, where a Youla design would outperform a PID
counterpart under the given constraints.

Response undershoot was limited to 10 WAVCNS, preventing the worst-
case undershoot associated with the 50 WAVCNS to bring the DoH outside
the recommended 40–60 WAVCNS interval for general anaesthesia. With
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modern infusion pumps, prevention of actuator wear is not a motivation for
limiting control signal noise. However, slew rate limitations and the risk of
the supervising anaesthesiologist putting a controller with violently varying
output into manual mode would be [23].

Filtered PID controllers, robust over the model set, P , and the uncertain
model, P∆, were synthesised, alongside individual filtered PID controllers for
each each of the 47 models in P . The latter were compared with Youla param-
eters, individually optimised for the same 47 models. First, this comparison
quantified the benefit of increasing controller order. Second, the comparison
between the individualised PID controllers with those optimized to be robust
over P and P∆, respectively, quantified the performance limitations imposed
by inter-patient variability. Main considerations for the optimisation of the
different controllers are presented in the next subsections.

3.2. PID controllers

A general description for the synthesis of the PID controllers included in
the comparison is presented in this section. Robust filtered PID controllers
in the form

K(s) = C(s)F (s) (3)

C(s) = kp + ki
1

s
+ kds (4)

F (s) =
1

T 2s2 + 2ζTs+ 1
(5)

were synthesised. Parameters [kp, ki, kd] of the PID controller (4) were co-
optimised with parameters [T , ζ] of the filter (5).

The parametrisation of K resulted in a non-convex synthesis problem that
was approached with a two-stage method. First, a global optimisation, based
on simulated annealing (SA), was performed [24], with logarithmic barrier
functions representing the constraints. Since SA is a gradient-free method, it
provides no means to verify local optimality. Consequently, the second stage
comprised gradient-based optimisation by means of the method of moving
asymptotes (MMA) [25]. The optimisation methods were implemented us-
ing the Julia language package ControlSystems.jl [26] in combination with
forward-mode automatic differentiation [27]. Key implementation aspects
are reviewed in [28].
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The optimisation was performed over a uniform frequency grid

Ω = {ω1, . . . , ωN}, ωk =
kπ

NTs
,

where the number of frequency points, N = 211, was numerically verified to
lie sufficiently dense for the problem at hand. The sampling period was set
to Ts = 5 s, matching the actuation interval in the control system for which
the models are intended [12].

3.2.1. PID control based on the model set

The filtered PID controller was optimised by maximizing the worst-case
performance over the patient model set P while satisfying robustness and
undershoot constraints for each patient model in P :

min
K

max
∀k∈{1,...,#(P)}

∥∥∥∥Sk
1

iω

∥∥∥∥2

2

(6)

subject to
∀k∈{1,...,#(P)}

‖Sk‖∞ ≤Ms

‖Tk‖∞ ≤Mt

‖KSk‖2 ≤Mks

F−1

(
Sk

1

iω

)
≥ my.

3.2.2. PID based on the uncertain model

Inter-patient variability was represented by P∆(iω), describing the set of
all possible responses at frequency ω. The problem of optimisation of the
worst-case performance while satisfying worst-case constraints over P∆(iω)
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is given by

min
K

1

π

∫ ∞
0

S
2 1

ω2
dω (7)

subject to
∀ω

|P0KM + 1| − ρ|KM | − 1

Ms

≥ 0

|P0KM + f(Mt)| − ρ |KM | −
f(Mt)

Mt

≥ 0

‖KS‖2 ≤MKS

min
P∆

(
F−1

(
S∆

1

iω

))
≥ my,

where

f(Mt) =
M2

t

M2
t − 1

and

S =
1

|P0KM + 1| − ρ|KM |
(8)

represents the worst-case sensitivity in terms of the optimisation objective
generated by P∆. A detailed explanation of the derivations for the worst-case
expressions in (7) and (8) is provided in the Appendix.

The last inequality of (7), where S∆ represents any frequency-wise reali-
sation of (1 + PK)−1 with P ∈ P∆, limits load-response undershoot to my.
Minimisation under P∆ generates the worst case for the constraint under
S∆. Undershoot was limited by enforcing that yk ≥ my is fulfilled for each
corresponding time-domain sample

yk =
1

N

N−1∑
n=0

Yne
2πn
N

i (9)

of the response y. Each Yn needs to be selected from a disc in the complex
plane, generated by P∆, before the inverse Fourier transform (9) is applied.
The radii of these discs are given by the expression (A.6), provided in the
Appendix. The smallest contribution to yk from disc yN is ρn, resulting in
the bound

yk ≥ yk,0 −
N−1∑
n=0

ρn. (10)
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3.2.3. PID control based on the individual models

A similar formulation to (6) was considered for the optimisation of the
individualised filtered PID, in which maximisation over k ∈ {1, . . . ,#(P)}
was replaced by optimising individual controllers for each patient model k.

3.3. Youla synthesis

The Youla parametrisation characterises all stabilising controllers, K, for
a linear plant, P . Using a suitable representation of a general controller
transfer function, it is possible to apply convex optimisation to search for the
optimal controller. For a stable plant, the Youla parametrisation becomes
particularly simple. Introducing the Youla parameter

Q =
K

1 + PK
, (11)

the sensitivity function and its complement can be expressed as

T = PQ (12)

S = 1− PQ (13)

while the control signal response to measurement noise is given by KS = Q.
Transient responses were evaluated over T = 8000 s, being a sufficient

horizon considering propofol PK dynamics. The Youla parameter Q was
expressed using the Ritz approximation

Qd(z) = Q0(z) +

Nq∑
k=1

xkQk(z) (14)

where xk are the scalar variables to be optimised, and Qk(z) = zk−1 repre-
sents a discrete-time shift. The constant term of (14) is given by

Q0(z) =
Kind,d(z)

1 + Pd(z)Kind,d(z)
, (15)

where

Kind,d(z) = FOH(Kind(s), h) (16)

Pd(z) = FOH(P (s), h) (17)
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are the first-order-hold discretisations of the optimal individualised filtered
PID controller and the plant, respectively.

The same frequency grid and sampling period were used for the Youla
and filtered PID designs. The corresponding cost to be minimised was

J =

T/h∑
k=0

y2(k). (18)

The aforementioned robustness constraints on S, T and KS, as well as the
undershoot constraint on y were introduced.

To guarantee that J converges as t→∞, the controller must have integral
action. This was enforced by adding the steady-state constraint∣∣∣∣Qd(1)− 1

Pd(1)

∣∣∣∣ < ε (19)

for some small ε (10−7 was used here). All considered constraints are closed-
loop convex, meaning that a solution can be found efficiently. Once the
optimal Qd is found, the controller is recovered as

Kd =
Qd

1−QdPd

. (20)

The optimisation problem was specified and solved in MATLAB using the
CVX optimisation library with the MOSEK solver. All solutions were checked
for constraint violations between grid points.

4. Results

4.1. Analysis of the optimisation

Table 1 provides an overview of the resulting controllers. The parameter
values obtained through the optimisation are shown in Table 2 for the robust
filtered PID designs. The choice of Nq = 400 parameters of the Youla con-
troller, QK , was deemed sufficient , and further increase resulted in negligible
performance gain. Since the high parameter count of QK renders tabulation
infeasible, Bode plots for the analysis of the frequency response of each con-
troller are presented instead. Figure 2 reveals a high degree of similarity
between the considered designs. The main difference between the individu-
ally optimised PID controllers, Kind, and their Youla parameter counterparts,
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10−3 10−2 10−110−1

100

101

ω [rad/s]

|K |

a

10−3 10−2 10−1
−90

−45
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45
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b

Figure 2: Controller Bode plots. a) shows magnitudes, |K(iω)|; b) shows phases, ∠K(iω).
Colours according to Table 1.
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Table 1: List of evaluated Youla parameters and filtered PID controllers, and the colour
used to represent them in figures of Section 4.

Controller Colour Description

Kset blue PID for patient set

K∆ orange PID for additive uncertainty model

KQ green individualised Youla controller

Kind violet individualised PID controller

Table 2: Parameters of the considered filtered PID controllers. Parameters correspond to
the ideal serial PID form Kp(1 + (Tis)

−1 + Tds). The filter parameters are presented as
in (5). Units are: Kp [mg/kg/min WAVCNS]; Ti [s]; Td [s]; Tf [s]. The relative damping ζ
is dimensionless.

Kp Ti Td Tf ζ

Kset 1.04 314 65.1 15.3 0.71

K∆ 1.05 644 38.7 11.1 0.73

KQ, lies in the mid-frequency range, where the additional degrees of freedom
of KQ provided a phase advance in the range of 0.01–0.05 rad/s. The main
difference between the filtered PID designs were for low frequencies.

Figure 3 shows the distribution of the optimisation cost when applying
the considered controllers over the patient model set P . Cost values were
normalised by the maximum cost α = 316, attained over P with the clinically
verified filtered PID controller, KC . For a particular model, it was observed
that the above-mentioned relative phase advance of the Youla design in the
mid-frequency range resulted in limited performance improvement over the
individually tuned filtered PID controllers. However, including uncertainty
from the inter-patient variability resulted in a significantly worse performance
as seen by comparing either of Kset or K∆ with Kind.

Resulting sensitivity and complementary sensitivity magnitudes are shown
in Figure 4. The constraint levels, Ms = 2.55 and Mt = 2.08, correspond
to the worst case H∞ norms obtained when evaluating KC over P . The H2
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Kset K∆ KQ Kind

0.2

0.4

0.6

0.8

1
α
‖y

‖2 2

Figure 3: Distribution of optimisation cost ‖y‖22 over the patient model. Colours according
to Table 1.

norms and the Bode magnitudes of the underlying KS were computed for the
analysis of the noise sensitivity constraint. Results are shown in Figures 5
and 6, respectively. The noise sensitivity constraint was active for each con-
troller type except K∆. Specifically, it was active for each of the 47 models
in P under Kind and KQ. In addition, at least one patient model of the set
reached the constraint when optimising Kset. As a result, it could be noted
that the performance was limited by the constraint level on noise sensitivity,
KS, in three of the four proposed designs.

The results of the closed-loop patient output to a step disturbance when
considering the linearised patient models is shown in Figure 7. The under-
shoot constraint was only active for K∆. However, as a consequence of ∆
being a conservative uncertainty description, K∆ resulted in fulfilment of the
undershoot constraint when evaluating the controller over the 47 individual
patient models of P .

4.2. Simulations

Controller performance of the obtained controllers were evaluated in a
simulation using the 47 nonlinear patient models, from which the linear
models comprising P were obtained.A DoH setpoint of 50 WAVCNS was con-
sidered. With the systems in stationarity at this setpoint, a step disturbance
of magnitude 10 WAVCNS was applied at t = 0. The outcome is shown in

14



10−3 10−2 10−110−1

100

Ms

ω [rad/s]

|S |

a

10−3 10−2 10−110−1

100

Mt
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b

Figure 4: Magnitudes of a) sensitivity |S(iω)| and b) complementary sensitivity |T (iω)|
for the considered designs. The horizontal dashed black line shows the constraint levels.
Thick lines show the worst-case constraint level for each considered controller type. Colours
according to Table 1.
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Figure 5: Distribution of noise sensitivity H2 norm, ‖KS‖2, of the considered controllers
over the patient model set. The vertical dashed black line shows the constraint level, Mks.
Colours according to Table 1.

10−3 10−2 10−1

100

101

ω [rad/s]

|KS |

Figure 6: Noise sensitivity magnitude |K(iω)S(iω)| for the considered design. Thick lines
correspond to the closed-loop generating the worst ‖KS‖2 for each controller type. Colours
according to Table 1.
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60

my

t [min]

y

Figure 7: Closed-loop response y(t) resulting from applying an additive output disturbance
of magnitude 10 WAVCNS (solid black line) to each model in the set. Thick lines show the
responses of maximal undershoot for each considered controller type. The dashed black
line shows the undershoot constraint level my. Colours according to Table 1.

Figure 8. All designs provided admissible disturbance responses, similar to
those resulting from the linearised models. These results show that the con-
trollers maintain the DoH within the recommended 40–60 WAVCNS range
during the maintenance phase, in face of disturbances and the design model
mismatch caused by the nonlinearity.

5. Discussion

This simulation study has compared the achievable performance of a
widely used and clinically validated PID-based structure for DoH control
to that involving a more advanced linear time-invariant controller of arbi-
trary high order. All considered controllers were optimised using the same
performance and robustness criteria. The effect of the inter-patient variabil-
ity on the performance was analysed. Both synthesis and evaluation were
based on a set of previously published and verified PKPD patient models.
All the designs were performed for linearised versions of the patient models.
Consequently, the resulting controllers were evaluated together with the un-
derlying nonlinear models to validate the results. The comparison showed
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Figure 8: Closed-loop responses of the nonlinear patient models when applying a simulated
surgical stimulation. a) shows simulated NeuroSense monitor responses. The disturbance
is shown in solid black; the dashed black line represents the setpoint r = 50 WAVCNS,
and the undershoot constraint level my imposed. b) shows the corresponding infusion
profiles u. Thick lines show the highest cost over the patient model set for each considered
controller type. Colours according to Table 1.
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that increasing controller order beyond that of a filtered PID, resulted in
only marginal performance gains, and further improvements were prevented
by the inter-patient variability. Taking additional uncertainty sources, such
as intra-patient variability and model parameter uncertainty associated with
identification from experimental data, into account, will further diminish the
margin for improvement.

The objective used in the current comparison was to minimise the L2 norm
of the measured DoH response resulting from the disturbance model. To in-
troduce further robustness and associated conservatism, an uncertainty de-
scription from the model set was generated and considered for the synthesis
of a robust controller as proposed in [13]. This approach enables the use of
model-based designs, from a small number of models with significant spread
in frequency response. Since a set of models was considered here, worst-
case performance over the model set was optimised, while ensuring that each
imposed constraint was fulfilled for each model of the set. While optimising
mean or median performance constitutes possible alternatives, the worst case
was chosen here since it introduces safety through conservatism.

Disturbance attenuation was balanced against undershoot, through im-
posing a constraint of 10 WAVCNS on the latter. Relatedly, a trade-off be-
tween performance and control signal activity was introduced through con-
straining the noise sensitivity function. It could be noted that the associated
constraint levels Ms = 2.55 and Mt = 2.08 exceeded the typical recommen-
dation [21]. The reason is that robustness to inter-patient variability was
enforced to a large degree by taking the model set into account, as opposed
to designing for a single patient model and enforcing robustness across the
set using the mentioned constraint levels. Here, Ms and Mt should instead
be viewed as providing additional robustness, ensuring stability for patient
models which were not fully represented by those in P .

The presented methodology could be applied also to other clinically rep-
resentative model sets or synthesis problem formulations. Studies conducted
to date show that there is a large similarity between the pharmacological
behaviours described by the PKPD models proposed for adults and children,
see e.g. [29]. On a similar note, in some applications a slightly differing
objective could be preferable. In [12], a PID controller for propofol anaes-
thesia was optimised and clinically evaluated. Limiting the time of induction
for anaesthesia was more heavily emphasized, resulting in parameters val-
ues differing slightly from the ones reported here. In addition, a comparison
between a PID controller and a higher-order model-based controller was con-
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ducted in [30]. However, both controllers included in the comparison were
manually tuned. Although the same design objective was considered for both
controllers, different design criteria were implemented.

The main limitation of our study lies in the infeasibility of finding the op-
timal Youla parameter for a set of models. (While unknown, its performance
would be upper bounded by KQ and lower bounded by Kset.) This is why
we have compared optimal Youla parameters for individual patient models
to corresponding optimal filtered PID controller. The two rightmost boxes
of Figure 3 reveal that there is very little difference in performance between
these two designs. Separate comparison between the individualized filtered
PID controllers (Kind), and those designed to be perform robustly across the
inter-patient variability (Kset, K∆) reveals that the main performance differ-
ence between designs included in the study can instead be attributed to the
inter-patient variability.

6. Conclusion

Given clinically imposed requirements on robustness in combination with
representative inter-patient variability, increasing controller order beyond
that of a filtered PID controller does not significantly increase achievable
performance in propofol DoH control. Relatedly, there is a significant dis-
crepancy between the achievable performance when considering an individ-
ual patient model compared to a model capturing representative variability
within a target population. To conclude, there is little to gain by increasing
controller complexity, unless model uncertainty stemming from inter-patient
variability is reduced.
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Appendix A. Appendix

Expressions pertaining to the studied optimisation problem are derived
below. The optimisation objective of (7) is to minimise the (squared) L2

norm of the output, resulting from a load step disturbance:

min
K

max
P∆

∥∥∥∥S∆
1

iw

∥∥∥∥2

2

= min
K

max
P∆

1

π

∫ ∞
0

∣∣∣∣S∆
1

iw

∣∣∣∣2 dw, (A.1)

where

S∆ =
1

1 + P0KM + |KM | ρ∆
(A.2)

is the uncertain sensitivity function generated by P∆. Introducing

S = max
P∆

|S∆| ,

the minimisation of (A.1) can be formulated as

min
K

1

π

∫ ∞
0

|S∆|2
1

w2
dw = min

K

1

π

∫ ∞
0

S
2 1

w2
dw.

The expression (8) for S is obtained by taking the modulus of (A.2). Let
ϕ be the argument of the term 1 + P0KM in the denominator of (A.2).
Maximisation of (8) under ρ∆ then occurs for a point on the boundary of ∆
with argument −ϕ. The modulus of S∆ at this point is given by (8).

In the absence of uncertainty, H∞ constraints on S and T are equivalent
to the loop transfer function, L avoiding discs in the Nyquist plane for all
considered frequencies:

|L− c| − r ≥ 0. (A.3)

The centres c∗ and radii r∗ of these discs are

cs = −1, rs =
1

Ms

, ct = − M2
t

M2
t − 1

, rt =
Mt

M2
t − 1

,

where the subscripts s and t correspond to the sensitivity and complementary
sensitivity constraints, respectively. See, [31] for further details. Generali-
sations to the case involving the additive uncertainty ρ∆, comprises max-
imising (A.3) under P∆. The methodology is the same as used to obtain the
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expression (8) from (A.2), resulting in

|P0KM + 1| − ρ |KM | − 1

Ms

≥ 0∣∣∣∣P0KM +
M2

t

M2
t − 1

∣∣∣∣− ρ |KM | − Mt

M2
t − 1

≥ 0.

The (squared) H2 constraint on noise sensitivity can be expressed as

max
r∆

1

π

∫ ∞
0

|K|2 |S∆|2 dw ≤M2
ks

⇔ 1

π

∫ ∞
0

|K|2 S
2
dw ≤M2

ks.

The undershoot constraint y ≥ my is enforced point-wise in the step
response. This is achieved by constraining

y
k

= min
P∆

F−1

(
S∆

1

iω

)
, (A.4)

where y
k

is the minimum of the response y under P∆ at sample k and F−1

the inverse Fourier operator. The minimum y
k

of (A.4) can be expressed as

y
k

= yk,0 −
1

N

N−1∑
n=0

ρ̄n, (A.5)

where yk,0 is the inverse Fourier transform of the response with the nomi-
nal model P0 in the loop. For each frequency grid point, indexed by n in
(A.5), the worst case contribution ρ̄n can be obtained similarly to how S̄ was
obtained from S∆:

ρ̄n =
|KM | ρ

|1 + P0KM |2 − |KM |2 ρ2

1

2πωn

. (A.6)

Like before, the angular frequency argument (here ωn) has been dropped
from (A.6), to facilitate readability.
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