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Abstract. 

Background and Objectives: Accurate and efficient prediction of soft tissue temperatures is essential to computer-assisted 

treatment systems for thermal ablation. It can be used to predict tissue temperatures and ablation volumes for personalised 

treatment planning and image-guided intervention. Numerically, it requires full nonlinear modelling of the coupled 

computational bioheat transfer and biomechanics, and efficient solution procedures; however, existing studies considered the 

bioheat analysis alone or the coupled linear analysis, without the fully coupled nonlinear analysis. 

Methods: We present a coupled thermo-visco-hyperelastic finite element algorithm, based on finite-strain thermoelasticity and 

total Lagrangian explicit dynamics. It considers the coupled nonlinear analysis of (i) bioheat transfer under soft tissue 

deformations and (ii) soft tissue deformations due to thermal expansion/shrinkage. The presented method accounts for 

anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, and it is implemented 

using GPU acceleration for real-time computation. 

Results: The presented method can achieve thermo-visco-elastodynamic analysis of anisotropic soft tissues undergoing large 

deformations with high computational speeds in tetrahedral and hexahedral finite element meshes for surgical simulation of 

thermal ablation. We also demonstrate the translational benefits of the presented method for clinical applications using a 

simulation of thermal ablation in the liver. 

Conclusion: The key advantage of the presented method is that it enables full nonlinear modelling of the anisotropic, finite-

strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, instead of linear elastic, linear viscoelastic, 

and thermal-only modelling in the existing methods. It also provides high computational speeds for computer-assisted 

treatment systems towards enabling the operator to simulate thermal ablation accurately and visualise tissue temperatures and 

ablation zones immediately. 

The source code is available at https://github.com/jinaojakezhang/FEDFEMBioheatExpan. 
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1. Introduction 

Hyperthermia and thermal ablation treatments play an important role in the management of cancers following surgery, 

chemotherapy, and radiotherapy. Thermal ablation is a sub-category of hyperthermia in which local body tissues are heated 

until 50-100 ℃ over a few seconds or minutes to cause coagulation necrosis to damage and kill cancer cells [1]. The commonly 

used thermal ablative techniques include radiofrequency ablation (RFA), microwave ablation (MWA), laser ablation, and high-

intensity focused ultrasound ablation (HIFU ablation). These techniques are typically minimally invasive (such as 

percutaneous RFA) or non-invasive (such as HIFU ablation), which are associated with fewer complications, shorter hospital 

stays, and less morbidity and mortality than those undergoing surgery. 

Percutaneous thermal tumour ablation under imaging guidance is an important and widely accepted treatment option, often 

given with curative intent particularly in patients with early-stage hepatocellular carcinoma (HCC, primary liver cancer). The 

two most commonly employed methods are RFA and MWA, where RFA is currently the most widely recommended first-line 

ablation technique for those not suitable for surgery [2]. Conventional RFA involves a monopolar electrode that induces local 

heating using alternating current. Tissue heating results in coagulative necrosis, but temperatures decrease both with distance 

from the electrode and with the presence of blood flow. The latter phenomenon results in the so-called “heat sink effect” where 

adjacent large blood vessels cause tissue cooling, reducing the effectiveness of ablation [3]. 

MWA is a relatively recent and increasingly popular thermal ablative technique because of its ability to produce more rapid 

heating and higher maximum tissue temperatures. MWA has the advantages of producing wider and more predictable ablation 

volumes resulting in high complete ablation rates, and the ability to simultaneously treat multiple lesions [4] and potentially 

treat larger lesions more effectively [5]. Moreover, MWA requires less procedural time and is not subject to a heat-sink effect, 

which is known potential short-comings of RFA [6]. Rates of complications are low with both RFA (4.1%) and MWA (4.6%) 

[7, 8]. Still, despite the absence of convincing evidence, uptake of MWA is on the increase in many large academic centres in 

preference to RFA because of its ability to achieve a more rapid ablation, providing a workflow advantage particularly when 

performing multiple ablations. In the treatment of hepatic cancer, it was shown that the thermal ablation of solid, localised 
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small (≤ 3 𝑐𝑚) tumours was very effective, achieved complete tumour necrosis and provided similar survival outcomes to 

those undergoing liver resection [9]. 

To assist the operator of thermal ablation with better patient safety and greater ablation accuracy, computer-integrated 

treatment system is becoming increasingly important to provide in silico analysis of patient-specific soft tissue temperatures 

and thermal damage [10]. The aim of achieving a safe and effective ablation is to induce a desired level of thermal injury to 

the target tumour while avoiding unintended thermal damage to nearby healthy tissues. To this end, our objectives are to 

employ computational bioheat transfer and biomechanics to enable the operator to simulate thermal ablation accurately and 

visualise tissue temperatures and ablation zones on patient-specific anatomical models immediately. The challenges in 

achieving these are two-fold: (i) the mathematical models must be able to describe soft tissue thermo-mechanical responses 

accurately, and (ii) the numerical solution procedures must be formulated efficiently for fast computation. 

The specific scenario we consider is towards real-time simulation of anisotropic thermo-visco-elastodynamic responses of soft 

tissues at finite-strains during thermal ablation. Due to body organ movements (such as respiratory motion) and tool-tissue 

interactions (such as percutaneous ablation), soft tissues are constantly in a state of motion consisted of dislocations and 

deformations; the former can be described by rigid-body displacements including translations and rotations, while the latter 

involves change in organ shapes that affect the distribution of thermal energy which is essential for computation of tissue 

temperatures. Furthermore, due to the variation of temperatures, the effects of thermal expansion [11] and shrinkage [12] 

induce thermal stresses, leading to thermally-induced deformations that also affect energy distributions. The thermally-induced 

deformations have also been evidenced in the studies of thermo-poroelastic modelling for fluid transport in tumours [13], 

thermal strain effects on low-density lipoprotein deposition in arterial walls [14], and thermo-diffusion effects [15]. 

Mathematically, these require full nonlinear modelling of the thermo-elastodynamic behaviour of soft tissues to account for (i) 

bioheat transfer under soft tissue deformations and (ii) soft tissue deformations due to thermal expansion/shrinkage. However, 

many of the existing studies were focused on thermal analysis alone without considering the mechanical behaviour [16-18]; 

therefore, these methods are incompatible and not suitable. Also, for such coupled nonlinear models, the need for efficient 

solution procedures for real-time computation on cost-effective and readily-available computing hardware for surgical 

simulation becomes more difficult [19]. 

Thermo-elastic analysis of soft tissues is not new to hyperthermia modelling; however, most of the existing methods are not 

suitable for surgical simulation. Key shortfalls of the existing methods stem from (i) expensive computational cost, (ii) solely 

steady-state analysis, and (iii) incompatibility with nonlinear thermo-elastic problems. Most of the reported methods [20, 21] 

were focused on sophisticated thermo-elastic models but failed to consider computational speed where solutions are often 

computationally expensive to obtain (e.g., Kröger et al. [22] reported a simulation of an 8 minutes RFA in three-dimensional 

(3D) space took about 6 hours). Some studies were focused on solely the steady-state thermo-elastic analysis [23], which 

ignored the transient thermo-elastic response of soft tissues in dynamics. Finally, some works considered only homogeneous 

and isotropic material properties with linear thermo-elasticity [21, 23] or linear thermo-visco-elasticity [24]. As a result, these 

works did not describe anisotropic viscoelastic properties of soft tissues and are incompatible with the nonlinear problem of 

soft tissues undergoing large deformations where geometric and material nonlinearities are involved. 

To address the above issues, we develop a thermo-visco-hyperelastic total Lagrangian explicit dynamics finite element 

algorithm and utilise Graphics Processing Unit (GPU) acceleration for real-time finite-strain anisotropic thermo-visco-

elastodynamic analysis of soft tissues. The following contributions are presented: 

(i) we develop a thermo-visco-hyperelastic model that is fully nonlinear to describe the nonlinear characteristics 

of bioheat transfer in deformed soft tissues with thermal expansion/shrinkage (Section 3), 

(ii) we develop efficient solution procedures for solving the coupled model in both tetrahedral and hexahedral 

computational grids (Section 4), 

(iii) we develop a GPU implementation for real-time computation (Section 5), and 

(iv) we demonstrate the translational benefits using a simulation of thermal ablation in the liver (Section 6.3). 

As the outcome, the presented method can achieve thermo-visco-elastic analysis of anisotropic soft tissues undergoing large 

deformations in tetrahedral and hexahedral finite element meshes with high computational speeds for surgical simulation of 

thermal ablation. 

The remainder of this work is organised as follows: Section 2 introduces the bioheat and biomechanics models, Sections 3, 4 

and 5 present the proposed model, solution procedure, and GPU implementation, respectively. Algorithm verification, 

performance evaluation, and medical application are presented in Section 6. Discussions are presented in Section 7, and Section 

8 concludes the present work. 

 

2. Bioheat and biomechanics models 

Computational thermo-visco-elastodynamic analysis of soft tissues requires the definition of bioheat and biomechanics models. 

We use the Pennes model for bioheat transfer and the visco-hyperelastic model for biomechanics analysis. 

 

2.1 Bioheat transfer model 

Various bioheat transfer models were reported in literature to characterise heat transfer in biological soft tissues, including 

Pennes model [25], Wulff model [26], Klinger model [27], Chen and Holmes model [28], porous-media model [29], discrete 



 

 

vasculature model [30], and dual-phase-lag model [31] (see review papers [1, 32]), among those the Pennes model is widely 

used [33-35] and has been compared against experimental data [36, 37] to provide reliable tissue temperature predictions in 

the absence of large blood vessels (diameters larger than 0.5 𝑚𝑚) [38]. Despite the development of other more sophisticated 

and rigorous bioheat models which may be seen as modifications from the classical Pennes model, they are usually obtained 

at the cost of increased numerical complexities and computational loads. Ge et al. [39] compared temperature profiles and 

histories between the Pennes model, dual-phase-lag model, and porous model, their results showed a lower temperature 

predicted by the porous model but nearly the same temperatures by the Pennes and the dual-phase-lag model. In addition, there 

exist controversies as to whether or not the dual-phase-lag conduction and any non-Fourier conduction is important for 

biological tissues [40] as some of the non-Fourier evidence has been called into question repeatedly [41, 42]. In light of this, 

we employ the Pennes model in the present work, which has proven to be remarkably effective for bioheat transfer analysis 

[43]; it is also computationally efficient and consumes less data storage space. 

The Pennes bioheat model accounts for the thermal effects of anisotropic heat conduction in solid tissues, isotropic blood 

perfusion, metabolic heat generation, and regional heat sources. The governing equation of the transient Pennes model in 3D 

is given by [25] 

𝜌𝑡 𝑐𝑡 𝜕 𝑇(𝐱)𝑡

𝜕𝑡
= ∇ ∙ ( 𝑘𝑡 ∇ 𝑇(𝐱)𝑡 ) − 𝑤𝑏

𝑡 𝑐𝑏
𝑡 ( 𝑇(𝐱)𝑡 − 𝑇𝑎

𝑡 ) + 𝑄𝑚
𝑡 + 𝑄𝑟

𝑡     ∀𝐱 ∈ 𝛺 (1) 

where 𝜌 is the tissue mass density, 𝑐 the specific heat capacity, 𝑇(𝐱) the temperature at a material point 𝐱(𝑥, 𝑦, 𝑧) in the 

continuum 𝛺, 𝑡 the time, 𝑘 the thermal conductivity, 𝑤𝑏 the blood perfusion rate, 𝑐𝑏 the blood specific heat capacity, 𝑇𝑎 the 

arterial blood temperature, 𝑄𝑚 the metabolic heat generation rate, 𝑄𝑟 the regional heat source rate, ∇ ∙ the divergence operator, 

and ∇ the gradient operator; a left superscript •𝑡  denotes the system configuration in which a quantity occurs (𝑡 denotes the 

current time system configuration); the material properties are, in general, temperature-dependent [44, 45] and can be directly 

incorporated for tissue temperature analysis. 

Soft tissue temperatures must be determined from the deformed configuration due to dynamic motions of soft tissues; however, 

the classical Pennes model is based on only the static non-moving state [46]. To address this, we apply a mapping function to 

transform the unknown current (deformed) configuration to the known reference (undeformed) configuration for bioheat 

transfer analysis, which will be demonstrated in Section 3.1. 

 

2.2 Visco-hyperelastic biomechanics model 

Soft tissues undergo large deformations under external forces where geometric and material nonlinearities are involved, and 

they exhibit time-dependent viscous and elastic behaviours [47]. The widely used linear elastic and linear viscoelastic models 

are based on the assumptions of infinitesimally small deformations with the linear stress-strain relationship, but they are not 

compatible with large deformations of soft tissues. For fully compatible nonlinear modelling, we use the visco-hyperelastic 

biomechanics model based on finite elasticity for which nonlinear continuum mechanics is the fundamental basis. By referring 

to the reference system configuration, the variation of strain at a material point is expressed by the Green-Saint Venant strain 

tensor 𝐄0
𝑡 =

1

2
( 𝐂0

𝑡 − 𝐈)  where 𝐂0
𝑡  is the right Cauchy-Green tensor and  𝐈  is the identity matrix of the second rank. The 

corresponding strain energy density is expressed by 𝛹0
𝑡  which is typically a function of the strain invariants of 𝐂0

𝑡 . Accordingly, 

the energy conjugated stress measure is the second Piola-Kirchhoff stress tensor 𝐒0
𝑡 =

𝜕 𝛹( 𝐂0
𝑡 )0

𝑡

𝜕 𝐄0
𝑡 . Mechanical behaviours are 

accommodated in 𝛹0
𝑡 . For anisotropic soft tissues exhibiting directional-dependent behaviours, 𝛹0

𝑡  can be modified by 

employing unit vectors to describe local fibre directions [48]. For viscoelastic behaviours, 𝛹0
𝑡  can be modified by employing 

a time-dependent �̃�0
𝑡  such as �̃�0

𝑡 = ∫ 𝜑(𝑡 − 𝑡′)
𝜕 𝛹0

𝑡

𝜕𝑡′
 𝑑𝑡′𝑡

0
 in a convolution integral [49] where 𝜑(𝑡 − 𝑡′) = 𝜑∞ +

∑ 𝜑𝑖𝑒(𝑡′−𝑡)/𝜏𝑖𝑁
𝑖=1  is the relaxation function of a generalised Maxwell model [50], and 𝜑∞, 𝜑𝑖, and 𝜏𝑖 are positive constants. 

By referring to the reference configuration, the equation of motion is given by [51] 

∇ ∙ 𝐏0
𝑡 + 𝐁0

𝑡 = 𝜌0 �̇�𝑡  (2) 

where 𝐏 is the first Piola-Kirchhoff stress tensor, 𝐁 the reference body force, and �̇� the material acceleration field; a left 

subscript •0  denotes the configuration with respect to which the quantity is measured (0 denotes the reference configuration). 

The above balance principle is valid for any arbitrary parts of a continuum, but the stress measure is expressed for 

elastodynamic analysis. For thermo-elastodynamic analysis, the constitutive expression for the stress is obtained based on the 

Helmholtz free energy which is a function of the finite-strain and temperature and by exploring the conservation of energy and 

the second law of thermodynamics [52]. To obtain this stress expression, we apply a multiplicative decomposition [52] to 

include the elastic and thermal deformations for the total stress, which will be demonstrated in Section 3.2. 

 

3. Coupling of bioheat and biomechanics models 

A two-way interaction of bioheat and biomechanics models is identified: (i) due to soft tissue deformations, transient tissue 

temperatures must be computed based on the deformed configuration, and (ii) thermal expansion/shrinkage also induces soft 

tissue deformations. Both (i) and (ii) affect the prediction of thermal ablation outcomes and require the coupled thermo-

elastodynamic modelling. 



 

 

Fig. 1 illustrates the notations used in the proposed coupled thermo-elastodynamic analysis. Using the Lagrangian description, 

soft tissues undergo deformations 𝛺0 → 𝛺𝑡  described by the deformation gradient 𝐅0
𝑡 . An intermediate system configuration 

𝛺𝑖  is introduced, decomposing the total deformation gradient 𝐅0
𝑡  into 𝐅0

𝑖 ( 𝛺0 → 𝛺𝑖 ) and 𝐅𝑖
𝑡 ( 𝛺𝑖 → 𝛺𝑡 ). We compute (i) 

bioheat transfer under deformations by transformation of the system configuration 𝛺𝑡 → 𝛺0  (Section 3.1) and (ii) soft tissue 

deformations due to thermal expansion/shrinkage by multiplicative decomposition 𝐅0
𝑡 = 𝐅𝑖

𝑡 𝐅0
𝑖  (Section 3.2). 

 

Fig. 1 Reference 𝛺0 , intermediate 𝛺𝑖 , and current 𝛺𝑡  configurations, and the deformations described by 𝐅0
𝑡 ( 𝛺0 → 𝛺𝑡 ), 

𝐅0
𝑖 ( 𝛺0 → 𝛺𝑖 ), and 𝐅𝑖

𝑡 ( 𝛺𝑖 → 𝛺𝑡 ). 

 

3.1 Mathematical modelling of bioheat transfer under soft tissue deformations 

We employ a transformation of system configurations to achieve bioheat computation on deformed soft tissues [53]. The 

mapping function for deformations 𝛺0 → 𝛺𝑡  can be defined by 

𝜉𝑡 ∶  𝛺0 × ℝ0
+ → 𝛺𝑡 , 𝐱𝑡 = 𝜉𝑡 ( 𝐱0 ) = 𝜉( 𝐱0 , 𝑡) (3) 

where the mapping function 𝜉 is continuous in time, continuously differentiable, globally invertible, and orientation-preserving 

at all times. 

Using the current (deformed) configuration 𝛺𝑡 , the Pennes model can be integrated over the volume to get 

∫ ( 𝜌𝑡 𝑐𝑡 𝜕 𝑇(𝐱)𝑡

𝜕𝑡
)

𝛺𝑡

𝑑 𝛺𝑡 = ∫ ( ∇𝑡 ∙ ( 𝑘𝑡 ∇𝑡 𝑇(𝐱)𝑡 ) − 𝑤𝑏
𝑡 𝑐𝑏

𝑡 ( 𝑇(𝐱)𝑡 − 𝑇𝑎
𝑡 ) + 𝑄𝑚

𝑡 + 𝑄𝑟
𝑡 )

𝛺𝑡

𝑑 𝛺𝑡  (4) 

By performing a change of variables, it can be expressed in terms of the reference configuration 𝛺0  as 

∫ (… )

𝛺𝑡

𝑑 𝛺𝑡 = ∫ (… )det (ℒ𝜉( 𝐱0 , 𝑡))

𝛺0

𝑑 𝛺0 = ∫ (… )det (
𝜕 𝐱𝑡

𝜕 𝐱0 )

𝛺0

𝑑 𝛺0 = ∫ (… )det( 𝐅0
𝑡 )

𝛺0

𝑑 𝛺0  (5) 

where ℒ is the differential operator. 

The divergence and gradient operators ( ∇𝑡 ∙ and ∇𝑡 ) are expressed in terms of 𝛺𝑡  which is unknown. By applying the chain 

rule, they can be expressed in terms of the known reference configuration 𝛺0  as 

∫ ∇𝑡 ∙ ( 𝑘𝑡 ∇𝑡 𝑇(𝐱)𝑡 )

𝛺𝑡

𝑑 𝛺𝑡 = ∫ ( ∇0 𝐅0
𝑡 −1 ∙ ( 𝑘𝑡 ∇0 𝐅0

𝑡 −1 𝑇(𝐱)𝑡 )) det( 𝐅0
𝑡 )

𝛺0

𝑑 𝛺0  (6) 

The above formulation allows for the computation of bioheat transfer on deformed configurations of soft tissues, compared to 

the classical Pennes model which was computed based on only the static non-moving state [46]. From the point of view of 

numerical efficiency, the above formulation is based on only 𝐅0
𝑡 ( 𝛺0 → 𝛺𝑡 ), 𝑘𝑡 , and 𝑇(𝐱)𝑡 , whereas the other variables are 

defined over the reference configuration 𝛺0  that can be precomputed. Mathematically, it accounts for nonlinear characteristics 

of bioheat transfer at finite strains. 

 

3.2 Mathematical modelling of soft tissue deformations due to thermal expansion/shrinkage 

We apply a multiplicative decomposition to build the stress expression for thermo-elastodynamic analysis. Since the 

deformations caused by thermal expansion and shrinkage are mathematically equivalent, we will use thermal expansion for 

the volume change of soft tissues in the remainder of the present work. Prior to the onset of thermal expansion, we consider 

the tissue is in a physiological state described by the stress-free intermediate configuration ( 𝛺𝑖  in Fig. 1), which is a 



 

 

hypothetical configuration obtained by isothermal elastic destressing of the deformed configuration 𝛺𝑡  to zero stress [54]. 

With this intermediate configuration, the total deformation gradient 𝐅0
𝑡  for 𝛺0 → 𝛺𝑡  can be decomposed into a thermal part 

𝐅𝑡ℎ𝑒𝑟
0
𝑖  and an elastic part 𝐅𝑒𝑙𝑎𝑠

𝑖
𝑡  via a local multiplicative decomposition [52] expressed by 

𝐅0
𝑡 = 𝐅𝑒𝑙𝑎𝑠

𝑖
𝑡 𝐅𝑡ℎ𝑒𝑟

0
𝑖  (7) 

To meet the requirement for zero stress under zero strain, the constitutive expression must be written in terms of the elastic 

deformation gradient 𝐅𝑒𝑙𝑎𝑠
𝑖
𝑡 , yielding 

𝐅𝑒𝑙𝑎𝑠
𝑖
𝑡 = 𝐅0

𝑡 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −1

 (8) 

The second Piola-Kirchhoff stress 𝐒𝑖
𝑡  associated with the stress-free intermediate configuration 𝛺𝑖  can then be expressed by 

𝐒𝑖
𝑡 =

𝜕 𝛹( 𝐂𝑖
𝑡 )𝑖

𝑡

𝜕 𝐄𝑖
𝑡 = 2

𝜕 𝛹( 𝐂𝑖
𝑡 )𝑖

𝑡

𝜕 𝐂𝑖
𝑡 = 𝐒𝑖

𝑡 ( 𝐅𝑒𝑙𝑎𝑠
𝑖
𝑡 ) = 𝐒𝑖

𝑡 ( 𝐅0
𝑡 𝐅𝑡ℎ𝑒𝑟

0
𝑖 −1

) (9) 

By pulling back the stress to the reference configuration 𝛺0 , the total stress 𝐒0
𝑡  can be expressed by 

𝐒0
𝑡 = det( 𝐅𝑡ℎ𝑒𝑟

0
𝑖 ) 𝐅𝑡ℎ𝑒𝑟

0
𝑖 −1

𝐒𝑖
𝑡 ( 𝐅0

𝑡 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −1

) 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −𝑇

 (10) 

The above formulation is based on the deformation gradients 𝐅0
𝑡  and 𝐅𝑡ℎ𝑒𝑟

0
𝑖 , which enables thermal expansion to be included 

entirely in the material model. 

The thermal deformation gradient 𝐅𝑡ℎ𝑒𝑟
0
𝑖  can be specified depending on the type of material anisotropy. For an orthotropic 

thermal expansion with the principal axes parallel to unit vectors 𝐦0 , 𝐧0  and 𝐦0 × 𝐧0  in 𝛺0 , 𝐅𝑡ℎ𝑒𝑟
0
𝑖  can be specified by 

[54] 

𝐅𝑡ℎ𝑒𝑟
0
𝑖 = 𝜆𝑖𝐈 + (𝜆𝑚 − 𝜆𝑖) 𝐦0 ⊗ 𝐦0 + (𝜆𝑛 − 𝜆𝑖) 𝐧0 ⊗ 𝐧0  (11) 

where 𝜆𝑖 , 𝜆𝑚  and 𝜆𝑛  are the stretch ratios in the orthogonal directions 𝐦0 × 𝐧0 , 𝐦0  and 𝐧0 , respectively; the above 

expression can be modified for transversely isotropic thermal expansion 𝐅𝑡ℎ𝑒𝑟
0
𝑖 = 𝜆𝑖𝐈 + (𝜆𝑚 − 𝜆𝑖) 𝐦0 ⊗ 𝐦0  and isotropic 

thermal expansion 𝐅𝑡ℎ𝑒𝑟
0
𝑖 = 𝜆𝑖𝐈. The thermal stretch ratio 𝜆 is related to the thermal expansion coefficient 𝛼 by 𝜆 ≅ 1 +

𝛼( 𝑇(𝐱)𝑡 − 𝑇(𝐱)0 ) [52]. 

 

4. Numerical solution procedures 

We develop a thermo-visco-hyperelastic total Lagrangian explicit dynamics finite element algorithm for solutions of the 

coupled bioheat and biomechanics analysis. 

 

4.1 Thermo-visco-hyperelastic total Lagrangian explicit dynamics finite element algorithm 

To achieve fast and accurate numerical solutions, we develop solution procedures based on the (i) fast explicit dynamics finite 

element algorithm [55] for transient bioheat computation [56] under soft tissue deformations [53] and the (ii) total Lagrangian 

explicit dynamics finite element algorithm [57] for biomechanics computation of large-strain soft tissue deformations. The 

proposed formulation has not been evidenced in previous works. 

We employ the total Lagrangian formulation for computational biomechanics for its numerical efficiency without error 

accumulation. Displacement-based finite element formulations use the updated Lagrangian formulation or the total Lagrangian 

formulation to describe the frame of reference [58]. The updated Lagrangian obtains variable values at the current configuration 

based on the end of the previous time step via an incremental strain-description, which requires a re-calculation of spatial 

derivatives at each time step. In contrast, the total Lagrangian considers all variables referred to the reference configuration so 

that the strains lead to correct results after a load cycle without error accumulation [59], which is not the case in the incremental 

strain-description. More importantly, it allows for the spatial derivatives to be precomputed and stored [57]. It was shown that 

the total Lagrangian took 2.1 𝑚𝑠 for a time step to obtain the solution for an ellipsoid indentation, which was about five times 

faster compared to 10.6 𝑚𝑠 consumed by the updated Lagrangian [60]. 

We employ explicit finite element method (FEM) and explicit time integration for computational bioheat transfer and 

biomechanics for numerical efficiency and parallelisation. Explicit FEM [61] is a simplified form of FEM that is often used in 

surgical simulation. The internal and external loads and mass are lumped to the nodes, leading to block diagonal mass and 

damping matrices to enable computation to be performed at the element level without the need for assembling the stiffness 

matrix for the entire model [57]. The explicit FEM can be integrated in time either explicitly or implicitly for dynamics, and 

we use explicit time integration to allow for variable values in future states to be computed directly based on the current state 

without the need for stiffness matrix inversion which is required in the implicit integration. It was shown that the implicit 

integration consumed computation time that was at least one order of magnitude larger than that by the explicit counterpart 

[62]. The resultant explicit dynamics leads to an explicit formulation for unknown state variables that is well suited for parallel 

computation. The global system of equations can be split into independent equations for individual nodes, allowing each nodal 

computation to be assigned to a parallel task to perform calculations independently. Along with computationally efficient low-

order finite elements, the above formulations lead to very efficient computation at run-time. 



 

 

4.2 Formulation for bioheat transfer under soft tissue deformations 

Using the first-order explicit time integration and the lumped (diagonalised) mass approximation while ensuring the 

conservation of mass, the discretized matrix equation of the Pennes model can be written as 

𝐂𝑑𝑖𝑎𝑔𝑡 (
𝐓(𝐱)𝑡+∆𝑡 − 𝐓(𝐱)𝑡

∆𝑡
) = 𝐊𝑡 𝐓(𝐱)𝑡 − 𝐊𝑏

𝑑𝑖𝑎𝑔𝑡 𝐓(𝐱)𝑡 + 𝐐𝑏
𝑡 + 𝐐𝑚

𝑡 + 𝐐𝑟
𝑡  (12) 

where 𝐂𝑑𝑖𝑎𝑔 is the diagonalised thermal mass (mass and specific heat capacity) matrix, 𝐓(𝐱) the vector of nodal temperatures, 

∆𝑡 the time step, 𝐊 the thermal stiffness (conduction) matrix, 𝐊𝑏
𝑑𝑖𝑎𝑔

 the diagonalised thermal stiffness (blood perfusion) matrix, 

𝐐𝑏, 𝐐𝑚, and 𝐐𝑟 the vectors of heat flow of blood perfusion at arterial temperature, metabolic heat generation, and regional 

heat sources, respectively. The equation can be further rearranged into 

𝐓(𝐱)𝑡+∆𝑡 = 𝐓(𝐱)𝑡 + ∆𝑡 𝐂𝑑𝑖𝑎𝑔𝑡 −1
(∑ 𝐟𝑒

𝑡ℎ𝑒𝑟
0
𝑡

𝑒

− 𝐊𝑏
𝑑𝑖𝑎𝑔𝑡 𝐓(𝐱)𝑡 + 𝐐𝑏

𝑡 + 𝐐𝑚
𝑡 + 𝐐𝑟

𝑡 ) (13) 

where 

∑ 𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡

𝑒

= 𝐊𝑡 𝐓(𝐱)𝑡 = 𝐟𝑡ℎ𝑒𝑟
0
𝑡  (14) 

where 𝐟𝑒
𝑡ℎ𝑒𝑟 is the vector of thermal load components due to heat conduction in an element 𝑒, and 𝐟𝑡ℎ𝑒𝑟 is the vector of global 

nodal thermal loads. 𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡  is computed by 

𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡 = ∫ ℒ 𝐡𝐱

𝑡 𝑇
𝐃𝑒

𝑡 ℒ 𝐡𝐱
𝑡  𝑑 𝑉𝑡

𝑉𝑒
𝑡

𝐓(𝐱)𝑡  (15) 

where ℒ𝐡𝐱 is the matrix of element shape function spatial derivatives, 𝐃𝑒 the element thermal conductivity matrix, and 𝑉𝑒 the 

element volume. 

By incorporating the proposed bioheat formulation under soft tissue deformations (Eq. (6)), the above equation at the current 

configuration 𝛺𝑡  can be written in terms of the reference configuration 𝛺0  as 

𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡 = ∫ (ℒ 𝐡𝐱

0 𝐅0
𝑡 −1)

𝑇
𝐃𝑒

𝑡 (ℒ 𝐡𝐱
0 𝐅0

𝑡 −1)det( 𝐅0
𝑡 ) 𝑑 𝑉0

𝑉𝑒
0

𝐓(𝐱)𝑡  (16) 

where 𝐅0
𝑡  can be computed from the element nodal displacements matrix 𝐮𝑒 by 

𝐅0
𝑡 = ( 𝐮𝑒

𝑡 )
𝑇

ℒ 𝐡𝐱
0 + 𝐈 (17) 

For fast computation, the computationally efficient 3D low-order finite elements such as the eight-node reduced-integrated 

hexahedral elements and the four-node linear tetrahedral elements are used, leading to the following computations at the 

element level: 

(i) eight-node reduced-integrated hexahedral element: 

𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡 = 8det( 𝐉0 )(ℒ 𝐡𝐱

0 𝐅0
𝑡 −1)

𝑇
𝐃𝑒

𝑡 ℒ 𝐡𝐱
0 𝐅0

𝑡 −1det( 𝐅0
𝑡 ) 𝐓(𝐱)𝑡  (18) 

(ii) four-node linear tetrahedral element: 

𝐟𝑒
𝑡ℎ𝑒𝑟

0
𝑡 = 𝑉0 (ℒ 𝐡𝐱

0 𝐅0
𝑡 −1)

𝑇
𝐃𝑒

𝑡 ℒ 𝐡𝐱
0 𝐅0

𝑡 −1det( 𝐅0
𝑡 ) 𝐓(𝐱)𝑡  (19) 

where 𝐉 is the element Jacobian matrix. 

At each time step, the temperature 𝑇(𝑖)(𝐱)𝑡+∆𝑡  at a node 𝑖 can be obtained by 

𝑇(𝑖)(𝐱)𝑡+∆𝑡 = 𝑇(𝑖)(𝐱)𝑡 + ∆𝑡 𝐶(𝑖)
𝑑𝑖𝑎𝑔𝑡 −1

( 𝑓(𝑖)
𝑡ℎ𝑒𝑟

0
𝑡 − 𝐾𝑏(𝑖)

𝑑𝑖𝑎𝑔𝑡 𝑇(𝑖)(𝐱)𝑡 + 𝑄𝑏(𝑖)
𝑡 + 𝑄𝑚(𝑖)

𝑡 + 𝑄𝑟(𝑖)
𝑡 ) (20) 

The above formulation allows for the computation of bioheat transfer with respect to the deformed configuration of soft tissues. 

Eq. (20) states an explicit formulation for the unknown temperature 𝑇(𝑖)(𝐱)𝑡+∆𝑡  which can be obtained based on the variable 

values at 𝑡 only; hence, the global system of equations can be split into independent equations for parallel computation. 

Furthermore, there is no need for iterations during any process of the algorithm. Temperature-dependent thermal properties 

and nonlinear thermal boundary conditions can also be directly incorporated. 

 

 



 

 

4.3 Formulation for soft tissue deformations due to thermal expansion 

The discretized matrix equation of the mechanics of motion can be written as 

 
𝐌𝑑𝑖𝑎𝑔𝑡 𝜕2 𝐔(𝐱)𝑡

𝜕𝑡2
+ 𝐃𝑑𝑖𝑎𝑔𝑡 𝜕 𝐔(𝐱)𝑡

𝜕𝑡
+ 𝐊(𝐔)𝑡 𝐔(𝐱)𝑡 = 𝐑𝑡  (21) 

where 𝐌𝑑𝑖𝑎𝑔 is the diagonalised mass matrix, 𝐃𝑑𝑖𝑎𝑔 = 𝛾𝐌𝑑𝑖𝑎𝑔 the mass-proportional damping (a special case of Rayleigh 

damping, 𝛾 the damping coefficient), 𝐊(𝐔) the stiffness matrix, 𝐔(𝐱) the vector of nodal displacements, and 𝐑 the vector of 

externally applied forces. 

The displacements 𝐔(𝐱)𝑡+∆𝑡  at the next time step can be computed based on the explicit central-difference scheme [63], 

yielding 

𝐔(𝐱)𝑡+∆𝑡 =

𝐑𝑡 − ∑ 𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡

𝑒 +
2 𝐌𝑑𝑖𝑎𝑔𝑡

∆𝑡2 𝐔(𝐱)𝑡 + (
𝐃𝑑𝑖𝑎𝑔𝑡

2∆𝑡 −
𝐌𝑑𝑖𝑎𝑔𝑡

∆𝑡2 ) 𝐔(𝐱)𝑡−∆𝑡

𝐃𝑑𝑖𝑎𝑔𝑡

2∆𝑡 +
𝐌𝑑𝑖𝑎𝑔𝑡

∆𝑡2

 (22) 

where 

∑ 𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡

𝑒

= 𝐊(𝐔)𝑡 𝐔(𝐱)𝑡 = 𝐟𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠
0
𝑡  (23) 

where 𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠 is the vector of nodal forces due to thermal and elastic stresses in an element 𝑒, and 𝐟𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠 is the vector 

of global nodal forces. 𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡  can be computed by 

𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡 = ∫ 𝐅0

𝑡 𝐒0
𝑡 ℒ 𝐡𝐱

0  𝑑 𝑉0

𝑉𝑒
0

 (24) 

where 𝐒0
𝑡  is the total stress to account for the effect of thermal expansion given by Eq. (10). 

The corresponding low-order finite element formulations are: 

(i) eight-node reduced-integrated hexahedral element: 

𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡 = 8det( 𝐉0 ) 𝐅0

𝑡 (det( 𝐅𝑡ℎ𝑒𝑟
0
𝑖 ) 𝐅𝑡ℎ𝑒𝑟

0
𝑖 −1

𝐒𝑖
𝑡 ( 𝐅0

𝑡 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −1

) 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −𝑇

) ℒ 𝐡𝐱
0  (25) 

(ii) four-node linear tetrahedral element: 

𝐟𝑒
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡 = 𝑉0 𝐅0

𝑡 (det( 𝐅𝑡ℎ𝑒𝑟
0
𝑖 ) 𝐅𝑡ℎ𝑒𝑟

0
𝑖 −1

𝐒𝑖
𝑡 ( 𝐅0

𝑡 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −1

) 𝐅𝑡ℎ𝑒𝑟
0
𝑖 −𝑇

) ℒ 𝐡𝐱
0  (26) 

At each time step, the displacement component 𝑢𝑥(𝑖)
𝑡+∆𝑡  of 𝐮(𝑖)

𝑡+∆𝑡 ( 𝑢𝑥(𝑖)
𝑡+∆𝑡 , 𝑢𝑦(𝑖)

𝑡+∆𝑡 , 𝑢𝑧(𝑖)
𝑡+∆𝑡 ) at a node 𝑖 can be obtained 

by 

𝑢𝑥(𝑖)
𝑡+∆𝑡 =

𝑅𝑥(𝑖)
𝑡 − 𝑓𝑥(𝑖)

𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠
0
𝑡 +

2 𝑀𝑥(𝑖)
𝑑𝑖𝑎𝑔𝑡

∆𝑡2 𝑢𝑥(𝑖)
𝑡 + (

𝐷𝑥(𝑖)
𝑑𝑖𝑎𝑔𝑡

2∆𝑡 −
𝑀𝑥(𝑖)

𝑑𝑖𝑎𝑔𝑡

∆𝑡2 ) 𝑢𝑥(𝑖)
𝑡−∆𝑡

𝐷𝑥(𝑖)
𝑑𝑖𝑎𝑔𝑡

2∆𝑡 +
𝑀𝑥(𝑖)

𝑑𝑖𝑎𝑔𝑡

∆𝑡2

 (27) 

For viscoelastic modelling where the time-dependent �̃�0
𝑡 = ∫ 𝜑(𝑡 − 𝑡′)

𝜕 𝛹0
𝑡

𝜕𝑡′
 𝑑𝑡′𝑡

0
 is used (Section 2.2), the corresponding 

time-dependent stress is expressed by �̃�0
𝑡 = ∫ 𝜑(𝑡 − 𝑡′)

𝜕 𝐒0
𝑡

𝜕𝑡′
 𝑑𝑡′𝑡

0
, and it can be computed by �̃�0

𝑡 = 𝐒0
𝑡 − ∑ 𝝑0

𝑡
𝑖

𝑁
𝑖=1  [64] where 

𝝑0
𝑡

𝑖 =
∆𝑡𝜑𝑖

∆𝑡+𝜏𝑖
𝐒0

𝑡 +
𝜏𝑖

∆𝑡+𝜏𝑖
𝝑0

𝑡−∆𝑡
𝑖 . The corresponding thermo-visco-elastic nodal forces 𝐟𝑒

𝑡ℎ𝑒𝑟−𝑣𝑖𝑠𝑐𝑜−𝑒𝑙𝑎𝑠
0
𝑡  can be obtained by 

substituting the time-dependent �̃�0
𝑡  for 𝐒0

𝑡  in Eq. (24), yielding 

𝐟𝑒
𝑡ℎ𝑒𝑟−𝑣𝑖𝑠𝑐𝑜−𝑒𝑙𝑎𝑠

0
𝑡 = ∫ 𝐅0

𝑡 �̃�0
𝑡 ℒ 𝐡𝐱

0  𝑑 𝑉0

𝑉𝑒
0

 (28) 

which is used to replace 𝑓𝑥(𝑖)
𝑡ℎ𝑒𝑟−𝑒𝑙𝑎𝑠

0
𝑡  by 𝑓𝑥(𝑖)

𝑡ℎ𝑒𝑟−𝑣𝑖𝑠𝑐𝑜−𝑒𝑙𝑎𝑠
0
𝑡  in Eq. (27) for viscoelastic modelling. 

The above formulation enables the time-dependent effect to be included entirely in the thermo-elastic stress for thermo-visco-

elastic constitutive analysis. The constitutive material law, temperature-dependent mechanical properties and nonlinear 

mechanical boundary conditions can be directly incorporated. Fig. 2 illustrates an implementation of the proposed numerical 

solution procedures. 



 

 

 

Fig. 2. Key components of the proposed numerical solution procedures. 

 

5. GPU implementation 

Having established the formulations for bioheat transfer under soft tissue deformations (Section 4.2) and soft tissue 

deformations due to thermal expansion (Section 4.3) for tetrahedral and hexahedral computational grids, the presented method 

is implemented using GPU parallel computation for real-time surgical simulation. The GPU implementation consists of a host 

(CPU) and a device (GPU) code for host-device interaction and device parallel computation. The host implementation is 

responsible for precomputing and storing the constant matrices and simulation parameters and for invoking device methods to 

interact with GPUs for memory allocation, texture binding, data copy from/to device, and kernel launching. As mentioned 

previously, many simulation parameters can be precomputed owing to the total Lagrangian formulation, such as the spatial 

derivatives, initial element volumes, initial Jacobian, and mass and damping matrices. The host code is written in the C++ 

programming language in Visual Studio 2017. 

The device implementation is responsible for computing new internal thermal loads, temperatures, internal forces and 

displacements for the temperature and displacement fields. The nodal loads, such as the thermal loads and internal forces, are 

computed by an “element” kernel for tetrahedron/hexahedron calculations. The nodal temperatures and displacements are 

computed by Eqs. (20) and (27), respectively, at each time step for time-stepping, and they are computed by a “node” kernel 

for node calculation. A simulation time step is achieved by launching the “element” kernel across 𝑛𝑒 threads and the “node” 

kernel across 𝑛𝑛 threads where 𝑛𝑒 and 𝑛𝑛 denote the numbers of finite elements and nodes in the organ models, respectively. 

The GPU-accelerated computation is achieved via a time-loop of such time-step computation. The device code is written using 

the NVIDIA CUDA programming API version 10.2. 

 

6. Numerical results 

Numerical evaluations are conducted to assess the validity of the presented methodology for simulating large strain thermo-

elastodynamics of soft tissues for surgical simulation, and assessments on CPU and GPU computational performance are 

presented. The translational benefits for a clinically relevant application are demonstrated using a simulation of thermal 

ablation in the liver. 

 

6.1 Algorithm verification 

Although living tissues need to be used for validation of the proposed method, experiments with living tissues raise ethical 

issues with technical difficulties. In the present work, a 3D numerical example with thermal and mechanical properties similar 

to those of soft tissues is used for algorithm verification, which offers a controlled environment for a quantitative assessment 

on numerical accuracy. 



 

 

Fig. 3 illustrates the geometry and simulation settings of the employed model, and Table. 1 presents the values of the geometry, 

material properties and simulation time. The prescribed displacement 𝑢𝑧 = 0.02 𝑚 in Fig. 3 corresponds to 40% extension 

compared to the height (0.05 𝑚) of the model for large deformations. The right face of the model was assumed to be fixed in 

position during the simulation. Adiabatic boundary condition was applied to the exterior of the model. The established 

nonlinear procedures, ‘Dynamic, Temp-disp, Explicit’, from commercial finite element analysis package, ABAQUS/CAE 

2018 (2017_11_08-04.21.41 127140), were used to produce reference solutions under the same conditions for comparison. To 

quantitatively evaluate the validity of the presented method, normalised relative errors 𝑁𝑅𝐸𝑇 = |
𝑇𝑖

𝐴𝐵𝐴𝑄𝑈𝑆
−𝑇𝑖

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑇𝑚𝑎𝑥
𝐴𝐵𝐴𝑄𝑈𝑆

−𝑇𝑚𝑖𝑛
𝐴𝐵𝐴𝑄𝑈𝑆 |  and 

𝑁𝑅𝐸𝑢 = |
𝑢𝑖

𝐴𝐵𝐴𝑄𝑈𝑆
−𝑢𝑖

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑢𝑚𝑎𝑥
𝐴𝐵𝐴𝑄𝑈𝑆

−𝑢𝑚𝑖𝑛
𝐴𝐵𝐴𝑄𝑈𝑆 |  and total error indicators 𝑒𝑇 = √

∑ (𝑇𝑖
𝐴𝐵𝐴𝑄𝑈𝑆

−𝑇𝑖
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

)
2

𝑛
𝑖=1

∑ (𝑇𝑖
𝐴𝐵𝐴𝑄𝑈𝑆

)
2

𝑛
𝑖=1

 and 𝑒𝑢 = √
∑ (𝑢𝑖

𝐴𝐵𝐴𝑄𝑈𝑆
−𝑢𝑖

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑
)

2
𝑛
𝑖=1

∑ (𝑢𝑖
𝐴𝐵𝐴𝑄𝑈𝑆

)
2

𝑛
𝑖=1

 

were used; 𝑢𝑖 included the three components 𝑢𝑖,𝑥, 𝑢𝑖,𝑦 and 𝑢𝑖,𝑧. 

 

Fig. 3. Model geometry and simulation settings for algorithm verification. 

 

Table. 1 Simulation settings of the model in Fig. 3. 

Geometry Values Unit Description 

Nodes 4489  17956 degrees of freedom (DOFs, 𝑥, 𝑦, 𝑧, 𝑇 per node) 

Elements 24290  Four-node linear tetrahedrons 

Material properties    

Density 𝜌 1060 [𝑘𝑔/𝑚3] [21] 

Specific heat capacity 𝑐 3700 [𝐽/(𝑘𝑔 ∙ ℃)] [21] 

Thermal conductivity 𝑘 0.518 [𝑊/(𝑚 ∙ ℃)] [21] 

Thermal expansion 𝛼 0.1 [1/℃]  

Isotropic neo-Hookean hyperelastic model 𝛹 =
𝜇

2
(𝐼1̅ − 3) +

𝜅

2
(𝐽 − 1)2 

Shear modulus 𝜇 1190.476 [𝑃𝑎] Corresponding to Young’s modulus 3500 Pa and Poisson’s ratio 

0.47 [53] Bulk modulus 𝜅 19444.444 [𝑃𝑎] 
Simulation time 5 𝑠 Time step 0.00008 𝑠 (62500 steps) 

Note: the anisotropic thermal conductivity, anisotropic hyperelastic material models, and viscoelasticity have been previously verified in 

Refs. [55] and [64]. 

 

Fig. 4 presents a comparison between four cases of the numerical example for validation: (a) thermal analysis only, (b) 

mechanical analysis only, (c) thermo-mechanical analysis without and (d) with thermal expansion. Cases (a-c) can be achieved 

by setting 𝑢𝑧, 𝑄𝑟 and 𝑄𝑚, and 𝛼 to zero, respectively. The results show good agreement between the proposed method and 

ABAQUS for all four cases, demonstrating the validity of the presented method in conducting individual and full analysis of 

finite-strain thermo-elastodynamics of soft tissues. Compared to the temperature field in (a), the temperature distribution in (c) 

was affected by the deformations and was further affected by thermal expansion in (d) which had a broader distribution of 

temperatures and a lower maximum temperature at the heat source centre. Compared with the displacement fields in (b) and 

(c), the displacement field in (d) had considerable local expansions at the three heat source regions that compressed the 

cylindrical holes and yielded less volume deformations. A statistical summary is presented in Table. 2. 
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Fig. 4. Comparisons of temperatures, displacements, and numerical errors between four cases of the numerical example: (a) 

thermal analysis, (b) mechanical analysis, (c) thermo-mechanical analysis without and (d) with thermal expansion; rows #(1, 

4), #(2, 5) and #(3, 6) shows the cross-section views of 𝑥𝑧 plane, 𝑦𝑧 plane, and 𝑥𝑦 plane, respectively. 

 



 

 

Table. 2 A statistical summary of the comparisons in Fig. 4. 

  (a) (b) (c) (d) 

  Thermal Mechanical Thermo-mechanical 

without thermal expansion 

Thermo-mechanical 

with thermal expansion 

  P A P A P A P A 

T
em

p
er

at
u
re

 

co
m

p
ar

is
o

n
 

(℃
) 

Min 37 37 37 37 37 37 37 37 

Max 47.2238 47.2236 37 37 47.2085 47.2084 47.1112 47.1111 

Median 37 37 37 37 37 37 37 37 

Q1 37 37 37 37 37 37 37 37 

Q3 37.4252 37.4252 37 37 37.4001 37.4002 37.7441 37.7437 

𝑒𝑇 1.2155e-6 0 3.1984e-6 7.0775e-6 

D
is

p
la

ce
m

en
t 

co
m

p
ar

is
o

n
 

(𝑚
) 

Min 0 0 -0.0045 -0.0045 -0.0045 -0.0045 -0.0035 -0.0035 

Max 0 0 0.0200 0.0200 0.0200 0.0200 0.0212 0.0212 

Median 0 0 3.6013e-4 3.6046e-4 3.6013e-4 3.6046e-4 3.2390e-4 3.2365e-4 

Q1 0 0 -1.2742e-4 -1.2665e-4 -1.2742e-4 -1.2665e-4 -1.4113e-4 -1.4104e-4 

Q3 0 0 0.0037 0.0037 0.0037 0.0037 0.0038 0.0038 

𝑒𝑢 0 7.3887e-4 7.3887e-4 6.3711e-4 

P: Proposed, A: ABAQUS 

 

Fig. 5 presents the effect of thermal expansion on the model temperature and displacement fields. As shown in Fig. 5(a-b), 

higher temperature regions were observed around the outer expanded region of the three heat sources, and even higher 

temperatures were observed between the heat sources due to the concentration of heat by the expansion of heat source regions. 

On the other hand, lower temperatures were observed around the middle section of the expanded regions, where there was less 

heat compared to the case without thermal expansion. As shown in Fig. 5(c-d), the effect of thermal expansion induced 

noticeable deformations around the heat source regions, and even greater deformations were observed at the cylindrical hole 

regions. On the other hand, fewer deformations were observed between heat sources as the regions expanded in opposite 

directions, resulting in less and close to zero resultant displacements. 

  
(a) (c) 

  
(b) (d) 

Fig. 5. The effect of thermal expansion on the temperature and displacement fields; colour maps indicate the difference in 

temperature and displacement values with and without thermal expansion. 

 

6.2 CPU and GPU computational performance 

The presented method was evaluated on an Intel(R) Core(TM) i5-2500K CPU @ 3.30 GHz with 8.0 GB RAM PC using 

Windows 10 operating system. Fig. 6(a) presents CPU solution times for a single time step in four-node linear tetrahedral (T4) 

and eight-node reduced-integrated hexahedral (H8) meshes for temperature-independent thermo-mechanical (TherMechTI), 

thermo-mechanical with thermal expansion (TherMechExpanTI), and temperature-dependent thermo-mechanical with thermal 

expansion (TherMechExpanTD) at 11 different model sizes. It can be seen that the computation times of TherMechTI were 



 

 

the least for both T4 and H8, followed by those of TherMechExpanTI and TherMechExpanTD. Furthermore, it was noticed 

that the solution times increased almost linearly with the increase of model sizes, and linear interpolation and extrapolation 

could be used to determine the solution times at unknown model sizes. Fig. 6(b) presents the computational overheads in CPU 

computation with the averaged overheads given in Table. 3. The computation time of the hourglass control algorithm [60] for 

H8 was considered in all evaluations. 

  
(a) (b) 

Fig. 6. (a) CPU solution times per simulation time step and (b) computational overheads in T4 and H8 meshes. 

 

Table. 3 Averaged computational overheads in Fig. 6(b). 

  T4 H8 

Compared to TherMechTI TherMechExpanTI 18.35% 8.31% 

 TherMechExpanTD 58.72% 37.25% 

Compared to TherMechExpanTI TherMechExpanTD 34.12% 26.71% 

 

The GPU implementation was executed on the same PC using an NVIDIA GeForce GTX 780 GPU with 2304 CUDA cores 

@ 863 MHz. The GPU computation was performed for the same model sizes and conditions as the CPU computation. Fig. 

7(a-b) presents GPU solution times for a single time step in T4 and H8 for TherMechTI, TherMechExpanTI and 

TherMechExpanTD, and speed improvements (CPU/GPU time ratios). The GPU solution times exhibited a similar trend as 

the CPU times where they increased almost linearly with the increase of model sizes. Fig. 7(c-d) presents the computational 

overheads in GPU computation. A summary is presented in Table. 4. 



 

 

  
(a) (b) 

  
(c) (d) 

Fig. 7. GPU solution times per simulation time step and speed improvements (CPU/GPU) for (a) T4 and (b) H8 meshes, and 

(c-d) computational overheads. 

 

Table. 4 GPU speed improvements over CPU and averaged computational overheads in Fig. 7. 

  T4 H8 

Maximum speed improvements 

Compared to CPU TherMechTI 17.94x 21.08x 

 TherMechExpanTI 12.46x 16.92x 

 TherMechExpanTD 16.38x 20.97x 

Computational overheads 

Compared to TherMechTI TherMechExpanTI 65.86% 31.37% 

 TherMechExpanTD 68.62% 34.52% 

Compared to TherMechExpanTI TherMechExpanTD 1.67% 2.44% 

 

Fig. 8 presents the ratios of computation time of T4 and H8 in CPU and GPU executions for comparing the computational 

performance of finite elements. Linear interpolation was used to determine H8 computation times at T4 model sizes due to 

different mesh densities. At the same model sizes, T4 consumed between 2.3 and 2.8 times more computation time than those 

of H8 in CPU computation, and between 1.6 and 3.5 times in GPU computation. 



 

 

  
(a) (b) 

Fig. 8. Ratios of computation time of T4 over H8 in the (a) CPU and (b) GPU computation. 

 

6.3 Bioheat-based temperature prediction and biomechanics-based image registration for surgical simulation of 

thermal ablation 

The presented methodology is applied to simulate and predict soft tissue temperatures and deformations for patient-specific 

treatment planning of thermal ablation. Fig. 9 illustrates the workflow employed in the present study. Based on the acquired 

patient-specific medical image dataset, organ geometries were extracted by image segmentation to create 3D surface models 

for finite element meshing. Soft tissue thermal and mechanical material properties and load and boundary conditions were 

assigned to generate computational bioheat and biomechanics models for the temperature and displacement fields of soft 

tissues. The temperature field was used to predict the ablation zones (60 ℃ isotherms were used due to their strong relationship 

with the visible boundaries of coagulated tissues based on experimental observations [65]). The displacement field was used 

to incorporate soft tissue deformations in the medical images by image registration. The 60 ℃  isotherms and tissue 

deformations were overlaid and registered to the patient-specific image dataset to assist the operator of ablation for treatment 

planning and predicting treatment outcomes. Table. 5 presents the simulation settings. The medical image dataset was obtained 

from 3Dircadb 1.20 [66], and the 3D organ surface meshes were generated using 3D slicer [67] (http://www.slicer.org) and 

refined using MeshLab (http://meshlab.sourceforge.net). The finite element meshing was done using TetGen [68]. We refer 

the reader to Ref. [69] for a review of methods for generation of computational biomechanics models. The liver was modelled 

by a transversely isotropic neo-Hookean visco-hyperelastic model [64]. 

 

Fig. 9. The workflow used in the present work for treatment planning of thermal ablation. 

 



 

 

Table. 5 Simulation settings of the liver model for temperature-dependent anisotropic thermo-visco-hyperelastic analysis. 

Geometry Values Unit Description 

Nodes 3268  13072 DOFs (𝑥, 𝑦, 𝑧, 𝑇 per node) 

Elements 18007  Four-node linear tetrahedrons 

Heat sources ×3 𝐷 = 0.01 [𝑚] Heat sources touch each other 

Material properties    

Density 𝜌 1060 [𝑘𝑔/𝑚3]  

Specific heat capacity 𝑐 3600 @ 37 ℃ [𝐽/(𝑘𝑔 ∙ ℃)] Temperature-dependent [45] 

 4300 @ 90 ℃ [𝐽/(𝑘𝑔 ∙ ℃)] Linear interpolation 

Thermal conductivity 𝑘 0.53 @ 37 ℃ [𝑊/(𝑚 ∙ ℃)] Temperature-dependent [45] 

 0.75 @ 90 ℃ [𝑊/(𝑚 ∙ ℃)] Linear interpolation 

Thermal expansion 𝛼 0.0001 [1/℃] [70] 

Transversely isotropic neo-Hookean hyperelastic model 𝛹 =
𝜇

2
(𝐼1̅ − 3) +

𝜂𝐚

2
(𝐼4̅ − 1)2 +

𝜅

2
(𝐽 − 1)2 

Shear modulus 𝜇 1190.476 [𝑃𝑎] Corresponding to Young’s modulus 3500 Pa and Poisson’s ratio 

0.47 [53] Bulk modulus 𝜅 19444.444 [𝑃𝑎] 
Anisotropic coefficient 𝜂𝐚 𝜂𝐚 = 2𝜇 [𝑃𝑎] [64] 

Unit vector 𝐚0  [1 0 0]  To indicate local fibre directions for anisotropic behaviours 

Prony terms 𝜑1 0.5  Viscoelastic behaviours [64] 

Prony terms 𝜏1 0.58  Viscoelastic behaviours [64] 

Load and boundary conditions    

Heat source 𝑄𝑟 9705360 [𝑊/𝑚3] 𝑄𝑟 = 𝜌𝑆𝐴𝑅 where 𝑆𝐴𝑅 = 1.5 × 6.104 × 103 𝑊/𝑘𝑔 [70] 

Metabolic heat generation 𝑄𝑚 33800 [𝑊/𝑚3] [70] 

Blood perfusion rate 𝑤𝑏 26.6 [𝑘𝑔/(𝑚3 ∙ 𝑠)] [21] 

Blood specific heat capacity 𝑐𝑏 3617 [𝐽/(𝑘𝑔 ∙ 𝐾)] [21] 

Arterial blood temperature 𝑇𝑎 37 [℃]  

Exterior of the domain: adiabatic boundary condition  

Simulation time 25 𝑠 Time step 0.0002 𝑠 (125000 steps) 

 

Fig. 10 presents the simulated temperatures, 60 ℃  isotherms, and displacement fields in the liver using TherMechTI, 

TherMechExpanTI and TherMechExpanTD simulations, and Table. 6 presents the results of maximum temperatures and 

maximum and minimum displacements. The temperature-independent simulation employed the specific heat and conductivity 

values at 37 ℃. The TherMechExpanTD had the lowest maximum temperature, followed by those of TherMechExpanTI and 

TherMechTI. Due to higher tissue temperatures, TherMechExpanTI had a more pronounced thermal expansion than 

TherMechExpanTD. In all, TherMechExpanTD had the smallest predicted ablation volumes. Fig. 11 shows the combined 

results where the predicted ablation zones are displayed in the registered patient-specific Computed Tomography (CT) images 

considering soft tissue deformations for the operator of ablation to conduct treatment planning and predict treatment outcomes. 

 Temperatures 60 ℃ isotherms Displacement magnitudes 

(a) 

    
(b) 

    
(c) 

    
Fig. 10. Simulation results of inducing three heat sources in the liver using (a) TherMechTI, (b) TherMechExpanTI and (c) 

TherMechExpanTD simulations (note: (a) TherMechTI does not involve thermal expansion; hence, N/A is used in 

“Displacement magnitudes”). 

 



 

 

Table. 6 Temperatures and displacements in the liver in Fig. 10 to show the effects of thermal expansion and temperature-

in/dependent material properties. 

 𝑇𝑚𝑎𝑥 (℃) 𝑢𝑥,𝑚𝑎𝑥 (𝑚) 𝑢𝑦,𝑚𝑎𝑥 (𝑚) 𝑢𝑧,𝑚𝑎𝑥 (𝑚) 𝑢𝑥,𝑚𝑖𝑛 (𝑚) 𝑢𝑦,𝑚𝑖𝑛 (𝑚) 𝑢𝑧,𝑚𝑖𝑛 (𝑚) 

TherMechTI 81.8196 0 0 0 0 0 0 

TherMechExpanTI 81.7794 1.25e-5 1.65e-5 1.55e-5 -1.19e-5 -1.50e-5 -1.44e-5 

TherMechExpanTD 78.2727 1.17e-5 1.55e-5 1.46e-5 -1.11e-5 -1.42e-5 -1.36e-5 

 

  
(a) (b) 

  
(c) (d) 

Fig. 11. The simulated 60 ℃ isotherms using TherMechExpanTD are visualised on the image registered patient-specific CT 

images from different views. 

 

7. Discussions 

Importance of biomechanics modelling: Biomechanics modelling provides the basis for understanding of many thermo-

mechanical behaviours during thermal ablation. In percutaneous RFA, the liver experiences deformations due to needle 

insertion. In MWA, soft tissues experience expansions close to the antenna’s active tip [11], and an overall tissue shrinkage at 

the end of the procedure [12]. In other non-invasive thermal ablation treatments such as HIFU ablation, target organs such as 

the liver and kidneys experience respiration-induced movements. These soft tissue behaviours require the coupled 

computational bioheat transfer and biomechanics modelling, instead of bioheat transfer alone which was used in many existing 

works. This will improve the understanding of parametric dependence of thermal doses and exposure outcomes while the 

target tissues are in dynamics. 

Applicability to other hyperthermia treatments: Although the clinically relevant application is demonstrated by a simulation 

of thermal ablation for local hyperthermia, the principle of the coupled bioheat and biomechanics modelling is generic and can 

be straightforwardly adapted for regional and whole-body hyperthermia simulations, given the regional and whole-body finite 

element meshes, material properties, and load and boundary conditions. 

Heat source based on modality: In the present work, we used spherical heat source regions with a uniform heat value (similar 

to Yuan [71]) to simplify the problem for the purpose of algorithm verification. However, the actual heat deposition is usually 

not uniform and should be determined based on the specific type of modality used for thermal ablation. For instance, it needs 

to solve the propagation of ultrasound in soft tissues for acoustic pressures for volumetric heat depositions in HIFU [72], 

Maxwell’s equation for the electromagnetic field in MWA [11] and RFA [73], and laser intensity described by Beer-Lambert’s 



 

 

law in laser ablation [23]. A review of heat source generated by different applications can be found in [74]. 

Thermal damage of tissues: The extent of thermal damage in tissues can be estimated based on (i) temperature thresholding, 

(ii) the cumulative equivalent minutes (CEM) at 43 ℃, or (iii) an Arrhenius damage integral [46]. In the present work, we used 

the temperature thresholding based on 60 ℃ isotherms owing to their strong relationship with the visible boundaries of 

coagulated tissues based on experimental observations [65]. This is also supported by numerical estimations from the CEM43 

and the Arrhenius integral, showing that the tissues will be necrotised almost instantly when the temperature is 60 ℃. 

Anisotropy: The presented method accommodates anisotropic and temperature-dependent properties of soft tissues. 

Anisotropic thermal conductivity, anisotropic thermal expansion coefficient, and anisotropic hyperelasticity can be 

incorporated into the constitutive models for soft tissue temperature and deformation computation. Temperature-dependent 

specific heat capacity and thermal conductivity can also be done similarly. 

Computational performance: The computational performance is mainly affected by two factors, the total number of time steps 

and the number of DOFs. These two factors are controlled by the total simulation time, time step size, and model discretization. 

A longer simulation time usually yields longer computation time. This can be reduced by using a larger time step size to 

decrease the total number of time steps; however, the maximum allowable time step size is limited by a critical value in the 

explicit time integration [75] which is related to the spatial discretization and material properties. With given material 

properties, a more refined discretization usually leads to a smaller critical time step, which is limited by the smallest element 

in the mesh, and also leads to an increase in number of DOFs, further increasing computational cost. Therefore, simulations 

need to consider the mesh discretization for desired efficiency. Some methods such as deep learning [76] and reduce order 

modelling [77] were reported to permit a larger time step size to be used for more efficient computation. 

Finite element considerations: finally, considerations must also be given to the type of finite elements (T4 or H8) used for 

simulation. As shown in Fig. 8, T4 meshes are between 1.6 and 3.5 times computationally more expensive than H8 with the 

same number of DOFs; however, the generation of H8 meshes is typically more difficult due to the complicated irregular shape 

of body organs, requiring significant time and manual interventions to complete a single mesh [69]. In contrast, the key 

advantage of T4 meshes is that they can be generated automatically based on the surface geometry of patient-specific anatomy, 

and this is often a standard feature of many mesh processing packages, such as TetGen [68] mentioned previously. 

 

8. Conclusion 

Simulation of thermal ablation requires the coupled computational bioheat transfer and biomechanics modelling for accurate 

prediction of soft tissue temperatures. We achieve this by presenting a thermo-visco-hyperelastic total Lagrangian explicit 

dynamics finite element algorithm. The essential advantage of the presented method is that it enables full nonlinear modelling 

of the anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, instead of the 

linear elastic, linear viscoelastic, and thermal-only modelling in the existing works. To achieve simulations in real-time, the 

presented algorithm is developed to be well suited for GPU parallel computation. We demonstrate a clinically relevant scenario 

using a simulation of thermal ablation in the liver. Future works will be devoted to the application of the presented method in 

simulation of the planning, guidance and training of thermal ablation and other hyperthermia treatments and the development 

of computer-assisted treatment systems for personalised thermal ablation. 
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